

ED 34 - 862

Engineering Data

50 Hz

Introdu	iction		ii	1
Part 1	General Information 1		1	2
Part 2	Indoor Units		45	3
	Ceiling Mounted Cassette Type (Round Flow) 2	FXFQ-P	47	4
	Ceiling Mounted Cassette Type (Double Flow) 3	FXCQ-M	121	5
	Ceiling Mounted Cassette Corner Type 4	FXKQ-MA	143	5
	Slim Ceiling Mounted Duct Type 5	FXDQ-PB, NB	163	6
	Ceiling Mounted Built-In Type 6	FXSQ-M	201	7
	Ceiling Mounted Duct Type (Middle and High Static Pressure) 7	FXMQ-P	243	8
	Ceiling Mounted Duct Type 8	FXMQ-MA	295	
	Ceiling Suspended Type 9	FXHQ-MA	315	9
	Wall Mounted Type 10	FXAQ-MA	331	10
	Floor Standing Type / Concealed Floor Standing Type 11	FXLQ/FXNQ-MA	359	11
	Ceiling Suspended Cassette Type (Connection Unit Series) 12	FXUQ-MA	381	12
Part 3	Outdoor Air Processing Unit		415	
	Outdoor Air Processing Unit 13	FXMQ-MF	417	13
Part 4	Outdoor Units; Normal Series (Space Saving Series).		451	14
	Cooling Only (50Hz) 14	RXQ-PA	453	15
Part 5	Outdoor Units; High COP Series (Energy Saving Serie	s)	533	16
	Cooling Only (50Hz) 15	RXQ-PAH	535	
Part 6	Installation of Outdoor Units		581	17
Part 7	Control 17		643	18
Part 8	Guide Specification18			

1. Introduction

Preface

Along higher quality building environment and more sophisticated building function, there is now a greater demand for system expansion for a flexible air-conditioning system capable of finer air-conditioning, thus increasing importance of individual air-conditioning systems. On the other hand, due to social significance of environmental and energy problems, elements such as energy-efficiency and low maintenance are still strongly desired.

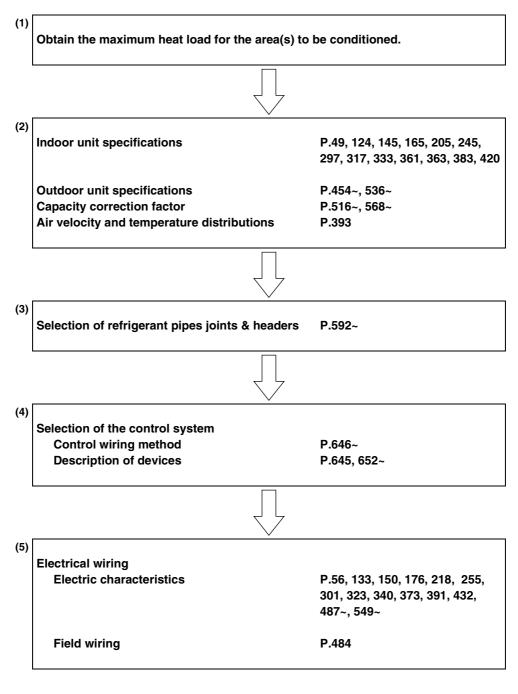
Daikin is the sole air conditioning company in the world that manufactures every component from refrigerant to complete air conditioning systems itself. Our commitment to offering the best for people as well as the environment inspires us to develop new systems that make the most effective use of energy resources.

Daikin, the first in the industry to develop the VRV system, has now enhanced the R-410A, R-22 with the Inverter that features an upgraded capacity of up to 54 horsepower to further refine all the features of the current VRV system.

This publication contains a variety of information related to the design and installation of this new VRV System. We hope this information will serve to deepen your understanding of the system, and will help you to efficiently develop its highly evolved characteristics.

Global Operations Division DAIKIN INDUSTRIES, LTD

2. Publication History of VRV Engineering Data


Refrigerant		Туре	Pub. : No.	-	utdoor Units	Notes	Published In
gerain		/F-	ED39-436		RXYMQ4, 5, 6M	 VRV II-S Heat Pump New line up of 4, 5, 6HP outdoor units New line up of FXDQ Indoor units 	Jul. 2004
			ED39-526	50Hz H/R	REYQ8M~48M	VRV II Heat Recovery Separation of Heat Recovery Series from ED39-226B	Feb. 2006
		■ INVERTER M	ED35-511B	50/60Hz H/P	RXYQ8~30MY1K(E) RXYQ8~30MYLK(E)	 VRV II Heat Pump for High outdoor temperature. Minor change of Indoor Units from M to MA Model change of Remote Controller as follows BRC1A61, 62 BRC8A61 	Jul. 2006
	Air Cooled	■ INVERTER MA	ED39-428B	50/60Hz H/P 50Hz C/O	RXYQ5MA~48MA RXQ5MA~48MA	 VRV II Heat Pump, Cooling Only New line up of 60Hz Heat Pump outdoor units to ED39-428A 	Oct. 2005
R-410A			ED34-762A	50Hz C/O	Normal Series RXQ5P~54P High COP Series RXQ16PH~50PH	VRV III Cooling Only ■ Correction of errors	Sep. 2007
R-410A		■ INVERTER P	ED34-845A	50/60Hz H/P	Normal Series RXYQ5P(A)~54P(A) High COP Series RXYQ16P(A)H~50P(A)H	 VRV III Heat Pump Change of refrigerant amount Refrigerant amount reduced to less than 12 kg. 	Oct. 2008
			ED34-862	50Hz C/O	Normal Series RXQ5PA~54PA High COP Series RXQ16PAH~50PAH	 VRV III Cooling Only Change of refrigerant amount Refrigerant amount reduced to less than 12 kg. 	Nov. 2008
	Water Cooled	-	ED30-442B	50Hz H/P 50Hz H/R	RWEYQ10, 20, 30M Y1	 VRV-W II Heat Pump, Heat Recovery Following change has been newly added to ED30-442A Minor change of Indoor Units from M to MA Model change of Remote Controller as follows BRC1A61, 62 BRC8A61 → BRC1C62 	May. 2006
			ED30-653A	60Hz H/P 60Hz H/R	RWEYQ10, 20, 30M YL, TL	VRV-W II Heat Pump, Heat Recovery 60Hz ■ Correction of errors	Jan. 2008
		■ INVERTER P	ED30-842	50/60Hz H/P, H/R	RWEYQ-P Y1, YL, TL	VRV-W III Heat Pump, Heat Recovery Preliminary	Oct. 2008
		■ INVERTER K-K	ED35-211A	50/60Hz 50/60Hz	RXY 16K-K~30K-K RX 16K-K~30K-K	Following change has been newly added to ED35-211 ■ FXD32~63M (Additional) ■ FXYB32~63K (Additional) ■ FXYA40~63K→FXA32~63L (Model Change) ■ DCS302B61→DCS302C61 (Model Change)	Sep. 2004
R-22	Air Cooled	■ INVERTER M	ED38-225C	50/60Hz H/P 50Hz C/O	RXY5M~48M RX5M~48M	 VRV II Heat Pump, Cooling Only Following change has been newly added to ED38-225B FXD20~32P (Additional) Model change of Remote Controller as follows BRC1A61, 62 BRC8A61 →BRC1C62 VAM150~2000FA→VAM150~2000GJ (Model change) 	Jun. 2006
			ED38-329	50/60Hz H/P 50Hz C/O	RXYM4, 5, 6M RXM4, 5, 6M	VRV II-S Heat Pump, Cooling Only ■ New line up of 4, 5, 6HP outdoor units ■ New line up of FXD Indoor units	Jan. 2004
		■ INVERTER MA	ED38-825	50/60Hz H/P 50Hz C/O	RXY5MA~48MA RX5MA~48MA	 VRV II Heat Pump, Cooling Only Minor change of outdoor units from M to MA. Addition of DCS303A61 	Oct. 2008
	For All Ty	vpes	OH 08-1	For Indoor an	d Outdoor Units.	Option Handbook	Apr. 2008
HRV(\	/AM)	GJ	ED71-613	50/60Hz	VAM150~2000GJ	HRV ■ New line-up from FA to GJ Series	Feb. 2006
HRV(\	/KM)	GA(M)	ED71-440A	50Hz	VKM50~100GA(M) (R-410A)	HRV • With DX Coil (VKM-GA) • With DX Coil and Humidities (VKM-GAM)	Feb. 2007

This time we publish ED34-862 as shown by

H/P : Heat Pump H/R : Heat Recovery C/O : Cooling Only

Note: The reference number "(VOOOO)" are noted on each figures in this book however they are only used for printing convenience.

3. Step by Step VRV System Selection Process (Reference)

Caution

- 1. Air conditioners should not be installed in areas where corrosive gases, such as acid gas or alkaline gas, are produced.
- 2. If the outdoor units is to be installed close to the sea shore, direct exposure to the sea breeze should be avoided.
- 3. Refer to the latest drawing numbers.

Part 1 General Information

1.	Mod	el Names of Indoor/Outdoor Units	2
2.	Exte	rnal Appearance	4
		Indoor Units	
	2.2	Outdoor Units	5
3.	Com	bination of Outdoor Units	7
4.	Nom	enclature	9
5.	Capa	acity Range	11
6.		ures	
	6.1	Technologies	13
	6.2	Flexible Design	15
	6.3	A sense of responsibility	18
	6.4	Enhanced Comfort	19
	6.5	Control Systems	20
	6.6	Advanced Control Systems	22
	6.7	HRV (Heat Reclaim Ventilation)	
	6.8	HRV-With DX Coil-(Heat Reclaim Ventilation) VKM-GA(M) Series	34

Indoor Units

Туре						Model	Name						Power Supply	
Ceiling Mounted Cassette Type (Round Flow)	FXFQ	_	25P	32P	40P	50P	63P	_	80P	100P	125P	_	_	
Ceiling Mounted Cassette Type (Double Flow)	FXCQ	20M	25M	32M	40M	50M	63M		80M	_	125M		_	
Ceiling Mounted Cassette Corner Type	FXKQ	-	25MA	32MA	40MA	_	63MA			_			_	
Slim Ceiling Mounted	FXDQ- PBVE	20PB	25PB	32PB	_	_	_			_			_	
	FXDQ- PBVET	20PB	25PB	32PB	_	_	_	_	_	_	_	_	_	
Duct Type	FXDQ- NBVE	_	_	_	40NB	50NB	63NB		-	_			_	
	FXDQ- NBVET	_	_	_	40NB	50NB	63NB			_			_	VE
Ceiling Mounted Built-In Type	FXSQ	20M	25M	32M	40M	50M	63M	_	80M	100M	125M	_	_	
Ceiling Mounted Duct Type (Middle and high static pressure)	FXMQ	20P	25P	32P	40P	50P	63P		80P	100P	125P		_	
Ceiling Mounted Duct Type	FXMQ	_	_	_	_	_	_	_	_	_	_	200MA	250MA	
Ceiling Suspended Type	FXHQ	_		32MA	_	_	63MA			100MA			_	
Wall Mounted Type	FXAQ	20MA	25MA	32MA	40MA	50MA	63MA			_			_	
Floor Standing Type	FXLQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	_	_	
Concealed Floor Standing Type	FXNQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	_	_	
Ceiling Suspended Cassette Type	FXUQ	_	—	_	—	_	—	71MA	—	100MA	125MA	—	—	V1
Connection Unit for FXUQ	BEVQ	_	_	_	_	_	_	71MA	_	100MA	125MA	_	_	VE

Note: FXDQ has following 2 series, as shown below.

FXDQ-PBVET, NBVET: without Drain Pump (For General, Asia: except for EU, China and Australia) FXDQ-PBVE, NBVE: with Drain Pump

BEV unit is required for FXUQ only.

MA: RoHS Directive models; Specifications, dimensions and other functions are not changed compared with M type.

Outdoor Units

Normal Series (Space Saving Series)

Series		Model Name									
		5PA	8PA	10PA	12PA	14PA	16PA	18PA	20PA	22PA	
Cooling Only	RXQ	24PA	26PA	28PA	30PA	32PA	34PA	36PA	38PA	40PA	Y1
		42PA	44PA	46PA	48PA	50PA	52PA	54PA			

High COP Series (Energy Saving Series)

Series					Model I	Name					Power Supply
Cooling Only	RXQ	16PAH	18PAH	24PAH	26PAH	28PAH	30PAH	32PAH	34PAH	36PAH	Y1
	n/Q	38PAH	40PAH	42PAH	44PAH	46PAH	48PAH	50PAH			TI
VE: 1φ, 220~240V, 50Hz 1φ, 220V, 60Hz			V1:	1¢, 220~2	240V, 50I	Ηz	Y1:	3ø, 380	0~415V, 5	50Hz	

1

HP	5HP	8HP	10HP	12HP	14HP	16HP	18HP
Model name	RXQ5PA	RXQ8PA	RXQ10PA	RXQ12PA	RXQ14PA	RXQ16PA	RXQ18PA
HP	20HP	22HP	24HP	26HP	28HP	30HP	32HP
Model name	RXQ20PA	RXQ22PA	RXQ24PA	RXQ26PA	RXQ28PA	RXQ30PA	RXQ32PA
Outdoor unit 1	RXQ8PA	RXQ10PA	RXQ8PA	RXQ8PA	RXQ10PA	RXQ12PA	RXQ16PA
Outdoor unit 2	RXQ12PA	RXQ12PA	RXQ16PA	RXQ18PA	RXQ18PA	RXQ18PA	RXQ16PA
Outdoor unit 3	-	-	-	-	-	-	-
HP	34HP	36HP	38HP	40HP	42HP	44HP	46HP
Model name	RXQ34PA	RXQ36PA	RXQ38PA	RXQ40PA	RXQ42PA	RXQ44PA	RXQ46PA
Outdoor unit 1	RXQ16PA	RXQ18PA	RXQ8PA	RXQ8PA	RXQ8PA	RXQ8PA	RXQ10PA
Outdoor unit 2	RXQ18PA	RXQ18PA	RXQ12PA	RXQ16PA	RXQ16PA	RXQ18PA	RXQ18PA
Outdoor unit 3	-	_	RXQ18PA	RXQ16PA	RXQ18PA	RXQ18PA	RXQ18PA
HP	48HP	50HP	52HP	54HP			
Model name	RXQ48PA	RXQ50PA	RXQ52PA	RXQ54PA			
Outdoor unit 1	RXQ12PA	RXQ14PA	RXQ16PA	RXQ18PA			
Outdoor unit 2	RXQ18PA	RXQ18PA	RXQ18PA	RXQ18PA			
Outdoor unit 3	RXQ18PA	RXQ18PA	RXQ18PA	RXQ18PA			

Combination of Outdoor Units (Normal Series (Space Saving Series))

Combination of Outdoor Units (High COP Series (Energy Saving Series))

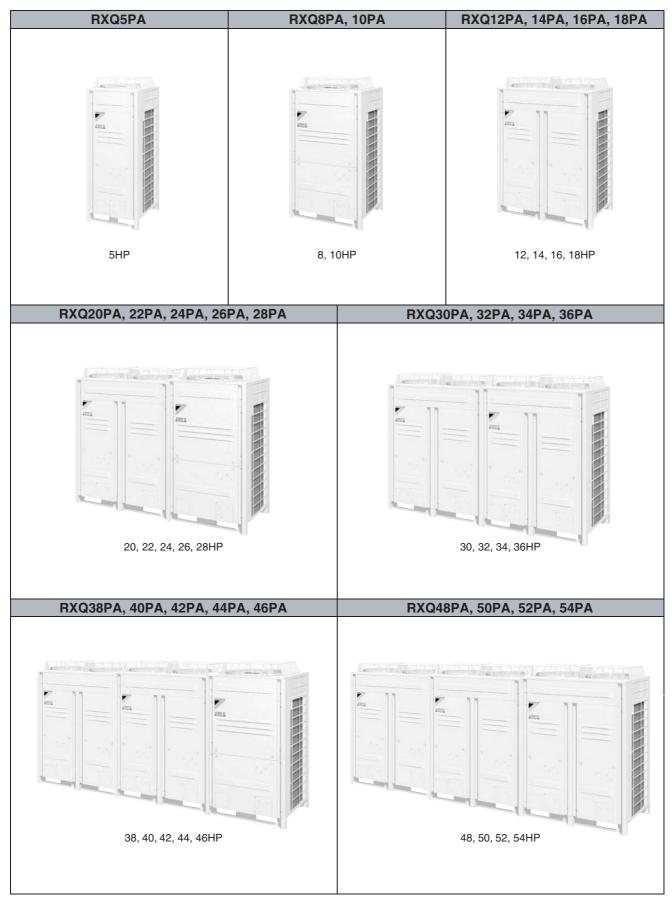
RXQ16PA

RXQ18PA

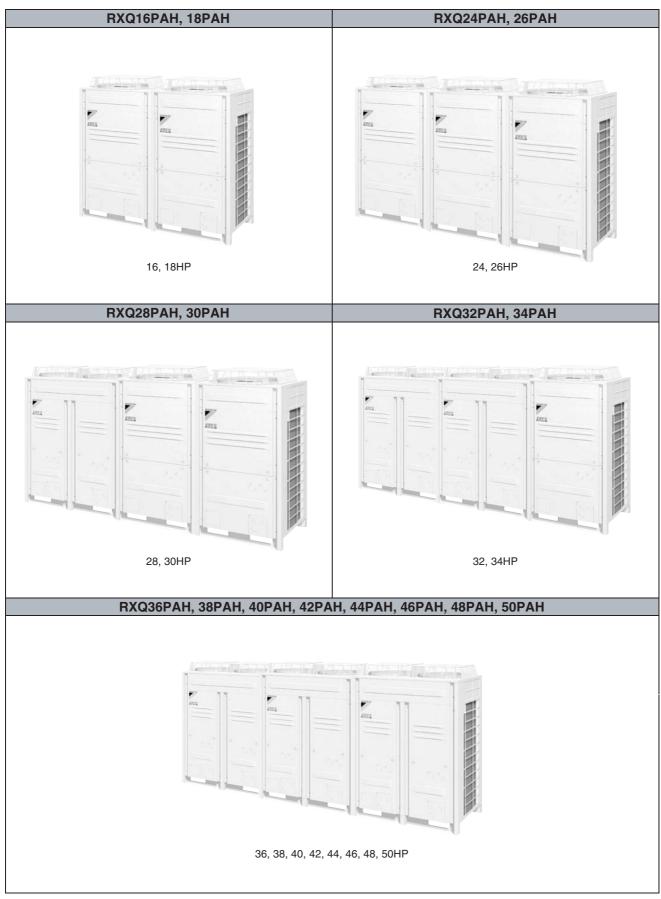
HP	16HP	18HP	24HP	26HP	28HP	30HP	32HP
Model name	RXQ16PAH	RXQ18PAH	RXQ24PAH	RXQ26PAH	RXQ28PAH	RXQ30PAH	RXQ32PAH
Outdoor unit 1	RXQ8PA						
Outdoor unit 2	RXQ8PA	RXQ10PA	RXQ8PA	RXQ8PA	RXQ8PA	RXQ10PA	RXQ12PA
Outdoor unit 3	-	-	RXQ8PA	RXQ10PA	RXQ12PA	RXQ12PA	RXQ12PA
HP	34HP	36HP	38HP	40HP	42HP	44HP	46HP
Model name	RXQ34PAH	RXQ36PAH	RXQ38PAH	RXQ40PAH	RXQ42PAH	RXQ44PAH	RXQ46PAH
Outdoor unit 1	RXQ10PA	RXQ12PA	RXQ12PA	RXQ12PA	RXQ12PA	RXQ12PA	RXQ12PA
Outdoor unit 2	RXQ12PA	RXQ12PA	RXQ12PA	RXQ12PA	RXQ12PA	RXQ16PA	RXQ16PA
Outdoor unit 3	RXQ12PA	RXQ12PA	RXQ14PA	RXQ16PA	RXQ18PA	RXQ16PA	RXQ18PA
HP	48HP	50HP					
Model name	RXQ48PAH	RXQ50PAH					
Outdoor unit 1	RXQ16PA	RXQ16PA					
Outdoor unit 2	RXQ16PA	RXQ16PA	1				

Outdoor unit 3

2. External Appearance


2.1 Indoor Units

Ceiling Mounted Cassette Type (Round Flow)	Ceiling Mounted Duct Type
FXFQ25P FXFQ32P FXFQ40P FXFQ50P FXFQ63P FXFQ63P FXFQ80P FXFQ100P FXFQ125P	FXMQ200MA FXMQ250MA
Ceiling Mounted Cassette Type (Double Flow)	Ceiling Suspended Type
FXCQ20M FXCQ25M FXCQ32M FXCQ40M FXCQ50M FXCQ63M FXCQ63M FXCQ80M FXCQ125M	FXHQ32MA FXHQ63MA FXHQ100MA
Ceiling Mounted Cassette Corner Type	Wall Mounted Type
FXKQ25MA FXKQ32MA FXKQ40MA FXKQ63MA	FXAQ20MA FXAQ25MA FXAQ32MA FXAQ40MA FXAQ50MA FXAQ63MA
Slim Ceiling Mounted Duct Type	Floor Standing Type
FXDQ20PB FXDQ40NB FXDQ25PB FXDQ50NB FXDQ32PB FXDQ63NB with Drain Pump (VE) without Drain Pump (VET)	FXLQ20MA FXLQ25MA FXLQ32MA FXLQ40MA FXLQ50MA FXLQ63MA
Ceiling Mounted Built-In Type	Concealed Floor Standing Type
FXSQ20M FXSQ25M FXSQ32M FXSQ40M FXSQ50M FXSQ63M FXSQ80M FXSQ100M FXSQ125M	FXNQ20MA FXNQ25MA FXNQ32MA FXNQ40MA FXNQ50MA FXNQ63MA
Ceiling Mounted Duct Type (Middle and high static pressure)	Ceiling Suspended Cassette Type
FXMQ20P FXMQ25P FXMQ32P FXMQ50P FXMQ63P FXMQ63P FXMQ80P FXMQ100P FXMQ125P	FXUQ71MA + FXUQ100MA + FXUQ125MA + Connection Unit


1

2.2 Outdoor Units

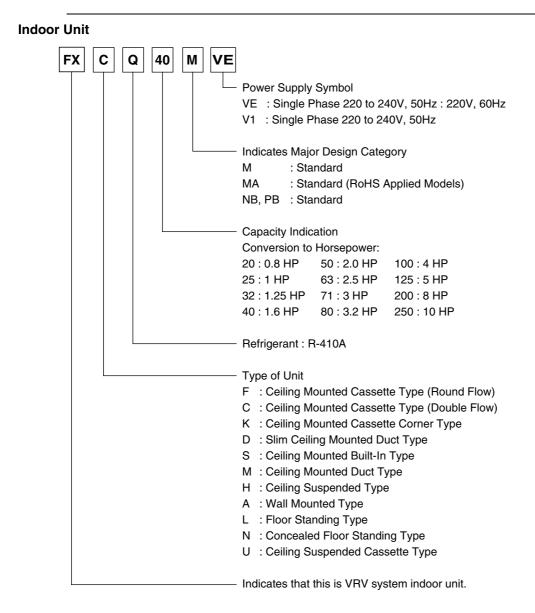
Normal Series (Space Saving Series)

High COP Series (Energy Saving Series)

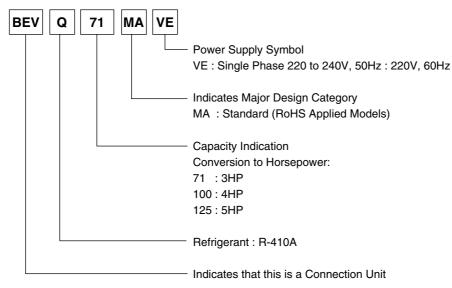
3. Combination of Outdoor Units

Normal Series (Space Saving Series)

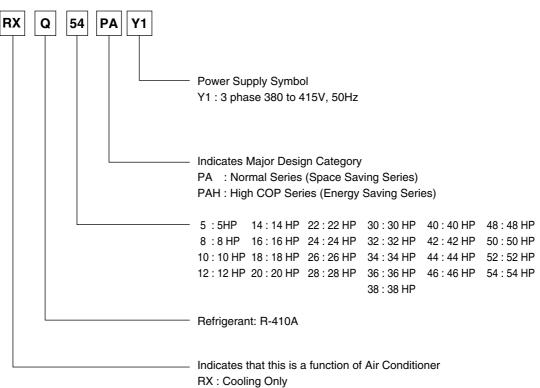
System	Number				Module	;			Outdoor Unit Multi Connection
Capacity	of units	5	8	10	12	14	16	18	Piping Kit (Option)
5HP	1								
8HP	1		•						
10HP	1			ightarrow					-
12HP	1								—
14HP	1					•			
16HP	1						\bullet		
18HP	1								
20HP	2		•		•				
22HP	2			•	•				
24HP	2		\bullet				\bullet		
26HP	2		•					•	
28HP	2			•				•	BHFP22P100
30HP	2				•			•	
32HP	2						••		
34HP	2						•	•	
36HP	2							••	
38HP	3		•		•			•	
40HP	3		\bullet				•		
42HP	3		•				•	•	
44HP	3							••	
46HP	3			•				••	BHFP22P151
48HP	3							$\bullet \bullet$]
50HP	3							••]
52HP	3						•	••]
54HP	3							•••	an Hait Multi Ocean a dian Dising Kitis


★Note: For multiple connection of 20HP system or more, an optional Daikin Outdoor Unit Multi Connection Piping Kit is required.

	r Jenes (Luci 3)		y Jenes	'			
System	Number			Мос	lule			Outdoor Unit Multi Connection
Capacity	of units	8	10	12	14	16	18	Piping Kit (Option)
16HP	2	$\bullet \bullet$						BHFP22P100
18HP	2	•	•					- DI II F 22F 100
24HP	3	$\bullet \bullet \bullet$						
26HP	3	$\bullet \bullet$	•					
28HP	3	$\bullet \bullet$		•				
30HP	3	•	•	•				
32HP	3	•		••				
34HP	3		•	••				
36HP	3			•••				BHFP22P151
38HP	3			••	٠			- DI II F 22F 151
40HP	3			••		•		
42HP	3			••			•	
44HP	3			•		••		
46HP	3					•	٠	
48HP	3							
50HP	3					$\bullet \bullet$	•	


High COP Series (Energy Saving Series)

★Note: For multiple connection of 16HP system or more, an optional Daikin Outdoor Unit Multi Connection Piping Kit is required.


4. Nomenclature

Connection Unit

Outdoor Unit

5. Capacity Range

Outdoor Units

Normal Type (Space Saving Type)

HP	Model name	Combination	Outdoor unit multi connection piping kit	Total capacity index of connectable indoor units*	Maximum number of connectable indoor units*
5 HP	RXQ5PA	RXQ5PA	-	62.5 to 162.5 (250)	8 (12)
8 HP	RXQ8PA	RXQ8PA	-	100 to 260 (400)	13 (20)
10 HP	RXQ10PA	RXQ10PA	-	125 to 325 (500)	16 (25)
12 HP	RXQ12PA	RXQ12PA	-	150 to 390 (600)	19 (30)
14 HP	RXQ14PA	RXQ14PA	-	175 to 455 (700)	22 (35)
16 HP	RXQ16PA	RXQ16PA	-	200 to 520 (800)	26 (40)
18 HP	RXQ18PA	RXQ18PA	-	225 to 585 (900)	29 (45)
20 HP	RXQ20PA	RXQ8PA + RXQ12PA		250 to 650 (800)	32 (40)
22 HP	RXQ22PA	RXQ10PA + RXQ12PA	-	275 to 715 (880)	35 (44)
24 HP	RXQ24PA	RXQ8PA + RXQ16PA	-	300 to 780 (960)	39 (48)
26 HP	RXQ26PA	RXQ8PA + RXQ18PA	-	325 to 845 (1,040)	42 (52)
28 HP	RXQ28PA	RXQ10PA + RXQ18PA	BHFP22P100	350 to 910 (1,120)	45 (56)
30 HP	RXQ30PA	RXQ12PA + RXQ18PA		375 to 975 (1,200)	48 (60)
32 HP	RXQ32PA	RXQ16PA x 2		400 to 1,040 (1,280)	52 (64)
34 HP	RXQ34PA	RXQ16PA + RXQ18PA		425 to 1,105 (1,360)	55 (64)
36 HP	RXQ36PA	RXQ18PA x 2		450 to 1,170 (1,440)	58 (64)
38 HP	RXQ38PA	RXQ8PA + RXQ12PA + RXQ18PA		475 to 1,235 (1,235)	61 (61)
40 HP	RXQ40PA	RXQ8PA + RXQ16PA x 2		500 to 1,300 (1,300)	
42 HP	RXQ42PA	RXQ8PA + RXQ16PA + RXQ18PA	-	525 to 1,365 (1,365)	
44 HP	RXQ44PA	RXQ8PA + RXQ18PA x 2	-	550 to 1,430 (1,430)	
46 HP	RXQ46PA	RXQ10PA + RXQ18PA x 2	BHFP22P151	575 to 1,495 (1,495)	64 (64)
48 HP	RXQ48PA	RXQ12PA + RXQ18PA x 2		600 to 1,560 (1,560)	
50 HP	RXQ50PA	RXQ14PA + RXQ18PA x 2		625 to 1,625 (1,625)	
52 HP	RXQ52PA	RXQ16PA + RXQ18PA x 2]	650 to 1,690 (1,690)	
54 HP	RXQ54PA	RXQ18PA x 3]	675 to 1,755 (1,755)	

Note: •For multiple connection of 20 HP systems and above, the above Daikin optional kit (separately sold) is required. *Values inside brackets are based on connection of indoor units rated at maximum capacity, 200% for single outdoor units, 160% for double outdoor units, and 130% for triple outdoor units. Refer to page 15 for notes on connection capacity of indoor units.

High-COP Type (Energy Saving Type)

HP	Model name	Combination	Outdoor unit multi connection piping kit	Total capacity index of connectable indoor units*	Maximum number of connectable indoor units*	
16 HP	RXQ16PAH	RXQ8PA x 2	BHFP22P100	200 to 520 (640)	26 (32)	
18 HP	RXQ18PAH	RXQ8PA + RXQ10PA	BHFF22F100	225 to 585 (720)	29 (36)	
24 HP	RXQ24PAH	RXQ8PA x 3		300 to 780 (780)	39 (39)	
26 HP	RXQ26PAH	RXQ8PA x 2 + RXQ10PA		325 to 845 (845)	42 (42)	
28 HP	RXQ28PAH	RXQ8PA x 2 + RXQ12PA		350 to 910 (910)	45 (45)	
30 HP	RXQ30PAH	RXQ8PA + RXQ10PA + RXQ12PA		375 to 975 (975)	48 (48)	
32 HP	RXQ32PAH	RXQ8PA + RXQ12PA x 2		400 to 1,040 (1,040)	52 (52)	
34 HP	RXQ34PAH	RXQ10PA + RXQ12PA x 2		425 to 1,105 (1,105)	55 (55)	
36 HP	RXQ36PAH	RXQ12PA x 3	BHFP22P151	450 to 1,170 (1,170)	58 (58)	
38 HP	RXQ38PAH	RXQ12PA x 2 + RXQ14PA	DHFF22F131	475 to 1,235 (1,235)	61 (61)	
40 HP	RXQ40PAH	RXQ12PA x 2 + RXQ16PA		500 to 1,300 (1,300)		
42 HP	RXQ42PAH	RXQ12PA x 2 + RXQ18PA		525 to 1,365 (1,365)		
44 HP	RXQ44PAH	RXQ12PA + RXQ16PA x 2		550 to 1,430 (1,430)	64 (64)	
46 HP	RXQ46PAH	RXQ12PA + RXQ16PA + RXQ18PA		575 to 1,495 (1,495)		
48 HP	RXQ48PAH	RXQ16PA x 3		600 to 1,560 (1,560)		
50 HP	RXQ50PAH	RXQ16PA x 2 + RXQ18PA		625 to 1,625 (1,625)		

Note: •For multiple connection of 16 HP systems and above, the above Daikin optional kit (separately sold) is required. *Values inside brackets are based on connection of indoor units rated at maximum capacity, 200% for single outdoor units, 160% for double outdoor units, and 130% for triple outdoor units. Refer to page 15 for notes on connection capacity of indoor units.

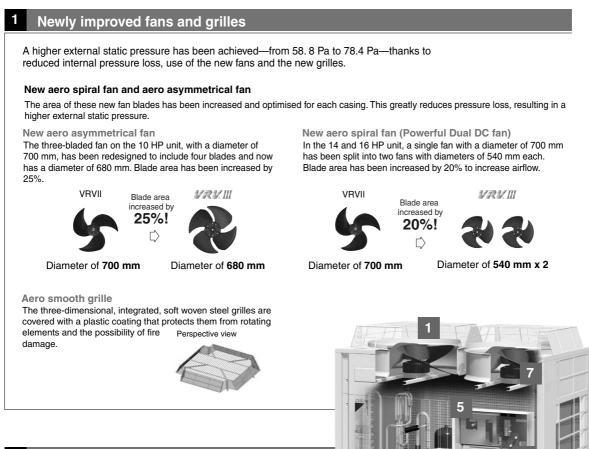
Indoor Units

Туре			Model Name										Power Supply		
Ceiling Mounted Cassette Type (Round Flow)	FXFQ	_	25P	32P	40P	50P	63P	_	80P	100P	125P	_	_		
Ceiling Mounted Cassette Type (Double Flow)	FXCQ	20M	25M	32M	40M	50M	63M	_	80M	_	125M		_		
Ceiling Mounted Cassette Corner Type	FXKQ	_	25MA	32MA	40MA	_	63MA	_		_			_		
	FXDQ- PBVE	20PB	25PB	32PB		_	_	_		_			_		
Slim Ceiling Mounted Duct Type	FXDQ- PBVET	20PB	25PB	32PB		_	_	_		_			_		
	FXDQ- NBVE	-	_	_	40NB	50NB	63NB	_	_	_	_	_	_		
	FXDQ- NBVET	_	_	_	40NB	50NB	63NB	_	_	_	_	_	_	VE	
Ceiling Mounted Built-In Type	FXSQ	20M	25M	32M	40M	50M	63M	_	80M	100M	125M	_	_		
Ceiling Mounted Duct Type (Middle and high static pressure)	FXMQ	20P	25P	32P	40P	50P	63P	_	80P	100P	125P		_		
Ceiling Mounted Duct Type	FXMQ	_	_				_	_		_		200MA	250MA		
Ceiling Suspended Type	FXHQ	_	_	32MA	_		63MA	_	_	100MA	_	_	_		
Wall Mounted Type	FXAQ	20MA	25MA	32MA	40MA	50MA	63MA	_	_	_	_	_	_		
Floor Standing Type	FXLQ	20MA	25MA	32MA	40MA	50MA	63MA	—	_	—	—	_	—		
Concealed Floor Standing Type	FXNQ	20MA	25MA	32MA	40MA	50MA	63MA	_		_	_		_		
Ceiling Suspended Cassette Type	FXUQ	_	_	_	_	_	_	71MA	_	100MA	125MA	_	_	V1	
Connection Unit for FXUQ	BEVQ	_	_	_	_	_	_	71MA	_	100MA	125MA	_	_	VE	

Note: FXDQ has following 2 series, as shown below.

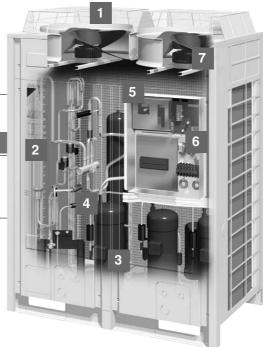
FXDQ-PBVET, NBVET: without Drain Pump (For General, Asia: except for EU, China and Australia) FXDQ-PBVE, NBVE: with Drain Pump

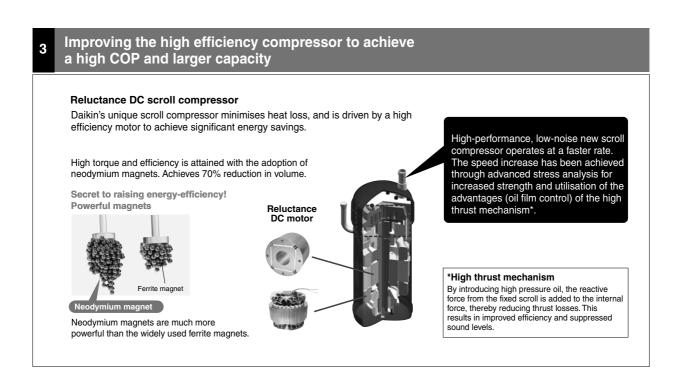
BEV unit is required for FXUQ only.


MA: RoHS Directive models; Specifications, dimensions and other functions are not changed compared with M type.

6. Features

6.1 Technologies


VRV/III—Created to respond to the needs of large-sized buildings


Daikin's constant efforts have been devoted towards using the latest and most revolutionary technologies in the development of the VRVIII system for large-sized buildings. The system offers larger outdoor capacities, greater energy savings, easier installation, longer actual and total piping, and more.

2 Heat exchanger

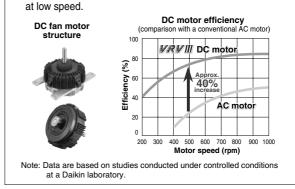
The new heat exchanger contributes to a high COP because of an increase from 7% to 10% of the effective length as well as an optimised e-Pass heat exchanger.

4 Heat transfer circuit

By performing super cooling before the expansion process, the volume of refrigerant that needs to be circulated to the indoor units can be reduced without lowering the evaporation temperature. This permits the use of narrower piping.

6 Smooth sine wave DC Inverter

By adoption of the Sine Wave, which smoothes the rotation of the motor, operation efficiency is improved sharply.

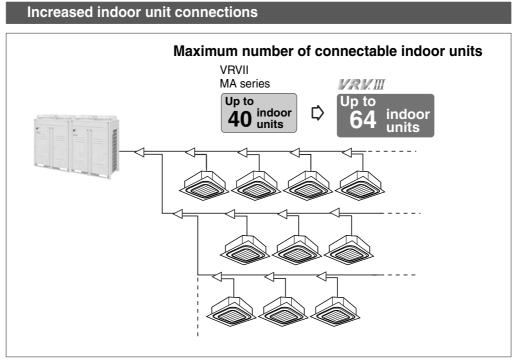


Compact aero box

Realises a compact casing by stacking the Inverter and control PCBs plus optimising the internal design to suit airflow speed. This achieves lower noise and reduces the power required by the large-diameter fanned outdoor unit.

DC fan motor

Across entire range of models (from 5 to 54 HP).
Efficiency improvement by approximately 40% especially



6.2 Flexible Design

Large capacities for large-sized buildings

An increased number of connectable indoor units

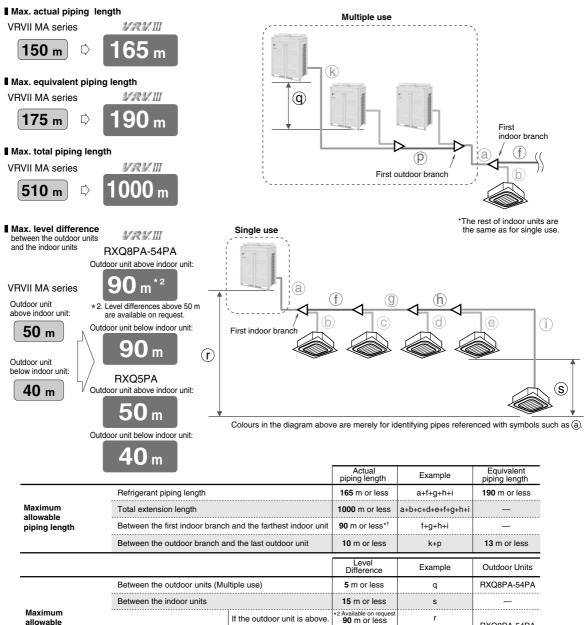
The number of connectable indoor units has been drastically increased from 40 to 64!

Refer to page 11 for the maximum number of connectable indoor units.

Combination ratio

Connection capacity at maximum is 200%.

Conditions of indoor unit connection capacity


Applicable indoor units	FXDQ, FXSQ, FXAQ models	Other indoor unit models*
Single outdoor units		200%
Double outdoor units	200%	160%
Triple outdoor units	200/0	130%

* For the FXFQ25 models, maximum connection ratio is 130% for the entire range of outdoor units.
 Note: If the operational capacity of indoor units is more than 130%, low airflow operation is enforced in all the indoor units.

Large capacities for large-sized buildings

Extended long piping length

Piping length is drastically extended! The long piping length provides more design flexibility, which can match even large-sized buildings.

 allowable
 In the outdoor unit is above.
 90 m or less
 r
 RXQ8PA-54PA

 level difference
 Between the outdoor units and the indoor units and the indoor units
 If the outdoor unit is below.
 90 m or less
 r
 RXQ8PA-54PA

 If the outdoor unit is below.
 90 m or less
 r
 RXQ8PA-54PA

 If the outdoor unit is below.
 50 m or less
 r
 RXQ5PA

 If the outdoor unit is below.
 40 m or less
 r
 RXQ5PA

*1. No special requirements up to 40 m. The maximum actual piping length can be 90 m, or less depending on conditions. Various conditions and requirements have to be met to allow utilisation of 90 m piping length. Be sure to refer to the Engineering Data for details of these conditions and requirements.

*2. Level differences above 50 m are not supported by default but are available on request for RXQ8PA-54PA. (If the outdoor unit is above the indoor unit.)

Large capacities for large-sized buildings

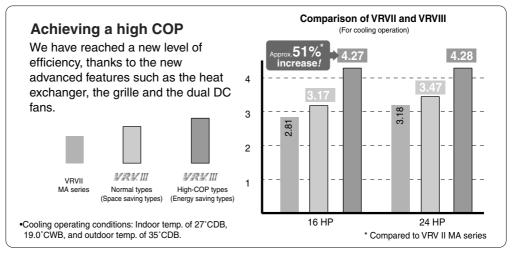
High external static pressure 78.4 Pa (8 mm H₂O)

Higher external static pressure has been achieved thanks to the fan grilles and the dual DC fans that reduce internal pressure loss. Exceeding the previous 58.8 Pa (6 mm H₂O) level, Daikin now offers 78.4 Pa **78.4** Pa Approx. (8 mm H₂O) external static pressure by 3.3% field setting to meet the requirements for increase installation on each floor, often requested VRVII VRV.III MA series for large-sized buildings. \Box 78.4 Pa 58.8 Pa

Easier installation and maintenance

Automatic test operation

Simply press the test operation button and the unit performs an automatic system check, including wiring, shutoff valves, and sensors. The results are returned automatically after the check finishes.


Memory function for operational data

Operating data for the preceding 3 minutes is automatically stored in memory. Should a malfunction occur, this speeds up the process of identifying and fixing the cause of the problem. It also helps in developing measures to eliminate malfunctions.

6.3 A sense of responsibility

High COPs

It has become essential for air conditioning manufacturers to develop systems that provide high energy savings. We at Daikin have made great efforts in this field, and the newly-developed VRVIII delivers highly efficient performance, contributing to high energy savings.

Compliant with the RoHS Directive*

We have been making efforts to facilitate the transition to using RoHS Directive*-compliant materials for system parts.

* RoHS Directive

The RoHS (Restriction of Hazardous Substances (in electrical and electronic equipment)) Directive is an environmental directive enacted to regulate the use of designated chemical substances (lead, cadmium, hexavalent chromium, mercury, polybrominated biphenyls and polybrominated diphenylether) in electrical equipment. All household products subject to this Directive and sold in Europe from July 1, 2006 are legally bound to comply with the RoHS Directive.

Double backup operation in compressors and units

- If one of the multiple compressors in a single outdoor unit system malfunctions, the other compressors take over emergency operation.¹
- If one of the unit in a multiple outdoor system malfunctions, the other outdoor units provide emergency operation^{*2} until repairs can be made.

If one compressor

malfunctions.

Emergency operation can be easily started by remote control of the indoor unit.⁺²

*1. Possible only with single outdoor unit systems that are equipped with two or more compressors. Local setting of the outdoor unit is necessary. *2. For systems composed of two or more outdoor units

Less chances of refrigerant leakage

Conventionally, shutoff valve connections are flanged or flared. In the VRVIII system, the connections for all outdoor units are brazed, meaning less chance of refrigerant leakage.

Enhanced comfort

Outdoor units designed for low-sound operation

Outdoor units created with cutting-edge technologies provide quiet operation to increase users' comfort.

Efficient compressor

New high-performance, low-sound scroll compressor operates at a faster rate, reducing start-up time. This helps the unit to bring the room temperature up to the set level quickly.

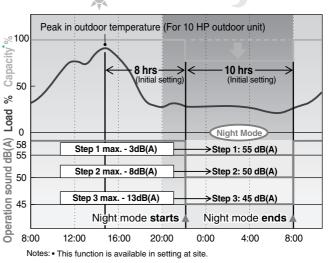
Nighttime quiet operation function

Operation sound level selectable from 3 steps for the night mode

Mode 1. Automatic mode

Set on the outdoor PCB. Time of maximum temperature is memorised. The low operating mode will initiate 8 hours⁻¹ after the peak temperature in the daytime, and normal operation will resume 10 hours⁻² after that. The operation sound level for the night mode can be selected from 55 dB(A) (Step 1), 50 dB(A) (Step 2) and 45 dB(A) (Step 3). (For a single outdoor unit.)

Mode 2. Manual mode


Starting time and ending time can be input. (An external control adaptor for outdoor unit, DTA104A53/61/62, and a locally obtained timer are necessary.)

Mode 3. Combined mode

Combinations of modes 1 and 2 can be used depending on your needs.

*1. Initial setting. Can be selected from 6, 8 and 10 hours. *2. Initial setting. Can be selected from 8, 9 and 10 hours.

Mode 1. Automatic mode

 The relationship of outdoor temperature (load) and time shown in the graph is just an example.

* The capacity reduction rate differs depending on the operation sound level step selected.

6.5 Control Systems

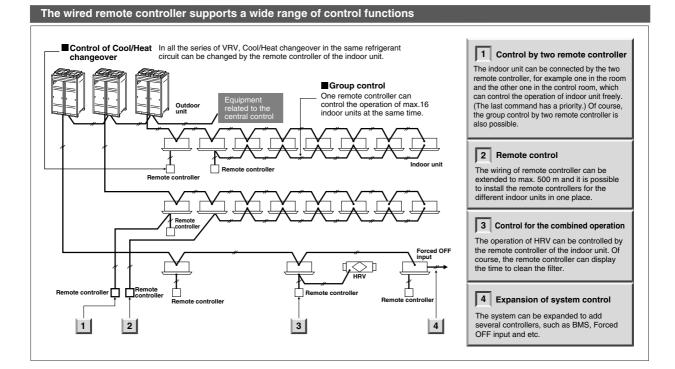
Individual Control Systems

Wired remote controller (Option)

Easier to read because LCD screen is larger.

- Digital display lets you set temperature in 1°C units.
- Lets you individually programme by timer the respective times for operation start and stop within a maximum of 72 hours.
- Equipped with a thermostat sensor in the remote controller that makes possible more comfortable room temperature control.
- Constantly monitors malfunctions in the system for a min. of 40 items, and is equipped with a "self-diagnosis function" that lets you know by message immediately when a malfunction occurs.
- Lets you carry out various field settings by remote controller.
- Enables you to select the ventilation mode and the volume of the HRV.
- The rubber switch and the oil-resisting resin casing have been adopted for durability.
 * When the auto-swing function is not available, the message, THIS FUNCTION IS NOT AVAILABLE is displayed when the wind direction adjustment button is pressed.

Wired remote controller with weekly schedule timer (Option)



Adds advanced functions to those of the above wired remote controller.

- Includes ventilation mode and airflow rate switching, the main functions of HRV series.
- ■24-hour clock function (1-hour backup for power failures)
- Programming function for each day of week.
- Scheduling possible of start/stop and temperature limit (5 settings/day)
- Programming can be enabled or disabled.
- Copy function for programmed schedules.

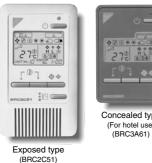
Notes: 1. Standard remote controllers (BRC1C62) not required.

 If the BRC1D61 is connected to the centralised remote controllers (DCS303A51, DCS302CA61, DCS301BA61, DST301BA61), the schedule function is not available.

1

Wireless remote controller (Option)

Wireless remote controller


The same operation modes and settings as with wired remote controllers are possible.

A compact signal receiver unit to be mounted into a wall or ceiling is included. • A light receiver unit for a Ceiling Mounted Cassette (Round Flow, Double Flow) type, Ceiling Suspended type and Wall Mounted type is mounted into the indoor unit.

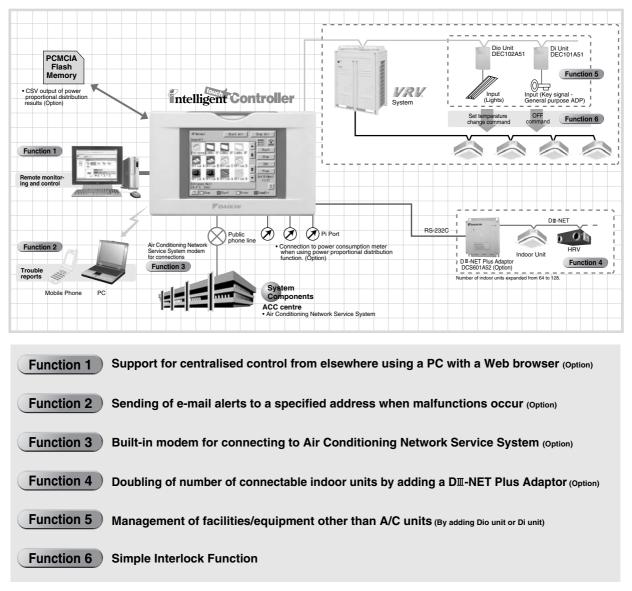
Simple remote controller (Option)

Concealed type (For hotel use)

- The remote controller has centralised its frequently used operation selectors and switches (on/off, operation mode, temperature setting and airflow volume), making itself suitable for use in hotel rooms or conference rooms.
- The exposed type remote controller is fitted with a thermostat sensor.

Signal receiver unit (Installed type)

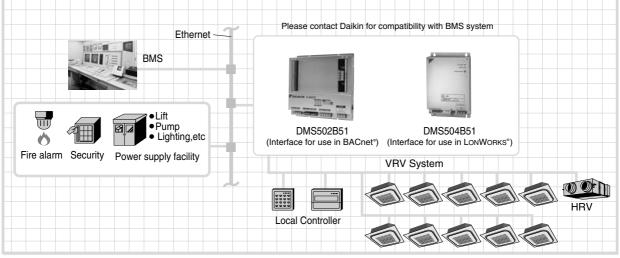
The concealed-type remote controller smartly fits into a night table or console panel in a hotel room.


	FXFQ	FXCQ	FXKQ	FXDQ	FXSQ	FXMQ	FXHQ	FXAQ	FXL(N)Q	FXUQ
Wired remote controller (BRC1C62)										
Wired remote controller with weekly schedule timer (BRC1D61)										
Wireless remote controller* (Installed signal receiver unit)										
Wireless remote controller* (Separate type signal receiver unit)						•			•	
Simple remote controller (Exposed type) (BRC2C51)					•	•			•	
Simple remote controller (Concealed type: for Hotel use) (BRC3A61)										

Wide variation of remote controllers for indoor units

6.6 Advanced Control Systems

Intelligent Controller


Communication functions in the user-friendly icon-based multilingual controller simplify centralised control of the VRV system.

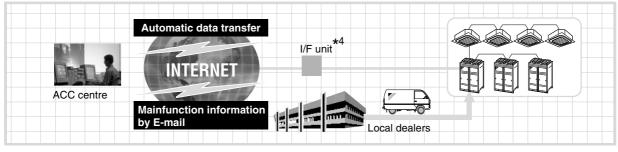
- Colour LCD touch panel icon display
- Small manageable size
- Simplified engineering
- Multi language (English, French, Italian, German, Spanish and Chinese)
- Yearly schedule
- PPD (Power Proportinal Distribution function) (Option)
- Auto heat/cool change-over
- Temperature limitation
- Enhanced history function
- Air Conditioning Network Service System (Optional Maintenance Service)
- Simple Interlock Function

Interface for **BACnet**[®] and LONWORKS[®]

Integrated control systems that recognise the trend of open control systems

Compatibility with BMS enhanced by utilising the international communication standards, BACnet[®] or LONWORKS[®].

DMS502B51 Interface for use in BACnet[®]


- BTL Certification
- PPD data (Optional Di board is required.)
- ISO 16484-5 (Does not support IEEE 802.3 protocol for BACnet®)
- Conformance class 3 (ASHRAE 135–1995)
- Standard BACnet® Device B-ASC (ASHRAE 135–2001)
- Up to 40 outdoor units and 256 indoor unit groups on one gateway. (Optional adaptor)

Interface for use in LONWORKS® DMS504B51

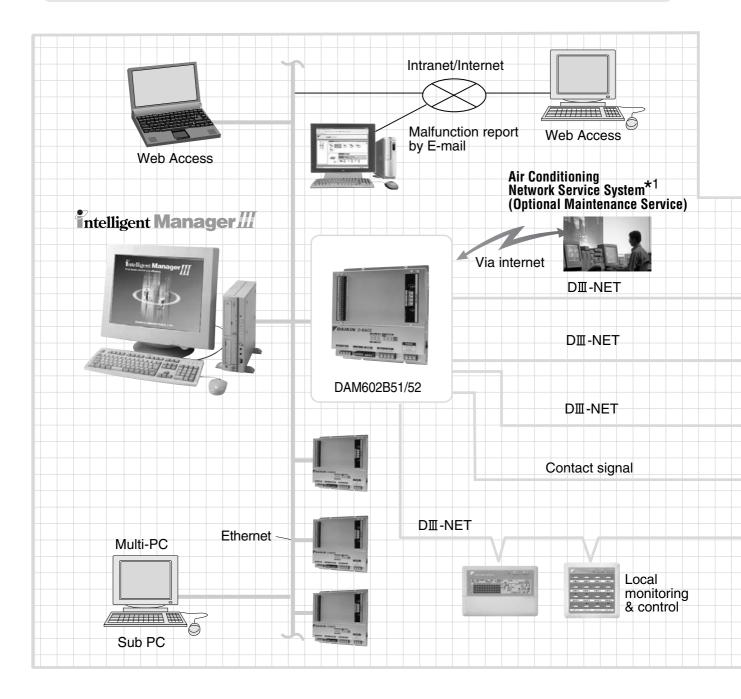
- XIF file for confirming of specifications of the units.
- Connectable up to 10 outdoor units and 64 indoor unit groups.

Air Conditioning Network Service System

Maintenance services that boost profits and customer satisfaction

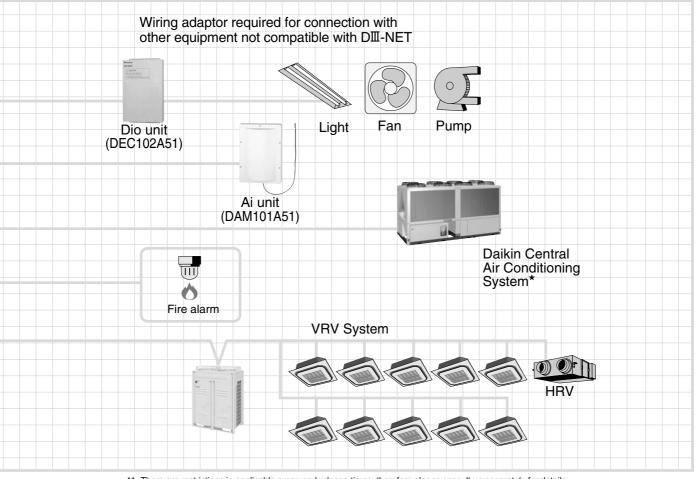
- 24 hour on-line diagnostic system
- Energy saving and extention of aircon operating life
- Maintenance management via A/C network service system reports
- Reliable service at shortest lead time

- *2. BACnet* is a registered trademark of American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
- ADVIOLET STATES A registered trade mark of Echelon Corporation.
 *4. For an I/F unit, one of the following can be selected: *Local Controller*, intelligent touch Controller, or intelligent Manager III.
 *5. Ethernet is a registered trademark of Xerox Corporation.
- *6. Refer to the Options page for the name of each model.


^{*1.} Model name varies upon the system size.

Intelligent Manager III

Centralised control system for easy provision of effective control and monitoring of VRV system functions


New Features

- Monitor and control from the remote site by Web browser (Option)
- PPD data can be managed from the remote site by Web browser (Option)
- Send malfunction report through the Internet by E-mail (Option)
- Compliant with the RoHS Directive (DAM602B51/52)(refer to page 18 for details.)

Special Functions

- Features control and monitoring functions for central A/C products and an Air Conditioning Network Service function.
- Using an external contact via DIII-NET, monitors and controls equipment such as lighting, fans, or building security systems.
- Floor visual navigation
- Graphical report
- Multi-PC access
- Analogue interlock
- Automatic heat/cool change-over
- Temperature limitation
- Sliding temperature <Optional (DAM101A51) unit required>
- Energy saving function (ECONO mode) (Option)
- Air Conditioning Network Service System (Optional Maintenance Service)

*1. There are restrictions in applicable areas and release times, therefore please consult us separately for details.

- *Interfacing requirements vary depending on model, and some systems may not be suitable. Please contact your distributor for details.
 - Information on these systems is preliminary only. Please contact Daikin for formal information on the products.

6.7 HRV (Heat Reclaim Ventilation)

6.7.1 Product Introduction

Background

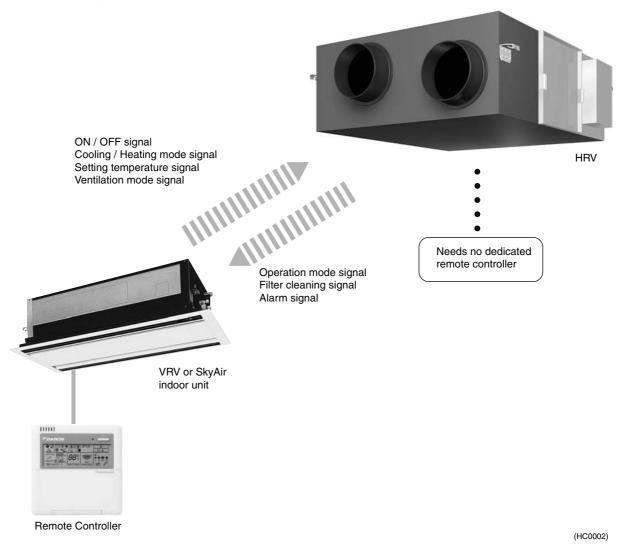
To maintain the comfortable environment in a building, the fresh air intake is essential the same as an appropriate room temperature control.

The heating / cooling efficiency of conventional standard ventilating systems drops during cooling / heating operation and it is waste of energy.

The Heat Reclaim Ventilation was developed to solve those problems.

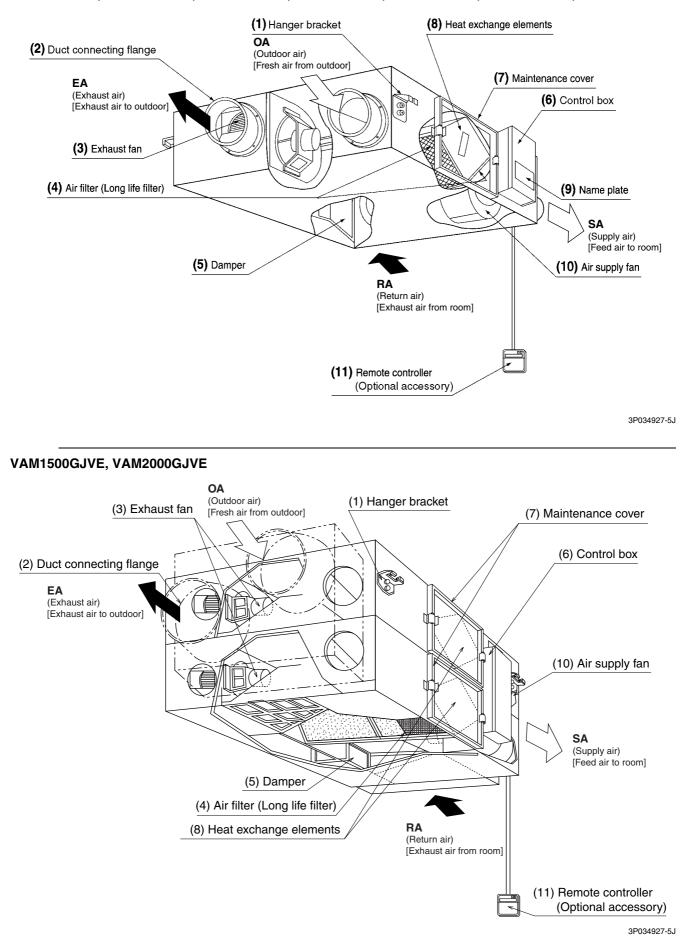
What is HRV (Heat Reclaim Ventilation) ?

HRV is a system which recovers the thermal energy of exhaust air and reuses it for heating or cooling of supply air. It exchanges heat between the exhaust and the supply air.


Daikin's HRV

Daikin's HRV greatly reduces the total power consumption by operation interlocked with air conditioner such as VRV or SkyAir.

The total heat exchange mode and the ventilation mode can be automatically selected by setting to the automatic ventilation mode.


Main Features

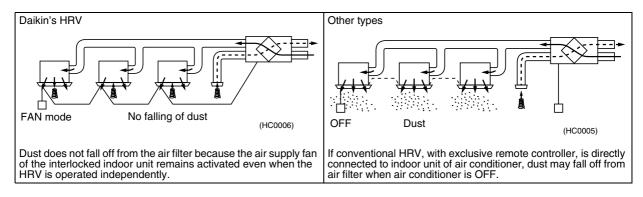
- 1. The operation is available when the outdoor air temperature is down to -15°C.
- 2. Interlocked operation with VRV (SkyAir)
- 3. Automatic ventilation mode changeover
- 4. Energy Saving
- 5. FRESH-UP operation
- 6. Quiet operation
- 7. Easy installation
- 8. Easy maintenance
- 9. Wide variety of optional accessories

1

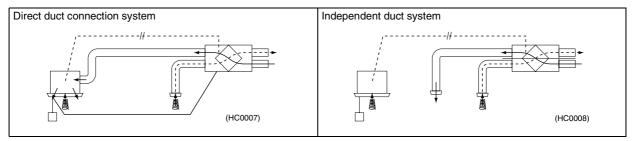
6.7.2 Structure

VAM150GJVE, VAM250GJVE, VAM350GJVE, VAM500GJVE, VAM650GJVE, VAM800GJVE, VAM1000GJVE

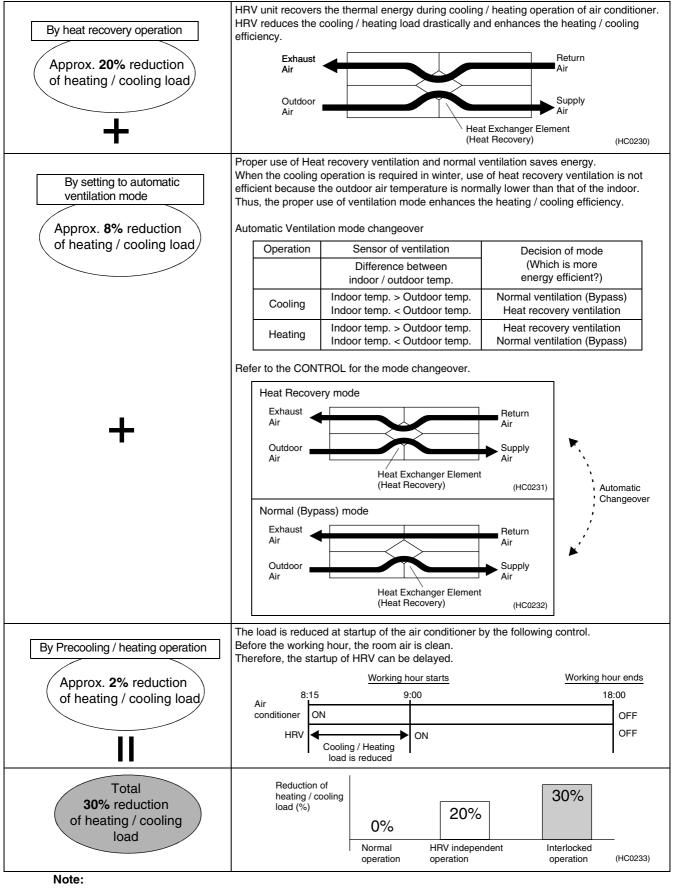
6.7.3 Features


Interlocked Operation with VRV (SkyAir)

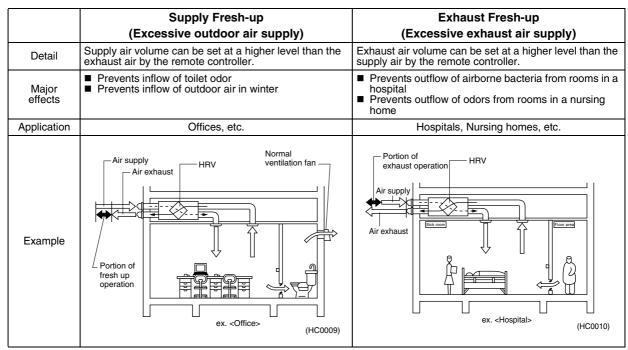
- 1. Simultaneous ON / OFF with the indoor unit by the indoor unit remote controller.
- 2. HRV independent operation during air conditioning off season by the indoor unit remote controller.
- 3. Automatic ventilation mode changeover: Auto / Heat Recovery / Bypass
- 4. Fan speed changeover by the indoor unit remote controller : High / Low (Ultra-High / High, Ultra-High / Low)
- 5. Precooling / heating control function setting to delay the start of ventilation during air conditioner start-up to realize the high energy saving efficiency.
- 6. FRESH-UP operation setting
- 7. Filter sign display notifies the time for cleaning the filter.
- 8. No need to purchase or install the HRV exclusive remote controller
- 9. Advantage to IAQ (Internal Air Quality)


Note:

5,6 can be set at the initial setting only.


Туре	Interlocked operation with air conditioner	HRV independent operation				
Structure	Indoor unit Remote Controller (HC0228)	HRV HRV Remote Controller (HC0229)				
Features	 Simultaneous operation by air conditioner's remote controller is available. 	 Operation / Stop Ventilation mode changeover Fresh-up changeover Timer mode start / stop Malfunction digital display 				
Connectable Indoor unit	VRV (all indoor unit), SkyAir					

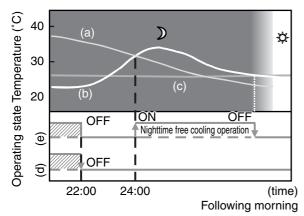
Installation Examples


Energy Saving

The total heating / cooling load may vary depending on the climate or the other environmental conditions.

FRESH-UP Operation

Both the excessive supply mode and the excessive exhaust mode are selectable. This function creates a more comfortable air environment.



Nighttime free cooling operation $\langle \text{AUTOMATIC HEAT PORGE FUNCTION AT NIGHT} \rangle$

The nighttime free cooling is an energy-conserving function which works at night when the air conditioners is off, reducing the cooling load in the morning when the air conditioner is turned on by ventilating rooms which contain office equipment which raises the room temperature.

- Nighttime free cooling only works during cooling and when connected to Building Multi or VRV systems.
- Nighttime free cooling is set to "off" in the factory settings; so request your dealer to turn it on if you intend to use it.

Operation image

- (a) Outside temperature
- (b) Indoor temperature
- (c) Set temperature
- (d) Operating state of Air conditioner
- (e) Operating state of Total heat exchanger

EXPLANATION OF NIGHTTIME FREE COOLING OPERATION IMAGE

The unit compares the indoor and outdoor temperatures after the air conditioning operation stops for the night. If the following conditions are satisfied, the operation starts, and when the indoor temperature reaches the air conditioning setting, the operation stops.

<Conditions>

- 1. the indoor temperature is higher than the air conditioning setting and
- 2. the outdoor temperature is lower than the indoor temperature,

If the above conditions are not satisfied, revaluation is made every 60 minutes.

NOTE -

 The nighttime free cooling operation works when the HRV unit is off. Therefore, it is not possible to stop the nighttime free cooling operation, though the forced off is input from the optional controllers for centralized control.

Element (HEP element) Material

Material

The partition sheet in the heat exchanger element has been significantly upgraded. It is approximately two-third thinner than the conventional type, resulting in a great

improvement in moisture absorption!

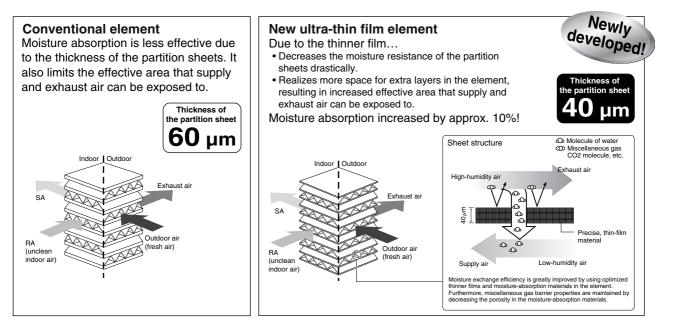
The material is flame-retardant for safety.

The fungi proof design also keeps the air clean.

Structure

The heat exchanger element is designed without moving parts for higher durability and reliability.

The supply air passage and the exhaust air passage are arranged in right angle to prevent the supply and exhaust air from getting mixed.

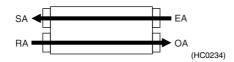


(HC0013)

Features

High air shielding

Even in the conventional less humidity conditions, maintaining the features of the material that can get excellent moisture permeability, we have achieved high air shielding, by special processing in the step of milling paper. **New ultra-thin film element**


Easy installation and service maintenance

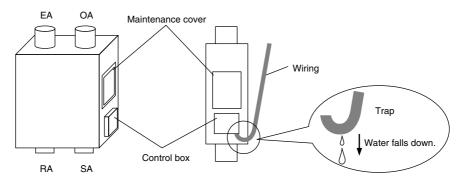
Downsized

Model name	Height (mm)		
VAM150GJVE	278		
VAM250GJVE	278		
VAM350GJVE	306		
VAM500GJVE	306		
VAM650GJVE	338		
VAM800GJVE	387		
VAM1000GJVE	387		
VAM1500GJVE	785		
VAM2000GJVE	785		

Parallel air flow system (Daikin)

This system prevents misconnection and simplifies the installation work

Cross air flow system

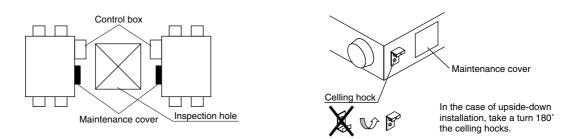

Service Maintenance

Vertical installation is available.

The unit must be installed with the side of RA, SA down.

It is necessary to make a trap.

Because the trap of wiring can protect against ingress of water.



Upside-down installation is available.

It allows the common use of the inspection hole and reduces the space and installation work.

For 2 units closely installed, only one inspection hole of 450×450 mm will do for maintenance or replacement of the heat exchanger element, etc.

Long life filter is equipped.

The operation is available when the outdoor air temperature is down to -15°C

(Operation when the outdoor air temperature becomes lower than -10°C) When the outdoor air suction temperature becomes lower than -10°C, the unit is changed to intermittent operation to prevent freezing of the heat exchanger element and dew condensation within the unit.

Intermittent operation

The outdoor air thermistor (standard equipment) within the unit detects the temperature. According to the detected temperature, the following operation determines.

<Step 1>

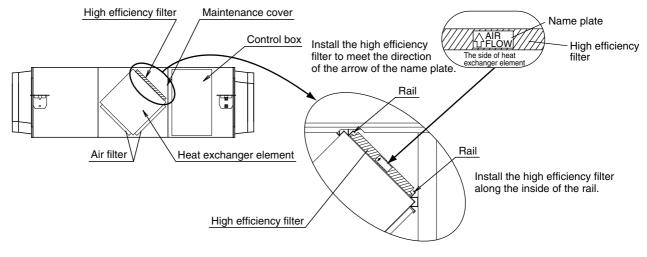
- The air supply fan is changed to intermittent operation, when the temperature is lower than -10°C.
- The intermittent operation of the air supply fan is changed to an operation of each cycle for 45 minutes' operation after stopping operation for 15 minutes.
- The exhaust fan operates continuously according to setup.

<Step 2>

When the temperature becomes lower than -15°C, the unit stops operation to prevent any defect, such as dew condensation and freezing. The unit does not ventilate.

But, to detect the elevation of the outdoor air temperature, the unit operates for 5 minutes per hour.

The control by the external damper (local purchase) is available.


When the unit is not operating, the unit prevents the cool outdoor air from invading. The power is applied from the connector X15A to the external damper. Therefore, the operation of the unit is

controlled in conjunction with the external damper.

Note:

Local setting is required.

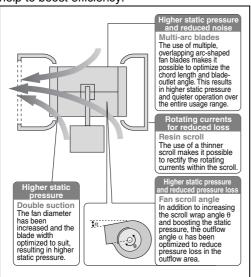
The high efficiency filter (that has 65% of average dust collecting efficiency) is suitable

Additional optional accessories Built-in optional high efficiency filter BRP4A50: Heater control kit

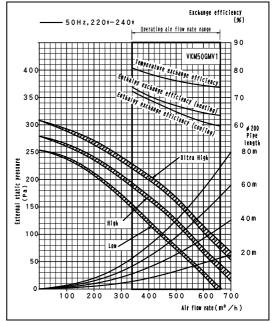
6.8 HRV-With DX Coil-(Heat Reclaim Ventilation) VKM-GA(M) Series

6.8.1 General

- Interlocked operation with VRV
- (Controls of interlocked operation for energy saving : The remote controller for air conditioner can be used, so special remote controller for HRV is unnecessary.)
- · Mounted for Direct expansion coil unit for outdoor air treatment
- Changeover function for ventilation mode to Auto/Manual
- FRESH-UP operation (Selectable : Supply air rich mode or exhaust air rich mode ; initial setting)
- Mounted for Water flow type Natural evaporating humidifier
- Possible to attach the High efficiency filter
- Attaching the Power supply terminal for easy connection
- Quiet operation
- Changeover function for air flow rate to High/Low (Ultra-high setting is possible.)
- The power supply of HRV is commonly used with the air-conditioner (Single-phase 220-240V, 50Hz)
- Filter sign display and reset
- Timer setting
- Features of Direct Expansion Coil
- Draftless ventilation in Heating.
- High humidifying function.
- How to use this unit
- This unit should be used with air conditioners.
- Air conditioning is impossible only by this unit, because this unit does not have temperature control function. (It's capacity is too small in order to control the room temperature to the whole)
- And should be operated in combination with standard indoor units. (Interlocked operation)
- Independent operation without taking an interlock with indoor units is possible, however, temperature setting by remote controller is impossible.


In this ON/OFF operation by thermostat depends on factory setting, however, this value is changeable by setting mode on site.

Model selection should be done not by cooling capacity but by ventilating air flow rate.


6.8.2 Design Flexibility

6.8.2.1 Efficient Fan Performance Produces a High Static Pressure

Improvements to the fan, including the use of multi-arc blades, a thinner scroll and optimized fan scroll angle, help to boost efficiency.

Dramatically higher static pressure is achieved due to improved fan performance. This reduces limitations on unit placement and allows more flexibility in duct design.

6.8.2.2 Operable Outdoor Temperature Down to -15°C

If the outdoor air temperature falls below -10° C, the unit changes to intermittent operation to prevent freezing of the heat exchanger element and dew condensation within the unit.

Intermittent operation

A thermistor (standard equipment) within the unit detects the outdoor air temperature. Unit operation varies according to the detected temperature.

6.8.2.3 Indoor Unit Connectable to up to 130% of the Capacity

6.8.2.4 Slim Design

The slim design of only 387 mm in height enables installation inside ceilings with less than 400 mm of clearance.

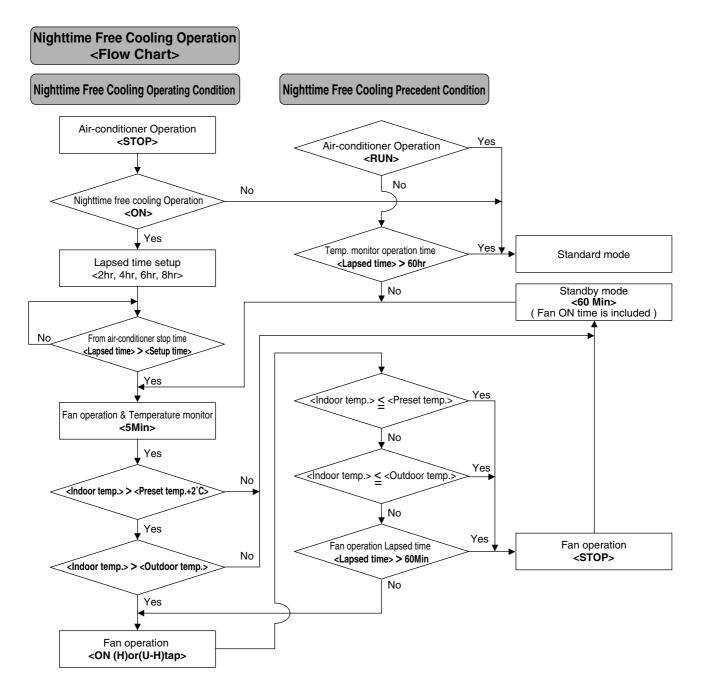
6.8.3 Energy Saving

6.8.3.1 Automatic Heat purge Function at Night

Not operation Night Morning Stop ≫ Release. Heat Rese The load of air conditioner is large and temperature does not fall easily. Generation of heat with a PC etc. and its heat are reserved to a wall ,ceiling. ×. Automatic heat Cold Air purge control The heat which accumulated indoors is discharged at night. Air Conditioning load of the next day is reduced, and efficiency is Heat Release increased. 'Heat Res There is little load and it is to comfortable temp.immediately Heat is discharged In case of interlocking operation with an air conditioner

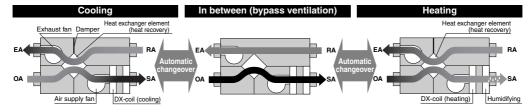
Mechanism

<Operation>

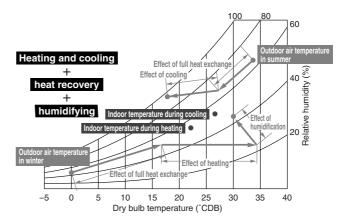

 Interlocking operation is carried out with the airconditioning machine, and the time of 2 hours passing after an operation stop is judged to be night.

(The same judgment as the present preparatory operation)

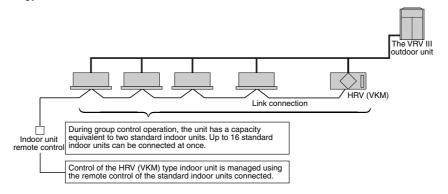
- 2. After 2-hour progress, when indoor temperature is higher than the preset temperature of an air-conditioning machine and higher than outdoor temperature, operation is started.
- Operation will be stopped if indoor temperature falls to air-conditioning machine preset temperature.
- Temp 40 Outdoor Temp. 30 Setting Temp. Indoor Temp. 20 Auto tar ON 2Hours HRV OFF ٥N Start Air OFF Conditioner
- **Effect** (Field Setting by remote controller)


It is reduction of about 5% of air-conditioning load at the time of cooling operation.

Air conditioning operation carries out to April to October, and air-conditioning load is calculated only with sensible heat load.

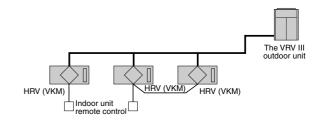

6.8.3.2 Automatic Changeover to Efficient Operation Patterns

Operation automatically changes to the optimum pattern to suit conditions.


6.8.3.3 Efficient Outdoor Air Introduction with Heat Exchanger and Cooling/heating Operation

Indoor unit with outdoor air treatment Using outdoor air, the temperature can be brought near room temperature with minimal cooling capacity through the use of outdoor air.

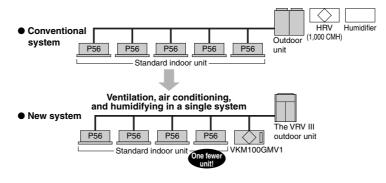
6.8.3.4 Operations, Such as Cleaning, Ventilation, Cooling/heating and Humidifying, are Possible with One Remote Controller.


Four air conditioner functions can be managed using a single remote control. This makes it easy to obtain highquality and energy-efficient outdoor air treatment.

6.8.4 Unique Control System

6.8.4.1 Independent Control Possible

Individual outdoor air treatment operation is possible by connecting an optional remote controller.

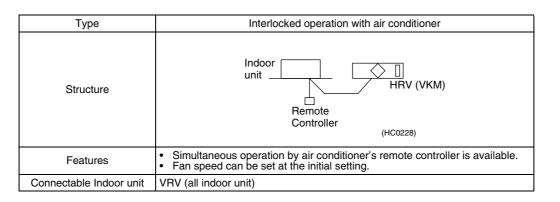

6.8.5 Quiet Operation

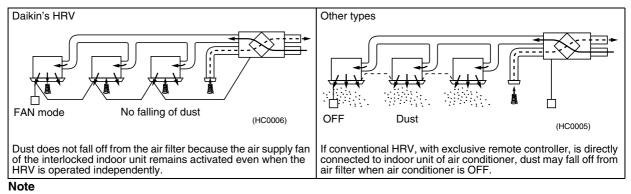
Reduced pressure loss and quieter operation internally lowers the noise output of the 1,000m³/h type system to 38dB (50Hz 240V, High mode).

6.8.6 Easy Installation

6.8.6.1 Integrated System Includes Ventilation, Air Conditioning and Humidifying Operations

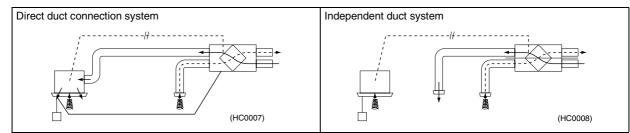
Rather than using separate ventilation, air conditioning, and humidifying components, the system incorporating HRV (VKM) integrates all functions, reducing the total number of indoor units and facilitating a far simpler system. The installation space becomes smaller and the labor required for installation and maintenance is reduced significantly.

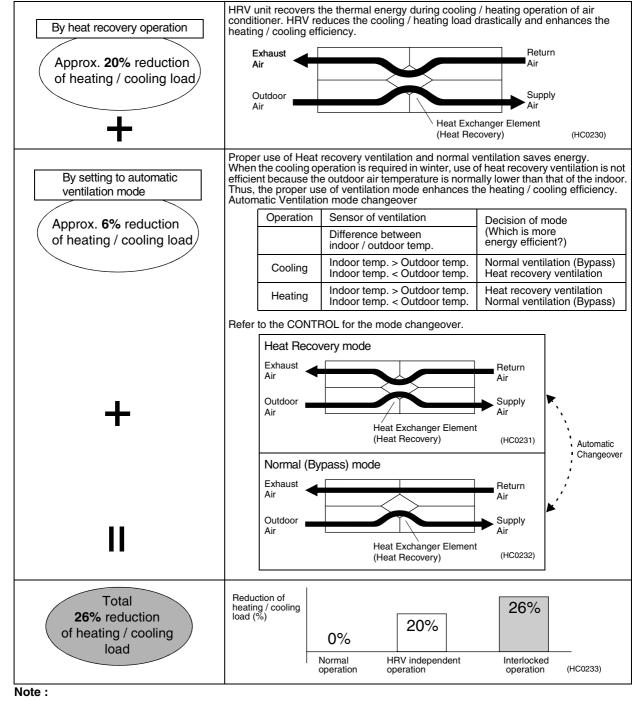

6.8.7 Other Features

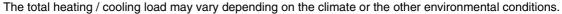

6.8.7.1 Interlocked Operation with VRV

- 1. Simultaneous ON / OFF with the indoor unit by the indoor unit remote controller.
- 2. HRV independent operation during air conditioning off season by the indoor unit remote controller.
- 3. Automatic ventilation mode changeover : Auto / Heat Recovery / Bypass
- 4. Fan speed changeover by the indoor unit remote controller : High / Low, Ultra-High / High
- 5. FRESH-UP operation setting
- 6. Filter sign display notifies the time for cleaning the filter.
- 7. No need to purchase or install the HRV exclusive remote controller
- 8. Advantage to IAQ (Internal Air Quality)

Note

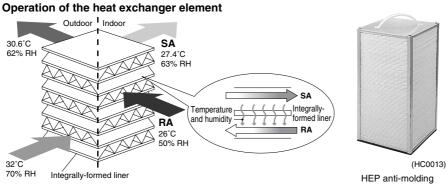

4-6 can be set at the initial setting only. (When using the remote controller BRC1C62)




- 1) In case of the direct duct connection system, operate interlocking with indoor units.
- 2) Do not connect the duct with discharge air side of indoor units.

Installation Examples

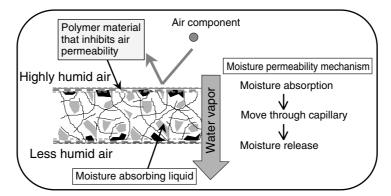
6.8.7.2 Mechanism of Energy Saving


6.8.7.3 Fresh-up Operation

Both the excessive supply mode and the excessive exhaust mode are selectable. This function creates a more comfortable air environment.

	Supply Fresh-up (Excessive outdoor air supply)	Exhaust Fresh-up (Excessive exhaust air supply)		
Detail	Supply air volume can be set at a higher level than the exhaust air by the remote controller.	Exhaust air volume can be set at a higher level than the supply air by the remote controller.		
Major effects	 Prevents inflow of toilet odor Prevents inflow of outdoor air in winter 	 Prevents outflow of airborne bacteria from rooms in a hospital Prevents outflow of odors from rooms in a nursing home 		
Application	Offices, etc.	Hospitals, Nursing homes, etc.		
Example	Portion of fresh-up operation Air exhaust Air supply	Air exhaust Air supply Portion of exhaust operation		

6.8.7.4 Proprietary Developed HEP Element

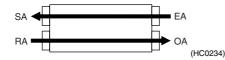

The heat exchange element uses a High Efficiency Paper (HEP) that has superior moisture-absorption and humidifying properties and doubles the current efficiency of moisture absorption. The heat exchange unit speedily recovers heat contained as latent heat (vapor). The element is made of a material with superior flame-resistant properties and is treated with an anti-molding agent.

Features

High air shielding

Even in the conventional less humidity conditions, maintaining the features of the material that can get excellent moisture permeability, we have achieved high air shielding, by special processing in the step of milling paper.

 Polymer material that inhibits air permeability that treated on the surface of the heat exchanger element restrains air permeability.


6.8.7.5 Easy Installation and Service Maintenance

Downsized

Model name	Height (mm)
VKM50GAMV1	
VKM50GAV1	
VKM80GAMV1	387
VKM80GAV1	
VKM100GAMV1	
VKM100GAV1	

Parallel air flow system (Daikin)

This system prevents misconnection and simplifies the installation work

Cross air flow system (Others)

6.8.7.6 The Operation is Available When the Outdoor Air Temperature is Down to -15°C

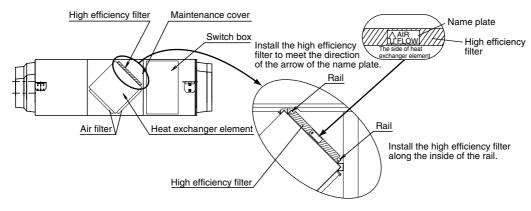
(Operation when the outdoor air temperature becomes lower than -10°C)

When the outdoor air suction temperature becomes lower than -10°C, the unit is changed to intermittent operation to prevent freezing of the heat exchanger element and dew condensation within the unit.

Intermittent operation

The outdoor air thermistor (standard equipment) within the unit detects the temperature. According to the detected temperature, the following operation determines.

<Step1>


- The air supply fan is changed to intermittent operation, when the temperature is lower than -10°C.
- The intermittent operation of the air supply fan is changed to an operation of each cycle for 45 minutes' operation after stopping operation for 15 minutes.
- The exhaust fan operates continuously according to setup.

<Step2>

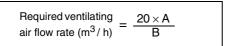
 When the temperature becomes lower than -15°C, the unit stops operation to prevent any defect, such as dew condensation and freezing. The unit does not ventilate.

But, to detect the elevation of the outdoor air temperature, the unit operates for 5 minutes per hour.

6.8.7.7 The High Efficiency Filter (that has 65% of Average Dust Collecting Efficiency) is Suitable

6.8.7.8 Additional Optional Accessories

Built-in optional high efficiency filter


It greatly reduces the installation space.

The installation of access doors and the unit can be reduced.

Selection Procedures (in Japan)

Various methods are used to calculate the required ventilating air flow rate according to CO_2 generated by inhabitants in a room, waste gas generated by use of fire, and other conditions of a room. Here are 2 patterns of calculating methods.

Based on inhabitants

A : $20 \times \text{Living room floor space (m}^2)$

B : Area occupied per person (m²)

The above equation conforms to article 20, 2 No.2 of the Building Standards Act in Japan.

Note :

- 1. 20 (in the above equation) means "20(m³ / h / person)", which is the required ventilating air flow rate based on the CO₂ exhausted by an adult sitting still in a room. If smoking is allowed, other calculation method should be used.
- 2. Use 10 (m^2) if the area occupied per person exceeds 10 (m^2) .

<Table 1>

Type of building	Area occupied per person (N)	Remarks
Dining houses, restaurants, coffee-shops	3 m ²	Floor space of a part used for business purposes.
Cabarets, beer halls	2 m ²	Floor space of a part used for business purposes.
Japanese-style restaurants, hall for hire	3 m ²	Floor space of a part used for business purposes.
Store market	3 m ²	Floor space of a part used for business purposes.
Pool rooms, Ping-pong rooms, dance halls, bowling alleys	2 m ²	Floor space of a part used for business purposes.
Pin-ball parlors, Go club houses, mahjong parlors	2 m ²	Floor space of a part used for business purposes.
Inns, hotels, and motels	10 m ²	Floor space of a part used for business purposes.
Massage parlors	5 m ²	Floor space of a part used for business purposes.
Meeting places, public halls	0.5 – 1 m ²	Persons accommodated simultaneously with the number of persons calculated per unit.
Offices	5 m ²	Floor space of an office.

* : Values set by the Metropolitan Maintenance Bureau in Japan.

Note :

- 1. Table indicates the required ventilating air flow rate calculated as 20 m^3 / h.
- 2. The area occupied per person by type of business is calculated in reference to Application Standards for building administration in compliance with Building Standards Act in Japan.

Based on Room size

```
Required ventilating
air flow rate (m^3 / h) = C \times D \times E
```

C : Number of ventilation required per hour (ventilation / h)

D : Area of room (m^2)

E : Height of Ceiling (m)

Calculation is based on the experiences of hygienic laboratory, etc. to find out the number of hourly ventilation of the room air.

(Selection example)

Place : Living room of common household Required ventilation : 6 times / h (See Table 2) Area of room : Approx. 30 (m²) Height of ceiling : 2.4 m Required ventilating air flow rate = $6 \times 30 \times 2.4 \approx \frac{432 \text{ (m}^3 / \text{h})}{2}$

Required ventilating air flow rate and the unit size 500 is almost equal. So select the close size of the unit. In this case, select VKM500GMV1.

1

<Table 2>

Groups	Type of room	Ventilation required	Groups	Type of room	Ventilation required
	Living room	6		Audience room	6
-	Bathroom	6	Playhouses	Corridor	6
Common household	Drawing room	6	and movie	Smoking room	12
nouconola	Toilet	10	theaters	Toilet	12
	Kitchen	15		Projector room	20
	Restaurant	6		Office room	6
	Sushi restaurant	6		General work room	6
Dining places	Banquet hall	10		Telephone room	6
	Tempura restaurant	20		Spinning plant,	10
	Cooking room	20		Printing plant	10
	Guest room	5		Battery room	10
	Corridor	5		Machinery plant	10
	Dance hall	8	Plants	Generator room	15
	Large dining hall	8		Substation room,	15
Inns and hotels	Washroom, Toilet	10		Painting shop,	15
noteis	Cooking room	15		Welding plant	15
	Laundry room	15		Chemical plant	15
	Engine room	20		Food plant	20
	Boiler room	20		Wood working plant	20
				Casting plant	50
	Consultation office		General buildings	Office room	6
				Waiting room	10
		6		Show room, Toilet	10
				Conference room	12
			Comfort stations		20
			Dark rooms	Dark rooms for photo	16
	Sick room	6	Guest rooms of ship		6
Lleesitele	Office room	6	Room of poten	tial noxious gas or combustible gas	20 or more
Hospitals	Corridor	10			
	Waiting room	10			
	Bathroom	10			
	Dining room, Toilet	10			
	Respiratory disease room	10			
	Laundry room	15			
	Cooking room	15			
	Surgery room	15			
	Sterilizing room	15			
	Engine room	20			
	Boiler room	20			
	Class room, library	6			
	Auditorium	6			
.	Experimental chemistry room	6			
Schools	Gymnasium	8			
	Toilet	12			

Part 2 Indoor Units

FXFQ-P	
Ceiling Mounted Cassette Type (Round Flow)	. 47
FXCQ-M	
Ceiling Mounted Cassette Type (Double-Flow)	121
FXKQ-MA	
Ceiling Mounted Cassette Corner Type	143
FXDQ-PB, FXDQ-NB	
Slim Ceiling Mounted Duct Type	163
FXSQ-M	
Ceiling Mounted Built-In Type	201
FXMQ-P	
Ceiling Mounted Duct Type (Middle and High Static Pressure)	243
FXMQ-MA	
Ceiling Mounted Duct Type	295
FXHQ-MA	
Ceiling Suspended Type	315
FXAQ-MA	
Wall Mounted Type	331
FXLQ-MA / FXNQ-MA	
Floor Standing Type / Concealed Floor Standing Type	359
FXUQ-MA	
Ceiling Suspended Cassette Type	
(Connection Unit Series)	381

FXFQ-P Ceiling Mounted Cassette Type (Round Flow)

1.	Features	.48
2.	Specifications	.49
3.	Dimensions	.51
4.	Piping Diagrams	.54
5.	Wiring Diagrams	.55
6.	Electric Characteristics	.56
7.	Capacity Tables	.57
	7.1 Cooling Capacity	57
8.	Sound Levels	.58
9.	Center of Gravity	.60
10	Installation Manual	.61
11	Accessories	.85

1. Features

Ceiling Mounted Cassette (Round Flow) Type

360° airflow improves temperature distribution and offers a comfortable living environment.

The industry's first* Round Flow Ceiling Mounted Cassette type offers 360° airflow with improved temperature distribution.

Round Flow 4-way flow

There are much fewer

uneven temperature. * As of April 2004, the release date for Japan

areas of uneven temperature.

- •All models are lighter than the conventional ones. Ex: Models FXFQ25P-50P are 4.5 kg lighter (reduced from 24 kg to 19.5 kg).
- •Drain pump is equipped as standard accessory, and the lift height has been improved from 750 mm to 850 mm.

•A modern sophisticated decoration panel has been applied, with a panel surface that has been treated with a dirt-repellant coating. Treated surface Untreated surf

- •Control of the airflow rate has been improved from 2-step to 3-step control.
- Low operation sound level

	nullo	11 000		101				(00()))	
FXFQ-P	25	32	40	50	63	80	100	125	
Sound level (HH/H/L)	30/28.5/27		31/29/27	32/29.5/27	34/31/28	36/33.5/31	43/37.5/32	44/39/34	

•Example of airflow patterns: 360° airflow is available, as well as 2- to 4-way flows, so you can choose the most suitable airflow pattern depending on location or room layout.

- •A new antibacterial treatment that uses silver ions has been applied to the drain pan, preventing the growth of slime, mould and bacteria that cause blockages and odours.
- •The horizontal louvres prevent dew condensation. Their non-flocking surfaces, which repel dirt, are easy to clean.
- •The air filter has an anti-mould and antibacterial treatment that prevents the growth of mould generated from dust or moisture that may adhere to the filter.

Note: Whatever the discharge direction, the same type of panel is used. If installing for other than all-round flow, an air discharge outlet sealing member (option) must be used to close each unused outlet

2

2. Specifications

Ceiling Mounted Cassette (Round Flow) Type

Model			FXFQ25PVE	FXFQ32PVE	FXFQ40PVE	FXFQ50PVE
		kcal/h	2,500	3,200	4,000	5,000
*1 Cooling Ca	apacity (19.5°CWB)	Btu/h	9,900	12,600	16,000	19,800
-		kW	2.9	3.7	4.7	5.8
*2 Cooling Ca	apacity (19.0°CWB)	kW	2.8	3.6	4.5	5.6
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	246×840×840	246×840×840	246×840×840	246×840×840
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×6×1.2	2×6×1.2	2×6×1.2	2×6×1.2
Fin Coil)	Face Area	m²	0.267	0.267	0.267	0.267
	Model		QTS48C15M	QTS48C15M	QTS48C15M	QTS48C15M
	Туре		Turbo Fan	Turbo Fan	Turbo Fan	Turbo Fan
Fan	Motor Output × Number of Units	W	56×1	56×1	56×1	56×1
	Air Flow Date (UU/U/U)	m³/min	13/11.5/10	13/11.5/10	15/13/11	16/13.5/11
	Air Flow Rate (HH/H/L)	cfm	459/406/353	459/406/353	530/459/388	565/477/388
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating			
Sound Absor	bing Thermal Insulation Ma	terial	Polyurethane Form	Polyurethane Form	Polyurethane Form	Polyurethane Form
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)		
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§12.7 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Mass (Weight) kg		kg	19.5	19.5	19.5	19.5
*4 Sound Lev	/el (HH/H/L) (220-240V)	dBA	30/28.5/27	30/28.5/27	31/29/27	32/29.5/27
Safety Device	es		Fuse	Fuse	Fuse	Fuse
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Unit		R-410A VRV PA Series			
	Model		BYCP125K-W1	BYCP125K-W1 BYCP125K-W1		BYCP125K-W1
	Panel Color		Fresh White	Fresh White	Fresh White	Fresh White
Decoration Panels	Dimensions: (H×W×D)	mm	50×950×950	50×950×950	50×950×950	50×950×950
(Option)	Air Filter		Resin Net (with Mold Resistant)			
	Weight	kg	5.5	5.5	5.5	5.5
Standard Acc	vessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.
Drawing No.				C : 3D	060255	

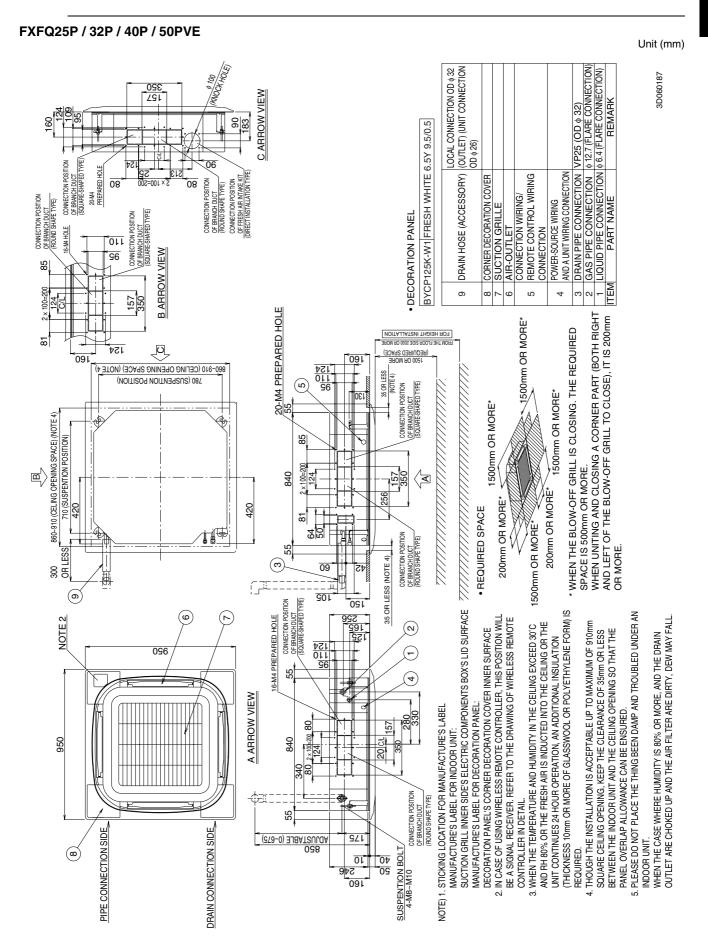
Note:

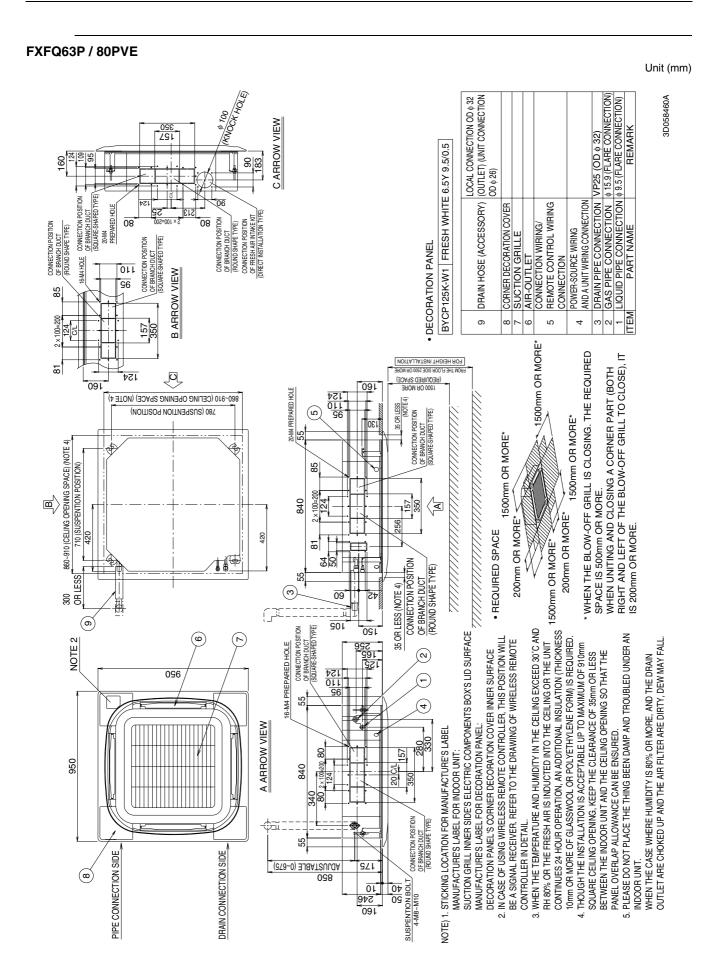
Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

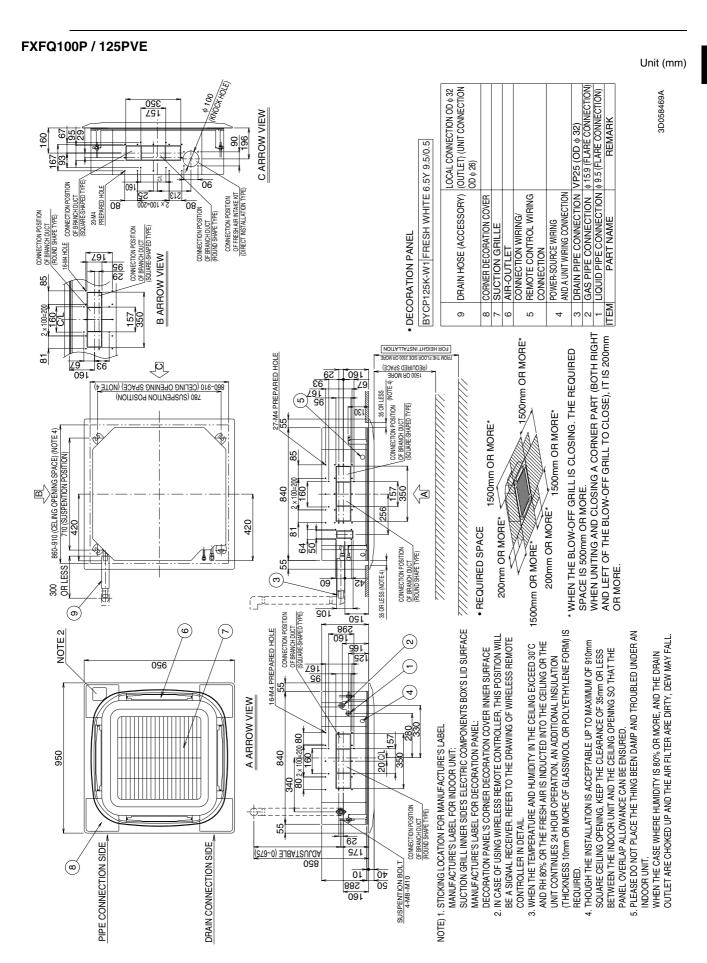
4 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
5 Refer to page 56 for Fan Motor Input.

Conversion Formulae
kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

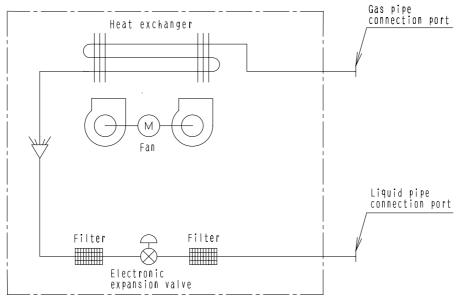
Ceiling Mounted Cassette (Round Flow) Type


Model			FXFQ63PVE	FXFQ80PVE	FXFQ100PVE	FXFQ125PVE
		kcal/h	6,300	8,000	10,000	12,500
*1 Cooling Ca	*1 Cooling Capacity (19.5°CWB) Btu/h		24,900	31,700	39,600	49,500
		kW	7.3	9.3	11.6	14.5
*2 Cooling Ca	apacity (19.0°CWB)	kW	7.1	9.0	11.2	14.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	246×840×840	246×840×840	288×840×840	288×840×840
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.2	2×10×1.2	2×12×1.2	2×12×1.2
Fin Coil)	Face Area	m²	0.446	0.446	0.535	0.535
	Model		QTS48C15M	QTS48C15M	QTS48C15M	QTS48C15M
	Туре		Turbo Fan	Turbo Fan	Turbo Fan	Turbo Fan
Fan	Motor Output × Number of Units	w	56×1	56×1	120×1	120×1
		m³/min	19/16.5/13.5	21/18/15	32/26/20	33/28/22.5
	Air Flow Rate (HH/H/L)	cfm	671/583/477	742/636/530	1,130/918/706	1,165/989/794
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating			
Sound Absor	bing Thermal Insulation Mat	terial	Polyurethane Form	Polyurethane Form	Polyurethane Form	Polyurethane Form
	Liquid Pipes	mm		φ9.5 (Flare Connection)		φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	§15.9 (Flare Connection)	\$\$\phi15.9 (Flare Connection)	§15.9 (Flare Connection)	§15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Mass (Weight	t)	kg	22	22	25	25
*4 Sound Lev	/el (HH/H/L) (220-240V)	dBA	34/31/28	36/33.5/31	43/37.5/32	44/39/34
Safety Device	es		Fuse	Fuse Fuse		Fuse
Refrigerant C	Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Unit		R-410A VRV PA Series			
	Model		BYCP125K-W1	BYCP125K-W1 BYCP125K-		BYCP125K-W1
	Panel Color		Fresh White	Fresh White	Fresh White	Fresh White
Decoration Panels	Dimensions: (H×W×D)	mm	50×950×950	50×950×950	50×950×950	50×950×950
(Option)	Air Filter		Resin Net (with Mold Resistant)			
	Weight	kg	5.5	5.5	5.5	5.5
Standard Acc	xessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Washer Fixing Plate. Sealing Pads. Clamps. Screws. Washer for Hanging Bracket. Insulation for Fitting. Installation Guide.
Drawing No.				C : 3D	060255	

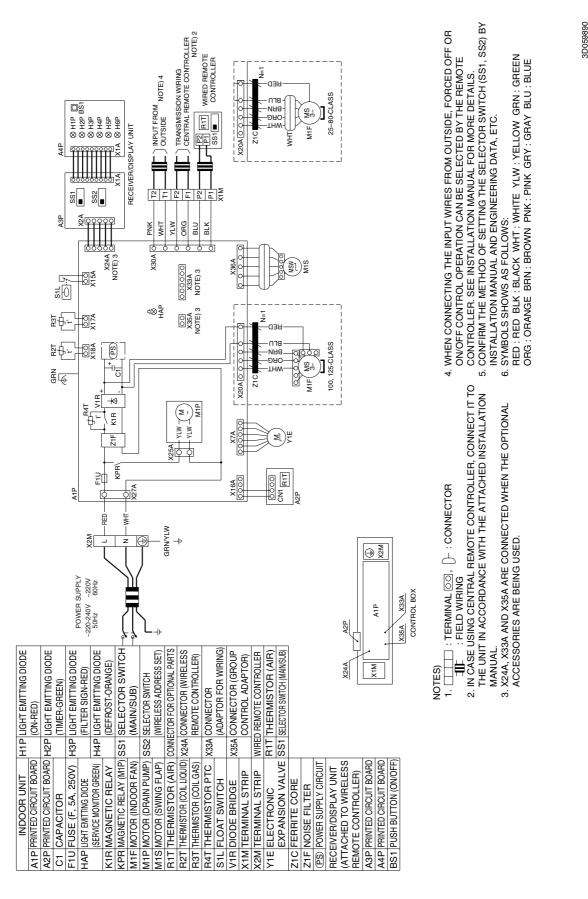

Note:


Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
Refer to page 56 for Fan Motor Input.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3


3. Dimensions

4. Piping Diagrams


4D024460B

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXFQ25P / 32P / 40P / 50PVE	φ12.7	φ 6.4
FXFQ63P / 80P / 100P / 125PVE	φ 15.9	φ 9 .5

5. Wiring Diagrams

FXFQ25P / 32P / 40P / 50P / 63P / 80P / 100P / 125PVE

6. Electric Characteristics

	Un	its			Power	supply	IF	M	Inpu	t(W)
Model	Ηz	Volts	Voltage	range	МСА	MFA	k W	FLA	Cooling	Heating
FXFQ25PVE					0.3	15	0.056	0.2	33	27
FXFQ32PVE					0.3	15	0.056	0.2	33	27
FXFQ40PVE					0.3	15	0.056	0.2	47	34
FXFQ50PVE	50	220-240	MAX.	264	0.3	15	0.056	0.2	52	38
FXFQ63PVE	50	220 240	Min.	198	0.4	15	0.056	0.3	66	53
FXFQ80PVE					0.5	15	0.056	0.4	93	75
FXFQ100PVE					1.3	15	0.120	1.0	187	174
FXFQ125PVE					1.5	15	0.120	1.2	209	200

Symbols:

MCA : Min. Circuit Amps (A)
MFA : Max. Fuse Amps (See note 5)
kW : Fan Motor Rated Output(kW)
FLA : Full Load Amps(A)
IFM : Indoor Fan Motor

Note:

1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals

is not below or above listed range limits,

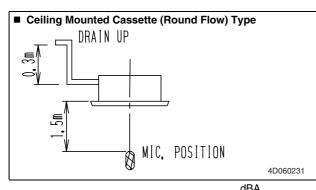
- Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA
 - MCA = 1.25 X FLA MFA ≦ 4 X FLA (Next lower standard fuse rating. Min.15A)
- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.

C:4D060238A

7. Capacity Tables

7.1 Cooling Capacity

FXFQ-P

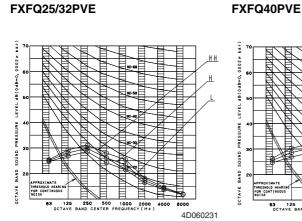

FXFQ-P

[50Hz]

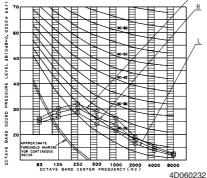
		[50Hz]			
CWB CDB SHC	0,00,00,00,00,00,00,00,00,00,00,00,00,0	0.000000000000000000000000000000000000	00008888888888888888888888888888888888	10.7 10.6 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	
		11.12 11.12 10.9 10.6 10.6 10.3 9.7 9.7 9.7 9.7 9.7 9.3	42 142 142 112 112 112 112 112 112 112 1	17.7 17.5 17.5 16.6 16.6 16.6 16.6 15.5 15.5 15.5 14.4 14.6 14.6	
SWB DB SHC	ດີ ແລະ	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	9,00,00,00,00,00,00,00,00,00,00,00,00,00	$\begin{array}{c} 10.9\\ 10.9\\ 10.6\\ 10.6\\ 10.6\\ 10.6\\ 10.6\\ 10.2\\ 9.9\\ 9.8\\ 9.7\\ 9.7\\ 9.7\\ 9.7\\ 9.7\\ 9.7\\ 9.7\\ 9.7$	
22.0°C 30°C	88888888888888888888977777777777777777	10.8 10.7 10.6 10.7 10.7 9.9 9.9 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0	13.4 13.4 13.2 12.5 11.6 11.6 11.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	16.7 16.7 16.7 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6	
CWB SDB SHC		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	$\begin{array}{c} 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.5\\ 10.2\\$	
20.0° 28°C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	
CWB CWB CDB SDB	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	ठ, ठ	10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	
19.0° 19.0° 27°(11111111111111111111111111111111111111	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	
CWB CDB SHC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.8 7.8 7.8 7.8 7.8 7.8 7.8 8.8 7.7 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.8 7.8 8.7 7.8 8.7 7.8 8.7 7.8 8.7 7.8 8.7 7.7 8.7 8	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	
18.0° 26°(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	13 13 13 13 13 13 13 13 13 13 13 13 13 1	
CWB CDB SHC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ო ო ო ო ო ო ო ო ო ო ო ო ო ო ო ო ო თ თ თ თ	8. 8. 9. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kW
16.0° 23°C	8 8 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	0.000000000000000000000000000000000000		/ Icity ;
CWB CDB SHC	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	city ; kW eat cape
14.0° 20°1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		9, C C C C C C C C C C C C C C C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	al capacity sible heat
Outdoor air temp. °CDB	100 120 120 120 120 120 120 230 230 230 2330 23	10.0 12.0 12.0 14.0 14.0 14.0 14.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	10.0 12.0 12.0 14.0 14.0 14.0 14.0 23.0 23.0 23.0 23.0 23.0 23.0 33.0 33	10.0 12.0 12.0 14.0 14.0 14.0 23.0 23.0 27.0 25.0 25.0 27.0 27.0 27.0 33.0 33.0 33.0 33.0	Total Sensil
Unit Size	e e	80	90	125	55 SHC
	0,0,0,8,8,8,8,8,8,7,7,7,9,9,9		ຍິສສສສະບ, ບ, ບ, ບ, ອິອິອິອິອິລຸ ອິອິ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
24.0°CWB 32°CDB C SHr	000444000000000	©044∞≈00−−000∞∞× 000	∧ © © 0 4 0 0 0 1 − − 0 0 ∞ ∞ ∧ ©	− 00∞∼000400+00∞∞	
	٥ ٥ ٥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	の	იიიიიიი 4 4 4 6 6 6 0 0 0 0 0 0 4 4 4 6 6 6 6 0 0 0 0	
22.0°CWB 30°CDB C SH	5 (\lambda \l				
	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
20.0°CW 28°CDB		8,8,8,8,8,8,8,8,8,8,8,8,8,9,7,9,9,6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ . ,	0.000000000000000000000000000000000000	
	- ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^				
	2				
0°C	, , , , , , , , , , , , , , , , , , ,	***	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~	
ШГ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ល់ ហំ	
B C	< < < < < < < < < < < < < < < < <				
ΩŪ		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			
16.0°C	, , , , , , , , , , , , , , , , , , ,				
CWB 16.0°C CDB 23°CD SHC TC 1	2 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ରା ରା ର	ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼	
CWB 16.0°C CDB 23°CD SHC TC 1		0 24 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00000000000000000000000000000000000000	

8. Sound Levels

Overall

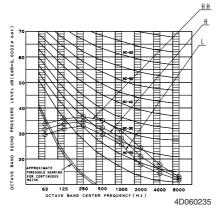

			UDA	
Model	220~240V 50Hz			
Model	HH	Н	L	
FXFQ25P / 32P	30	28.5	27	
FXFQ40P	31	29	27	
FXFQ50P	32	29.5	27	
FXFQ63P	34	31	28	
FXFQ80P	36	33.5	31	
FXFQ100P	43	37.5	32	
FXFQ125P	44	39	34	

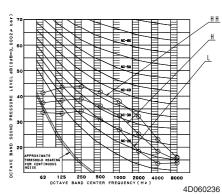
Note:


- 1. The operating conditions are assumed to be standard (JIS conditions).
- 2. These operating values were obtained in a dead room (conversion values). Sound level will vary depending on a range of factors such as the construction (acoustic absorption

coefficient) of the particular room in which the equipments installed.

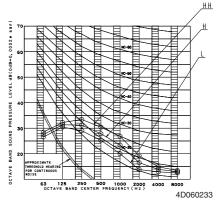
Octave Band Level O____O 220V~240V 50Hz


125 250 500 1000 200 VE BAND CENTER FREQUENCY (Hz


FXFQ80PVE ΗН

Н

4D060234

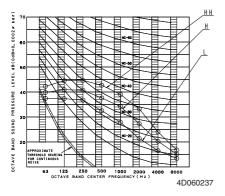


FXFQ100PVE

FXFQ50PVE

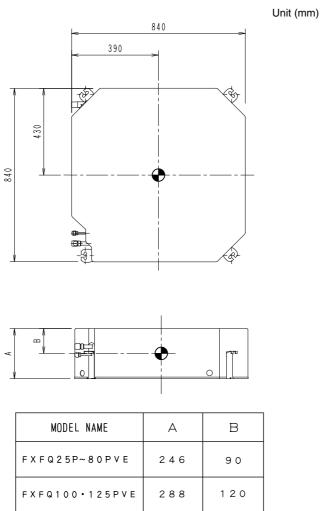
НH

58


FXFQ63PVE

P a r

100 DND CTAVE


2

FXFQ125PVE

9. Center of Gravity

FXFQ25P / 32P / 40P / 50P / 63P / 80P / 100P / 125PVE

4D052237B

10. Installation Manual

FXFQ25PVE FXFQ32PVE FXFQ40PVE FXFQ50PVE

VRV SYSTEM Inverter Air Conditioners

Installation manual

CONTENTS

1.	SAFETY PRECAUTIONS	1
2.	BEFORE INSTALLATION	3
З.	SELECTING INSTALLATION SITE	5
4.	PREPARATIONS BEFORE INSTALLATION	7
5.	INDOOR UNIT INSTALLATION	8
6.	REFRIGERANT PIPING WORK	.10
7.	DRAIN PIPING WORK	.12
8.	ELECTRIC WIRING WORK	.15
9.	WIRING EXAMPLE AND HOW TO SET THE REMOTE CONTROLLER	. 16
10.	INSTALLATION OF THE DECORATION PANEL	. 22
11.	FIELD SETTING	.22
12.	TEST OPERATION	.24

1. SAFETY PRECAUTIONS

Please read these "SAFETY PRECAUTIONS" carefully before installing air conditioning unit and be sure to install it correctly. After completing installation, conduct a trial operation to check for faults and explain to the customer how to operate the air conditioner and take care of it with the aid of the operation manual. Ask the customer to store the installation manual along with the operation manual for future reference. **This air conditioner comes under the term "appliances not accessible to the general public".**

This unit is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Meaning of WARNING and CAUTION notices.

WARNING Failure to follow these instructions properly may result in personal injury or loss of life.

- \land warning -

- Ask your dealer or qualified personnel to carry out installation work.
- Do not attempt to install the air conditioner yourself. Improper installation may result in water leakage, electric shocks or fire.
- Install the air conditioner in accordance with the instructions in this installation manual. Improper installation may result in water leakage, electric shocks or fire.
- Consult your local dealer regarding what to do in case of refrigerant leakage. When the air conditioner is to be installed in a small room, it is necessary to take proper measures so that the amount of any leaked refrigerant does not exceed the concentration limit in the event of a leakage. Otherwise, this may lead to an accident due to oxygen depletion.

3P161684-3B

- Be sure to use only the specified accessories and parts for installation work. Failure to use the specified parts may result in the unit falling, water leakage, electric shocks or fire.
- Install the air conditioner on a foundation strong enough to withstand the weight of the unit. A foundation of insufficient strength may result in the equipment falling and causing injury.
- Carry out the specified installation work after taking into account strong winds, typhoons or earthquakes. Failure to do so during installation work may result in the unit falling and causing accidents.
- Make sure that a separate power supply circuit is provided for this unit and that all electrical work is carried out by qualified personnel according to local laws and regulations and this installation manual. An insufficient power supply capacity or improper electrical construction may lead to electric shocks or fire.
- Make sure that all wiring is secured, the specified wires are used, and that there is no strain on the terminal connections or wires.
- Improper connections or securing of wires may result in abnormal heat build-up or fire.
- When wiring the power supply and connecting the remote controller wiring and transmission wiring, position the wires so that the terminal box lid can be securely fastened. Improper positioning of the terminal box lid may result in electric shocks, fire or the terminals overheating.
- If refrigerant gas leaks during installation, ventilate the area immediately.
 Toxic gas may be produced if the refrigerant comes into contact with fire.
- After completing installation, check for refrigerant gas leakage. Toxic gas may be produced if the refrigerant gas leaks into the room and comes into contact with a source of fire, such as a fan heater, stove or cooker.
- Be sure to switch off the unit before touching any electrical parts.
- Do not directly touch refrigerant that has leaked from refrigerant pipes or other areas, as there is a danger of frostbite.
- Be sure to earth the air conditioner.
 Do not earth the unit to a utility pipe, lightning conductor or telephone earth lead.
 Imperfect earthing may result in electric shocks or fire.
- A high surge current from lightning or other sources may cause damage to the air conditioner. • Be sure to install an earth leakage breaker.
- Failure to install an earth leakage breaker may result in electric shocks or fire.

- While following the instructions in this installation manual, install drain piping to ensure proper drainage and insulate piping to prevent condensation.
- Improper drain piping may result in indoor water leakage and property damage.
- Install the indoor and outdoor units, power cord and connecting wires at least 1 meter away from televisions or radios to prevent picture interference and noise.
- (Depending on the incoming signal strength, a distance of 1 meter may not be sufficient to eliminate noise.)
 Remote controller (wireless kit) transmitting distance can be shorter than expected in rooms with electronic fluorescent lamps (inverter or rapid start types).
- Install the indoor unit as far away from fluorescent lamps as possible.
- Do not install the air conditioner in the following locations:
 - 1. Where there is a high concentration of mineral oil spray or vapour (e.g. a kitchen).
 - Plastic parts will deteriorate, parts may fall off and water leakage could result.
 - 2. Where corrosive gas, such as sulphurous acid gas, is produced.
 - Corroding of copper pipes or soldered parts may result in refrigerant leakage. 3. Near machinery emitting electromagnetic radiation.
 - Electromagnetic radiation may disturb the operation of the control system and result in a malfunction of the unit.
 - 4. Where flammable gas may leak, where there is carbon fibre or ignitable dust suspensions in the air, or where volatile flammables such as paint thinner or gasoline are handled. Operating the unit in such conditions may result in fire.

English

2. BEFORE INSTALLATION

Do not exert pressure on the resin parts when opening the unit or when moving it after opening Be sure to check the type of R410A refrigerant to be used before doing any work. (Using an incorrect refrigerant will prevent normal operation of the unit.)

- When opening the unit or moving it after opening, be sure to lift it by holding on to the lifting lugs without exerting any pressure on other parts, especially, drain piping, and other resin parts.
- Decide upon a line of transport.
- Leave the unit inside its packaging while moving, until reaching the installation site. Use a sling of soft material, where unpacking is unavoidable or protective plates together with a rope when lifting, to avoid damage or scratches to the unit.
- Refer to the installation manual of the outdoor unit for items not described in this manual.
- Do not dispose of any parts necessary for installation until the installation is complete.

1. PRECAUTIONS

- Be sure to read this manual before installing the indoor unit.
- When selecting installation site, refer to the paper pattern.
- This unit is suitable for installation in a household, commercial and light industrial environment.
- Do not install or operate the unit in rooms mentioned below.
 - Laden with mineral oil, or filled with oil vapor or spray like in kitchens. (Plastic parts may deteriorate.)
 - Where corrosive gas like sulfurous gas exists. (Copper tubing and brazed spots may corrode.)
 - Where volatile flammable gas like thinner or gasoline is used.
 - Where machines can generate electromagnetic waves. (Control system may malfunction.)
 - Where the air contains high levels of salt such as that near the ocean and where voltage fluctuates greatly such as that in factories. Also in vehicles or vessels.

2. ACCESSORIES

Check the following accessories are included with your unit.

Name	(1) Drain hose	(2) Metal clamp	(3) Washer for hanger bracket	(4) Clamp	(5) Paper pattern for installation	(6) Screw (M4)
Quantity	1 pc.	1 pc.	8 pcs.	6 pcs.	1 pc.	4 pcs.
Shape	<u>a</u>	B B B B	0		Also used as pack- ing material	For paper pattern for installation

Name	(7) Washer fixing plate	Insulation for fitting		Sealing pad		Installation guide	
Quantity	4 pcs.	1 each	1 each	1 pc.	1 pc.	1 pc.	
Shape		(8) for gas pipe (9) for liquid pipe	(10) Large (11) Medium-1 (12) Medium-2	(13) Small	(14)	(15)	(Other) Installation manual Operation manual

2

3. OPTIONAL ACCESSORIES

• The optional decoration panel and remote controller are required for this indoor unit. (Refer to Table 1, 2) (However, the remote controller is not required for the slave unit of a simultaneous operation system.)

Table 1

Unit model	Optional decoration panel	
FXFQ25 · 32 · 40 · 50 · 63 · 80 · 100 · 125PVE	BYCP125K-W1	
FXFQ25 · 32 · 40 · 50 · 63 · 80 · 100 · 125PVE	Color : Fresh white	

• These are two types of remote controllers: wired and wireless. Select a remote controller from Table 2 according to customer request and install in an appropriate place.

Table 2

Remote controller				
Wired type	BRC1C62			
Wireless type (Heat pump type/Cooling only type)	BRC7F634F/BRC7F635F			

NOTE -

• If you wish to use a remote controller that is not listed in "Table 2" on page 4, select a suitable remote controller after consulting catalogs and technical materials.

FOR THE FOLLOWING ITEMS, TAKE SPECIAL CARE DURING CONSTRUCTION AND CHECK AFTER INSTALLATION IS FINISHED.

1. Items to be checked after completion of work

Items to be checked	If not properly done, what is likely to occur	Check
Are the indoor unit and outdoor unit fixed firmly?	The unit may drop, vibrate or make noise.	
Is the outdoor unit fully installed?	The unit may malfunction or the compo- nents burn out.	
Is the gas leak test finished?	It may result in insufficient cooling.	
Is the unit fully insulated?	Condensate water may drip.	
Does drainage flow smoothly?	Condensate water may drip.	
Does the power supply voltage correspond to that shown on the name plate?	The unit may malfunction or the compo- nents burn out.	
Are wiring and piping correct?	The unit may malfunction or the compo- nents burn out.	
Is the unit safely grounded?	It may result in electric shock.	
Is wiring size according to specifications?	The unit may malfunction or the compo- nents burn out.	
Is something blocking the air outlet or inlet of either the indoor or outdoor units?	It may result in insufficient cooling.	
Are refrigerant piping length and additional refrigerant charge noted down?	The refrigerant charge in the system is not clear.	

2. Items to be checked at time of delivery

* Also review the "1. SAFETY PRECAUTIONS"

Items to be checked	Check
Are the terminal box lid, air filter, suction grille attached?	
Did you explain about operations while showing the instruction manual to your customer?	
Did you hand the instruction manual over to your customer?	

English

Points for explanation about operations

The items with \triangle WARNING and \triangle CAUTION marks in the instruction manual are the items pertaining to possibilities for bodily injury and material damage in addition to the general usage of the product. Accordingly, it is necessary that you make a full explanation about the described contents and also ask your customers to read the instruction manual.

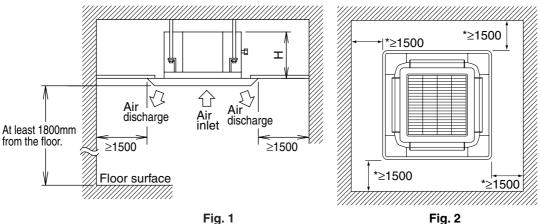
4. NOTE TO THE INSTALLER

Be sure to instruct customers how to properly operate the unit (especially cleaning filters, operating different functions, and adjusting the temperature) by having them carry out operations themselves while looking at the manual.

3. SELECTING INSTALLATION SITE

(Hold the unit by the 4 lifting lugs when opening the box and moving it, and do not exert pressure on to any other part piping (refrigerant, drain, etc.) or plastic parts.

If the temperature or humidity inside the ceiling might rise above 30°C or RH 80%, respectively, use the highhumidity kit (sold separately) or add extra insulation to the main unit body.


Use glass wool or polyethylene foam as insulation and make sure it is at least 10mm thick and fits inside the ceiling opening.>

The direction this product blows can be selected. However, a separately sold shut-off material kit is needed in order to make the unit blow in two, three, or four (corner shut-off) directions.

(1) Select an installation location with the customer's approval which matches the following conditions.

- A location from which cool (warm) air will reach the whole room.
- A location with no objects blocking the air passage.
- A location where drainage can be done with no problem.
- A location strong enough to support the weight of the indoor unit.
- Locations where the wall is not significantly tilted.
- A location which leaves enough room for installation and service work.
- A location where there is no risk of flammable gas leaking.
- A location where the length of the indoor-outdoor piping is no longer than the tolerated length (see the installation manual that came with the outdoor unit for details).

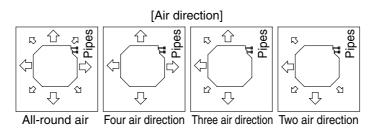
[Space required for installation]

Model	H (mm)
FXFQ25 · 32 · 40 · 50 · 63 · 80PVE	256
FXFQ100 · 125PVE	298

English

3P161684-3B

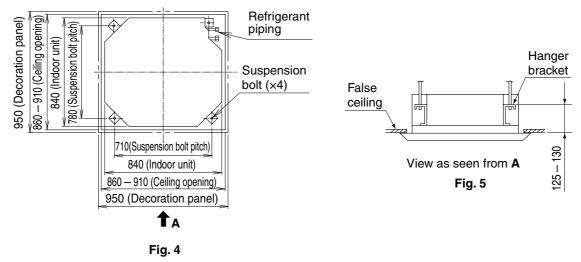
- The indoor and outdoor units and the power supply wiring and remote controller cord must be installed at least 1m away from any televisions or radios. This is to prevent interference with picture and sound reception. (Interference may occur even at 1m away depending on the reception guality.)
- If installing the wireless kit, the distance of the signal sent from the remote controller might be shorter if there are fluorescent lights which are electrically started (such as with inverters, rapid starters, etc.) in the room. The indoor unit should be installed as far away from fluorescent lights as possible.
- (2) Ceiling height

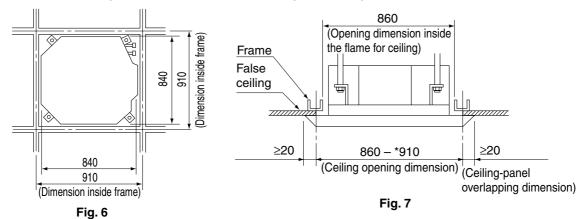

This product can be installed in ceilings up to 3.5m high (4.2m high for the 100 and 125).

If the ceiling height is 2.7m (3.2m for the 100 and 125) or more, field settings will have to be made with the remote controller. See "11. FIELD SETTING" for details.

- (3) Air direction
 - The air direction shown in Fig. 3 is an example.

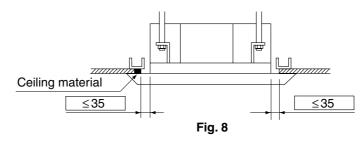
Select the appropriate number of directions according to the shape of the room and the location of the unit. (Field settings have to be made using the remote controller and the outlet vents have to be shut off if two, three, or four (corner shut-off) directions are selected. See the shut-off materials (sold separately) installation manual for details.)


(4) Use eyebolts for installation. Check if the location for the installation is strong enough to support the weight of the unit, reinforce it if necessary, and install using eyebolts. (The spacing of the installation is shown on the "paper pattern for installation (5)".)



4. PREPARATIONS BEFORE INSTALLATION

(1) Relation of ceiling opening to unit and suspension bolt position.



Installation is possible when ceiling opening dimensions is as follows
 When installing the unit within the frame for fixing false ceiling.

NOTE -

Installation is possible with a ceiling dimension of 910mm (marked with *). However, to achieve a ceiling-panel overlapping dimension of 20mm, the spacing between the ceiling and the unit should be 35mm or less. If the spacing between ceiling and the unit is over 35mm, attach ceiling material to part or recover the ceiling.

English 3P161684-3B

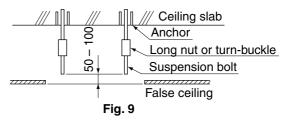
7

2

FXFQ-P

(2) Make the ceiling opening needed for installation where applicable. (For existing ceilings)

- Refer to the paper pattern for installation (5) for ceiling opening dimensions.
- Create the ceiling opening required for installation. From the side of the opening to the casing outlet, implement the refrigerant and drain piping and wiring for remote controller (unnecessary for wireless type) and indoor-outdoor unit casing outlet. Refer to "6. REFRIGERANT PIPING WORK", "7. DRAIN PIPING WORK" and "8. ELECTRIC WIRING WORK".
- After making an opening in the ceiling, it may be necessary to reinforce ceiling beams to keep the ceiling level and to prevent it from vibrating. Consult the builder for details.


(3) Install the suspension bolts.

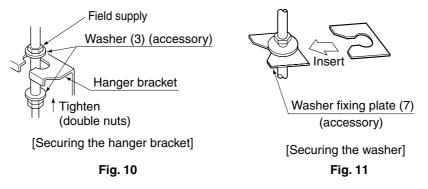
(Use either a $M8 \sim M10$ size bolt) Use a hole-in anchor for existing ceilings, and a sunken insert, sunken anchor or other field supplied parts for new ceilings to reinforce the ceiling to bear the weight of the unit. Adjust clearance (50 – 100mm) from the ceiling before proceeding further.

NOTE 🗐

• All the above parts are field supplied.

<installation example>

5. INDOOR UNIT INSTALLATION

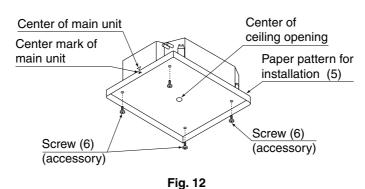

Installing optional accessories (except for the decoration panel) before installing the indoor unit is easier. However, for existing ceilings, install fresh air inlet component kit and branch duct before installing the unit.

As for the parts to be used for installation work, be sure to use the provided accessories and specified parts designated by our company.

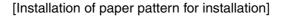
(1) For new ceilings

(1-1)Install the indoor unit temporarily.

• Attach the hanger bracket to the suspension bolt. Be sure to fix it securely by using a nut and washer (3) from the upper and lower sides of the hanger bracket. The washer fixing plate (7) will prevent the washer from falling.

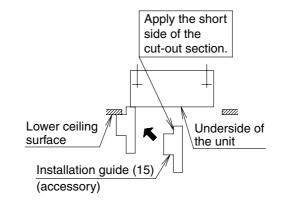

(1-2)Refer to the paper pattern for installation (5) for ceiling opening dimension.

Consult the builder or carpenter for details.


- The center of the ceiling opening is indicated on the paper pattern for installation.
- The center of the unit is indicated on the triangular mark to the unit bottom and on the paper pattern for installation.
- Fix the paper pattern to the unit with screws (6) (×4).
- Ceiling height is shown on the side of the paper pattern for installation (5). Adjust the height of the unit according to this indication.

English

8


Please perform one of the following, as the shape of the paper pattern for installation differs according to the model.

<Ceiling work>

(1-3)Adjust the unit to the right position for installation.

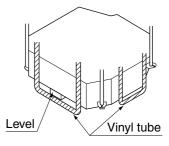
- (Refer to "4. PREPARATIONS BEFORE INSTALLATION-(1)".)
- Using the Installation guide (15) allows you to check the positions from the underside of the unit to the lower ceiling surface.

(1-4)Check the unit is horizontally level.

• The indoor unit is equipped with a built-in drain pump and float switch. Verify that it is level by using a level or a water-filled vinyl tube.

If the unit is tilted against condensate flow, the float switch may malfunction and cause water to drip.

- (1-5)Remove the washer fixing plate (7) used for preventing the washer from falling and tighten the upper nut.
- (1-6)Remove the paper pattern for installation (5).


(2) For existing ceilings

(2-1)Install the indoor unit temporarily.

Perform step (1-1) in (1) For new ceilings.

(2-2)Adjust the height and position of the unit.

(Refer to "4. PREPARATIONS BEFORE INSTALLATION-(1)" and (1-3) in (1) For new ceilings.) (2-3)Perform steps (1-4), (1-5) in (1) For new ceilings.

[Maintaining horizontality] Fig. 13

English

3P161684-3B

6. REFRIGERANT PIPING WORK

\langle For refrigerant piping of outdoor units, see the installation manual attached to the outdoor unit. \rangle

(Execute heat insulation work completely on both sides of the gas piping and the liquid piping. Otherwise, a water leakage can result sometimes.)

(When using a heat pump, the temperature of the gas piping can reach up to approximately 120° C, so use insulation which is sufficiently resistant.)

 \langle Also, in cases where the temperature and humidity of the refrigerant piping sections might exceed 30°C or RH80%, reinforce the refrigerant insulation. (20mm or thicker) Condensate may form on the surface of the insulating material. \rangle

 \langle Be sure to check the type of R410A refrigerant to be used before doing any work. (Using an incorrect refrigerant will prevent normal operation of the unit.) \rangle

- Use a pipe cutter and flare suitable for the type of refrigerant.
- Apply ester oil or ether oil around the flare section before connecting.
- To prevent dust, moisture or other foreign matter from infiltrating the tube, either pinch the end or cover it with tape.
- Do not allow anything other than the designated refrigerant to get mixed into the refrigerant circuit, such as air, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away.
- Do not mix air or other gas with the specified refrigerant in the refrigeration cycle.
- Ventilate the room if refrigerant gas leaks during the work.
- The outdoor unit is charged with refrigerant.
- Be sure to use both a spanner and torque wrench together, as shown in the drawing, when connecting or disconnecting pipes to/from the unit. (Refer to Fig. 14)
- Refer to "Table 3" for the dimensions of flare nut spaces.

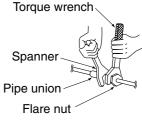


Fig. 14

- When connecting the flare nut, apply ether oil or ester oil only to inner side of the flare, and spin 3-4 times before screwing in. (Refer to Fig. 15)
- Keep all the screw mounting resin parts (e.g., piping presser plates) away from oil.

If oil adheres, the strength of the screw mounting resin parts may drop.

Over-tightening the flare nut may break it and/or cause the refrigerant to leak.

NOTE

• Use the flare nut included with the unit main body.

Table 3

Pipe size	Tightening torque	Flare dimensions A (mm)	Flare
φ 6.4 (1/4")	14.2 – 17.2N⋅m (144 – 176 kgf⋅cm)	8.7 – 9.1	~
φ 9.5 (3/8")	32.7 – 39.9N⋅m (333 – 407 kgf⋅cm)	12.8 – 13.2	°7 R0.4-0.8
¢ 12.7 (1/2")	49.5 – 60.3N⋅m (504 – 616 kgf⋅cm)	16.2 – 16.6	
¢ 15.9 (5/8")	61.8 – 75.4N⋅m (630 – 770 kgf⋅cm)	19.3 – 19.7	*

• Refer to "Table 3" to determine the proper tightening torque.

English

Apply ester oil or ether oil only to inner side of the flare.

Not recommendable but in case of emergency —

You must use a torque wrench but if you are obliged to install the unit without a torque wrench, you may follow the installation method mentioned below.

When you keep on tightening the flare nut with a spanner, there is a point where the tightening torque suddenly increases. From that position, further tighten the flare nut the angle shown below:

Pipe size	Further tightening angle	Recommended arm length of tool		
φ 6.4 (1/4")	60 to 90 degrees	Approx. 150mm		
φ 9.5 (3/8")	60 to 90 degrees	Approx. 200mm		
φ 12.7 (1/2")	30 to 60 degrees	Approx. 250mm		
φ 15.9 (5/8")	30 to 60 degrees	Approx. 300mm		

After the work is finished, make sure to check that there is no gas leak.

- Make absolutely sure to execute heat insulation works on the pipe-connecting section after checking gas leakage by thoroughly studying the following figure and using the attached heat insulating materials for fitting (8) and (9). (Fasten both ends with the clamps (4).) (Refer to Fig. 16)
- Wrap the sealing pad (11) only around the insulation for the joints on the gas piping side. (Refer to Fig. 16)

For local insulation, be sure to insulate local piping all the way into the pipe connections inside the machine. Exposed piping may cause condensation or burns on contact.

CAUTION TO BE TAKEN WHEN BRAZING REFRIGERANT PIPING

"Do not use flux when brazing refrigerant piping. Therefore, use the phosphor copper brazing filler metal (BCuP-2: JIS Z 3264/B-Cu93P-710/795: ISO 3677) which does not require flux." (Flux has extremely harmful influence on refrigerant piping systems. For instance, if the chlorine based flux is used, it will cause pipe corrosion or, in particular, if the flux contains fluorine, it will damage the refrigerant oil.)

11

English

- Before brazing local refrigerant piping, nitrogen gas shall be blown through the piping to expel air from the piping. If you brazing is done without nitrogen gas blowing, a large amount of oxide film develops inside the piping, and could cause system malfunction.
- When brazing the refrigerant piping, only begin brazing after having carried out nitrogen substitution or while inserting nitrogen into the refrigerant piping. Once this is done, connect the indoor unit with a flared or a flanged connection.
- Nitrogen should be set to 0.02MPa with a pressure-reducing valve if brazing while inserting nitrogen into the piping. (Refer to Fig. 17)

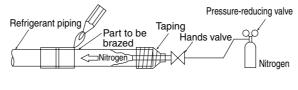
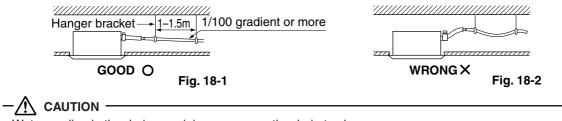
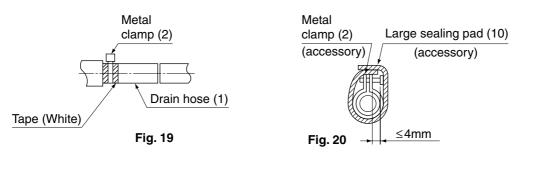



Fig. 17

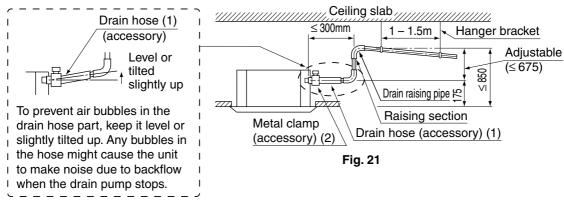
7. DRAIN PIPING WORK


(1) Rig drain piping

- As for drain work, perform piping in such a manner that water can be drained properly.
- Employ a pipe with either the same diameter or with the diameter larger (excluding the raising section) than that of the connecting pipe (PVC pipe, nominal diameter 25mm, outside diameter 32mm).
- Keep the drain pipe short and sloping downwards at a gradient of at least 1/100 to prevent air pockets from forming.
- If the drain pipe cannot be sufficiently set on a slope, execute the drain raising piping.
- To keep the drain pipe from sagging, space hanging wires every 1 to 1.5m.

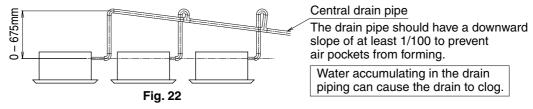
Water pooling in the drainage piping can cause the drain to clog.

- Use the attached drain hose (1) and Metal clamp (2).
- Insert the drain hose into the drain socket up to the base, and tighten the Metal clamp securely within the portion of a white tape of the hose-inserted tip. Tighten the Metal clamp until the screw head is less than 4mm from the hose.
- Wrap the attached sealing pad (10) over the Metal clamp and drain hose to insulate.
- Make sure that heat insulation work is executed on the following 2 spots to prevent any possible water leakage due to dew condensation.
 - Indoor drain pipe
 - Drain socket



English

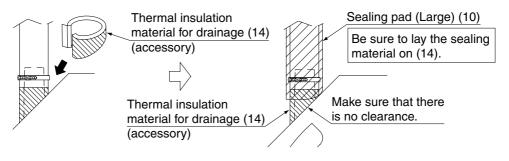
12


<PRECAUTIONS FOR DRAIN RAISING PIPING>

- Install the drain raising pipes at a height of less than 675mm.
 The drain pump of this unit has a high delivery flow rate. Therefore, the higher the drain raising height is, the lower the sound of draining will be. For this reason, a minimum drain raising height of 300mm is recommended.
- Install the drain raising pipes at a right angle to the indoor unit and no more than 300mm from the unit.

NOTE 👕

- To ensure no excessive pressure is applied to the included drain hose (1), do not bend or twist when installing. (This may cause leakage.)
- If converging multiple drain pipes, install according to the procedure shown below.



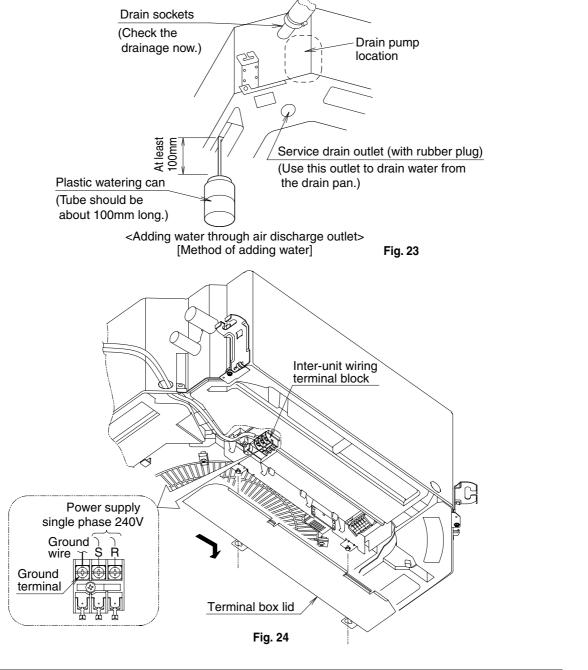
Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

(2) After piping work is finished, check if drainage flows smoothly.

WHEN ELECTRIC WIRING WORK IS FINISHED

- Add approximately 1000cc of water slowly from the air outlet and check drainage flow.
- Check drainage flow during COOL running, explained under "12. TEST OPERATION".
- Refer to the figure on the following after checking the draining of water, and mount the thermal insulation material for drainage (14) and thermal insulate the drain socket.

WHEN ELECTRIC WIRING WORK IS NOT FINISHED



- Electrical wiring work should be done by a certified electrician.
- If someone who does not have the proper qualifications performs the work, perform the following after the test run is complete.

13

English

- Remove the terminal box lid. Connect the single phase power supply (SINGLE PHASE 50Hz 240V) to connections No.1 and No.2 on the terminal block for wiring the units. Do not connect to No.3 of the terminal block for wiring the units. (The drain pump will not operate.) Connect the ground wire firmly. When carrying out wiring work around the terminal box, make sure none of the connectors come undone. Be sure to attach the terminal box lid before turning on the power.
- Put approximately 1000cc of water into the drain pan through the blow-off mouth on the left-hand side of the drain socket. Make sure not to pour water over the drain pump or any electric parts including those of the drain pump.
- When the power is turned on, the drain pump will operate and you can check the draining of water through the transparent part of the drain socket. (The drain pump will stop automatically in 10 minutes.) After checking the draining of water, mount the thermal insulation material for drainage (14) and thermal insulate the drain socket.
- After confirming drainage (Fig.23, Fig.24), turn off the power and remove the power supply.
- Attach the terminal box lid as before.

$-\underline{/}$ Caution –

Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

8. ELECTRIC WIRING WORK

8-1 General instructions

- All field supplied parts and materials and electric works must conform to local codes.
- Use copper wire only.
- For electric wiring work, refer to also "WIRING DIAGRAM" attached to the unit body.
- For remote controller wiring details, refer to the installation manual attached to the remote controller.
- All wiring must be performed by an authorized electrician.
- A circuit breaker capable of shutting down power supply to the entire system must be installed.
- Refer to the installation manual attached to the outdoor unit for the size of power supply electric wire connected to the outdoor unit, the capacity of the circuit breaker and switch, and wiring instructions.
- Be sure to ground the air conditioner.
- Do not connect the ground wire to gas pipes, plumbing pipes, lightning rods, or telephone ground wires.
 Gas pipes: might cause explosions or fire if gas leaks.
 - Plumbing: no grounding effect if hard vinyl piping is used.
 - Telephone ground wires or lightning rods: might cause abnormally high electric potential in the ground during lighting storms.

Units				Power supply		Fan motor	
Model	Hz	Volts	Voltage range	MCA	MFA	kW	FLA
FXFQ25PVE				0.3	15	0.056	0.2
FXFQ32PVE				0.3	15	0.056	0.2
FXFQ40PVE				0.3	15	0.056	0.2
FXFQ50PVE	50	220-240	Max. 264	0.3	15	0.056	0.2
FXFQ63PVE	50	50 220-240	Min. 198	0.4	15	0.056	0.3
FXFQ80PVE				0.5	15	0.056	0.4
FXFQ100PVE				1.3	15	0.120	1.0
FXFQ125PVE				1.5	15	0.120	1.2
FXFQ25PVE				0.3	15	0.056	0.2
FXFQ32PVE				0.3	15	0.056	0.2
FXFQ40PVE				0.3	15	0.056	0.2
FXFQ50PVE	60	220	Max. 242	0.3	15	0.056	0.2
FXFQ63PVE	60	220	Min. 198	0.4	15	0.056	0.3
FXFQ80PVE				0.5	15	0.056	0.4
FXFQ100PVE				1.3	15	0.120	1.0
FXFQ125PVE				1.5	15	0.120	1.2

8-2 Electrical characteristics

MCA: Min. Circuit Amps (A) kW: Fan Motor Rated Output (kW) MFA: Max. Fuse Amps (A) FLA: Full Load Amps (A)

8-3 Specifications for field supplied fuses and wire

Model		Power supply	wiring	Remote controller wiring Transmission wiring		
Model	Field fuses ⊕	Wire	Size	Wire	Size	
FXFQ25-32-40-50PVE					0.75 - 1.25 mm ²	
FXFQ63PVE	15A	H05VV-U3G	Wire size must comply with local	Sheathed wire (2 wire)		
FXFQ80-100PVE	154	10500-050	codes.			
FXFQ125PVE						

Allowable length of transmission wirings and remote controller wiring are as follows.

(1) Outdoor unit - Indoor unit:

- Max. 1000m (Total wiring length: 2000m)
- (2) Indoor unit Remote controller

Max. 500m

NOTE

- 1. Shows only in case of protected pipes. Use H07RN-F in case of no protection.
- 2. Vinyl cord with sheath or cable (Insulated thickness : 1mm or more)

9. WIRING EXAMPLE AND HOW TO SET THE REMOTE CONTROLLER

9-1 How to connect wirings

Connection of wiring between units, ground wire and for the remote controller cord (Refer to Fig. 25) • Wiring the units and ground wire

Remove the terminal box lid and connect wires of matching number to the terminal block for wiring the units (3 P) inside. And connect the ground wire to the ground terminal. In doing this, pull the wires inside through the hole and fix the wires securely with the included clamp (4) (2 points).

- Remote controller cords (not neccessary for slave unit of simultaneous operation system) Remove the terminal box lid and pull the wires inside through the hole and connect to the terminal block for remote controller (6 P). (no polarity) Securely fix the remote controller cord with the included clamp (4) (2 points).
- After connection, attach sealing pad (13).
- Be sure to attach it to prevent the infiltration of water from the outside.

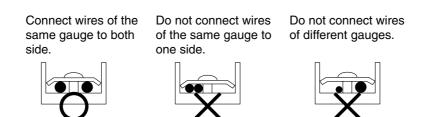
[PRECAUTIONS]

- 1. Use round crimp-style terminals for connecting wires to the power supply terminal block.
 - If unavailable, observe the following points when wiring.
 - Do not connect wires of different gauge to the same power supply terminal.
 - (Looseness in the connection may cause overheating.)
 - Use the specified electric wire. Connect the wire securely to the terminal. Lock the wire down without applying excessive force to the terminal. (Tightening torque: 131N⋅cm ±10 %)

Attach insulation sleeve

Electric wire

Round crimp-style terminal

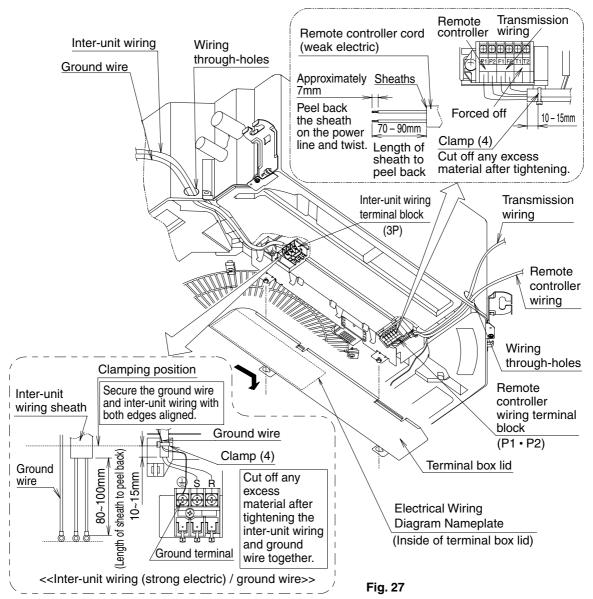

2. Tightening torque for the terminal screws.

- Use the correct screwdriver for tightening the terminal screws. If the blade of screwdriver is too small, the head of the screw might be damaged, and the screw will not be properly tightened.
- If the terminal screws are tightened too hard, screws might be damaged.
- Refer to the table below for the tightening torque of the terminal screws.

Terminal	Size	Tightening torque
Terminal block for remote controller (6P)	M3.5	0.79 – 0.97N⋅m
Power supply terminal block (3P)	M4	1.18 – 1.44N⋅m
Ground terminal	M4	1.44 – 1.94N⋅m

When none are available, follow the instructions below.

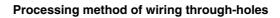
3. Do not connect wires of different gauge to the same grounding terminal.

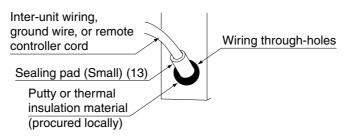


Looseness in the connection may deteriorate protection.

4. Outside of the unit, keep transmission wiring at least 50mm away from power supply wiring. The equipment may malfunction if subjected to electrical (external) noise.

Fig. 26

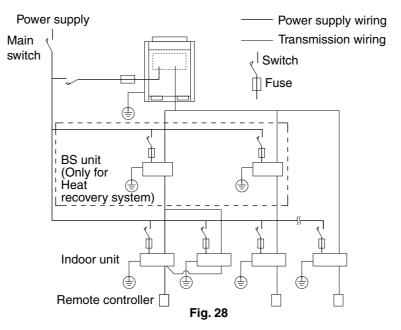

- 5. For remote controller wiring, refer to the "INSTALLATION MANUAL OF REMOTE CONTROLLER." attached to the remote controller.
- 6. Never connect power supply wiring to the terminal block for remote controller. A mistake of the sort could damage the entire system.
- 7. Use only specified wire and tightly connect wires to terminals. Be careful wires do not place external stress on terminals. Keep wiring in neat order and so as not to obstruct other equipment such as popping open the terminal box lid. Make sure the lid closes tight. Incomplete connections could result in overheating, and in worse case, electric shock or fire.

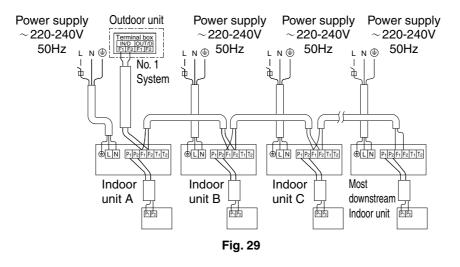


Observe the notes mentioned below when wiring to the terminal block for wiring the units.

- When clamping wiring, use the included clamping material to prevent outside pressure being exerted on the wiring connections and clamp firmly. When doing the wiring, make sure the wiring is neat and does not cause the terminal box lid to stick up, then close the cover firmly.
- When attaching the terminal box lid, make sure you do not pinch any wires.
- After all the wiring connections are done, fill in any gaps in the through holes with putty or insulation (procured locally) to prevent small animals and insects from entering the unit from outside. (If any do get in, they could cause short circuits in the terminal box.)
- Outside the machine, separate the weak wiring (remote controller cord) and strong wiring (interunit, ground, and other power wiring) at least 50 mm so that they do not pass through the same place together. Proximity may cause electrical interference, malfunctions, and breakage.

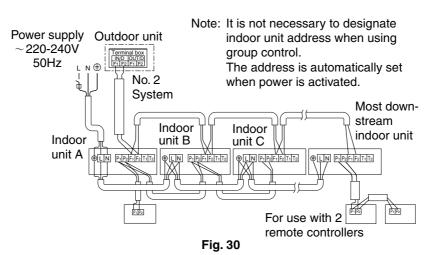
2



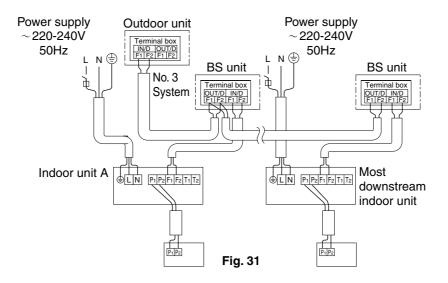

9-2 Wiring example

• Fit the power supply wiring of each unit with a switch and fuse as shown in the drawing.

COMPLETE SYSTEM EXAMPLE (3 systems)



1. When using 1 remote controller for 1 indoor unit. (Normal operation)



3P161684-3B

2. For group control or use with 2 remote controllers

3. When including BS unit

[PRECAUTIONS]

- **1.** A single switch can be used to supply power to units on the same system. However, branch switches and branch circuit breakers must be selected carefully.
- 2. Do not ground the equipment on gas pipes, water pipes or lightning rods, or crossground with telephones. Improper grounding could result in electric shock.

English

20

9-3 Control by 2 remote controllers (controlling 1 indoor unit by 2 remote controllers)

• When using 2 remote controllers, one must be set to "MAIN" and the other to "SUB".

MAIN/SUB CHANGEOVER

- (1) Insert a ⊖ screw driver into the recess between the upper and lower part of remote controller and, working from the 2 positions, pry off the upper part. (The remote controller PC board is attached to the upper part of remote controller.) (Refer to Fig. 32)
- (2) Turn the main/sub changeover switch on one of the two remote controller PC boards to "S". (Leave the switch of the other remote controller set to "M".) (Refer to Fig. 33)

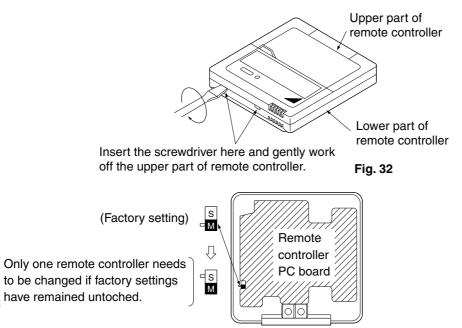
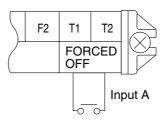


Fig. 33


Wiring Method (See "ELECTRIC WIRING WORK")

(3) Remove the terminal box lid

(4) Add remote control 2 (slave) to the terminal block for remote controller (P1, P2) in the terminal box. (There is no polarity.) (Refer to Fig. 30 and 8-3.)

9-4 Computerised control (forced off and on/off operation)

- (1) Wire specifications and how to perform wiring
 - Connect the input from outside to terminals T1 and T2 of the terminal block for remote controller.

Wire specification Sheathed vinyl cord or cable (2 wire)					
Gauge	0.75 - 1.25 mm ²				
Length	Max. 100 m				
External terminal	Contact that can ensure the minimum applicable load of 15 V DC, 10 mA.				

English

(2) Actuation

• The following table explains FORCED OFF and ON/OFF OPERATIONS in response to Input A.

FORCED OFF	ON/OFF OPERATION
Input "ON" stops operation (impossible by remote controllers.)	Input OFF \rightarrow ON turns ON unit.
Input OFF enables control by remote controller.	Input ON \rightarrow OFF turns OFF unit.

(3) How to select FORCED OFF and ON/OFF OPERATION

• Turn the power on and then use the remote controller to select operation.

9-5 Centralized control

• For centralized control, it is necessary to designate the group No. For details, refer to the manual of each optional controllers for centralized control.

10. INSTALLATION OF THE DECORATION PANEL

Caution:

With a wireless remote controller, field setting and test operation cannot be performed without attaching the decoration panel.

<If performing a test run without attaching the decoration panel, read "11. FIELD SETTING" and "12. TEST OPERATION" first.>

Refer to the installation manual attached to the decoration panel.

After installing the decoration panel, ensure that there is no space between the unit body and decoration panel.

11. FIELD SETTING

When performing field setting or test operation without attaching the decoration panel, do not touch the drain pump. This may cause electric shock.

• Check that the outdoor unit has been wired properly.

Make sure the terminal box lids are closed on the indoor and outdoor units.

Field setting must be made from the remote controller and in accordance with installation conditions.

- Setting can be made by changing the "Mode No.", "FIRST CODE NO." and "SECOND CODE NO.".
- For setting procedures and instructions, see "Field settings" provided with the remote controller.

11-1 Setting ceiling height

• Select the SECOND CODE NO. that corresponds to the ceiling height "Table 4". (SECOND CODE NO. is factory set to "01".)

Table 4

		FXFQ - PVE		Mode No.	FIRST	SECOND
		25 · 32 · 40 · 50 · 63 · 80 type	100 · 125 type	Note) 1	CODE NO.	CODE NO.
Ceiling	Standard · All round outlet	≤2.7	≤ 3.2	10 (00)	0	01
height (m)	High ceiling 1	2.7 - 3	3.2 - 3.6	13 (23)	0	02
	High ceiling 2	3 - 3.5	3.6 - 4.2			03

Note:

1. "Mode No." setting is done in a batch for the group. To make or confirm settings for an individual unit, set the internal mode number in parentheses.

2. The figure of the ceiling height is for the all round outlet. For the settings for four-direction (part of corner closed off), three-direction and two-direction outlets, see the installation manual and technical guide supplied with the separately sold closure material kit.

English

11-2 Setting of air direction

• See the installation manual included with the sealing material of air discharge outlet kit, sold separately and technical guide, for ceiling height settings for two and three-direction air discharge. (The SECOND CODE NO. is factory set to "01" (all round outlet) before shipping.)

11-3 Settings for Mounting Options

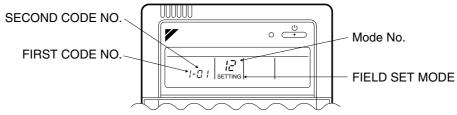
• When installing an option sold separately, refer to the installation manual provided to the option.

11-4 Setting air filter sign

- Remote controllers are equipped with liquid crystal display air filter signs to display the time to clean air filters.
- Change the SECOND CODE NO. according to "Table 5" depending on the amount of dirt or dust in the room.

(SECOND CODE NO. is factory set to "01" for filter contamination-light.)

Table 5


Setting	Setting Spacing time of display air filter sign (long life type)		FIRST CODE NO.	SECOND CODE NO.
Air filter contamination- light	Approx. 2500 hrs		0	01
Air filter contamination- heavy Approx. 1250 hrs		10 (20)	0	02
No Display			3	

Note:

- 1. "Mode No." setting is done in a batch for the group. To make or confirm settings for an individual unit, set the internal mode number in parentheses.
- 2. Make settings for "No Display" in cases where no cleaning display is required, e.g., at the time of regular maintenance servicing.
- The air conditioner is provided with a long life filter as a standard accessory. Explain to the customer the necessity of cleaning the filter periodically along with the set time for filter cleaning for the prevention of clogging.

When using wireless remote controllers

• When using wireless remote controllers, wireless remote controller address setting is necessary. Refer to the installation manual attached to the wireless remote controller for setting instructions.

- Set the remote controller to the field set mode. For details, refer to the "HOW TO SET IN THE FIELD", in the remote controller manual.
- When in the field set mode, select mode No. 12, then set the first code (switch) No. to "1". Then set second code (position) No. to "01" for FORCED OFF and "02" for ON/OFF OPERATION. (FORCED OFF at factory set)

12. TEST OPERATION

Refer to the installation manual of the outdoor unit.

• The operation lamp of the remote controller will flash when an malfunction occurs. Check the malfunction code on the liquid crystal display to identify the point of trouble. An explanation of malfunction codes and the corresponding trouble is provided in "CAUTION FOR SERVICING" of the indoor unit. If any of the items in Table 6 are displayed, there may be a problem with the wiring or power, so check the wiring again.

Table 6

Remote control display	Content				
"Concentrated Management" is lit up	• There is a short circuit at the FORCED OFF terminals (T1, T2).				
"U4" is lit up "UH" is lit up	 The power on the outdoor unit is off. The outdoor unit has not been wired for power supply. Incorrect wiring for the transmission wiring and / or FORCED OFF wiring. 				
No display	 The power on the indoor unit is off. The indoor unit has not been wired for power supply. Incorrect wiring for the remote controller wiring, the transmission wiring, and / or the FORCED OFF wiring. 				

• If the decoration panel is installed on the indoor unit during the test run, check the operation of the swing flap on the panel.

• In order to protect the indoor unit, instruct the customer not to operate the air conditioner until the interior work is completed if the interior work has not been finished at the end of the test run. (If the air conditioner is operated, substances discharged from the paint, adhesive, etc. can contaminate the indoor unit, and they may cause splashing or leakage of water.)

NOTE D

• After the test run is finished, check the items listed in "2. Items to be checked at time of delivery".

English

11. Accessories

Standard Accessories

FXFQ25~125P

Name	(1) Drain hose	(2) Metal clamp	(3) Washer for hanger bracket	(4) Clamp	(5) Paper pattern for installation	(6) Screw (M4)
Quantity	1 pc.	1 pc.	8 pcs.	6 pcs.	1 pc.	4 pcs.
Shape	<u>a</u>	ap no	0		Also used as pack- ing material	For paper pattern for installation

Name	(7) Washer fixing plate	Insulation for fitting		Sealing pad			
Quantity	4 pcs.	1 each	1 each	1 pc.	1 pc.	1 pc.	
Shape		(8) for gas pipe (9) for liquid pipe	(10) Large (11) Medium-1 (12) Medium-2	(13) Small	(14)	(15)	(Other) • Installation manual • Operation manual

3P161684-3B

Optional Accessories (For Unit)

Item		Model	FXFQ25PVE	FXFQ32PVE	FXFQ40PVE	FXFQ50PVE	FXFQ63PVE	FXFQ80PVE	FXFQ100PVE	FXFQ125PVE
Decoration panel						BVCP1	25K_\\/1			
			BYCP125K-W1							
Sealing member of air discharge outlet			KDBH55K160F							
Panel spacer			KDBP55H160FA							
	High efficiency filter unit	65%	KAFP556H80				KAFP556H160			
		90%	KAFP557H80				KAFP557H160			
	Replacement	65%	KAFP552H80				KAFP552H160			
	high efficiency filter	90%	KAFP553H80				KAFP553H160			
Filter related	Filter chamber		KDDFP55H160							
related	Replacement long life filter	Non- woven type	KAFP551K160							
	Ultra long-life filter		KAFP55H160							
	Replacement ultra long life filter		KAFP55H160H							
	Chamber type	Without T- joint pipe and fan	KDDP55K160							
Fresh air intake kit		With T-joint pipe without fan	KDDP55K160K							
	Direct installation type		KDDP55X160							
Branch duct chamber			KDJP55H80				KDJP5	5H160		
Chamber connection kit			KKSJ55K160							
Insulation kit for high humidity			KDTP55K80				KDTP5	55K160		

Optional Accessories (For Controls) : Refer to P.645

BYCP125K-W1 — Decoration Panel

1. BEFORE INSTALLATION

1. PRECAUTIONS

• Refer also to the installation manual attached to the indoor unit.

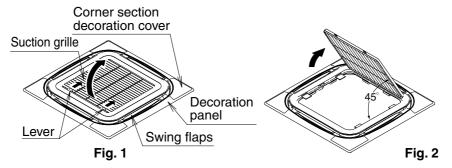
2. ACCESSORIES

Installation manual.

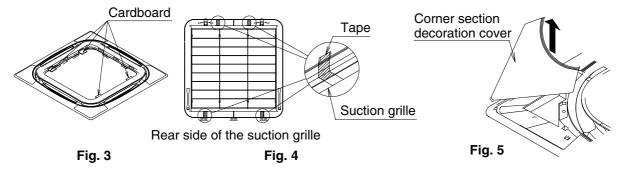
3. NOTE TO INSTALLER

• Be sure to instruct the customer how to properly operate the system showing him/her the attached operation manual.

2. PREPARATION OF DECORATION PANEL


<< For this unit, you are able to select air flow directions. To discharge air in 2 or 3 directions, it is necessary to purchase optional blocking pad kit.>>

HANDLING OF DECORATION PANELS


- Never place the panel facing down nor lean it against a wall nor leave it on a projecting object.
- Never touch or put pressure on the swing flap.
- (The swing flap may malfunction)

(1) Remove the suction grille from the decoration panel.

- 1 Press the lever on the suction grille and lift the lever side. (Refer to Fig. 1)
- 2 Detach the suction grille from the decoration panel by lifting the grille up approximately 45 degrees. (Refer to Fig. 2)
- 3 Remove the transporting cardboard (in 4 locations) from the main unit. (Refer to Fig. 3)
- 4 Remove the transporting tape (in 4 locations) on the back of the suction grille. (Refer to Fig. 4)

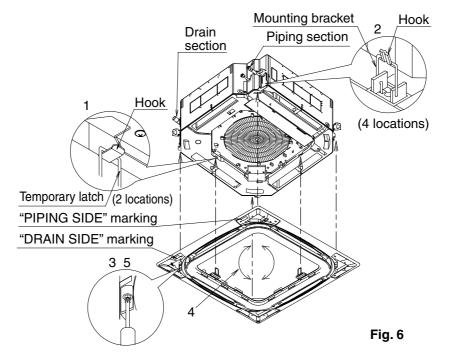
- (2) Remove the corner section decoration cover.
 - Lift the four corner decoration covers in the direction of the arrow and remove. (Refer to Fig. 5)

FXFQ-P

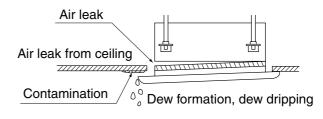
3. INSTALLATION OF THE DECORATION PANEL TO THE INDOOR UNIT BODY

<<Refer to the installation manual attached to the indoor unit for the installation of the indoor unit.>>

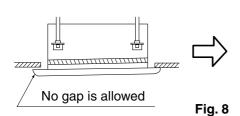
- (1) Match the "PIPING SIDE" and "DRAIN SIDE" displays on the decoration panel with the position of the piping section and drain section on the indoor unit.
- (2) Install the decoration panel
 - **1** Temporarily install the decoration panel to the indoor unit by hanging the temporary latch of the decoration panel to the hook of the indoor unit body. (2 locations)
 - 2 Hook the four mounting brackets on the corner sections of the decoration panels onto the hooks around the main indoor unit body.(Make sure at this time that the swing motor lead wire does not get caught between the decoration panel and the main unit.)
 - 3 Screw all 4 hexagon head screws located right beneath the latches in approximately 5 mm. (Panel will rise)
 - 4 Adjust the decoration panel by turning it to the arrowed direction in Fig. 6 so that the ceiling opening is completely covered.


5 Tighten the screws until the thickness of the sealing material between the decoration panel and the indoor unit body reduces to 5-8 mm.

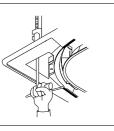
Decoration panel


Swing flaps

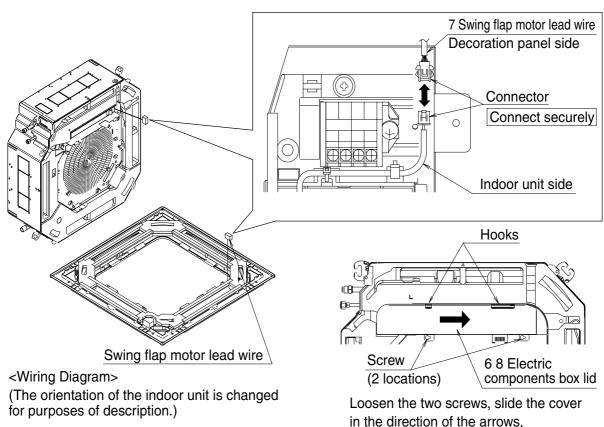
Ceiling material


[PRECAUTIONS]

• Inproper screwing of the screws may cause the troubles shown in Fig. 7 Screw properly.



• If gap is still left between the ceiling and the decoration panel after screwing the screws, readjust the indoor unit body height. (Refer to Fig. 8)



Adjustment of the indoor unit body height from the holes in the corner of the decoration panel is possible if the indoor unit is kept leveled and the drain piping, etc. is unaffected.

- (3) Wiring of the decoration panel (Refer to Fig. 9)
 - 6 Remove the electric components box lid.
 - 7 Connect the connectors for swing flap motor lead wire installed on the decoration panel.
 - 8 Replace the electric components box lid reversing the procedure to remove it.

Make sure that the swing flap motor lead wire is not caught between the electric components box and its lid, and between the indoor unit body and the decoration panel.

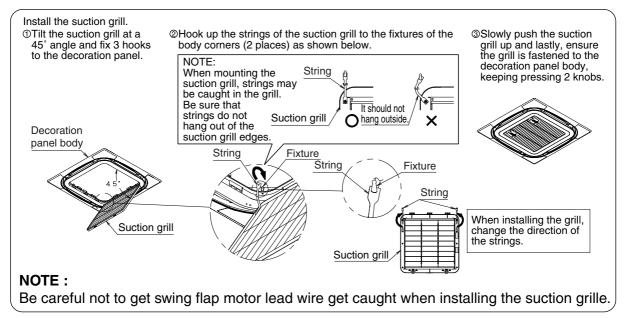
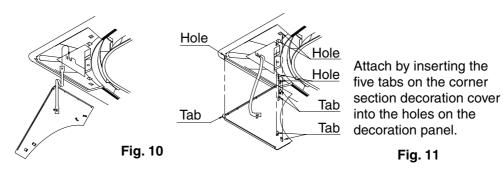
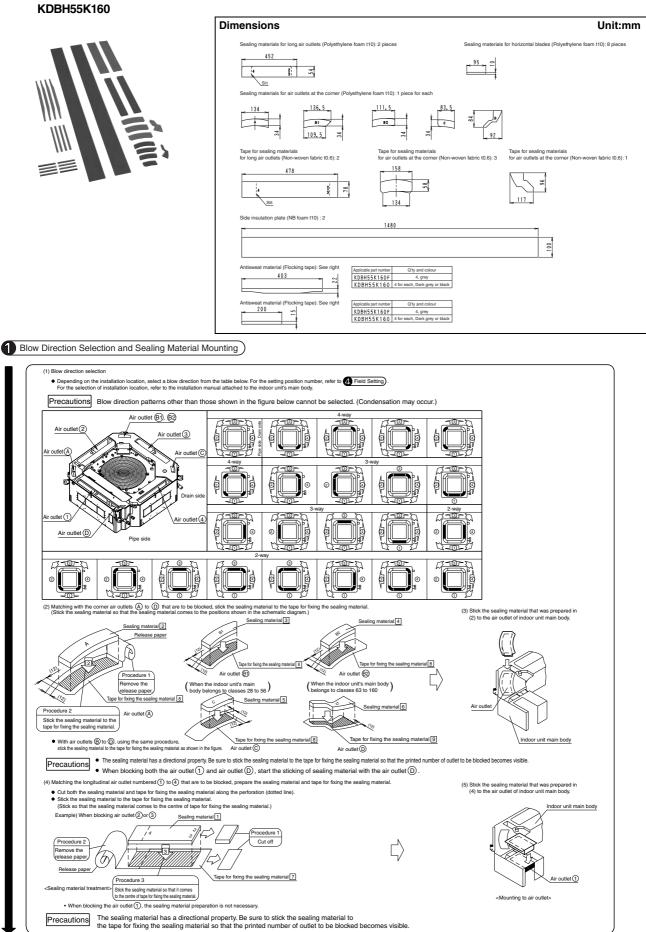

and disengage from the hooks.

Fig. 9

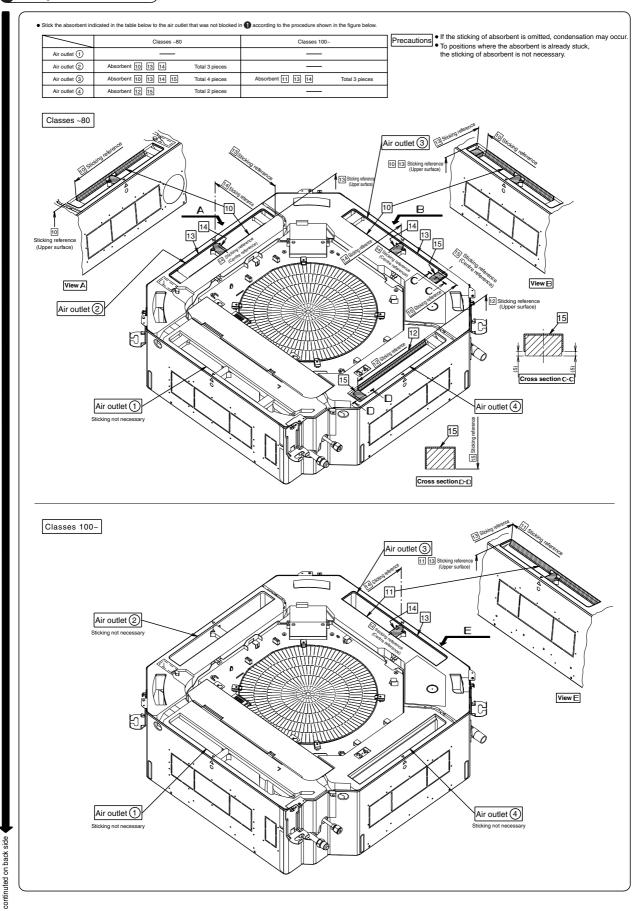

4. INSTALLATION OF SUCTION GRILLE AND SERVICE COVER

(1) Install the suction grille

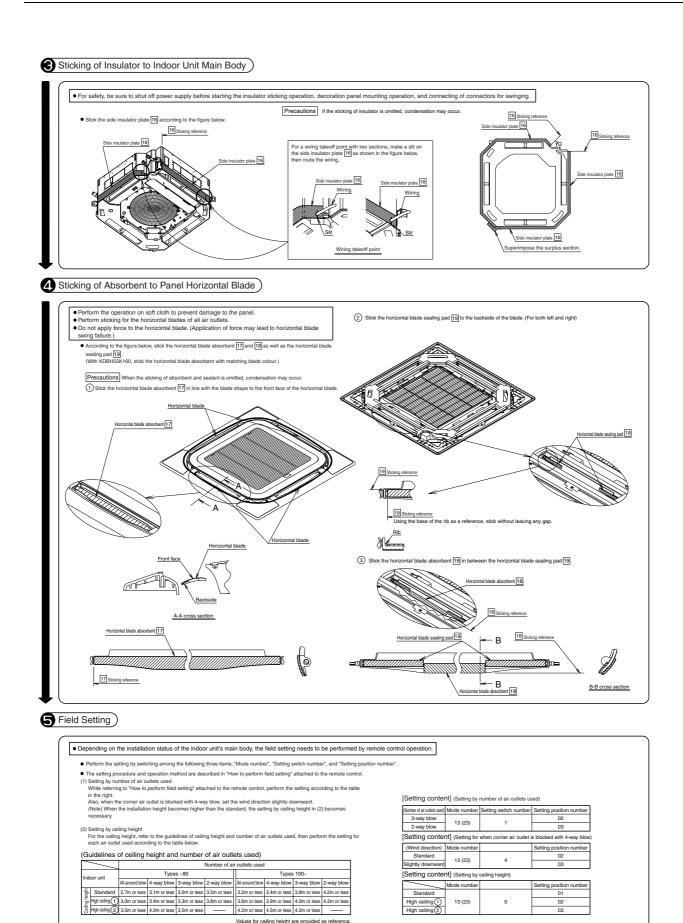
Install by reversing the procedure shown in "PREPARATION OF DECORATION PANEL". It is possible to install the suction grille in 4 directions by turning the suction grille. Change the direction when adjusting the direction of the suction grille of multiple units or in meeting customers' demands.



- (2) Install the corner section decoration cover.
 - 1 Attach the string of the corner section decoration cover to the pin of the decoration panel. (Refer to Fig. 10)
 - 2 Install the corner section decoration cover over the decoration panel. (Refer to Fig. 11)


C : 3PA64319-13Q

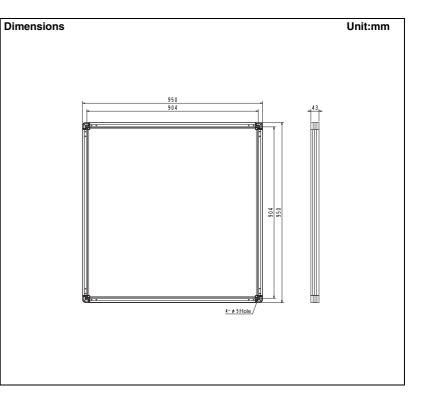
KDBH55K160(F) — Sealing Material of Air Discharge Outlet

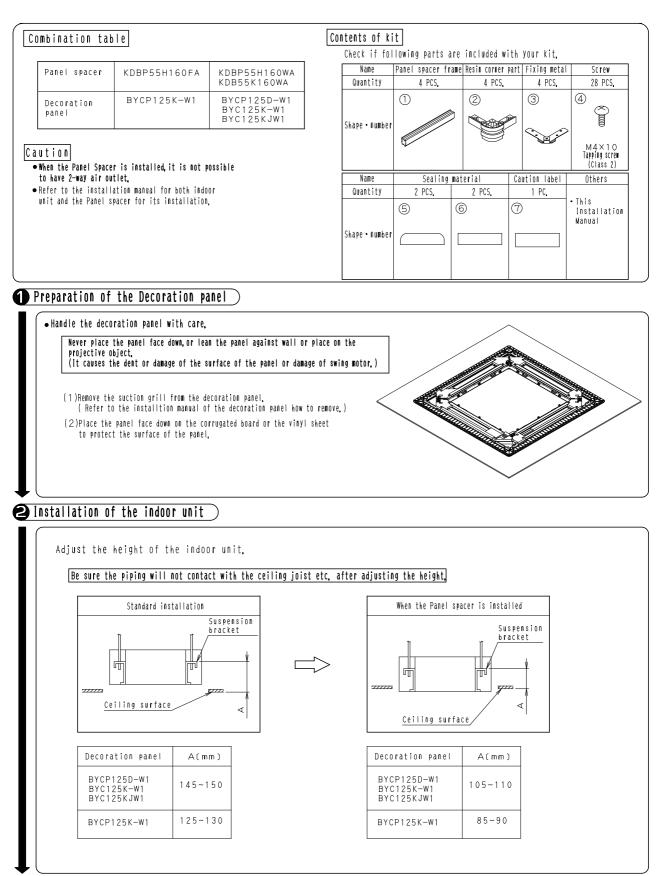

J : 1P177350A

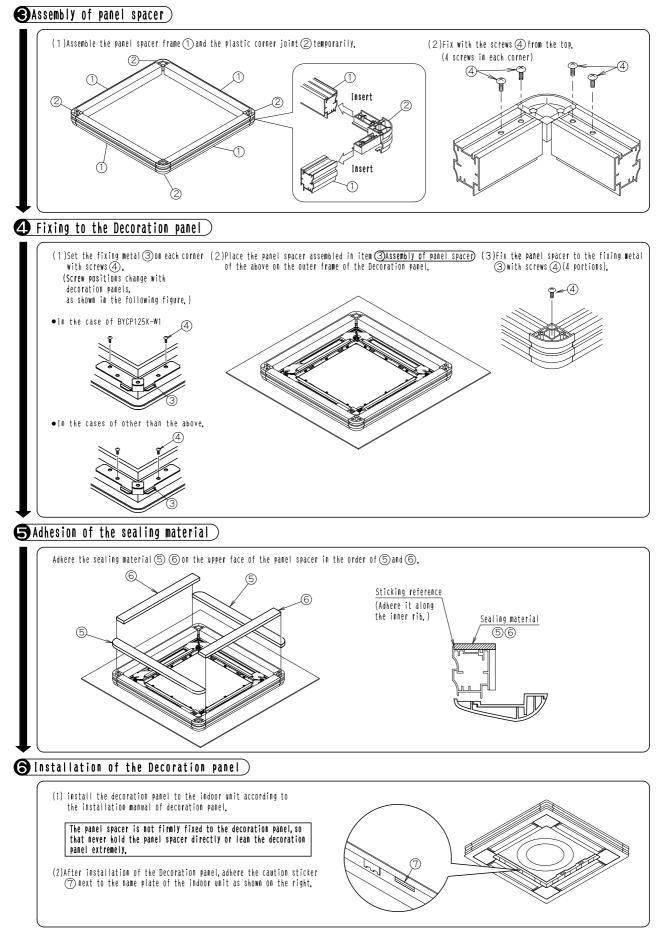
2 Sticking of Absorbent to Air Outlet

J:1P177350A

2


J:1P191031A


KDBP55H160FA — Panel Spacer


- Using the panel spacer in areas of the ceiling with limited space makes it possible to install the air conditioner.
- Hides the gap between the decoration panel and the ceiling.

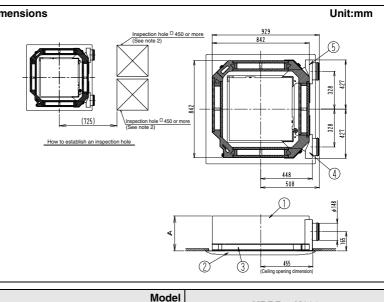
Model Item	KDBP55H160FA		
Exterior	Fresh White		
Material	Outside frame: Resin Insulation: Foam polyethylene		
Component	Panel spacer, Insulation, Sealant, Mounting screws, Installation manual		
Mass (kg)	1.2		

1P136564E

1P136564E

KDDP55K160(K) — Fresh Air Intake Kit (Chamber type)

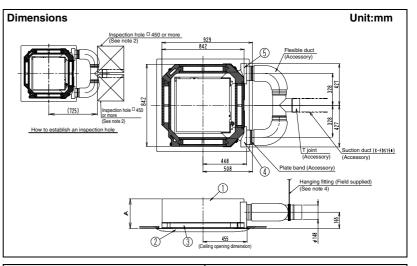
KDDP55K160 (without T-shape, without Fan)


Dimensions

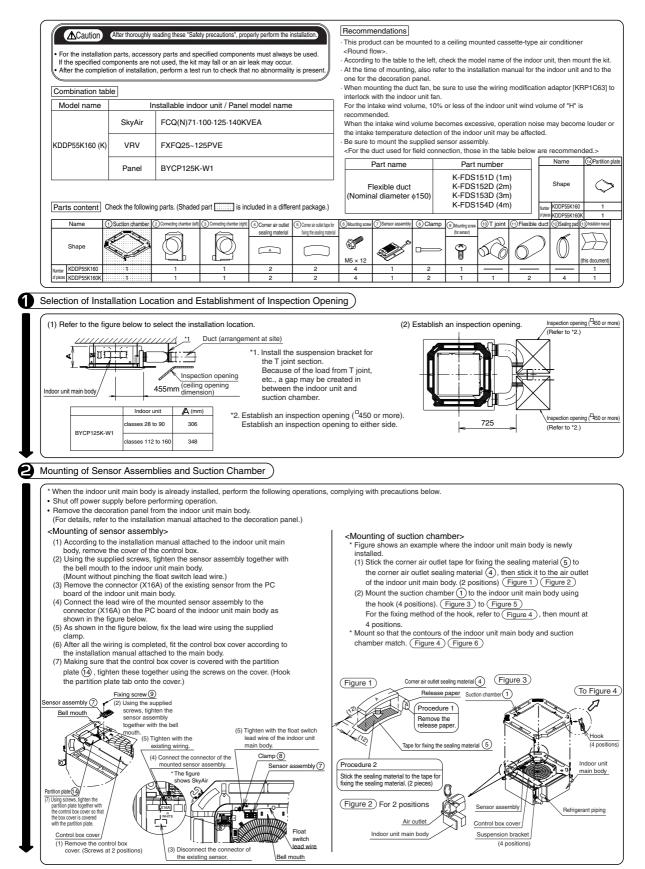
Caution

1. Maximum length of the duct is 4 meters.

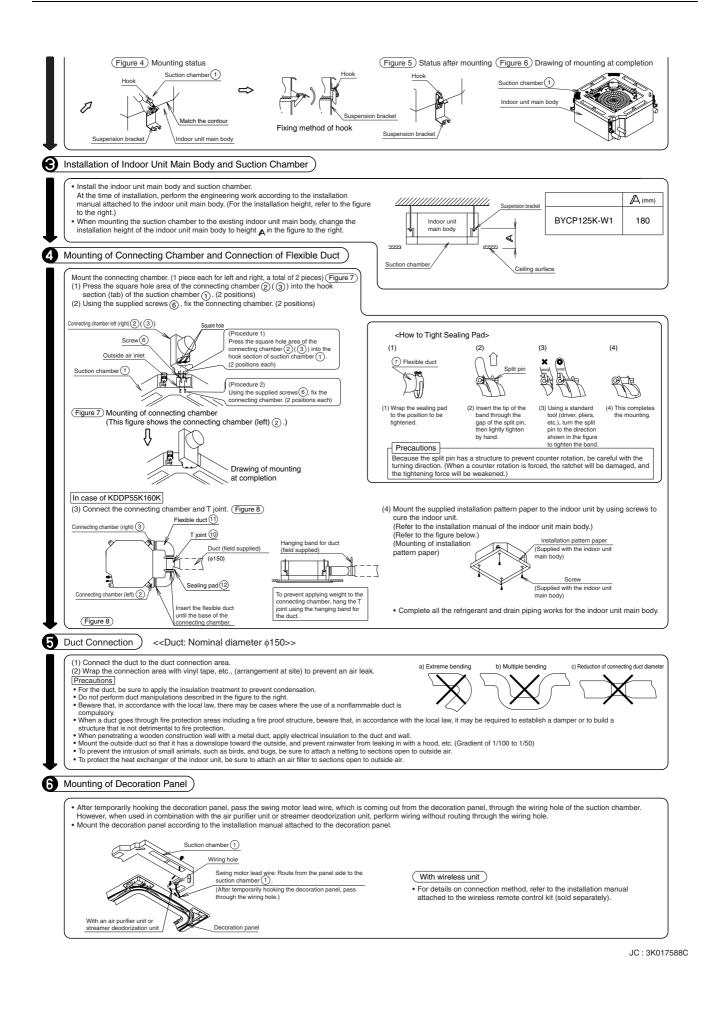
- 2. When installing this kit, an inspection hole is required (in order to maintain this kit). Establish an inspection holes on either side.
- 3. This kit is field assembly.
- 4. Install the hanging fixing for the T joint. Otherwise the load from T-shape pipe assembly, etc., could create a gap between the indoor unit and suction chamber.
- 5. When mounting the duct fan, be sure to use the wiring modification adaptor to interlock with the indoor unit fan.
- 6. With the intake wind volume, 10% or less of the "H" wind volume of the indoor unit is recommended.
- 7. This graph shows values from the inlet of the T joint through that of the indoor unit when KDDP55K160K (with a T joint) is connected.


Mod	KDDP55K160
Item	KBBI SSK100
Fresh air intake method	Fresh air intake by air conditioning fan
Diameter of connection duct	φ150
Mass (kg)	4.5

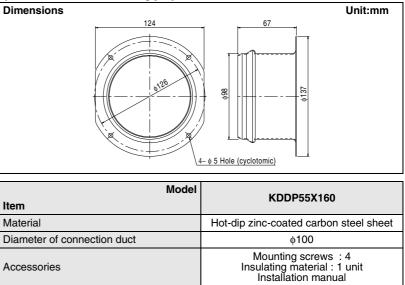
KDDP55K160K (with T-shape, without Fan)

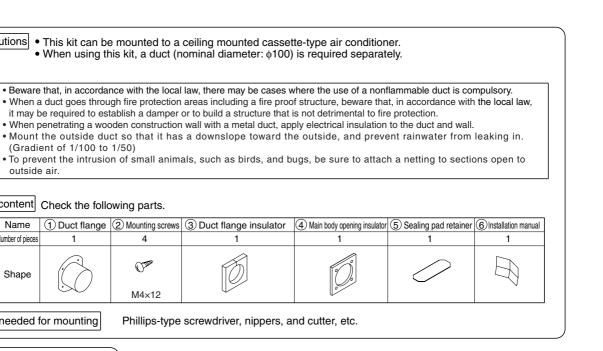


Caution


- 1. Maximum length of the duct is 4 meters.
- 2. When installing this kit, an inspection hole is required (in order to maintain this kit). Establish an inspection holes on either side.
- 3. This kit is field assembly.
- 4. Install the hanging fixing for the T joint. Otherwise the load from T-shape pipe assembly, etc., could create a gap between the indoor unit and suction chamber.
- 5. When mounting the duct fan, be sure to use the wiring modification adaptor to interlock with the indoor unit fan.
- 6. With the intake wind volume, 10% or less of the "H" wind volume of the indoor unit is recommended.
- 7. This graph shows values from the inlet of the T joint through that of the indoor unit when KDDP55K160K (with a T joint) is connected.

	Mode	I KDDP55K160K		
า	Item			
	Fresh air intake method	Fresh air intake by air conditioning fan		
	Diameter of connection duct	φ150		
	Mass (kg)	6.5		


JC:3K017588C


FXFQ-P

KDDP55X160 — Fresh Air Intake Kit (Direct installation type)

Precautions

Mounting of Duct Flange

Tools needed for mounting

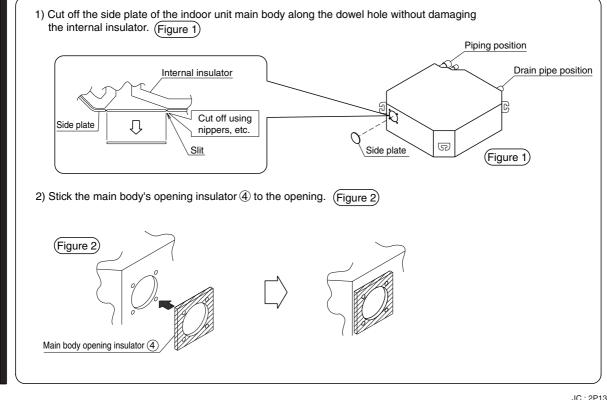
(Gradient of 1/100 to 1/50)

Parts content Check the following parts.

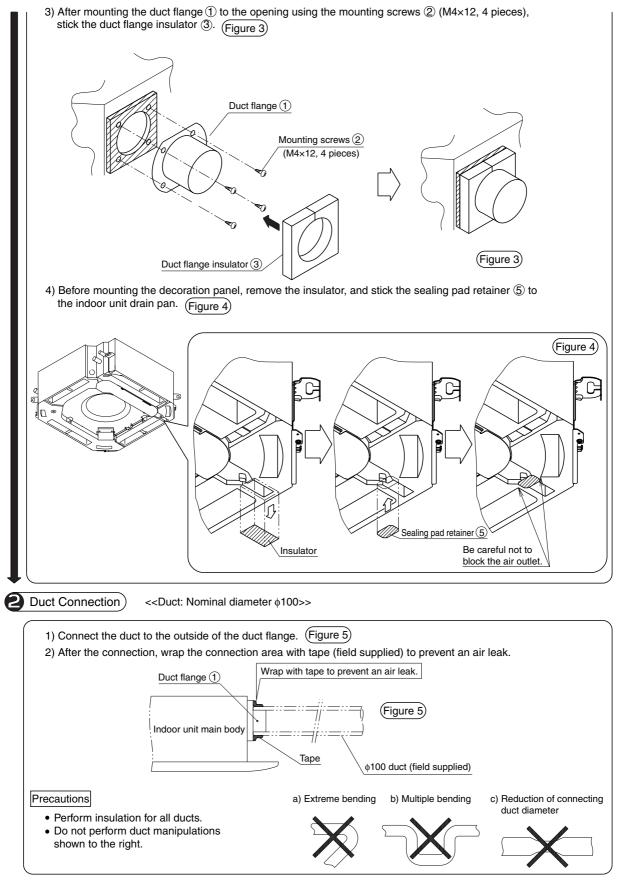
1

4

Om


M4×12

outside air.


Name

Number of pieces

Shape

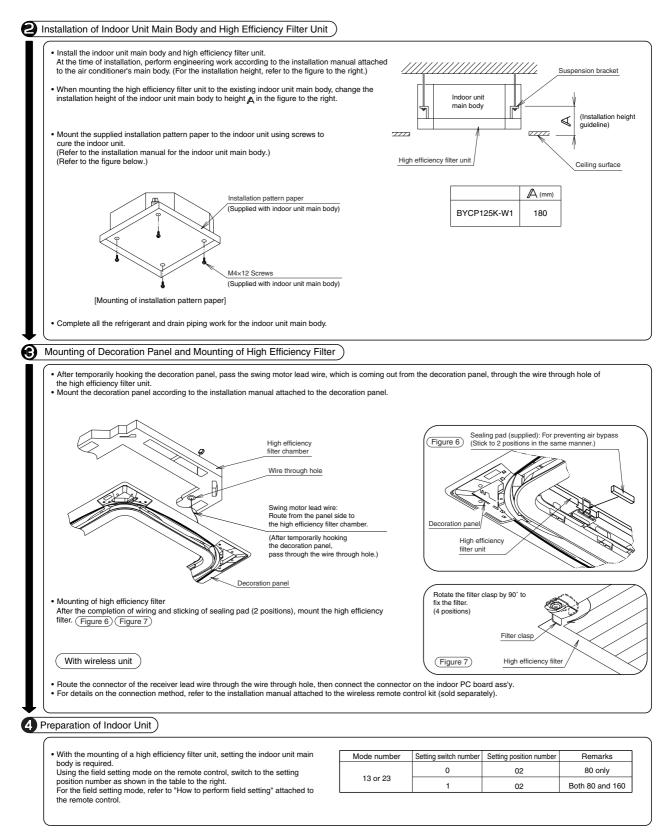
JC: 2P137676B

J:2P137676B

Unit:mm

KAFP556H80.160, KAFP557H80.160 — High Efficiency Filter (including chamber)

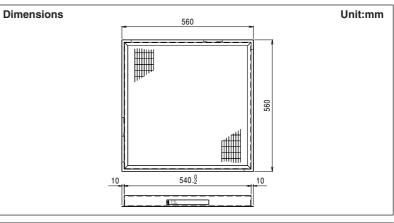
Caution


 $\cdot\,$ Field setting by remote controller is necessary when the high efficiency filter is installed.

			-	
Dimensions				I
			50 (Dimensions whe	n mounted)
	842 >	1	-	
		842		
		842		
	I			

Model Item		KAFP556H80	KAFP556H160	KAFP557H80	KAFP557H160		
Average efficiency (%)		65 (colorime	etric method)	90 (colorimetric method)			
Number of sheets included		1	1	1	1		
Air flow	l/sec	317	583	317	583		
rate	m ³ /min	19	35	19	35		
Initial pressure loss (Pa)		34 or less					
Final pressure loss (Pa)		98 or less					
Filter element		Non-woven fabric of synthetic fiber					
Life (h)		(dust con	600 centration ng/m ³)	1,800 (dust concentration 0.15 mg/m ³)			
Mass (kg)		3.6	4.2	3.6	4.2		
Replacement filter (optional Accessories)		KAFP552H80	KAFP552H160	KAFP553H80	KAFP553H160		

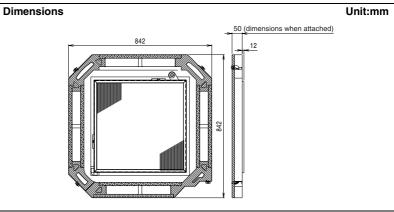
JC:3K015220E



JC: 3K015220E

KAFP552H80.160, KAFP553H80.160 — Replacement High Efficiency Filter

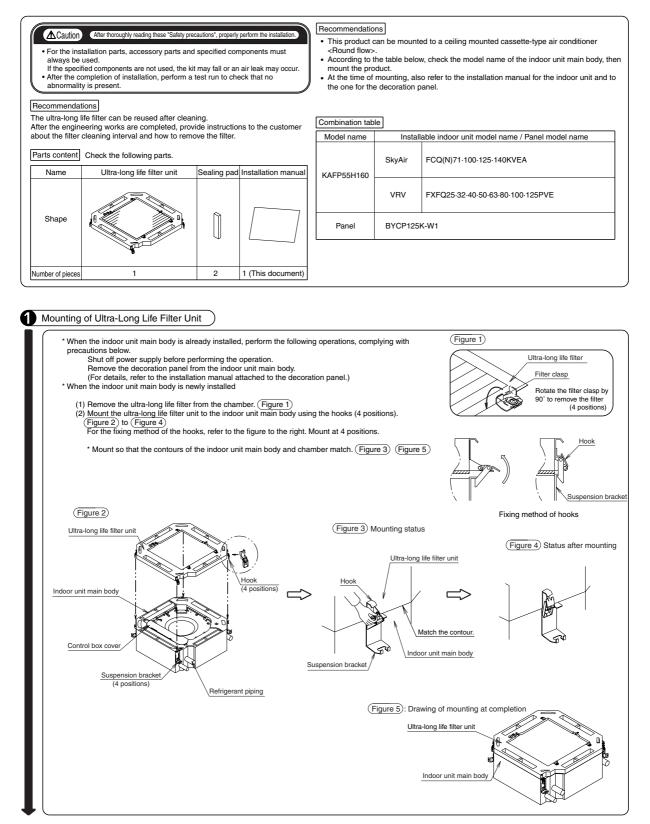
- Cannot be water-washed for reuse.
 The Filter Chamber (KDDFP55H160) is required when the high efficiency filter will be installed.



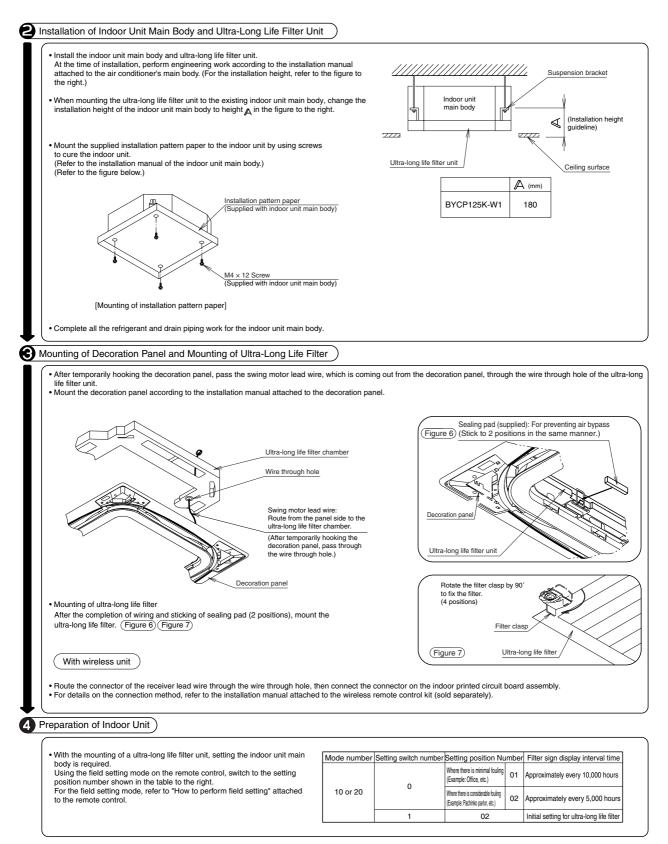
Model Item	KAFP552H80	KAFP552H160	KAFP553H80	KAFP553H160	
Average efficiency (%)	65 (colorim	etric method)	90 (colorimetric method)		
Number of sheets included	1	1	1	1	
Air flow rate (m ³ /min)	19	35	19	35	
Initial pressure loss (Pa)	34				
Final pressure loss (Pa)	98				
Filter element	Non-woven fabric of synthetic fiber				
Life (h)	2,500 (dust concentration 0.15 mg/m ³) 1,800 (dust concentration 0			tration 0.15 mg/m ³)	
Mass (kg)	0.6	1.2	0.6	1.2	

2

KAFP55H160 — Ultra Long Life Filter Unit



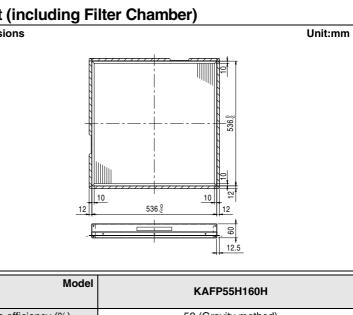
Caution


- In order to mount a ultra long life filter unit, setting of the main unit of indoor unit should be made.
 Individual filter (KAFP55H160H) is available

Mounting locations	Filter cleaning period
Locations with much dust	Approximately every 5,000 hours
Locations with little dust (e.g. offices)	Approximately every 10,000 hours

Model	KAFP55H160	
ency (%)	50 (Gravity method)	
eets included	1	
l/sec	492	
m ³ /min	29.5	
e loss (Pa)	8 or less	
e loss (Pa)	49 or less	
	Polypropylene honeycomb (with mould-proof)	
	5,000 (dust concentration 0.3 mg/m ³)	
	4.7	
	ency (%) eets included l/sec m ³ /min e loss (Pa) e loss (Pa)	

JC:3K015221D

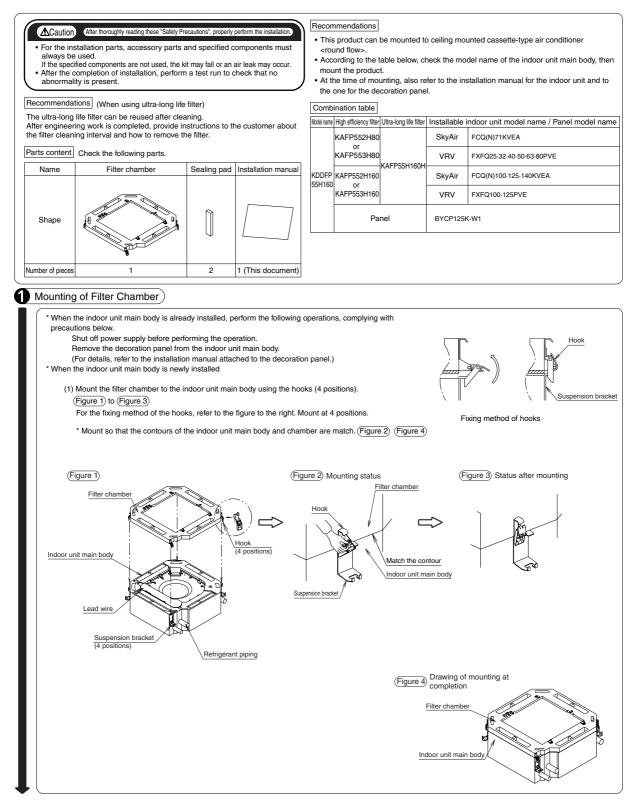


JC:3K015221D

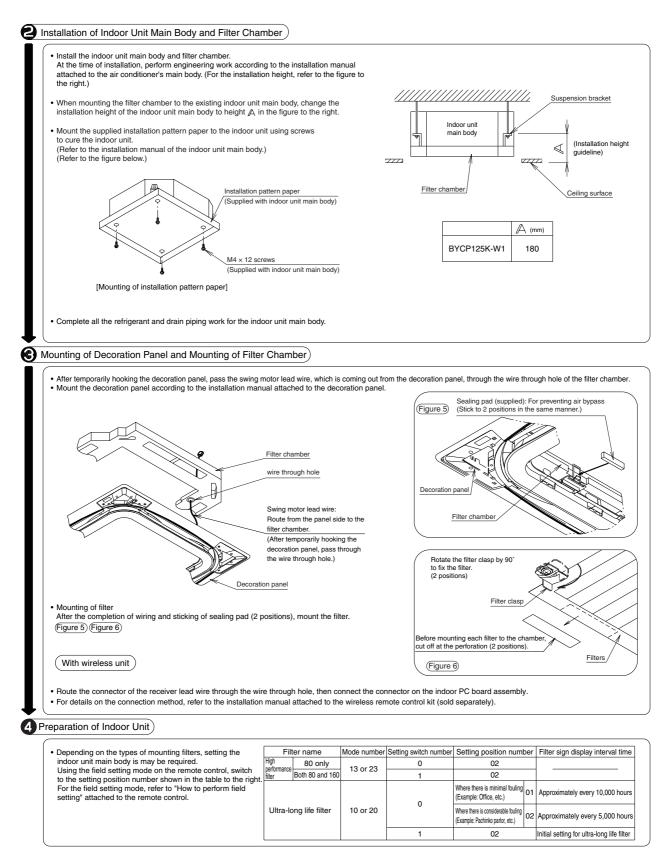
KAFP55H160H

- Replacement Ultra-Long Life Filter Unit (including Filter Chamber)

- Can be water-washed. Can be reused.
 The Filter Chamber (KDDFP55H160) is required when the ultra long-life filter will be installed.


Model Item		KAFP55H160H
Average effici	ency (%)	50 (Gravity method)
Number of sh	eets included	1
Air flow rate	l/sec	492
All now rate	m ³ /min	29.5
Initial pressure	e loss (Pa)	8 or less
Final pressure	e loss (Pa)	49 or less
Filter element		Mould-proof resin net
Life (h)		5,000 (dust concentration 0.3 mg/m ³)
Mass (kg)		3.4

2


KDDFP55H160 — Filter Chamber

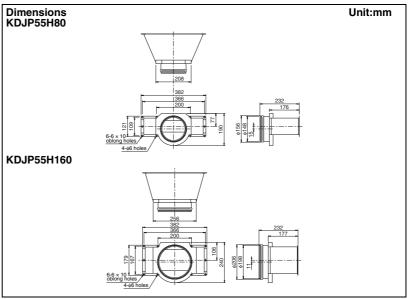
Dimension	s		Unit:mm		
			CHR CHARTER CH		
Item		Model	KDDFP55H160		
High- 65% (colorimetric method)		65% (colorimetric method)	KAFP552H80 KAFP552H160		
Inserted filter	efficiency filter	90% (colorimetric method)	KAFP553H80 KAFP553H160		
	Ultra long-li	fe filter	KAFP55H160H		
Mass (kg)			8.0		



JC:3K015219E

JC:3K015219E

KAFP551K160 — Replacement Long Life Filter

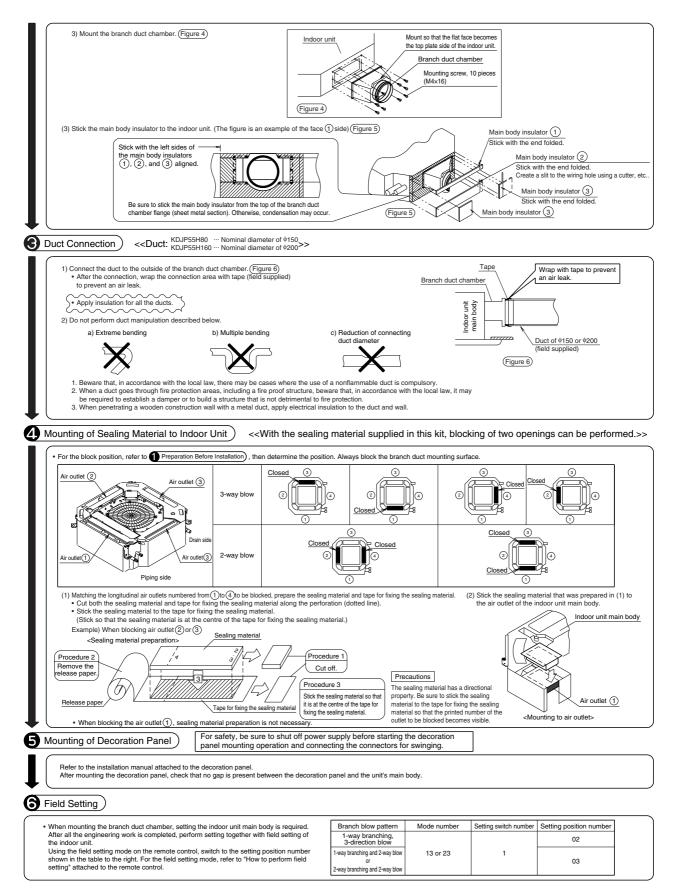

Dimensions		Unit:mm
	535.5 23 ₁₀	
	6 8.5 Square hole (I	poth sides)

 \cdot Can be water-washed. Can be reused.

Item	Model	KAFP551K160
Average effici	ency (%)	60 (Gravity method)
Number of sh	eets included	1
Air flow rate	l/sec	300
All now rate	m ³ /min	18
Initial pressure	e loss (Pa)	4.9 or less
Final pressure	e loss (Pa)	49 or less
Filter element	:	Mould-proof and antibacterial resin net
Life (h)		5,000 (dust concentration 0.15 mg/m ³)
Mass (kg)		0.2

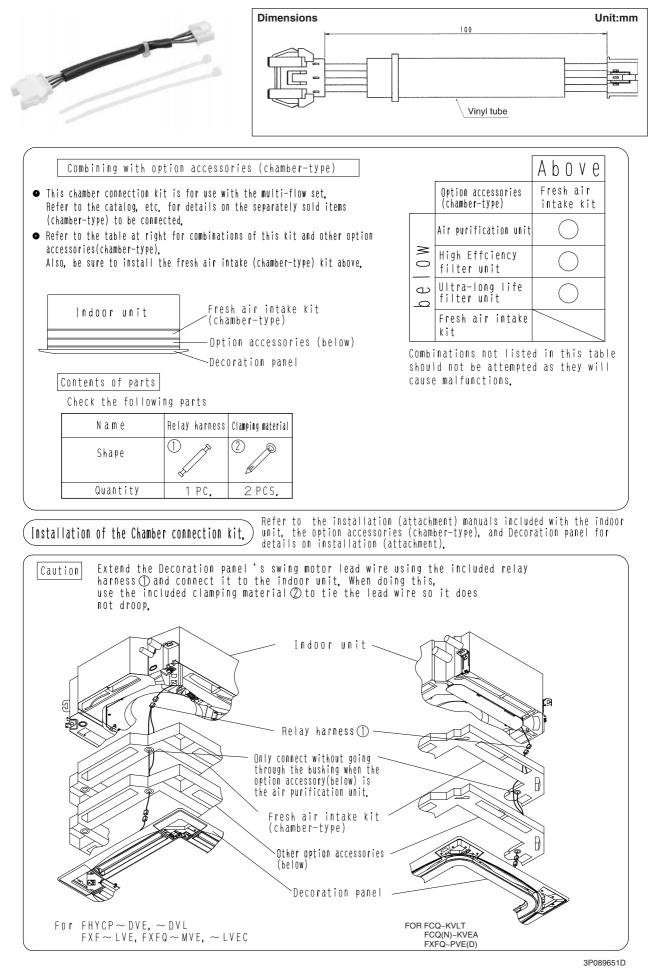
KDJP55H80·160 — Branch Duct Chamber



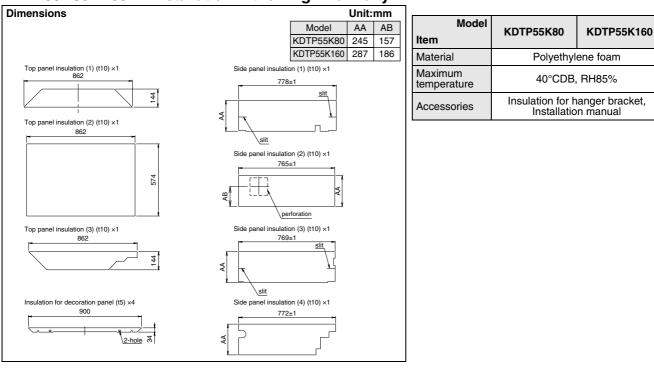

Model Item	KDJP55H80	KDJP55H160		
Material	Hot-dip zinc-coated carbon steel sheet (with insulation)			

Caution

1. When mounting, refer to the installation manuals for the indoor unit and the decoration panel.



JC: 1P137894D



JC: 1P137894D

KKSJ55K160 — Chamber Connection Kit

KDTP55K80 · 160 — Installation Kit for High Humidity

2

Precautions

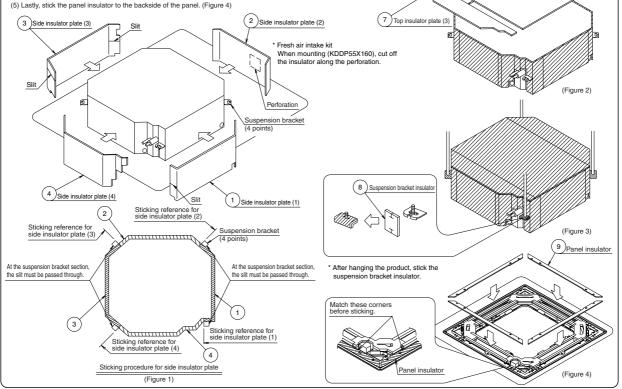
- This kit can be mounted to an ceiling mounted cassette-type air conditioner <round flow>.
- According to the chart below, check the model name of indoor unit, then mount the kit.
- This kit cannot be used for the mounting of humidifier and branch duct.

Combination table

	_	
Model name	Installable indoor unit model name	
KDTP55K80 SkyAir		FCQ(N)71KVEA
KD1F55K60	VRV	FXFQ25~80PVE
KDTP55K160	SkyAir	FCQ(N)100-125-140KVEA
KD1F35K160	VRV	FXFQ100-125PVE

Porto contont

r ans coi								
Name	Side insulator plate (1)	Side insulator plate (1) Side insulator plate (2)		3 Side insulator plate (3)		ulator plate (4)	5 Top insulator plate (1)	
Shape	778mm 80 A=245m 160 A=287m Slit					80 A=245mm 160 A=287mm		
Number of pieces	1	1 1		1		1	1	
Name	6 Top insulator plate (2)	7) Top insulator plate (3)	8) suspension bracket insulator	9 Panel	insulator	Others		
Shape			H H	<u>∖~</u> ₽	<u>_</u> /	· This manual		
Number of pieces	1	1	4	4				


(6) Top insulator plate (2)

(5) Top insulator plate (1)

Sticking Procedure • Perform the work on soft cloth to prevent damage to the indoor unit and panel.

< Procedures

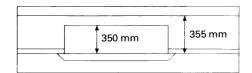
- (1) According to the sticking procedure for the side insulator plate, stick the side insulator plates (1 to 4) in sequential order without leaving any gap in between. (Figure 1) (When mounting the fresh air intake kit (KDDP55X160), cut off the side insulator plate (2) with a cutter knife along the
- perforation. The cut-off insulator is no longer needed.) (2) Stick the top insulator plates (1 to 3) without leaving any gap in between. Also, stick the top insulator plates without leaving any gap against the side insulator plates all the way around. (Figure 2) (3) Hang the product.
- (4) Stick the suspension bracket insulator to the suspension bracket together with the washer and bolt. (Figure 3)
 (5) Lastly, stick the panel insulator to the backside of the panel. (Figure 4)

JC: 3P179341C

FXCQ-M Ceiling Mounted Cassette Type (Double-Flow) 3

1.	Features	122
2.	Specifications	124
3.	Dimensions	126
4.	Piping Diagrams	130
5.	Wiring Diagrams	131
6.	Electric Characteristics	133
7.	Capacity Tables	134
	7.1 Cooling Capacity	134
8.	Sound Levels	135
9.	Installation	136
10	Accessories	139

1. Features


= Drastic change of performance, function and design =

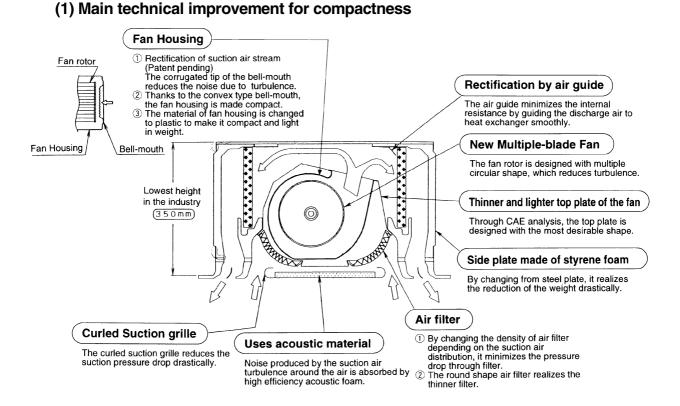
<Features>

Compactness

Lowest height in the industry with whisper quietness

Low operation sound Less weight

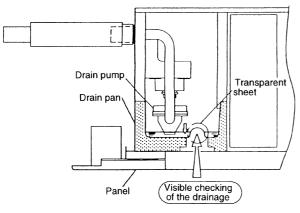
<Details>


Line-up FXCQ20MVE~FXCQ125MVE

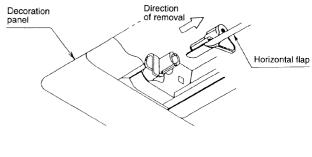
Improvement in installation and design flexibility

- Reduction of weight of both main unit and panel
- Standardized sectional module
- Matching the center of main unit and panel

Less maintenance


- Flat type suction grille of easy cleaning
- Detachable blade
- To minimize the soiling of the ceiling

(2) Improvements for facilitating the installation and maintenance


Facilitating the installation

- Lighter in weight (Main unit and panel)
- Center of the ceiling opening and the unit. The same position
- Checking the drainage flow The cover of inspection hatch is detachable with one touch.
- Facilitating the checking of drainage

Facilitating the maintenance

- Soiling of the ceiling About 1/5 of the conventional model
- Cleaning of the suction grille Easy to clean because of flat shape
- Cleaning of the air discharge flap (Detachability) The flap can be detached with one touch without removing the panel
- Detachment of air discharge flap

■ 2 different positions of auto-swing for more comfort.

Position of Auto-Swing	Standard Position		Ceiling	Soiling Prevention Position
Operation of Auto-Swing		Flaps swing within the range of 0°~60°		
5 Steps of Direction		5 steps within the range of 0°~60°	*	5 steps within the range of 45° ~60°
Prevention of Draft		Prevents cold draft (heating operation)		_
Auto-set Air Direction	1	The position of flaps is automatically set at the position of previous operation. (Initial position is 30° for cooling, and 60° for heating.)		

3

2. Specifications

Ceiling Mounted Cassette Type (Double-Flow)

Model			FXCQ20MVE	FXCQ25MVE	FXCQ32MVE	FXCQ40MVE	
*1 Cooling Capacity (19.5°CWB) kcal/h Btu/h			2,000	2,500	3,200	4,000	
			7,800	9,900	12,600	16,000	
		kW	2.3	2.9	3.7	4.7	
*2 Cooling Ca	apacity (19.0°CWB)	kW	2.2	2.8	3.6	4.5	
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions:	(H×W×D)	mm	305×775×600	305×775×600	305×775×600	305×990×600	
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.5	2×10×1.5	2×10×1.5	2×10×1.5	
Fin Coil)	Face Area	m²	2×0.100	2×0.100	2×0.100	2×0.145	
	Model		D17K2AA1	D17K2AB1	D17K2AB1	2D17K1AA1	
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan	
Fan	Motor Output × Number of Units	w	10×1	15×1	15×1	20×1	
		m³/min	7/5	9/6.5	9/6.5	12/9	
	Air Flow Rate (H/L)	cfm	247/177	318/230	318/230	424/318	
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive	
Temperature Control			Microprocessor Thermostat for Cooling and Heating				
Sound Absor	bing Thermal Insulation Ma	terial	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	
	Liquid Pipes mm						
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§12.7 (Flare Connection)	
Connections	Drain Pipe mm		VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	
Machine Wei	ght (Mass)	kg	26	26 26		31	
*4 Sound Lev	vel (H/L) (220V)	dBA	32/27	34/28	34/28	34/29	
Safety Device	es		Fuse. Thermal Protector for Fan Motor.				
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable	Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series	R-410A PA Series	
	Model		BYBC32G-W1	BYBC32G-W1	BYBC32G-W1	BYBC50G-W1	
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	
Decoration Panels	Dimensions: (H×W×D)	mm	53×1,030×680	53×1,030×680	53×1,030×680	53×1,245×680	
(Option)	Air Filter		Resin Net (with Mold Resistant)				
	Weight	kg	8	8	8	8.5	
Standard Acc	ressories		Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	
Drawing No.			C: 3D039413				

Note:

*1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 *2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*4 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

5 Refer to page 133 for Fan Motor Input.

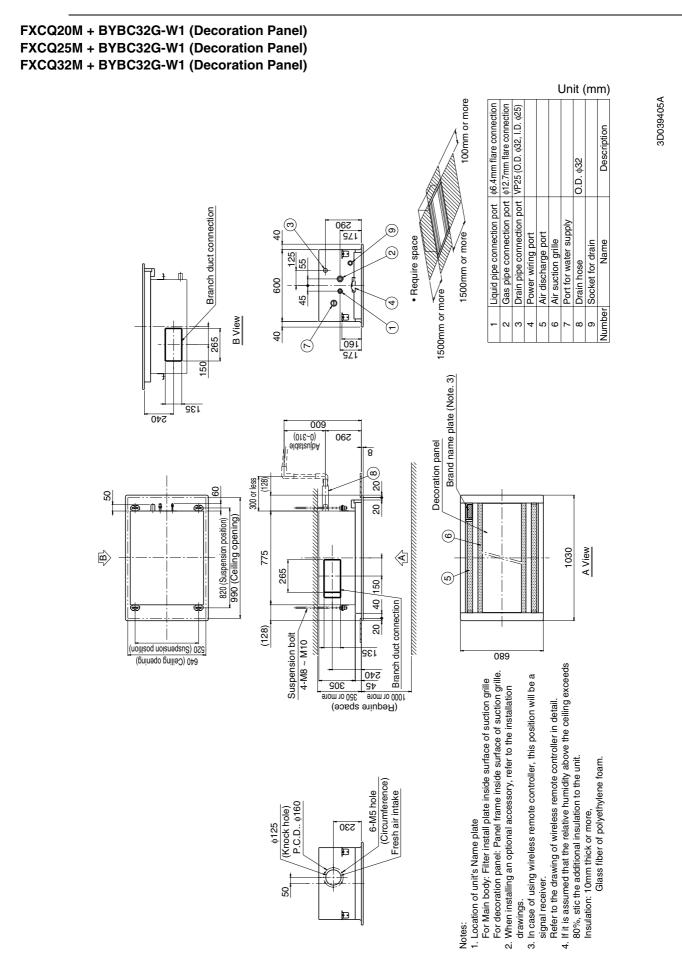
Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

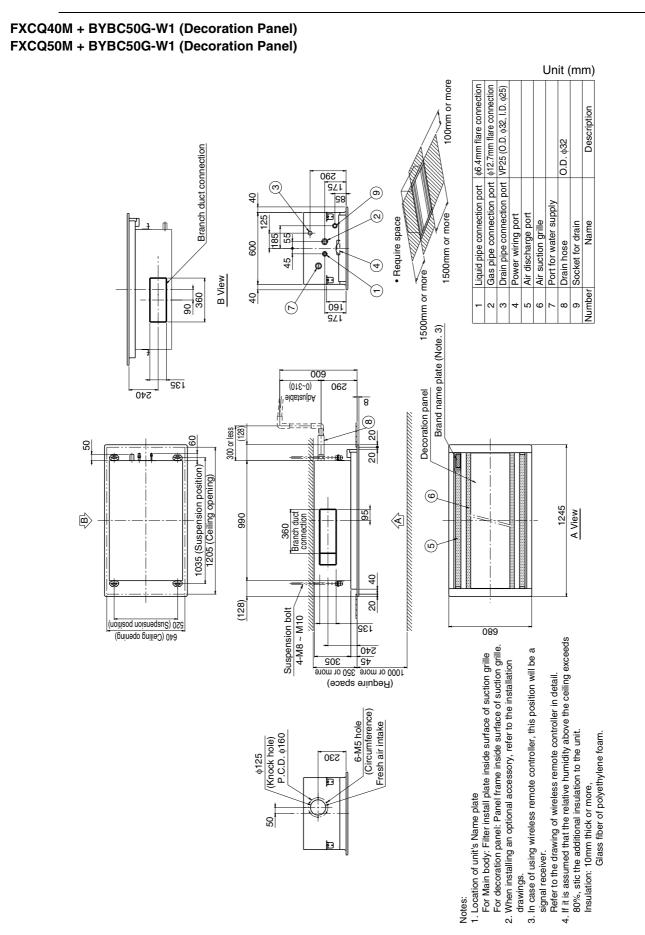
3

Ceiling Mounted Cassette Type (Double-Flow)

Model			FXCQ50MVE	FXCQ63MVE	FXCQ80MVE	FXCQ125MVE
		kcal/h	5,000	6,300	8,000	12,500
*1 Cooling Capacity (19.5°CWB) Btu/h			19,800	24,900	31,700	49,500
kW		kW	5.8	7.3	9.3	14.5
*2 Cooling Ca	apacity (19.0°CWB)	kW	5.6	7.1	9.0	14.0
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm	305×990×600	305×1,175×600	305×1,665×600	305×1,665×600
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×10×1.5	2×10×1.5	2×10×1.5	2×10×1.5
Fin Coil)	Face Area	m²	2×0.145	2×0.184	2×0.287	2×0.287
	Model		2D17K1AA1	2D17K2AA1VE	3D17K2AA1	3D17K2AB1
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	20×1	30×1	50×1	85×1
	Air Flow Rate (H/L)	m³/min	12/9	16.5/13	26/21	33/25
	AIT FIOW Rate (H/L)	cfm	424/318	582/459	918/741	1,165/883
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive
Temperature Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorbing Thermal Insulation Material		terial	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foam	Glass Wool/Urethane Foan
	Liquid Pipes	mm			§9.5 (Flare Connection)	
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	§15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)
Machine Wei	ght (Mass)	kg	32	35	47	48
*4 Sound Lev	/el (H/L) (220V)	dBA	34/29	37/32	39/34	44/38
Safety Device	es		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series	R-410A PA Series
	Model		BYBC50G-W1	BYBC63G-W1	BYBC125G-W1	BYBC125G-W1
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Decoration Panels	Dimensions: (H×W×D)	mm	53×1,245×680	53×1,430×680	53×1,920×680	53×1,920×680
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Weight	kg	8.5	9.5	12	12
Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads.			Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Washer for Hanging Brackets. Clamp Metal. Drain Hose. Insulation for Fitting. Washer Fixing Plates. Sealing Pads. Clamps. Screws. Washers.
Drawing No.)39413	

Note:

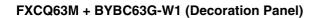

Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

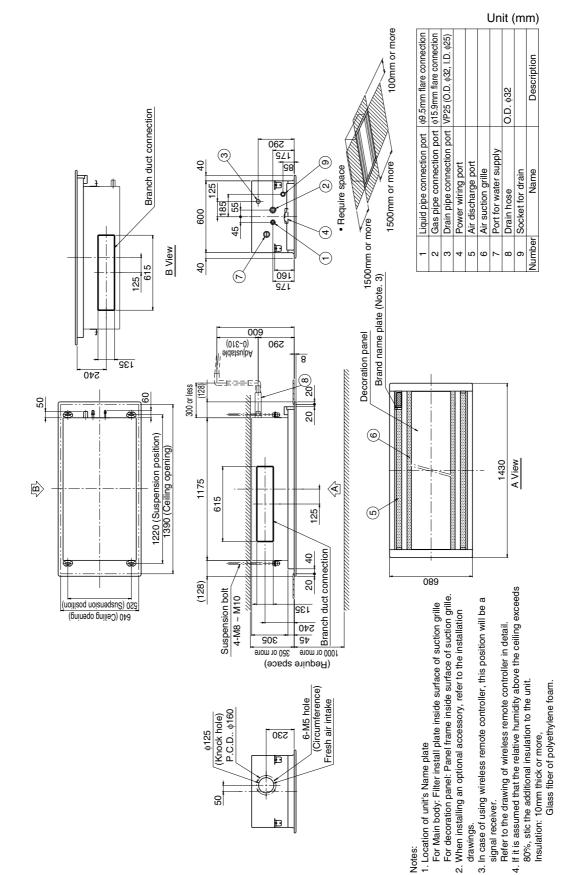

 3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
 *4 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. During actual operation, these values are normally somewhat higher as a result of ambient conditions. 5 Refer to page 133 for Fan Motor Input.

Conversion Formulae

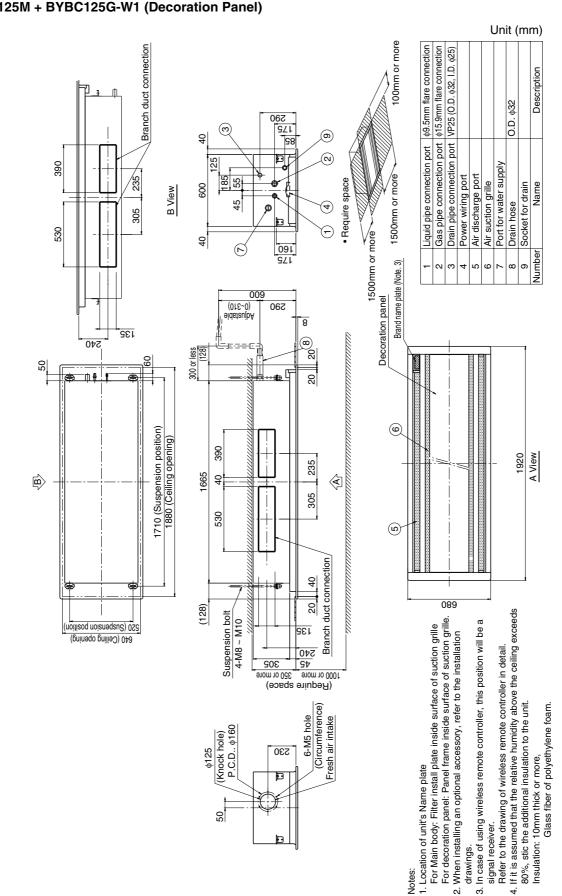
kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

3. Dimensions



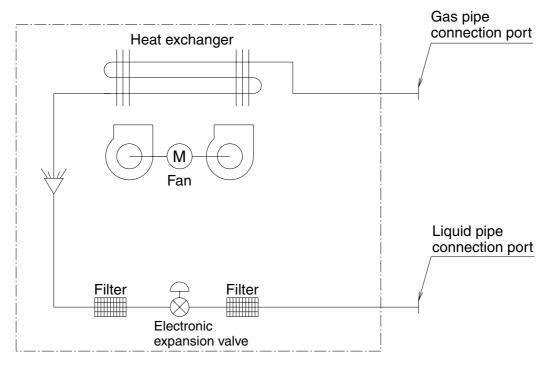


3


FXCQ-M

3D039407A

3D039409A

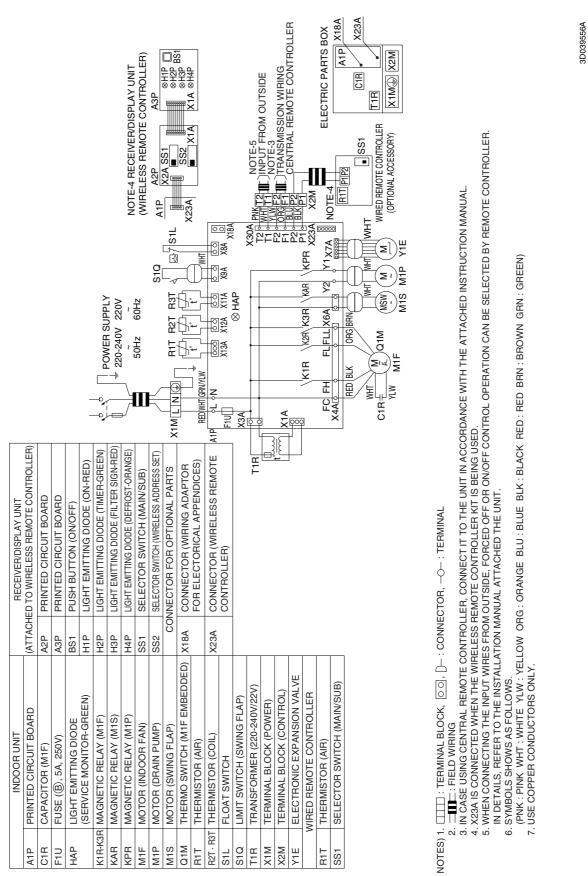


FXCQ80M + BYBC125G-W1 (Decoration Panel) FXCQ125M + BYBC125G-W1 (Decoration Panel)

FXCQ-M

3

4. Piping Diagrams


4D034245C

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXCQ20 · 25 · 32 · 40 · 50M	φ12.7	φ 6.4
FXCQ63 · 80 · 125M	φ 15.9	φ9.5

5. Wiring Diagrams

FXCQ20 · 25 · 32 · 63MVE

FXCQ40 · 50 · 80 · 125MVE	
NOTE-4 RECEIVER/DISPLAY UNIT WIRELESS REMOTE CONTROLLERY WIRELESS REMOTE CONTROLLERY A 200 Mineless REMOTE C	IREEN) 3D039557A
POWER SUPPLY 50H2 60H2 50H2 60H2 5	: ORANGE BLU : BLUE BLK : BLACK RED : RED BRN : BROWN GRN : GREEN)
INDOOR UNIT INDOOR UNIT RECEIVER/DISPLAY UNIT PACITOR (MIF) PARINTED CIRCUIT BOARD (ATTACHED TO WIRELESS REMOTE CONTROLLER) PACITOR (MIF) A2P PRINTED CIRCUIT BOARD (ATTACHED TO WIRELESS REMOTE CONTROLLER) SEC (B): 5A, 2500) SEC (B): 5A, 2500) A2P PRINTED CIRCUIT BOARD (ATTACHED TO WIRELESS REMOTE CINCUIT BOARD SEV (B): FAVCE A2P PRINTED CIRCUIT BOARD A2P PRINTED CIRCUIT BOARD SEV (B): SA, 2500) A3P PRINTED CIRCUIT BOARD (ATTACHEN TO WIRELESS REMOTE CINCUIT BOARD GNETIC RELAY (MIF) H2P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) H3P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) H3P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) H3P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) H3P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) H3P LIGHT EMITING DIODE (TIMER-GREEN) (ATTACHEN TO WIRELESS REMOTE) GNETIC RELAY (MIF) SANTCH CONNECTOR WIRELESS REM	W ORG : ORANGE BLU : BLUE BLK : BL
(ATTAC) (ATTAC) (ATTAC) A2P A3P A1P H1P H1P H2P H3P X23A X18A X23A X23A X23A X18A A1P A1P A1P A1P A1P A1P A1P A1	-Y.
ES SE S	 6. SYMBOLS SHOWS AS FOLLOWS. (PNK : PINK WHT : WHITE YLW : YELLOW ORG 7. USE COPPER CONDUCTORS ONLY.
A1P C1R HAP KAR KAR KAR M1F M1F M1F M1F M1F M1F M1F M1F	

FXCQ-M

6. Electric Characteristics

Units						Power supply		IFM		Input(W)	
Model	Туре	Ηz	Volts	Voltage	range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXCQ20M						0.5	15	0.010	0.4	77	44
FXCQ25 · 32M						0.5	15	0.015	0.4	92	59
FXCQ40 · 50M		ΕΛ	220 240	MAX.	264	0.8	15	0.020	0.6	130	97
FXCQ63M	VE	00	50 220-240	Min.	198	0.9	15	0.030	0.7	161	126
FXCQ80M	1					1.1	15	0.050	0.9	209	176
FXCQ125M	1					1.3	15	0.085	1.0	256	223

Symbols:

MCA	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
ΚW	:	Fan Motor Rated Output(KW)
FLA	:	Full Load Amps(A)
ΙFΜ	:	Indoor Fan Motor

Note:

1. Voltage range

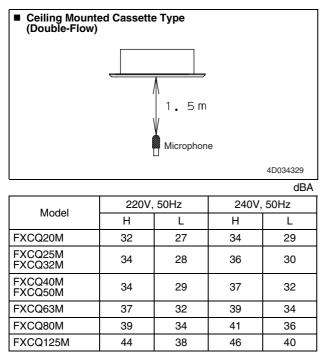
Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits,

- Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA

```
MCA = 1.25 X FLA
MFA ≤ 4 X FLA
(Next lower standard fuse rating. Min.15A)
4. Select wire size based on the MCA.
```

5. Instead of fuse, use Circuit Breaker.

C:4D034243A


7. Capacity Tables

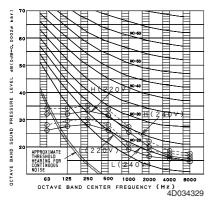
7.1 Cooling Capacity

M		1	[50Hz]		
CWB	CDB SHC	4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0,0,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	00000000000000000000000000000000000000	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	each indoor
24.0°	32°(TC	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	11.8 11.7 11.7 11.7 11.7 11.7 11.7 11.7	18:2 17:7 17:7 17:7 17:7 15:9 15:9 15:0 15:0 15:0 15:0 15:0	f each i
CWB	SHC	4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6	0.0.0.0.0.0.0.4.4.4.4.4.4.4.4.4.4.4.4.4	6.8 6.8 6.6 6.6 7.7 7.6 7.6 7.7 7.7 7.7 7.7 7.7	102 1022 1022 1022 1022 1022 1022 1022	performance data of
22.0%	30°C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 88 88 88 88 88 88 89 7 7 7 7 7 7 7 7	10.8 10.8 10.8 10.8 10.8 9.8 9.7 9.5 9.5	16.8 16.8 16.8 16.8 16.6 15.8 15.6 15.1 15.0 14.0 14.0	mance
CWB	SHC SHC	4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ののののののののののののののの すすすすすすすすすすすすすすすす	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	の の の の の の の の の の の の の の の の の o o o o	al perfo
20.0°	28°C TC	0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0	C C C C C C C C C C C C C C C C C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 9 9 4 7 4 4 9 9 9 4 9 9 9 4 9 9 9 9	le actus
r temp. CWB	DB SHC	ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ಥ ೮ ೮ ೮ ೮	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~, for th
Indoor a 19.0°(27°C TC	ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ ວ		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I∼, 552
CWB	DB SHC	, , , , , , , , , , , , , , , , , , ,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ	age 49 ⁻
18.0°0	26°C TC	, , , , , , , , , , , , , , , , , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1	e: on pe
ZWB	SHC SHC	, , , , , , , , , , , , , , , , , , ,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ ფ დ დ დ დ	W ⁄ Tables
16.0°C	23°C TC	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜູ້ຜ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Total capacity ; kW Sensible heat capacity ; kW Refer to Outdoor Unit Capacity Tables : on page 491~, 552~, for the actual
CWB	SHC SHC		ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ನ ನ ನ ನ	, , , , , , , , , , , , , , , , , , ,	N'N'N'N'N'N'N'N'N'N'N'N'N'N'N'N'N'	ity ; kW at capa r Unit C
14.0°0	20°C TC	ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ಹ ರ್ ನ್ ನ್ ನ್ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l capacity sible heat Outdoor L
Outdoor	°CDB	10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	10.0 12.0 14.0 14.0 18.0 23.0 23.0 23.0 33.0 33.0 33.0 33.0 33	10.0 12.0 12.0 14.0 23.0 23.0 23.0 23.0 33.0 33.0 33.0 33	Total c Sensit efer to O
Unit	Size	22	S	80	125	SHC SHC
Π	0					
4.0°CWB	32°CDB		> % % % % % 4 4 4 % % % % % % % % % % %			
2	с Т	66666777777777777777777777777777777777				
2.0°CWB	30°CDB		ରା ର			
0	$\left \right $					
0.0°CWB	0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,				
1D. 2	C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		444444444444444	
<u>∋.0°CWB</u>	27°CDB		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
11 1	0					
8.0°CWB	26°CDB		00000000000000000000000000000000000000	***	~~~~	
Ĩ	0	ରା ର	ରା ର	ઌૻ ઌ૽	****	
5.0°CWB	23°CDB		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			
ļ	01	* * * * * * * * * * * * * * * * * * * *				
4.0°CWB	20°CDB					
1			6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,		227.0 30 227.0 30 227.0 30 227.0 30 227.0 30 227.0 30 227.0 30 337.0 30 337.0 30 337.0 30 337.0 30 337.0 30 337.0 30 337.0 30 337.0 30 337.0 30 30 30 30 30 30 30 30 30 30 30 30 30 3	
Outdoor	ΕĦ	000000000000000000000000000000000000000	0,			

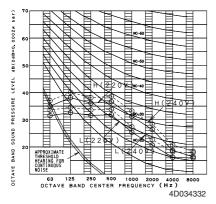
8. Sound Levels

Overall

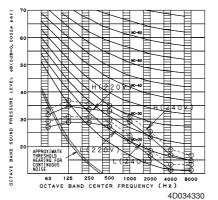
Note:

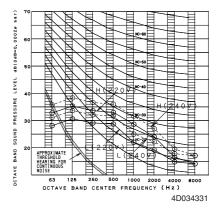

- 1. The operating conditions are assumed to be standard (JIS conditions).
- 2. These operating values were obtained in a dead room (conversion values).

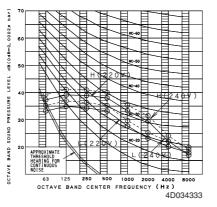
Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

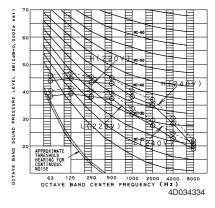

Octave Band Level

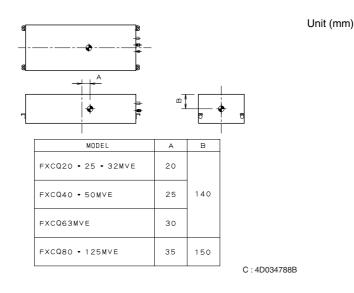
O____O 220V 50Hz O - - - - O 240V 50Hz

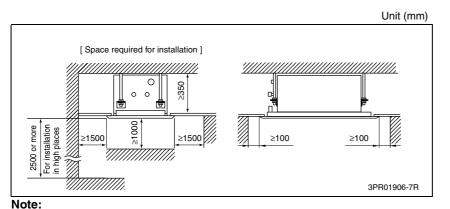

FXCQ20MVE


FXCQ63MVE


FXCQ25 · 32MVE


FXCQ40 · 50MVE


FXCQ80MVE


FXCQ125MVE

Center of Gravity

Service Space

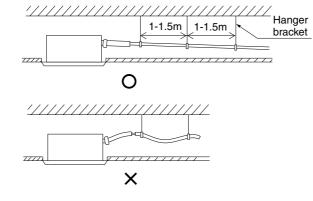
Above figure means minimum value. Please keep these value at least.

Bolt Pitch

B (Suspension pitch) Decoration panel 680 (Panel outside dimensions) C (Unit outside dimensions) 20 Ceiling 640 (Ceiling opening) 600 (Unit outside dimensions) 520 (Suspension pitch) ∋ opening Indoor unit Suspension bolt (x 4) σ 20 A (Ceiling opening) 20 20 D (Panel outside dimensions) (Unit : mm) Model В А С D FXCQ20 · 25 · 32MVE 990 820 775 1030 FXCQ40 · 50MVE 1205 1035 990 1245 FXCQ63MVE 1390 1220 1175 1430 FXCQ80 · 125MVE 1880 1710 1665 1920

3

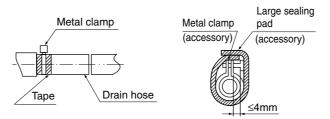
Drain Pump Kit

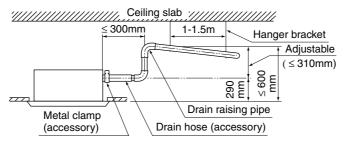

Indoor unit	Drain pump kit
FXCQ-M	Standard (Equipped with indoor unit)

Drain Piping Work

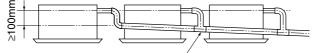
 $\langle\!\langle Rig$ the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings. $\rangle\!\rangle$

(1) Carry out the drain piping


- The diameter of the drain pipe should be greater than or equal to the diameter of the connecting pipe (vinyl tube ; pipe size : 25 mm ; outer dimension : 32 mm).
- Keep the drain pipe short and sloping downwards at a gradient of at least 1 / 100 to prevent air pockets from forming.
- If the drain hose cannot be sufficiently set on a slope, execute the drain raising piping.
- To keep the drain hose from sagging, space hanging wires every 1 to 1.5 m.


Setting the unit at an angle opposite to the drain piping might cause leaks.

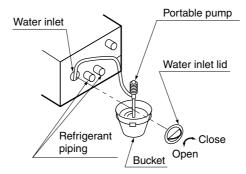
- Use the drain hose and the metal clamp.
 Insert the drain hose into the drain socket, up to the tape.
 Tighten the clamp until the screw head is less than 4 mm from the hose.
- Wrap the attached sealing pad over the clamp and drain hose to insulate.
- Insulate the drain hose inside the building.



\langle PRECAUTIONS FOR DRAIN RAISING PIPING \rangle

- Install the drain raising pipes at a height of less than 310 mm.
- Install the drain raising pipes at a right angle to the indoor unit and no more than 300 mm from the unit.

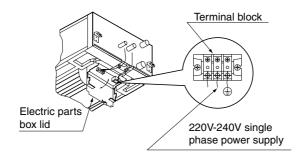
If converging multiple drain pipes, install according to the procedure shown below.



T-joint converging drain pipes

Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

(2) After piping work is finished, check drainage flows smoothly.


• Open the water inlet lid, add approximately 2.5 liter of water gradually and check drainage flow.

[WHEN ELECTRIC WIRING WORK IS FINISHED]

• Check drainage flow during COOL running, explained under "TEST OPERATION."

[WHEN ELECTRIC WIRING WORK IS NOT FINISHED]

- Remove the electric parts box lid, connect a power supply and remote controller to the terminals. (Refer to the "HOW TO CONNECT WIRINGS")
 Be sure attach the electric parts box lid before turning on the power.
- De sure attach the electric parts box no before tarning on the power.
- Next, press the inspection / test operation button " 💥 " on the remote controller. The unit will engage the test

operation mode. Press the operation mode selector button " 🐩 🗈 " until selecting FAN OPERATION " 📌 ". Then,

press the ON / OFF button " \oplus ". The indoor unit fan and drain pump will start up. Check that the water has

drained from the unit. Press " $\frac{36}{\text{TEST}}$ " to go back to the first mode.

- Be careful when doing so because the fan is turning at the same time.
- Attach the electric parts box lid as before.

-/! caution -

• Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

• Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

3PR01906-7R

3PR01906-7R

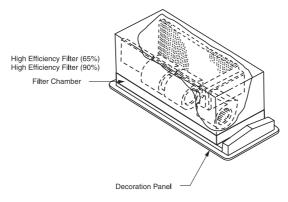
10. Accessories

Standard	Accessories
FXCQ20~1	25M

Name	Metal clamp	Paper pattern for installation	Drain hose	Insulation for fitting	Washer fixing plate	Sealing pad			
Quantity	1 pc.	1 pc.	1 pc.	1 each	4 pcs.	1 each			
Shape		\bigcirc		for gas pipe	2	Large Small			

Name	Washer for hanging bracket	Clamp	Screws (M5)	
Quantity	8 pcs.	8 pcs.	4 pcs.	(Other)
Shape	0	CE S	For paper pattern for installation	Operation manual Installation manual

• Screws for fixing panels are attached to decoration panel.


Optional Accessories (For Unit)

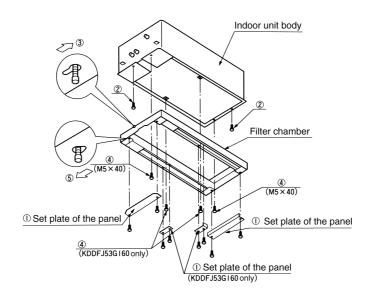
Type Item		FXCQ20M FXCQ25M FXCQ32M	FXCQ40M	FXCQ50M	FXCQ63M	FXCQ80M	FXCQ125M	
Decoratio	ation panel		BYBC32G-W1	BYBC5	60G-W1	BYBC63G-W1	BYBC125G-W1	
*1 High efficiency filter 65%		KAFJ532G36	KAFJ532G56		KAFJ532G80	KAFJ532G160		
Filter	*1 High efficiency filter 90%		KAFJ533G36	KAFJ533G56		KAFJ533G80	KAFJ533G160	
related	Filter chamber	Bottom suction	KDDFJ53G36	KDDF	I53G56	KDDFJ53G80	KDDFJ	53G160
	Long life replacement filter		KAFJ531G36	KAFJ531G56		KAFJ531G80	KAFJ5	31G160
	•							3D035093C

Note:

*1. Filter chamber is required if installing high efficiency filter.

Optional Accessories (For Controls) : Refer to P.645

Filter Chamber


Specifications

Item	Model	KDDFJ53G36	KDDFJ53G56	KDDFJ53G80	KDDFJ53G160
	Н	50	50	50	50
External Dimensions (mm)	W	780	995	1180	1670
	D	600	600	600	600
Applicable Models		$20\cdot 25\cdot 32 \text{ Class}$	40 · 50 Class	63 Class	80 · 125 Class

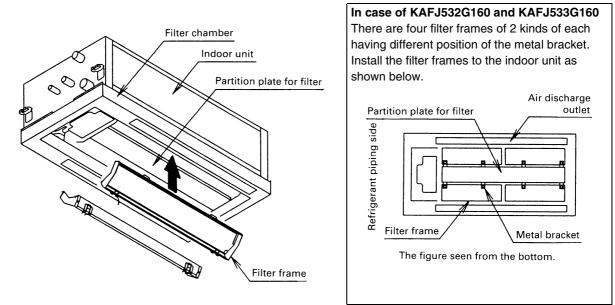
Precaution at use

1. The filter chamber will be needed when the high efficiency filter will be built in. But, it is impossible to build in more than two kinds filter at the same time.

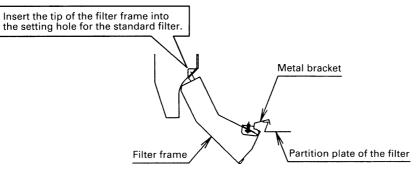
Installation

High Efficiency Filter (Filter chamber is required for the high efficiency filter) Specifications

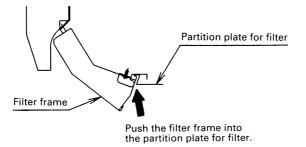
Model Item	KAFJ532G36	KAFJ532G56	KAFJ532G80	KAFJ532G160	KAFJ533G36	KAFJ533G56	KAFJ533G80	KAFJ533G160		
External Dimensions (H×W×D)(mm)	$ \underset{\times 2}{\text{ns}} \begin{array}{c} (30 \times 460 \times 145) \\ \times 2 \end{array} \begin{array}{c} (30 \times 675 \times 145) \\ \times 2 \end{array} \begin{array}{c} (30 \times 860 \times 145) \\ \times 2 \end{array} \begin{array}{c} (30 \times 660 \times 145) \\ \times 4 \end{array} \begin{array}{c} (30 \times 460 \times 145) \\ \times 2 \end{array} \begin{array}{c} (30 \times 460 \times 145) \\ \times 2 \end{array} \begin{array}{c} (30 \times 675 \times 145) \\ \times 2 \end{array}$		(30×860×145) ×2	(30×660×145) ×4						
Dust Collection Efficiency (%)	65% (Colorime	tric method)			90% (Colorimetric method)					
Initial Pressure Loss (Pa)	29			39	39		49			
Final Pressure Loss (Pa)	78				78					
Filter	Non-woven fat	oric of synthetic	fiber		Non-woven fabric of synthetic fiber					
Life Time (h) *	2500 hours				2500 hours	2500 hours 2100 hours				
Applicable Models	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 125 Class	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 125 Class		

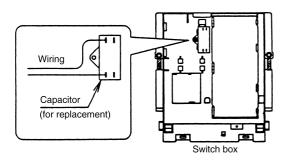

Note:

- 1. * The life time at the dust density 0.15 mg/m³.
- 2. Replace the fan motor's capacitor in accordance with the guide in next page, when the high efficiency filter is used.


Installation

Installation of the filter frame


Attach the filter frame to the indoor unit, where the original filter was located. (Refer to the operation manual of the indoor unit how to remove the standard filter. The standard filter removed shall not be used.)


1. Loose the screw of the metal bracket located on each end of the filter frame and hook the filter frame temporarily to the partition plate located at the center of the indoor unit.

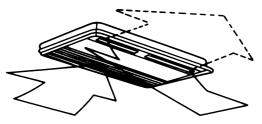
2. Fasten the screw of the metal bracket tightly.

Replacement guide of capacitor for fan motor

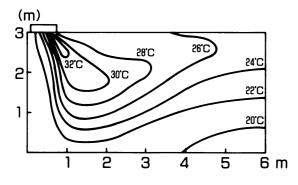
■ Capacity of a capacitor to be replaced.

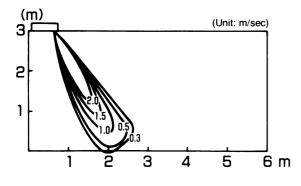
Model	Capacitor's Capacity	Applicable Models
KAFJ532 · 533G36	2 μF	$20\cdot 25\cdot 32 \text{ Class}$
KAFJ532 · 533G56	2 µF	40 · 50 Class
KAFJ532 · 533G80	2 μF	63 Class
KAFJ532 · 533G160	4.5 μF	80 Class
KAFJ552 · 555G100	6 µF	125 Class

FXKQ-MA Ceiling Mounted Cassette Corner Type

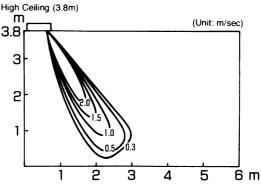

1.	Features	144
2.	Specifications	145
3.	Dimensions	146
4.	Piping Diagrams	148
5.	Wiring Diagrams	149
6.	Electric Characteristics	150
7.	Capacity Tables	151
	7.1 Cooling Capacity	.151
8.	Sound Levels	152
9.	Installation	153
10	.Accessories	156

1. Features

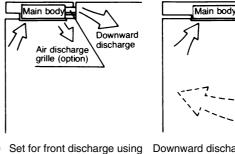

215 mm-thick body features discreet, slim design and offers a wide variety of discharge methods and mounting such as in corners or in suspended ceilings, etc.


Single-flow type offers effective air discharge from corners of from a suspended ceiling.

- Thin, discreet design enables mounting when the ceiling pocket is as shallow as 22 cm
- Temperature Distribution (FXKQ63MA : downward discharge angle 65° in heating.).



Air velocity Distribution (FXKQ63MA : downward discharge angle 65° in heating.)



Air volume switch built into the main body allows

mounting in ceilings as high as 3.8 m. This unit is even able to handle spaces with a split level ceiling by accurately adjusting air volume in accordance with the ceiling height.

- The 63 class (equivalent to 2.5 HP) features extremely quiet operation, only 42 dBA of sound level.
- In addition to downward discharge, front discharge (straight discharge, neither angled upward nor downward) can be provided by mounting an air discharge unit (optional) to the front of the body; can be mounted even with difficult elements such as suspended ceilings and sagging walls. A combination of front and downward discharge is also possible. (Autoswing cannot be used with front discharge.)

a suspended ceiling

Downward discharge is shut off and air is blown straight out

(front discharge)

rille(optio

- Equipped with a programmed drying mechanism that dehumidifies while inhibiting changes in room temperature.
- Includes as standard equipment a long-life filter that is maintenance-free for approximately one year. (Treated to mold resistant.)
- Equipped with drain pump kit that makes possible draining in the upward direction up to 500 mm from the ceiling surface.
- Decoration panel is thin and unimposing, doesn't clash with interior design and provides an excellent finishing touch for the ceiling. (Available in white.)
- If the ceiling pocket is shallow and the main body will not fit, a thick panel that provides aesthetically appealing cover for the exposed portion (up to 20 mm) is available as an option.

2. Specifications

Ceiling Mounted Cassette Corner Type

Model			FXKQ25MAVE	FXKQ32MAVE	FXKQ40MAVE	FXKQ63MAVE				
		kcal/h	2,500	3,200	4,000	6,300				
*1 Cooling Ca	apacity (19.5°CWB)	Btu/h	9,900	12,600	16,000	24,900				
			2.9	3.7	4.7	7.3				
*2 Cooling Ca	apacity (19.0°CWB)	kW	2.8	3.6	4.5	7.1				
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate				
Dimensions: ((H×W×D)	mm	215×1,110×710	215×1,110×710	215×1,110×710	215×1,310×710				
Coil (Cross Rows×Stages×Fin Pitch		mm	2×11×1.75	2×11×1.75	2×11×1.75	3×11×1.75				
Fin Coil)	Face Area	m²	0.180	0.180	0.180	0.226				
	Model	1	3D12H1AN1V1	3D12H1AN1V1	3D12H1AP1V1	4D12H1AJ1V1				
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan				
Fan	Motor Output × Number of Units	W	15×1	15×1	20×1	45×1				
T CIT		m³/min	11/9	11/9	13/10	18/15				
	Air Flow Rate (H/L)	cfm	388/318	388/318	459/353	635/530				
	Drive		Direct Drive	Direct Drive	Direct Drive	Direct Drive				
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating					
Sound Absort	oing Thermal Insulation Ma	terial	Polyethylene Foam	Polyethylene Foam	Polyethylene Foam	Polyethylene Foam				
	Liquid Pipes	mm	φ6.4 (Flare Connection)							
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§15.9 (Flare Connection)				
Connections	Drain Pipe mr		VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32) Internal Dia. 25)				
Machine Weig	ght (Mass)	kg	31	31	31	34				
*4 Sound Lev	el (H/L) (220V)	dBA	38/33	38/33	40/34	42/37				
Safety Device	25		Fuse. Thermal Fuse for Fan Motor.	Fuse. Thermal Fuse for Fan Motor.	Fuse. Thermal Fuse for Fan Motor.	Fuse. Thermal Fuse for Fan Motor				
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve				
Connectable	Outdoor Units		R-410A PA Series	R-410A PA Series	R-410A PA Series	R-410A PA Series				
	Model		BYK45FJW1	BYK45FJW1	BYK45FJW1	BYK71FJW1				
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)				
Decoration Panels	Dimensions: (H×W×D)	mm	70×1,240×800	70×1,240×800	70×1,240×800	70×1,440×800				
(Option)	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)				
	Weight	kg	8.5	8.5	8.5	9.5				
Standard Acc	essories	Vads. Clamps. Sorews. Washers. Positioning Jig Installation. Insulation for Hanger Bracket. Air Outl		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers. Positioning Jig for Installation. Insulation for Hanger Bracket. Air Outlet Blocking Pad.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers. Positioning Jig for Installation. Insulation for Hanger Bracket. Air Outlet Blocking Pad.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers. Positioning Jig for Installation. Insulation for Hanger Bracket. Air Outlet Blocking Pad.				
Drawing No.			Dioorang r ad.	Blocking Pad. Blocking Pad. Blocking Pad. Blocking Pad. Blocking Pad. C : 3D038813A						

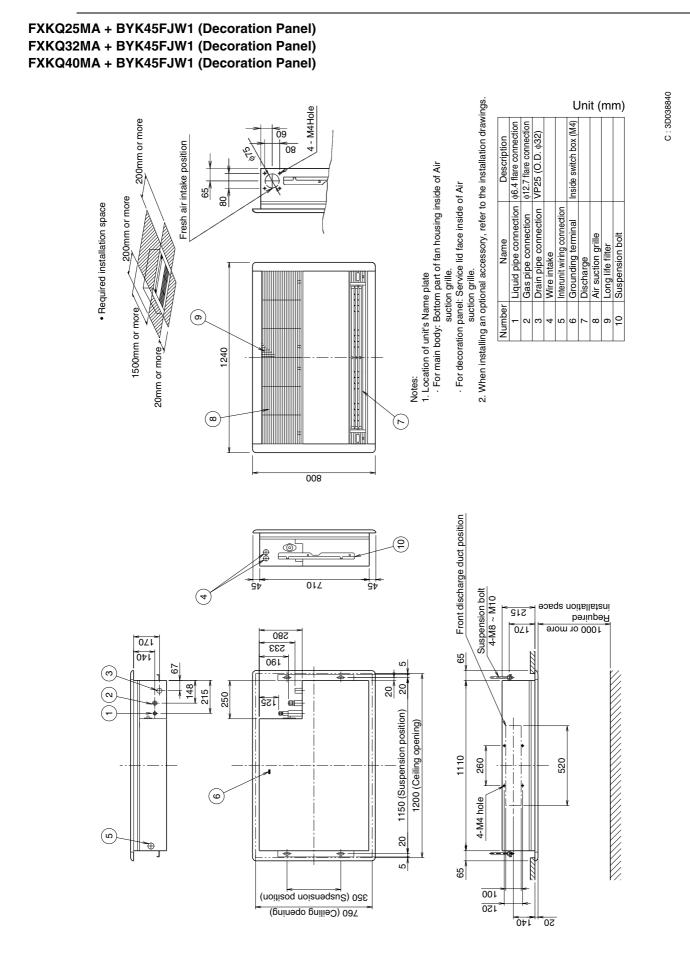
Note:

*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

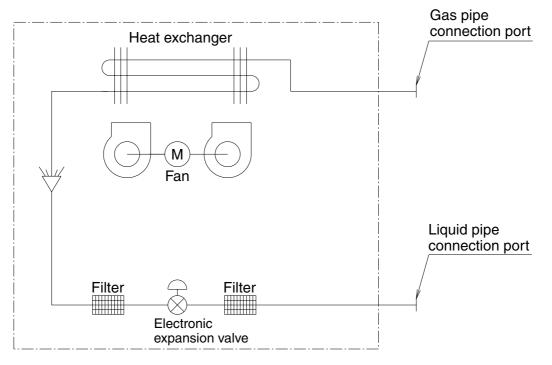
3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*4 Anechoic chamber conversion value, measured at a point 1 m in front of the unit and 1m downward. During actual operation, these values are normally somewhat higher as a result of ambient conditions.


5 Refer to page 150 for Fan Motor Input.

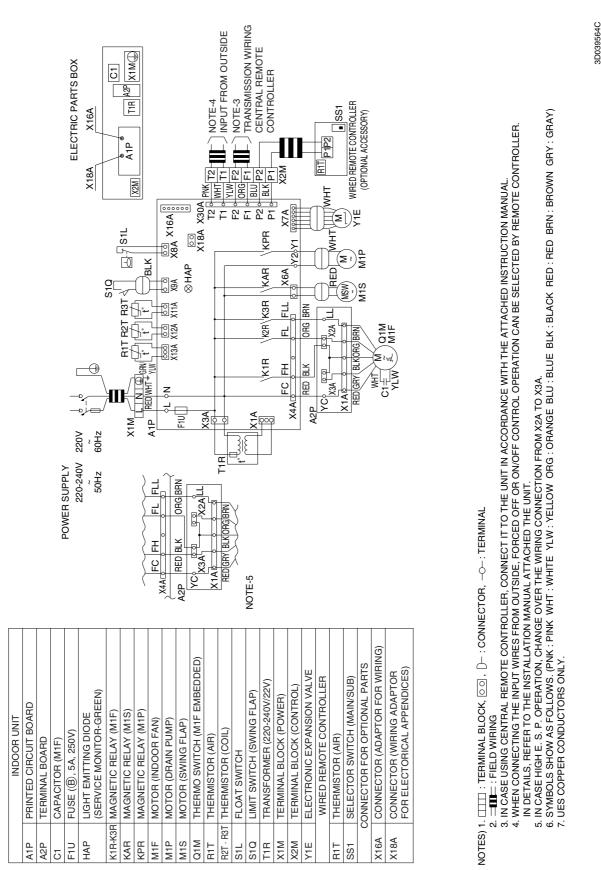
4

Conversion Formulae


kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

3. Dimensions

4. Piping Diagrams


4D034245C

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXKQ25 · 32 · 40MA	φ12.7	φ 6.4
FXKQ63MA	φ15.9	φ 9 .5

5. Wiring Diagrams

FXKQ25 · 32 · 40 · 63MAVE

6. Electric Characteristics

		Un	its		Power	supply	I FI	М	Input(W)		
Model	Туре	Ηz	Volts	Voltage	e range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXKQ25MA						0.3	15	0.015	0.2	66	46
FXKQ32MA	VE	50	220-240	MAX.	264	0.3	15	0.015	0.2	66	46
FXKQ40MA	۷C	50	220-240	Min.	198	0.3	15	0.020	0.2	76	56
FXKQ63MA						0.5	15	0.045	0.4	105	85

Symbols:

MCA : Min. Circuit Amps (A)
MFA : Max. Fuse Amps (See note 5)
KW : Fan Motor Rated Output(KW)
FLA : Full Load Amps(A)
IFM : Indoor Fan Motor

Note:

1. Voltage range

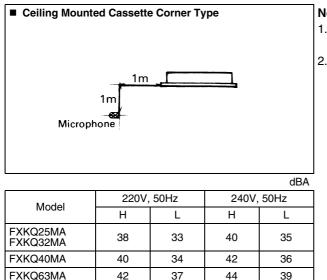
Units are suitable for use on electrical systems where voltage supplied to unit terminals

- is not below or above listed range limits,
- Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA
 - $MCA = 1.25 \times FLA$
 - $MFA \leq 4 \times FLA$
 - (Next lower standard fuse rating. Min. 15A)
- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.

C:4D037076B

7. Capacity Tables

7.1 Cooling Capacity


FXKQ-MA

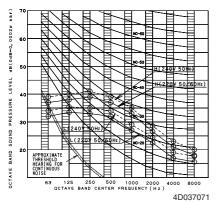
[50Hz]

CWB	CDB	SHC	0 0 0 0 0 0 7 7 0 0 0 7 7 0 0	7 5 5 7 7 7 7 7	000	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 8 0 5 5 6 0	5577	000000	2.6 2.6	0 0 4 4 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.2 3.2 3.1	9.1 1 1 0 1 0 0	3.0 3.0	ດ.ດ.ດ. ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ ຊາຍ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0 1 1 0 0 0	4.9	4.4 8.4 7.8 7.4	
24 0°	32°(TC		5 0 0 7 7 7	1 0 0 1 0 0	3.2 3.2 3.1	3.1 3.0 3.0	4.7 4.7 4.6 8.6	4 4 4 4 0 4 4 6	1,4,4,4 0,0,0,0,0	4440	0.0 0.0 0.0	ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ. ວ	5.5 5.5	5 0 0 2 0 0 2 0	5.0	4.9 4.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.8 8.7 7 8	8.5 3.4 3.4	8.1	9.7 8.7 9.7 9.7	
CWB	DB	SHC	ា ថា ថា ថា ថា ចំ ស ស ស ស ស ស ស ស	0 10 1 10 10	255	2 2 2 2 4 4	2.3 2.4 2.3	6 6 6 6 6 6 6 6 6 6 6	5 0 0 0 1 0 0 0 0	9 8 8 8 1 7 7 7 7	1446	2.7 2.7	ດ ດ ດ ດ ດ ດ ດ ດ ດ	3.5 3.5 3.4	3.3 3.3 3.3	0 0 0 0 0 0 0 0	3.1 3.1	ກ ບ ບ ບ 4 4 4 4	50.50 4 4 4	າ ຕ ຕ ປ ກ ຕ ຕ ປ	5.1	0.0.4 0.006 0.000	
°0.09	30°C	TC	0,0,0,0,0,0 4 4 4 4 4 4	0 9 4 4 0 0	0 0 0 0 0 0 0 0	3.1 3.1 3.1	3.0 3.0 2.9	4 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	144 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1.2	- 0 6 6 6	0.0 3.8 8	ດ ດ ດ ດ 4 4 4 4 4	5.4 5.34	5.2 5.2	0.64	4.8 4.7	ນ ເວ ເວ ແ ນ ເວ ເວ ແ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.0 7.9	7.7 7.5 7.4	
CWB	DB	SHC	ល ល ល ល ល ល ល ល ល ល ល	7 0 0 0 0 4	5 2 2 5 2 2 5 2	5 5 5 5 5 5	2.5 2.5 2.5	6.0 6.0 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	n 0, 0, 0 0, 0, 0, 0	6 6 6 6 6 6 6 6	00000	2.8	, c, c, c, c, , c,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,0,0 0,0,0 0,0,0		3.3 3.2	0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 0 0 0 1 0 0 0	252	0.157 0.157 0.157	
20 US	28°	TC	00000	0 0 0 7 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 ೧ ೧ ೧	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	၀ ထ ထ ထ ဂ က က က	ာ ဆ ဆ ဆ ဂ က က က	0 0 0 0 1 0 0 0 0 0	3.7	9 8 8 8 8 9 8 8 8 8	4.8 8.8 8.8	4.8 8.8 8 8	4.8 4.8 7	4.7 4.6	7.6 9.7 9.7 7.6	7.6 7.6 8 7 8	9.7 9.7 9.7 9.7	7.6	7.5 2.5 2.4 2.7	
air temp. 0°CWB	CDB	SHC	4 4 4 4 4 4	7 0 0 4 4 4	500 744	2 2 2 4 4 4	2 2 2 4 4 4	22.7 22.7 22.7	2000	200	2000	2.7	9 0 0 0 0 0 9 0 0 0 0 0	ର ର ର ପ ପ ପ	ର ର ର ପ ପ ପ	00000	3.2 3.2						
19 0	27°	D T	8 8 8 8 8 8 6 6 7 6 6 6 6	0 00 0 N 01 0	0 8 8 1 71 71	0 0 0 0 0 0 0 0 0	2.8 2.8 2.8	0.0 0.0 0.0 0.0 0.0 0 0.0 0 0 0 0 0 0 0	0.0.0.0 0.0.0.0 0.0.0	0.0.0.0 0.0.0 0.0.0	0.0.0.0 0.0.0.0 0.0.0	3.6 8.6	4 4 4 4 0 0 0 0 0 0	4 4 4 5 5 5	444 700	4 4 5 5 5 5	4.5 4.5	1. K K K K	7.7		7.1	5222	
CWB	CDB	SHC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n n n N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	3 3 3 5 5 5	999 599 599 599 599 599 599 599 599 599	9 9 9 9 9 1 7 7 7	0000	00000	5.6 2.6	2 0 0 0 0 0 0 0 0 0 0	3.2 3 3.5 3.5 3 3.5 3 3.	0 0 0 0 0 0 0 0 0		3.2 3.2	0000 0000	000	0000	5.0	0 0 0 0 0 0 0 0	
18.0°	26°	TC	0 0 0 0 0 0 0 0 0 0 0 0 0	0, 0, 0 0, 0, 0	5 9 9 9 9 9 9 9	0 0 0 0 0 0	2.6 2.6 2.0	3.4 3.4 3.4 3.4	1 4 4 4 1 4 4 4	1 7 7 7 7 7 7 7 7	0 0 0 0 0 7 7 7 7 7	3.4	4 4 4 4 1 0 0 0 0 0	4 4 4 0 0 0	4 4 4 0 0 0 0	444	42 42	0.0.0 0.0.0 0.0	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0	6.6 6.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
CWB	CDB	SHC			555	5 5 5 5 5 5	5555	522 522 522	י הי הי ה הי הי הי הי	2 2 2 2 5 5 2 7	5 2 2 2 2 5 5 5 2	5.5	0 0 0 0 0 0 0 0 0 0 0	5 5 8 5 8 8	8 8 8 5 5 5	00 00 00 10 10 10 10 10 10	2.8 2.8	4,4,4 0,0,0,0,0	4.4.4	4 4 4 7 0 0 0	4.5	4444 00000	
16.0°	23°	TC	0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0	7 01 0 2 01 0	100 000	0 0 0 0 0 0	0 0 0 0 0 0	5, 5, 5, 5, 5 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	0,0,0,0 0,0,0,0 0,0,0,0	0,0,0,0 1,0,0,0 1,0,0,0	0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0,0,0,0	2.9 2.9 8	0 0 0 0 0 0 0 0 0 0 0 0	0.0.0 0.0.0	0.0.0 0.0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.6 3.6	0.0.7.7 0.0.0 0.0	5.7.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.7	0.7.7.7 0.7.7.7	
CWB	CDB	SHC	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	n, oi o	<u>, 0, 0</u> ,	م م م م م م	0, 0, 0, 0, 0, 0,	0 0 0 0 0 0 0 0 0 0 0 0	1000	10000	10000	1 C Z Z	0,0,0,0,0 0,0,0,0,0 0,0,0,0,0,0,0,0,0,0	2 2 9 2 9 9 2 9 9	5 9 9 9 9 9 9 9	0 0 0 0 5 0 0 0	2.6 2.6	0.0.0.0	0.0.0	5 0 0 C	44	4 4 4 4 0 0 0 0	Total capacity ; kW Sensible heat capacity ; kW
14.0°	\sim	TC	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	م م م	<u>, 6, 6,</u>	6, 1, 1, 6, 6, 6,	0, 1 0, 1 0, 0	2:2 2:4 2:4 2:4	1 2 2 2 4 4 4 4 4	2 2 2 2 7 4 4 4	10000 4444	2.4	000000000000000000000000000000000000000	0 0 0 0 0 0	0.00	0 0 0 0 0 0 0 0 0 0 0	3.0 3.0	8, 4, 4, 4 8, 8, 8, 8	9.4.4 8.8.8 8.8	5 4 4 4 9 8 8 8	4.8	4,4,4,4 8,8,8,8	apacity ; k le heat ca
Outdoor	air temp. CDB	200	10.0 12.0 16.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	21.0	25.0 27.0	33.0 33.0	35.0 37.0 39.0	10.0 14.0 16.0	53 0.0 53 0.0 53 0.0	52.0 52.0 58.0	31.0 32.0 35.0	39.0	0.014.01	20.0 21.0 23.0	25.0 27.0 29.0	31.0 33.0 35.0	37.0 39.0	0.0.0.0	20.0	52.0 52.0 52.0 52.0	31.0	33.0 37.0 39.0	Total c Sensib
Unit	Size				25					32				0	5					63			SHC SHC

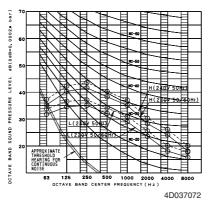
8. Sound Levels

Overall

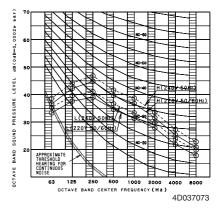
Note:


- 1. The operating conditions are assumed to be standard (JIS conditions).
- 2. These operating values were obtained in a dead room (conversion values).

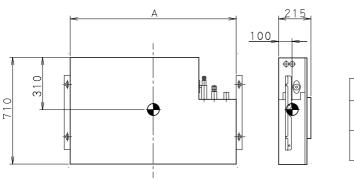
Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.


Octave Band Level

○_____○ 220V 50Hz ○ - - - ○ 240V 50Hz


FXKQ25 · 32MAVE

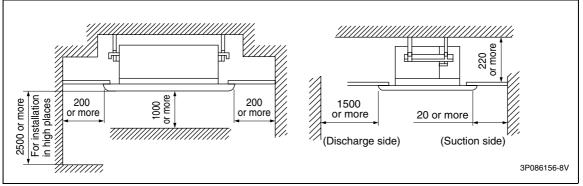
FXKQ40MAVE


FXKQ63MAVE

Unit (mm)

9. Installation

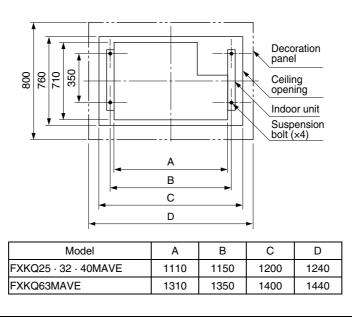
Center of Gravity



MODEL	A				
FXKQ25 • 32 • 40MAVE	1110				
FXKQ63MAVE	1310				

C:4D037079A

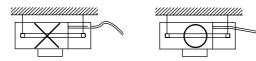
Service Space


Unit (mm)

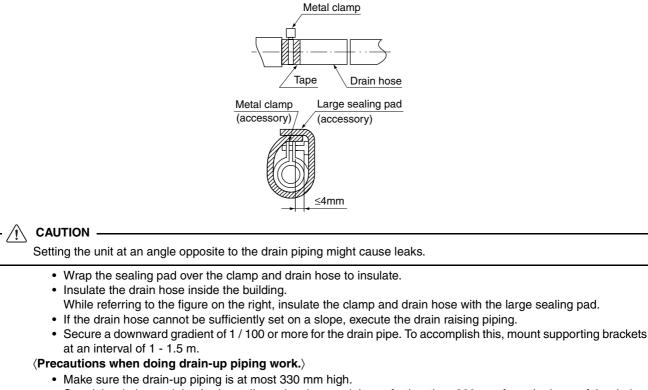
Note:

Above figure means minimum value. Please keep these value at least.

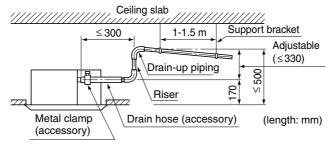
Bolt Pitch

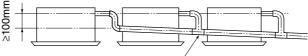

3P086156-8V

Drain Pump Kit


Indoor unit	Drain pump kit
FXKQ-MA	Standard (Equipped with indoor unit)

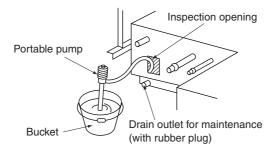
Drain Piping Work


 $\langle\langle$ Rig the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings. $\rangle\rangle$


- (1) Carry out the drain piping.
 - Keep piping as short as possible and slope it downwards so that air may not remain trapped inside the pipe.
 - The diameter of the drain pipe should be greater than or equal to the diameter of the connecting pipe (vinyl tube; pipe size : 25 mm; outer dimension : 32 mm).
 - Use the drain hose and metal clamp. Insert the drain hose into the drain socket, up to the white tape. Tighten the metal clamp until the screw head is less than 4 mm from the hose.

 Stand the drain-up piping horizontally, and make sure it is not further than 300 mm from the base of the drain socket.

- Use the following outline if laying concentrated drain piping.
- If converging multiple drain pipes, install according to the procedure shown below.



T-joint converging drain pipes

Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

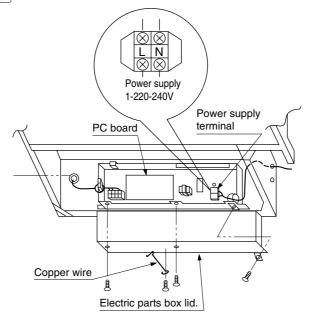
3P086156-8V

- (2) After piping work is finished, check drainage flows smoothly.
 - Open the inspection opening, add approximately 1 liter of water slowly into the drain pan and check drainage flow.

NOTE

• Use the drain outlet for maintenance to drain water from the drain pan.

WHEN ELECTRIC WIRING WORK IS FINISHED


• Check drainage flow during COOL running, explained under "TEST OPERATION".

WHEN ELECTRIC WIRING WORK IS NOT FINISHED

• Remove the electric parts box lid, connect a power supply and remote controller to the terminals. (Refer to the **HOW TO CONNECT WIRINGS**)

Be sure attach the electric parts box lid before turning on the power.

Next, press the inspection/test operation button " $\underbrace{\textcircled{}}_{TEST}$ " on the remote controller. The unit will engage the test operation mode. Press the operation mode selector button " $\underbrace{\textcircled{}}_{TEST}$ " until selecting FAN OPERATION " ". Then, press the ON/OFF button " ($\underbrace{\textcircled{}}$ ". The indoor unit fan and drain pump will start up. Check that the water has drained from the unit. Press " $\underbrace{\textcircled{}}_{TEST}$ " to go back to the first mode.

CAUTION -

• Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

• Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

3P086156-8V

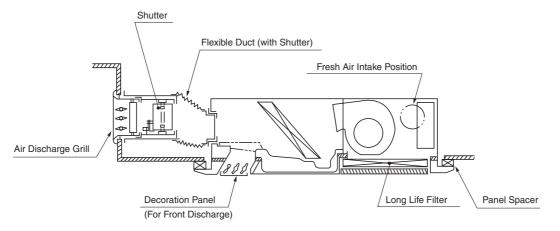
10. Accessories

Standard Accessories FXKQ25~63MA

Name	Metal clamp	Paper pattern for installation	Drain hose	Insulation for fitting	Sealing pad	Insulation for hanger bracket
Quantity	1pc.	1 pc.	1 pc.	1 each.	1 each.	4 pcs.
Shape		Corrugated cardboard		For gas pipe	Large Small	

Name	Washer for hanging bracket	Clamp	Positioning jig for installation	Air outlet blocking pad	
Quantity	8 pcs.	8 pcs.	2 each.	1 pc.	
Shape	0	CTILL OF	4 screws		(Other) • Operation manual • Installation manual

• Screws for fixing panels are attached to decoration panel.

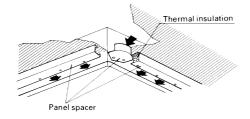

3P086156-8V

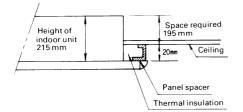
Optional Accessories (For Unit)

Type Item		FXKQ25MA FXKQ32MA FXKQ40MA	FXKQ63MA
Panel	Decoration panel	BYK45FJW1	BYK71FJW1
related	Long life replacement filter	KAFJ521F56	KAFJ521F80
	Air discharge grill	K-HV7AW	K-HV9AW
Air inlet and air	Air discharge blind panel	KDBJ52F56W	KDBJ52F80W
	Panel spacer	KPBJ52F56W	KPBJ52F80W
related	Flexible duct (with shutter)	KFDJ52FA56	KFDJ52FA80

C:3D037081A

Optional Accessories (For Controls) : Refer to P.645


Panel Spacer


If the space above the ceiling is not available for more than 220 mm, use the panel spacer, which enables to install the unit in 200 mm space.

Specifications

Item Model		KPBJ52F56W	KPBJ52F80W	
Color		White		
	Height	2	0	
Dimensions (mm)	Width	1,240	1,440	
()	Depth	800		
Materials		Outer Frame : Resin Molding Thermal Insulation : Foam Polyethylene		
Contents		Panel Spacer(1)(2)(3) Thermal Insulation (1)(2), Screws		
Applicable Decoration Panel		BYK45FJW1	BYK71FJW1	
Applicable Mode	el	For Indoor Unit 25~40 Class	For Indoor Unit 63 Class	

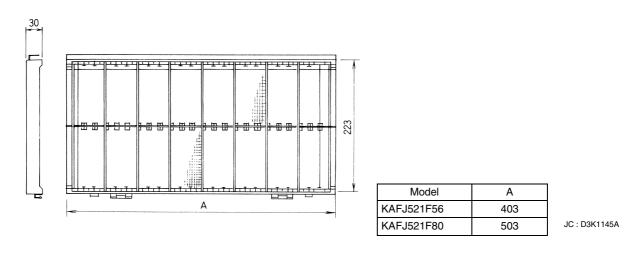
Installation

Precaution at use

- 1. Be sure to stick insulators on the panel spacer after the panel spacer is assembled.
- 2. Secure 20 cm height in the space above ceiling.

Contents of Kit

Prior to installation check whether you have the complete kit of parts as shown below including the installation manual.

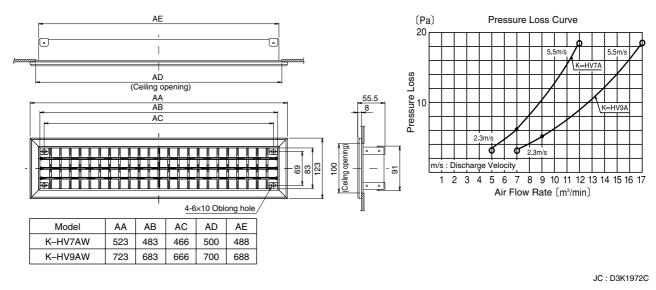

Name	Panel spacer (1)	Panel spacer (2)	Panel spacer (3)	Thermal insulation (1)
Quantity	2 pieces	2 pieces	4 pieces	2 pieces
Shape				
Name	Thermal insulation (2)	Screws	Installation manual	7
Quantity	2 pieces	18 pieces	1 piece	
Shape		M4 ×12	Ð	

Long Life Replacement Filter

Specifications

Items	KAFJ521F56	KAFJ521F80
Life Time, Average Efficiency	2,500 hours (dust density 0.15	mg/m ³), 45% (Gravity method)
Filter	Mildew Proof Resin Net	Mildew Proof Resin Net
Required Quantity (for One Unit)	Two pieces	Two pieces
Applicable Models	25 · 32 · 40 Class	63 Class

Dimensions


Discharge Grille

This optional kit is used when the unit is installed with front air discharge. The direction of air can be adjusted flexibly. This discharge grille should be installed with the following flexible duct.

Specifications

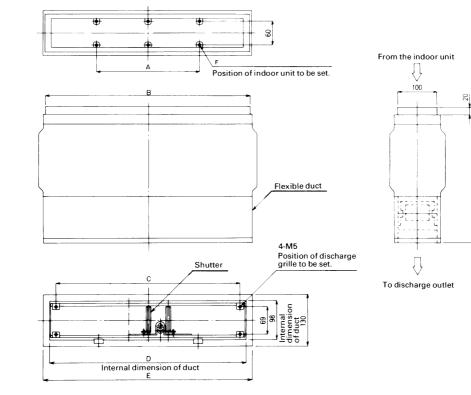
Items	K-HV7AW	K-HV9AW	
Air Flow Rate (m ³ /min)	5~12	7~17	
Туре	HV type (Horizontal blade and vertical blade movable)		
External Color	White	White	
Materials	Steel plate (A cryptomeria only at the tip of the outlet + nylon flocking)		
Structural Parts	Discharge grille, Screws, Blade control tool		
Applicable Flexible Duct	KFDJ52F56	KFDJ52F80	
Applicable Models	25 · 32 · 40 Class	63 Class	

Dimension

Flexible Duct (with Shutter)

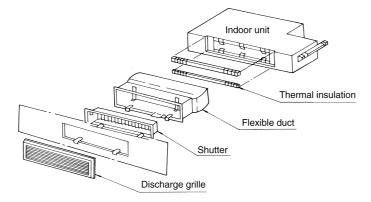
The built-in shutter's Open/Shut action makes it possible to regulate the air flow rate. Besides, the flexible duct helps the connection to the main unit to give more flexibility.

Specifications


Items	Model	KFDJ52FA56	KFDJ52FA80	
External	Н	132		
Dimension	W	532	732	
(mm)	D	Max. 353		
Materials		Outer frame : Steel plate Flexible Duct : Glass wool, Vinyl chloride sheet		
Contents		Flexible duct, Shutter, Duct's set plate, Insulator, Outlet seal pad, Set screw, Shutter Open/shut tool, Blade adjusting tool		
Applicable Mod	dels	25 · 32 · 40 Class 63 Class		

Precaution at use

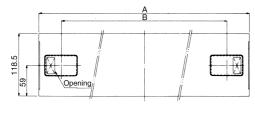
Be sure to seal out the opening of the drain pan with drain outlet seal materials after the front panel of the indoor unit is removed away.


340 Adjustable range 290~340

Dimension

Model	Applicable Model	А	В	С	D	Е	F
KFDJ52FA56	For Indoor Unit 25~40 Class	260	520	466	498	530	4-∳ Hole
KFDJ52FA80	For Indoor Unit 63 Class	460	720	666	698	730	6-¢7 Hole

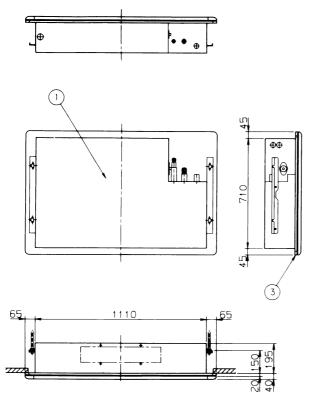
Installation

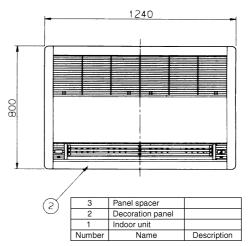

Air Discharge Blind Panel

This is the parts which closes the lower discharge outlet when the unit is used as a front discharge style.

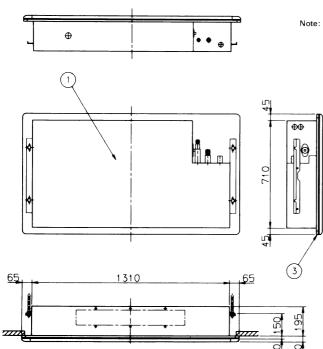
Specifications

Items	Model	KDBJ52F56W	KDBJ52F80W	
External color		White White		
	Т	1	8	
External Dimension (mm)	W	1,126	1,326	
	D	119		
Materials		Steel plate		
Contents		Outlet decoration panel assembly, Decoration panel suspension plate, Name Plate, Caution plate set board		
Applied Decoration Panel		BYK45FJW1	BYK71FJW1	
Applicable Models		25 · 32 · 40 Class	63 Class	

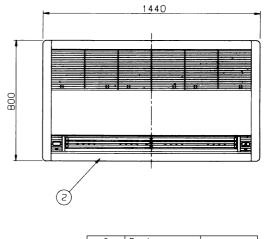

External dimension


Model	А	В
KDBJ52F56	1125.5	1040
KDBJ52F80	1325.5	1240

- Dimensions with the Optional Accessories Panel Spacer
- FXKQ25~40MA


Optional panel spacer KPBJ52F56W White 10Y 9/0.5

Note: When other optional kit is installed, refer to the installation drawing of its optional kit.


JC : DU825-219A

■ FXKQ63MA

·Optional panel spacer KPBJ52F80W White 10Y 9/0.5

When other optional kit is installed, refer to the installation drawing of its optional kit.

3	Panel spacer	
2	Decoration panel	
1	Indoor unit	
Number	Name	Description

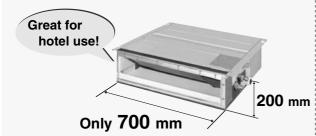
JC : DU827-242A

FXDQ-PB, FXDQ-NB Slim Ceiling Mounted Duct Type

1.	Features	164
2.	Specifications	
	2.1 FXDQ-PB	
	2.2 FXDQ-NB	166
3.	Dimensions	
	3.1 FXDQ-PB	167
	3.2 FXDQ-NB	169
4.	Piping Diagrams	173
5.	Wiring Diagrams	
6.	Electric Characteristics	
7.	Capacity Tables	
	7.1 FXDQ-PB	
	7.2 FXDQ-NB	178
8.	Fan Performances	179
	8.1 FXDQ-PB	
	8.2 FXDQ-NB	180
9.	Sound Levels	
	9.1 FXDQ-PB	
	9.2 FXDQ-NB	182
10	Center of Gravity	
	10.1 FXDQ-PB	
	10.2 FXDQ-NB	184
11	.Installation	
12	Accessories	
	12.1 FXDQ-PB, FXDQ-NB	

1. Features

Slim Ceiling Mounted Duct Type

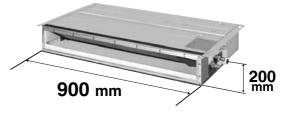


Slim design, quietness and static pressure switching

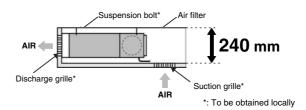
Suited to use in drop-ceilings!

•Only 700 mm in width and 23 kg in weight, this model is suitable to install in limited spaces like drop-ceilings in hotels.

 Control of the airflow rate has been improved from 2-step to 3-step control.

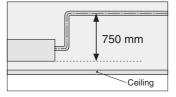

Low operation sound level

Low operation sound level (dB(A						
FXDQ-PB/NB	20	25	32	40	50	63
Sound level (HH/H/L)	33/31/29	33/31/29	33/31/29	34/32/30	35/33/31	36/34/32
The values of operation sound level represent those for rear-suction operation.						


Sound level values for bottom-suction operation can be obtained by adding 5 dB(A). *Values are based on the following conditions: FXDQ-PB: external static pressure of 10 Pa; FXDQ-NB: external static pressure of 15 Pa.

•Only 200 mm in height, this model can be installed in rooms with as little as 240 mm depth between the drop-ceiling and ceiling slab.

*1,100 mm in width for the FXDQ63NB model.



 External static pressure selectable by remote controller switching make this indoor unit a very comfortable and flexible model.

10 Pa-30 Pa/factory set: 10 Pa for FXDQ-PB models. 15 Pa-44 Pa/factory set: 15 Pa for FXDQ-NB models.

 FXDQ-PB and FXDQ-NB models are available in two types to suit different installation conditions FXDQ-PBVE, FXDQ-NBVE:

with a drain pump (750 mm lift) as a standard accessory FXDQ-P/NBVET: without a drain pump

2. Specifications

2.1 FXDQ-PB

Slim Ceiling Mounted Duct Type (VE: with Drain Pump, VET without Drain Pump)

Model			FXDQ20PBVE (T)	FXDQ25PBVE (T)	FXDQ32PBVE (T)		
		kcal/h	2,000	2,500	3,200		
★1 Cooling Capacity (19.5°CWB) Btu/h kW		7,800	9,900	12,600			
		2.3	2.9	3.7			
★2 Cooling Ca	apacity (19.0°CWB)	kW	2.2	2.8	3.6		
Casing			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate		
Dimensions: (H×W×D)	mm	200×700×620	200×700×620	200×700×620		
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×12×1.5	2×12×1.5	3×12×1.5		
Fin Coil)	Face Area	m²	0.126	0.126	0.126		
	Model		—	—	—		
Fan	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan		
	Motor Output × Number of Units	W	62×1	62×1	62×1		
	Air Flow Rate (HH/H/L)	m³/min	8.0/7.2/6.4	8.0/7.2/6.4	8.0/7.2/6.4		
	★4 External Static Pressure	Pa	30-10	30-10	30-10		
	Drive		Direct Drive	Direct Drive	Direct Drive		
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorbing Thermal Insulation Material			Foamed Polyethylene	Foamed Polyethylene	Foamed Polyethylene		
Air Filter			Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof		
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)		
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	§12.7 (Flare Connection)	φ12.7 (Flare Connection)		
Connections	Drain Pipe	mm	Sirocco FanSirocco Fan62×162×18.0/7.2/6.48.0/7.2/6.430-1030-10Direct DriveDirect DriveMicroprocessor Thermostat for Cooling and HeatingMicroprocessor Thermostat for Cooling and HeatingFoamed PolyethyleneFoamed PolyethyleneRemoval / Washable / Mildew ProofRemoval / Washable / Mildew Proof\u03c6.4 (Flare Connection)\u03c6.4 (External Dia. 26 Internal Dia. 20)\u03c6.4 (External Dia. 26 Internal Dia. 20)23232333/31/2933/31/29Fuse, Thermal Protector for Fan MotorElectronic Expansion ValveDeperation Manual, Installation Manual Installation Manual Installation ManualDeperation Manual Installation Manual Installation ManualDeperation Manual Installation Manual Installation Manual	VP20 (External Dia. 26 Internal Dia. 20)			
Machine Weig	pht (Mass)	kg	23	23	23		
★5 Sound Pre	essure Level (HH/H/L)	dBA	33/31/29	33/31/29	33/31/29		
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor			
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve			
Standard Accessories			Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★6)		Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★6)		
Drawing No.				3D060921A	3D060921A		

Note:

- ★1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- ★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
- 3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
- *4 External static pressure is changeable to set by the remote controller. This pressure means "High static pressure Standard static pressure". (Factory setting is 10 Pa.)
- ★5 The operation sound levels are the conversion values in anechoic chamber. In practice, the sound tend to be larger than the specified values due to ambient noise or reflections.
- When the place of suction is changed to the bottom suction, the sound level will increase by approx. 5dBA.
- ★6 FXDQ20 / 25 / 32PBVE only.
- 7 Refer to page 176 for Fan Motor Input.

5

Conversion Formulae kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

2.2 FXDQ-NB

Slim Ceiling Mounted Duct Type (VE: with Drain Pump, VET without Drain Pump)

Model			FXDQ40NBVE(T)	FXDQ50NBVE(T)	FXDQ63NBVE(T)
		kcal/h	4.000	5.000	6.300
★1 Cooling Capacity (19.5°CWB) Btu/h kW			16.000	19.800	24.900
		4.7	5.8	7.3	
★2 Cooling Ca	apacity (19.0°CWB)	kW	4.5	5.6	7.1
Casing Color	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)	mm	200×900×620	200×900×620	200×1100×620
Coil (Cross Fin Coil)	Rows×Stages×Fin Pitch	mm	3×12×1.5	3×12×1.5	3×12×1.5
	Face Area	m²	0.176	0.176	0.227
Model			_		_
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	w	62×1	130×1	130×1
	Air Flow Rate (HH/H/L)	m³/min	10.5/9.5/8.5	12.5/11.0/10.0	16.5/14.5/13.0
	★4 External Static Pressure	Pa	44-15	44-15	44-15
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature (Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorbing Thermal Insulation Material			Foamed Polyethylene	Foamed Polyethylene	Foamed Polyethylene
Air Filter			Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof	Removal / Washable / Mildew Proof
Piping	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
	Gas Pipes	mm	φ12.7 (Flare Connection)	§12.7 (Flare Connection)	<pre> φ15.9 (Flare Connection) </pre>
Connections	Drain Pipe	mm	VP20 (External Dia. 26 Internal Dia. 20)	Sirocco Fan 130×1 12.5/11.0/10.0 44-15 Direct Drive Microprocessor Thermostat for Cooling and Heating Foamed Polyethylene Proof Removal / Washable / Mildew Proof \u00e94.4 (Flare Connection) \u00e912.7 (Flare Connection) \u00e920) (External Dia. 26 Internal Dia. 20) 28 35/33/31 Motor Fuse, Thermal Protector for Fan Motor Flectronic Expansion Valve Operation Manual, lestallation Manual	VP20 (External Dia. 26 Internal Dia. 20)
Machine Weig	iht (Mass)	kg	27	28	31
★5 Sound Pre	★5 Sound Pressure Level (HH/H/L) dBA		34/32/30	35/33/31	36/34/32
Safety Devices		Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	Fuse, Thermal Protector for Fan Motor	
Refrigerant Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Standard Accessories		Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★6)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★6)	Operation Manual, Installation Manual, Drain Hose, Sealing Pads, Clamps, Washers, Insulation for Fitting, Clamp Metal, Washer Fixing Plate, Screws for Duct Flanges, Air Filter, (Product Quality Certificate ★6)	
Drawing No.				3D060921A	

Note:

*1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

★2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.

3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*4 External static pressure is changeable to set by the remote controller. This pressure means "High static pressure - Standard static pressure".

(Factory setting is 15 Pa.)
*5 The operation sound levels are the conversion values in anechoic chamber. In practice, the sound tend to be larger than the specified values due to ambient noise or reflections.

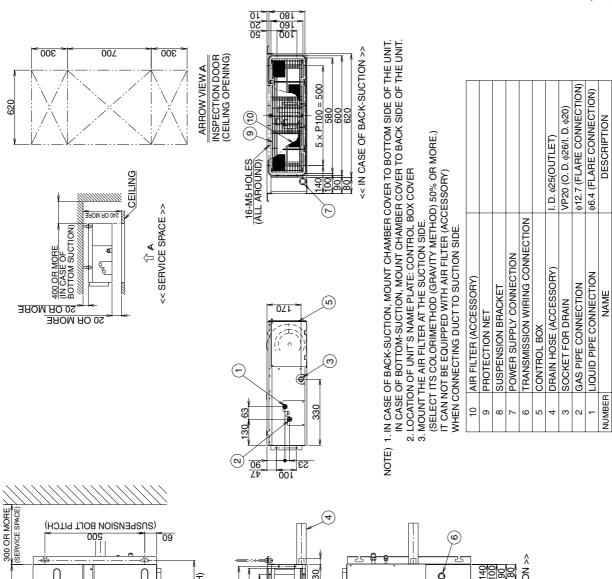
When the place of suction is changed to the bottom suction, the sound level will increase by approx. 5dBA. ★6 FXDQ40 / 50 / 63NBVE only.

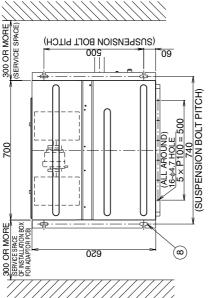
7 Refer to page 176 for Fan Motor Input.

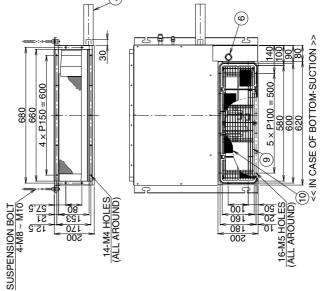
Conversion Formulae

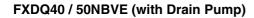
kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

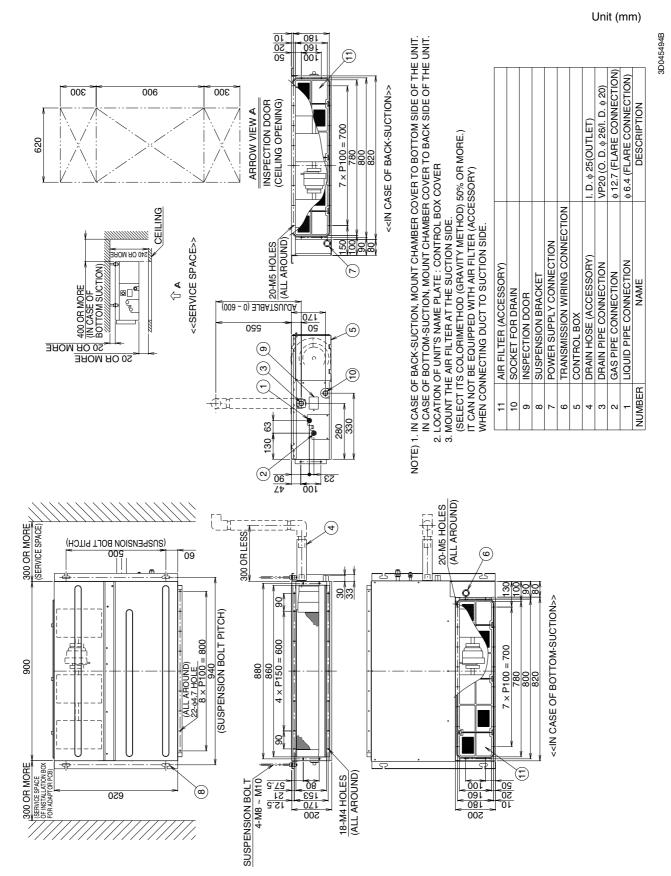
Dimensions

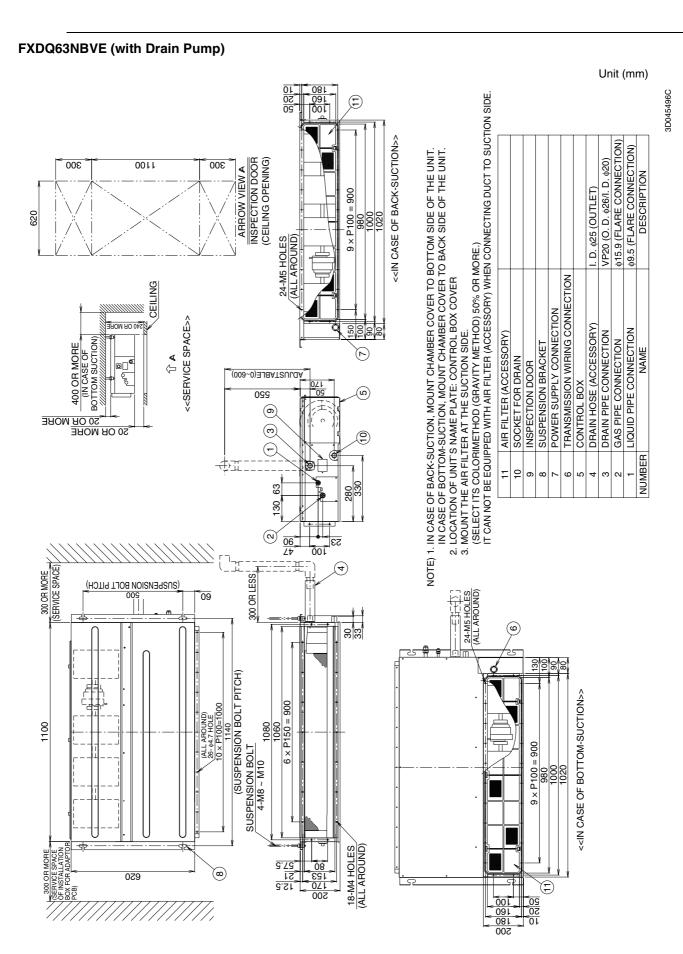

3. Dimensions

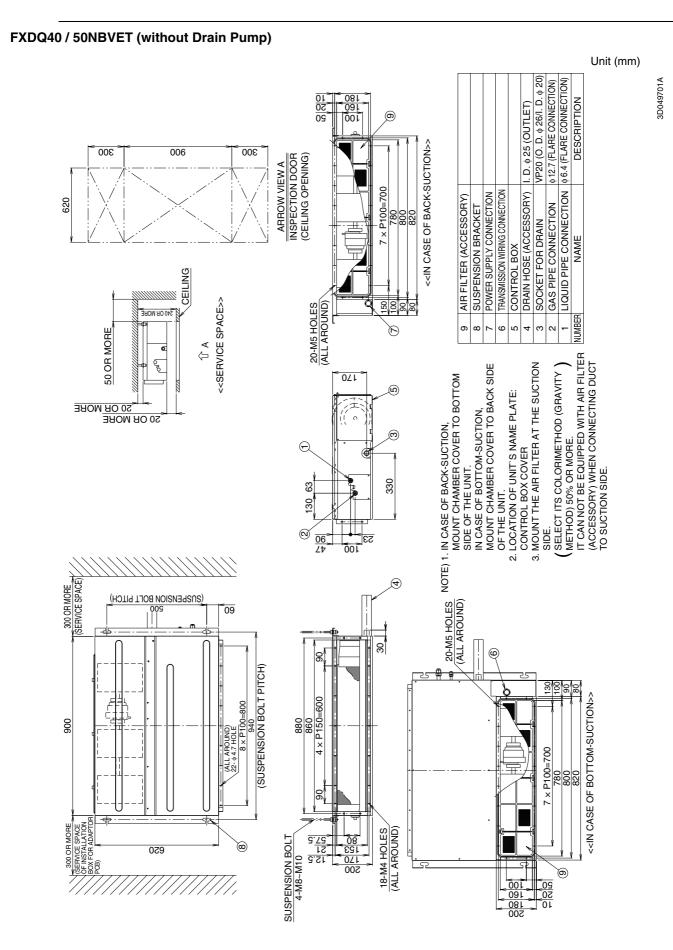

3.1 FXDQ-PB



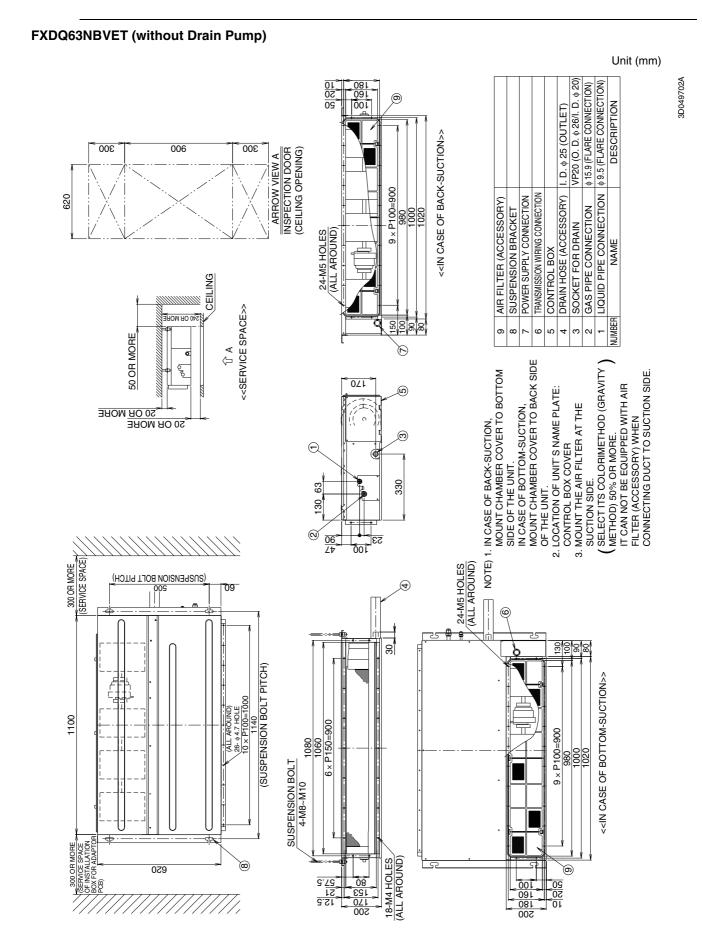


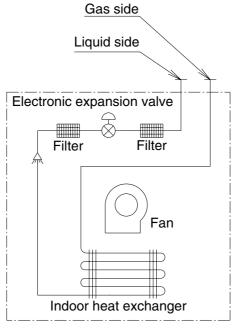



3D050732A


Unit (mm)

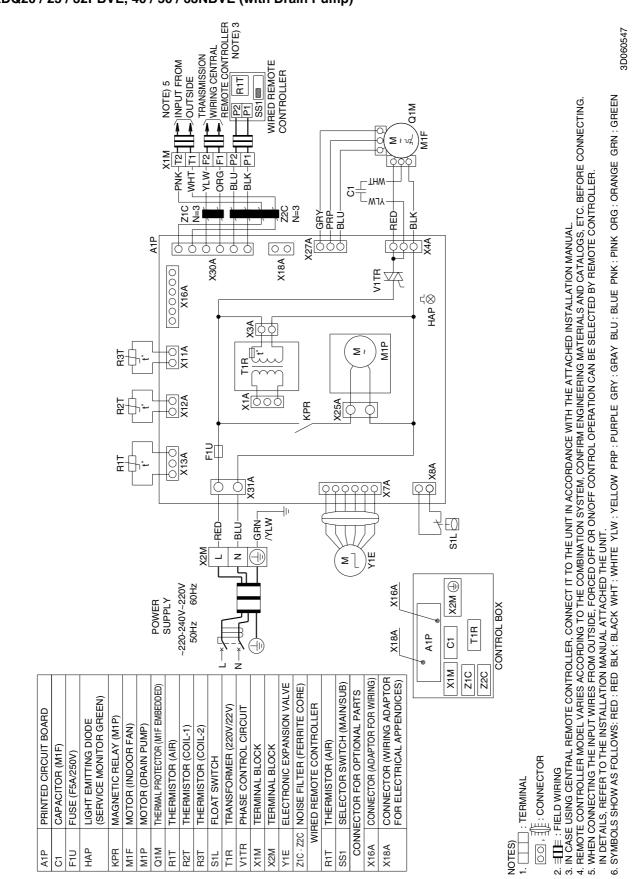
3.2 FXDQ-NB





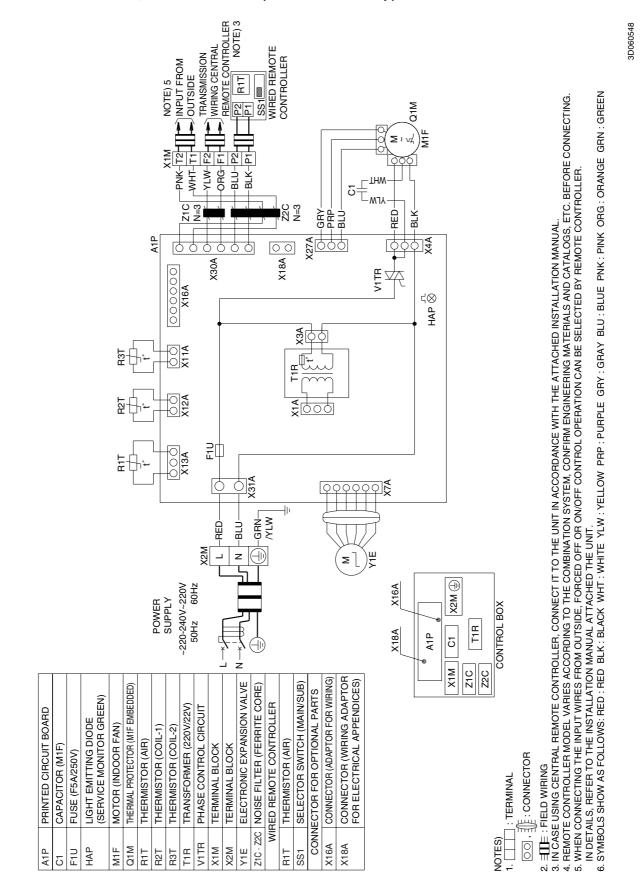
171

4. Piping Diagrams



4D060927

Refrigerant pipe connection port diameters


		(mm)
Model	Gas	Liquid
FXDQ20 / 25 / 32PBVE(T), 40 / 50NBVE(T)	φ12.7	φ 6.4
FXDQ63NBVE(T)	φ15.9	φ9.5

5. Wiring Diagrams

FXDQ20 / 25 / 32PBVE, 40 / 50 / 63NBVE (with Drain Pump)

5

FXDQ20 / 25 / 32PBVET, 40 / 50 / 63NBVET (without Drain Pump)

6. Electric Characteristics

Model			Power supply			IFM		Input	;(W)
Muder	Ηz	Volts	Voltage range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXDQ20PBVE				0.8	15	0.062	0.6	86	67
FXDQ25PBVE				0.8	15	0.062	0.6	86	67
FXDQ32PBVE	50	220-240V	Max.264V	0.8	15	0.062	0.6	89	70
FXDQ40NBVE	00	1 220 2401	Min.198V	1.0	15	0.062	0.8	160	147
FXDQ50NBVE				1.0	15	0.13	0.8	165	152
FXDQ63NBVE				1.1	15	0.13	0.9	181	168
FXDQ20PBVET				0.7	15	0.062	0.6	67	67
FXDQ25PBVET				0.7	15	0.062	0.6	67	67
FXDQ32PBVET	50	220-240V	Max.264V	0.7	15	0.062	0.6	70	70
FXDQ40NBVET	00	220 2401	Min.198V	1.0	15	0.062	0.8	147	147
FXDQ50NBVET				1.0	15	0.13	0.8	152	152
FXDQ63NBVET				1.1	15	0.13	0.9	168	168

Symbols:

МСА	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
ΚW	:	Fan Motor Rated Output(kW)
FLA	:	Full Load Amps(A)
ΙFΜ	:	Indoor Fan Motor

Note:

1.	Voltage range
	Units are suitable for use on electrical
	systems where voltage supplied to unit terminals
	is not below or above listed range limits,
2.	Maximum allowable voltage unbalance between
	phases is 2%.
З.	MCA/MFA
	MCA = 1.25 X FLA
	MFA ≦ 4 X FLA
	(Next lower standard fuse rating. Min.15A)
4.	Select wire size based on the MCA.
5.	Instead of fuse, use circuit breaker.

C:4D060922

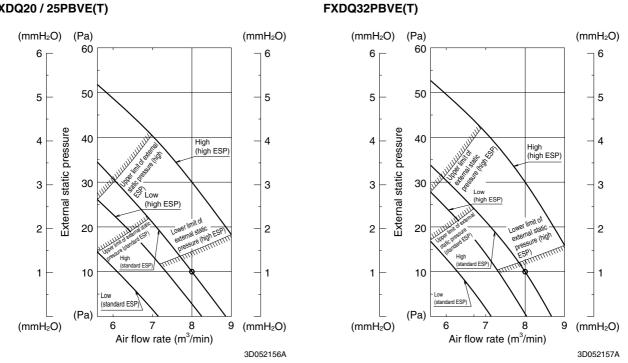
7. Capacity Tables

7.1 FXDQ-PB

[50Hz]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22222222222222222222222222222222222222	26 26 26 26 26 26 28 28 28 28 28 28 28 28 28 28	200 200 200 200 200 200 200 200
4 1 8 16 2 1 18 16 2 1 18 16 2 1 18 16 2 1 18 16 2 1 18 16 2 1 18 16 2 1 18 16 2 1 18 2 2 1 18 2 2 1 18 2 2 1 18 16 2 1 18 16 2 1 18 2 2 1 18 2 2 1 18 2 2 1 18 16 2 2 1 18 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 1 18 16 2 1 18 18 2 18 16 2 16 16 16 16 16 16 16 16 16 16 16 <t< th=""><th></th><th>©©©©©©©©©©0444004444</th><th>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,</th></t<>		©©©©©©©©©©0444004444	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
4 1 8 16 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 2 1 18 16 2 2 1 16 2 2 1 16 2 2 1 1 18 2 2 1 1 18 2 2 1 1 18 2 2 1 1 18 2 2 1 1 18 2 2 1 1 18 2		0000000000444004444	88777787878787777777777777777777777777
4 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 <td></td> <td>00000000444004444</td> <td>で 、 、 、 、 、 、 、 、 、 、 、 、 、</td>		00000000444004444	で 、 、 、 、 、 、 、 、 、 、 、 、 、
4 4 4 4 4 4 4 4 4 4 4 4 4 4 1.8 4 4 1.8 4 4 1.8 4 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.2 1.1 1.8 4 1.8 1.6 2.3 1.9 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.8 1.6 2.1 1.9 2.6 2.1 1.9 2.6 2.1 1.9 2.6 2.1 1.9 2.6 2.1 2.9 2.1 2.8 2.9 2.1 2.8 2.9 2.1 2.8 2.9 1.9 2.8 2.9 1.9 2.9 2.1		000000444004444	
4 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 8 1 1 1 8 1 <td></td> <td>00000444004444</td> <td>ა კი კი კი კი კი კი კი თ ი ი ი ი ი ი ი ი ი ი თ ი ი ი ი ი ი ი</td>		00000444004444	ა კი კი კი კი კი კი კი თ ი ი ი ი ი ი ი ი ი ი თ ი ი ი ი ი ი ი
4 1 8 15 2 1 1 8 2 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 8 2 1 1 1 8 1 </td <td></td> <td>000444004444</td> <td>ດ 10 10 10 10 10 10 10 ອ 17 10 10 10 10 10 10 ອ 17 17 10 10 10 10 10</td>		000444004444	ດ 10 10 10 10 10 10 10 ອ 17 10 10 10 10 10 10 ອ 17 17 10 10 10 10 10
4 4 4 4 4 4 4 4 4 4 4 4 4 4 18 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 7 1 2 6 2 1 7 1 2 6 2 2 7 1 2 6 2 2 7 1 2 6 2 1 7 2 2 7 2 2 8 2 2 9 2 2 19 2 2 19 2 2 19 2 2 19 2 2		00444004444	ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ძ ძ ძ ი ი ი
4 4 1 8 1 1 8 4 4 1 8 1 1 8 1 1 4 4 1 8 1 1 8 1 1 6 6 2 3 3 1 9 2 1 1 6 6 2 3 3 1 9 2 1 1 6 6 2 3 3 1 9 2 1 1 6 6 2 3 3 1 9 2 1 1 7 1 1 1 1 1 1 1 1 1 6 6 2 3 3 1 9 2 1 1 6 6 2 3 3 1 9 2 1 1 7 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 <td></td> <td>0444004444</td> <td>0.000440000000000000000000000000000000</td>		0444004444	0.000440000000000000000000000000000000
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 2 2 6 6 2 2 6 6 2 2 6 6 2 2 6 6 2 2 6 7 1 9 6 2 2 1 7 1 9 2 7 1 9 2 7 1 9 2 6 2 2 1 7 1 9 2 7 1 1 9 7 1 1 9 7 1 1 9 8 2 2 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 1 1 1 1 1		44004444	9 7 7 7 7 7 7 7 9 7 9 9 9 9 9 9 9 9 9 9
4 1 18 16 2 1 6 4 1 18 16 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 6 2 3 19 26 2 1 7 3 19 26 2 1 28 7 3 19 26 2 1 28 7 3 19 26 2 1 28 7 3 2 2 1 28 2 7 3 2 2 3 2 2 8 2 3 2 2 3 2<		4004444	9.7.9.6 9.7.9.6 7.7.8
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0	004444	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
6 6 2 2 3 1 9 2 6 6 2 2 3 1 9 2 6 6 6 2 2 3 1 9 2 6 6 6 2 2 3 1 9 2 6 6 6 2 2 3 1 9 2 6 6 6 2 2 3 1 9 2 2 6 6 2 2 1 2 2 8 2 2 6 6 2 2 3 1 9 2 2 6 6 2 2 1 2 2 8 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 2 8 2 2 2 2 8 2 2 2 8 2 2 2 2 8 2 2 2 2 8 2 2 2 2 8 2 2 2 2 8 2	~~~~	4444	3.7 3.6
0 2 2 3 <td>2000</td> <td>444</td> <td>0.0</td>	2000	444	0.0
1 0 <td></td> <td>4</td> <td>900</td>		4	900
6 6 2 2 3 1 9 2 6 6 2 2 3 3 1 9 2 6 6 2 2 3 3 1 9 2 6 6 6 2 2 3 3 1 9 2 6 6 6 2 2 3 1 9 2 2 6 6 6 2 1 1 2 2 8 2 2 6 6 6 2 2 1 1 9 2 2 8 2 2 2 6 6 6 2 2 1 1 9 2 2 8 2 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 8 2 2 2 8 2 2 2 6 6 2 2 1 1 9 2 2 8 2 2 2 2 8 2 2 2 2 8 2	~		3.5
6 2.3 1.9 2.6 2.3 1.9 2.6 2.3 1.9 2.6 2.1 2.8 2.8 2.6 2.1 2.8 2.8 2.6 2.1 2.8 2.8 2.6 2.1 2.8 2.8 2.6 2.1 2.8 2.8 2.5 1.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.9 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.6 2.1 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.9	4 0	4.	3.5
100 200 <td>20 0</td> <td>4 4</td> <td>9.6 4.4</td>	20 0	4 4	9.6 4.4
6 6 2 2 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	101	10	9 1 4 1
6 6 2 2 3 1 9 2 6 7 2 3 7 9 2 6 6 2 2 3 1 9 2 6 6 2 2 3 1 9 2 6 6 2 1 2 8 2 0 6 6 2 3 1 9 2 6 6 2 1 2 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	е С	3.3
6 2 2 3 1 9 2 6 2 1 2 8 2 2 6 2 3 3 1 9 2 6 6 2 3 3 1 9 2 6 6 2 3 1 9 2 6 6 2 1 2 8 2 2 6 6 2 1 2 8 2 2 6 2 1 2 8 2 2 6 2 1 2 8 2 2 6 2 1 2 8 2 2 6 2 2 1 2 8 2 2 8 2 2 6 2 2 1 2 8 2 2 2 8 2 2 2 8 2	0 0	20	
66 223 119 226 21 228 2 66 223 119 226 21 228 2 66 223 119 226 21 228 2 23 334 226 21 228 2 23 334 23 334 2 24 336 2 24 336 2 24 336 2 29 22 2 24 336 2 24 346 2 24 346 2 24 356 2 24 356 2 24 356 2 24 356 2 24 356 2 25 3 25 356 2 25 356 2	101	1-	3.2
6 23 19 26 21 28 2 6 23 19 26 21 28 2 6 23 19 26 21 28 2 0 29 23 34 24 36 2	0		3.1
6 2.3 1.9 2.6 2.1 2.8 2. 0 2.9 2.3 3.4 2.4 3.6 2.	20 0	00	3.1 0.0
0 2.9 2.3 3.4 2.4 3.6 2.		6	3.0
			4.7
0 2.9 2.3 3.4 2.4 3.6 2.	i ci	<u>ი</u> ო	4.6
0 2.9 2.3 3.4 2.4 3.6 2.	¢.	0	4.6
0 2.9 2.3 3.4 2.4 3.6 2.	ci c		4.5
0 2.9 2.3 3.4 2.4 3.6 2.	vi ci	<u>.</u>	4 4 4 7
0 2.9 2.3 3.4 2.4 3.6 2.	¢,	2	4.3
0 2.9 2.3 3.4 2.4 3.6 2.	ci c	N -	6.4 6.0
0 2.9 2.3 3.4 2.4 3.6 2.	vi ol		4 4
0 2.9 2.3 3.4 2.4 3.6 2	ini	. 0	4.1
0 2.9 2.3 3.4 2.4 3.6 2	ci o	о (4.0
0 2.9 2.3 3.4 2.4 3.6 2.	ci c	.	4.0
2.9 2.3 3.4 2.4 3.6	vi ci	0 00	ກ ຜ ດີ ຕີ
, kW sapacity ; kW	-	-	
È.			

Cooling capacity

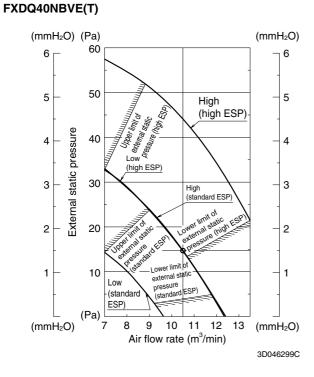

7.2 FXDQ-NB

																							[5(01	Hz	2]											
awc	URC DB	SHC	3.5 3.5	3.5	0.0 V	3.4	3.4	3.3			50	3.2	3.2	ი ლი	4.1	14	4.0	4.0	0.0	9 0. 0	3.9	0,0 0,0	0 00 0 00	3.8	3.7	3.7	5.7	5.5	5.4	4 0.	5.3	5.2	۰. ۱	- c	0.6	4.9	4 v 8 o	4 4 7 0
04 0°CW	3000	u l	5.9	5.8	5.7	2,5	5.5	5.4	0.0 10	n n	ч г	5.0	5.0	4 4 6 8	7.4	20	7.1	7.0	0.0 0	6.7	6.6	6.6 7	6 9	6.3	6.2	6.1 6.0	0.0 0.0	9.1	0.6	0 0 0 0	8.7	8.5	4. c	ο ο ο	8.1 8.1	7.9	8, 1	7.6
CMB	UBC C	TC SHC	9 9 9 9	3.3		0 0 0 0	3.3	3.3		N 0	100	3.2	3.1	ი ლი ლი	4.2	4 4	12	4.2	4 4	4 4	4.1	4.1	4 4 0 0	4.0	3.9	ರು ರು ಲೆ ಲೆ	5.1 1	5.1	5.1	- t	5.1	5.1	5.0	0.0	4.9	4.8	4 8 1 8 1	4.4
20 0°C/MB	0°0°	TC	5.4	5.4	5.4	5.4	5.4	5.3	0 i 0 i 0	0 u	- 0	4.9	4.9	4.8 7.7	6.7	6.7	6.7	6.7	6.7	6.6	6.5	6.4 0	0.0 9	6.1	6.0	5.8 9	8.5 8.5	8.5	8.5 1	α Ω Ω	8.5	8.4	x, x	- c 0 a	7.9	7.8	7.7	c. / 4. /
avc.vr	SCDR	SHC	3.2	3.2	0 0 0 0	3.2	3.2	3.2	3.2	200	100	3.2	3.2	0 0 0 0	4.0	4 0	4.0	4.0	4.0	4.0	4.0	4.0	4 4	4.0	4.0	9.9 3.9	4.9	4.9	4.9	4.4 0	4.9	4.9	4.9	4.4 0	4.9	4.9		4.7
00.00	280	TC	4.8 4.8	4.8	4.8	4.8	4.8	4.8	8.4	4 v v o	4 4	4.8	4.7	4.7	6.0	0.0	6.0	6.0	0.9 9	0.0 9	6.0	6.0	0.0	6.0	5.9	5.8	7.6	7.6	7.6	9.7 9	7.6	7.6	9.7	0.7 V	7.6	7.6	7.5	7.2
1000 all terrip.	CUR DB	LC SHC	3.3 3.3	3.3	() () () () () () () () () () () () () (0.0 0.0	3.3	3.3	с. С. С.	ກູດ ກູດ	0.0	3.3	3.3	0, 0, 0, 0,	4.0	4 4 0 7	4.0	4.0	4.0	4.0	4.0	4.0	4 4	4.0		4.0	4.9	4.9		4 4 0 0		4.9	9,4	4 r v o			6.4	
	0.01	TC 1	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.⊼ 0.⊓	т т с	4.5	4.5	4.5	5.6	2.0	5.6	5.6	5.0 6	0.0 0.0	5.6	5.6	0.0	5.6	5.6	5.6	7.1	7.1	7.1	7.1	7.1	7.1			7.1	7.1	7.1	7.1
awo.o	SCDB	SHC	3.3 3.3	3.3	() () ()	0 0 0 0	3.3	3.3	с С С	ກ ເ ກີເ	0 .	3.3 0.0	3.3	ო ო ო ო	0.0 0.0	6 0. 0	9.0 0.0	3.9	0.0 0.0	0 0 0	3.9	0.0 0.0	0 0 0	3.9	3.9	0 0 0 0	4.8 4.8	4.8	4.8	4.8 8.8	4.8	4.8	8.4	φ.4 α	4.8	4.8	4.8	4 4 0 8
18.0°	0.01	TC	42	42	4 v V v	4 4 4 7	42	4.2	4 2	4 z	4 4	42	4.2	4 4 V V	5.2	4 C	52	5.2	20	2 7	5.2	20	4 C	5.2	5.2	522	6.6 6.6	6.6	<u>6.6</u>	0.0 9.0	6.6 0.0	<u>6.6</u>	9.9 9	0.0	0.0 9.9	6.6	6.6 a	0.0 6.6
avvo	UBC CONC	SHC	2.8 2.8																								4.3			4 4 0 6			4.4 20 0				4.4 6.0	
16.0°	0.01	TC	3.6 3.6	3.6	9.0 9.0	3.6 3.6	3.6	3.6	3.6	500	0.0 0.0	3.6	3.6	9.0 9.0	4.5	4 4	4.5	4.5	4.5	4.5	4.5	4.5	4 4	4.5	4.5	4.5	5.7	5.7	5.7	2. 2 2	5.7	5.7	5.7	л - С	5.7	5.7	5.7	5.7
D°C/MB	UNB DB	C SHC	2.5	2.5	0, 10	0 V 0 V	2.5	2.5	0 I 0 I 0 I	Ω N C	2 10	2.5	2.5	ល ល ល ល	3.1 1.0			3.1		. . .	3.1			3.1	3.1	с, с, Г. С	3.8 8 8	3.8	3.8	0 a 0 a	3.8	3.8 8.0	20 0 27 0	0 a 7 a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.8	00 0 07 0	0 00 0 00
10U VF	2000	TC	3.0	3.0	000	0.0	3.0	3.0	0.0	500	00	3.0	3.0	0 0 0 0	3.8 0.0	0 00 0 00	0 0 0 0 0 0	3.8	00 0 00 0	စ စ ဂ က	3.8	00 0 07 0	0 00 0 00	3.8	3.8	8 8 8 8	4.8	4.8	4.8	4.4 8 8	4.8	4.8	8.4	φ.4 α	4 4 8 8	4.8	4.8	4 4 0 8
Outdoor	air temp.	°CDB	10.0	14.0	16.0	20.0	21.0	23.0	25.0	0.72	31.0	33.0	35.0	37.0 39.0	10.0	14.0	16.0	18.0	20.0	23.0	25.0	27.0	31.0	33.0	35.0	37.0 39.0	10.0	14.0	16.0	0.00	21.0	23.0	20.02	0.12	31.0	33.0	35.0	39.0
+ iul	Size	010						40												C	20											63						

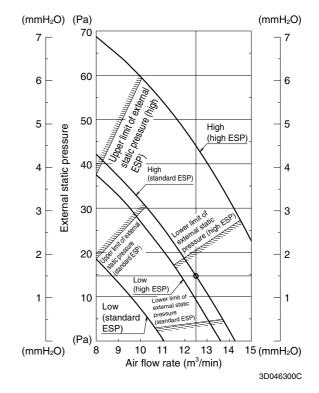
Refer to Outdoor Unit Capacity Tables : on page 491 \sim , 552 \sim , for the actual performance data of each indoor and outdoor unit combination.

8. Fan Performances

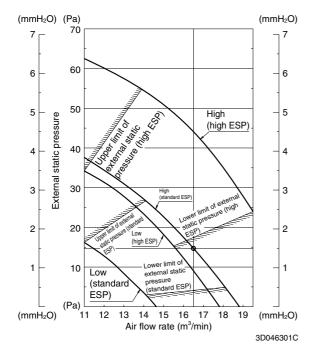
8.1 FXDQ-PB FXDQ20 / 25PBVE(T)



Note:

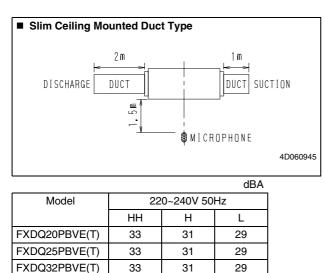

- 1. The remote controller can be used to switch between "HH", "H" and "L".
- 2. The air flow is set to "standard" before leaving the factory.

It is possible to switch between "standard ESP" and "high ESP" by the remote controller.


8.2 FXDQ-NB

FXDQ50NBVE(T)

FXDQ63NBVE(T)


Note:

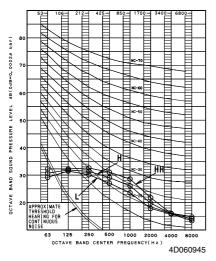
- 1. The remote controller can be used to switch between "HH", "H" and "L".
- 2. The air flow is set to "standard" before leaving the factory.
 - It is possible to switch between "standard ESP" and "high ESP" by the remote controller.

9. Sound Levels

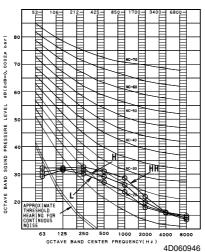
9.1 FXDQ-PB

Overall

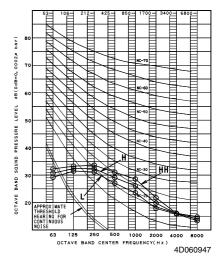
Note:


- 1. The operating conditions are assumed to be standard (JIS conditions)
- These operating values were obtained in a dead room (conversion values).
 Sound level will vary depending on a range of factors

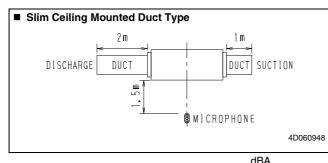
such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.


Octave Band Level

O____O 220V~240V 50Hz


FXDQ20PBVE(T)

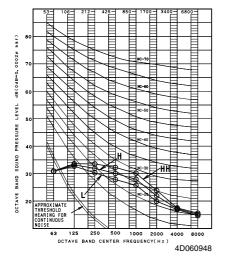
FXDQ25PBVE(T)



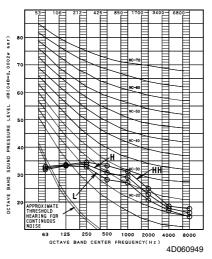
FXDQ32PBVE(T)

9.2 FXDQ-NB

Overall



			UDA
Model	22	0~240V 50	Hz
Model	HH	Н	L
FXDQ40NBVE(T)	34	32	30
FXDQ50NBVE(T)	35	33	31
FXDQ63NBVE(T)	36	34	32


Octave Band Level

○_____O 220V~240V 50Hz

FXDQ40NBVE(T)

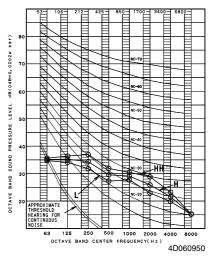
FXDQ50NBVE(T)

Note:

(JIS conditions).

room (conversion values).

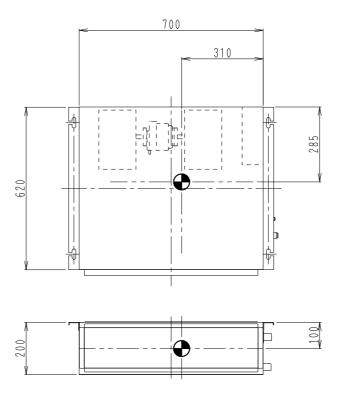
equipments installed.


FXDQ63NBVE(T)

1. The operating conditions are assumed to be standard

Sound level will vary depending on a range of factors such as the construction (acoustic absorption

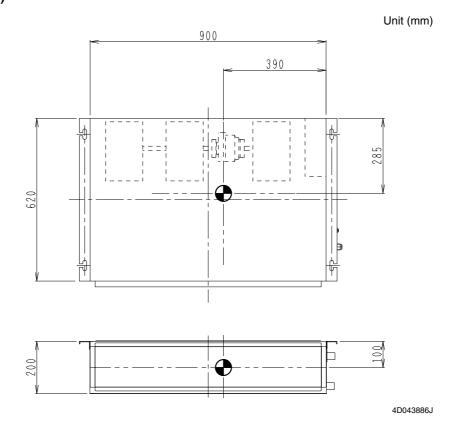
2. These operating values were obtained in a dead


coefficient) of the particular room in which the

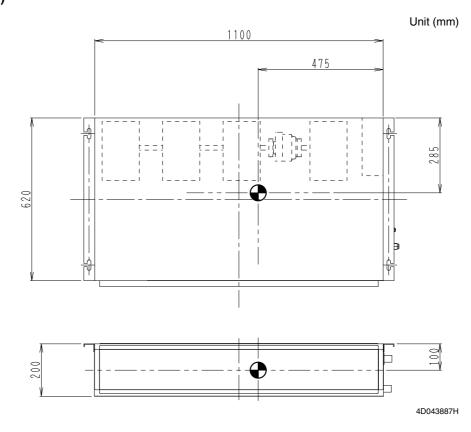
10. Center of Gravity

10.1 FXDQ-PB

FXDQ20 / 25 / 32PBVE(T)



Unit (mm)


4D049300D

10.2 FXDQ-NB

FXDQ40 / 50NBVE(T)

FXDQ63NBVE(T)

English

DAIKIN

Installation manual

CONTENTS

VRV SYSTEM Inverter Air Conditioners

1. SAFETY PRECAUTIONS	1
2. BEFORE INSTALLATION	
3. SELECTING INSTALLATION SITE .	
4. PREPARATIONS BEFORE INSTAL	LATION 4
5. INDOOR UNIT INSTALLATION	5
6. REFRIGERANT PIPING WORK	5
7. DRAIN PIPING WORK	7
8. INSTALLING THE DUCT	
9. ELECTRIC WIRING WORK	
10. WIRING EXAMPLE	
11. FIELD SETTING AND TEST RUN	

1. SAFETY PRECAUTIONS

Please read these "SAFETY PRECAUTIONS" carefully before installing air conditioning equipment and be sure to install it correctly.

After completing installation, conduct a trial operation to check for faults and explain to the customer how to operate the air conditioner and take care of it with the aid of the operation manual. Ask the customer to store the installation manual along with the operation manual for future reference.

This air conditioner comes under the term "appliances not accessible to the general public".

This unit is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. Meaning of WARNING and CAUTION notices

WARNING Failure to follow these instructions properly may result in personal injury or loss of life.

CAUTION Failure to observe these instructions properly may result in property damage or personal injury, which may be serious depending on the circumstances.

– 🥂 warning -

- Ask your dealer or qualified personnel to carry out installation work.
- Do not attempt to install the air conditioner yourself. Improper installation may result in water leakage, electric shocks or fire.
- Install the air conditioner in accordance with the instructions in this installation manual.
 Improper installation may result in water leakage, electric

shocks or fire.

- Consult your local dealer regarding what to do in case of refrigerant leakage. When the air conditioner is to be installed in a small room, it is necessary to take proper measures so that the amount of any leaked refrigerant does not exceed the concentration limit in the event of a leakage. Otherwise, this may lead to an accident due to oxygen depletion.
- Be sure to use only the specified accessories and parts for installation work.

Failure to use the specified parts may result in the unit falling, water leakage, electric shocks or fire.

• Install the air conditioner on a foundation strong enough to withstand the weight of the unit.

A foundation of insufficient strength may result in the equipment falling and causing injury.

- Carry out the specified installation work after taking into account strong winds, typhoons or earthquakes. Failure to do so during installation work may result in the unit falling and causing accidents.
- Make sure that a separate power supply circuit is provided for this unit and that all electrical work is carried out by qualified personnel according to local laws and regulations and this installation manual.

An insufficient power supply capacity or improper electrical construction may lead to electric shocks or fire.

- Make sure that all wiring is secured, the specified wires are used, and that there is no strain on the terminal connections or wires. Improper connections or securing of wires may result in abnormal heat build-up or fire.
- When wiring the power supply and connecting the remote controller wiring and transmission wiring, position the wires so that the control box lid can be securely fastened. Improper positioning of the control box lid may result in electric shocks, fire or the terminals overheating.
- If refrigerant gas leaks during installation, ventilate the area immediately.
- Toxic gas may be produced if the refrigerant comes into contact with fire.
- After completing installation, check for refrigerant gas leakage.

Toxic gas may be produced if the refrigerant gas leaks into the room and comes into contact with a source of fire, such as a fan heater, stove or cooker.

- Be sure to switch off the unit before touching any electrical parts.
- Do not touch the switch with wet fingers.
 Touching the switch with wet fingers can cause electric shock.
- Be sure to earth the air conditioner.
 De pet part the unit to a utility give lightning conductor of

Do not earth the unit to a utility pipe, lightning conductor or telephone earth lead. Imperfect earthing may result in electric shocks or fire.

A high surge current from lightning or other sources may cause damage to the air conditioner.

Be sure to install an earth leakage breaker.
 Failure to install an earth leakage breaker may result in electric shocks or fire.

- Λ caution -

• While following the instructions in this installation manual, install drain piping to ensure proper drainage and insulate piping to prevent condensation.

Improper drain piping may result in indoor water leakage and property damage.

- Install the indoor and outdoor units, power cord and connecting wires at least 1 meter away from televisions or radios to prevent picture interference and noise.
 (Depending on the incoming signal strength, a distance of 1 meter may not be sufficient to eliminate noise.)
- Remote controller (wireless kit) transmitting distance can be shorter than expected in rooms with electronic fluorescent lamps (inverter or rapid start types).
 Install the indoor unit as far away from fluorescent lamps as

Install the indoor unit as far away from fluorescent lamps as possible.

 Do not install the air conditioner in the following locations:
 Where there is a high concentration of mineral oil spray or vapour (e.g. a kitchen).
 Plastic parts will deteriorate, parts may fall off and water leakage could result.

3PN09042-1A

- Where corrosive gas, such as sulphurous acid gas, is produced.
- Corroding of copper pipes or soldered parts may result in refrigerant leakage.
- Near machinery emitting electromagnetic radiation. Electromagnetic radiation may disturb the operation of the control system and result in a malfunction of the unit.
- Where flammable gas may leak, where there is carbon fibre or ignitable dust suspensions in the air, or where volatile flammables such as paint thinner or gasoline are handled.
- Operating the unit in such conditions may result in fire. • Do not touch the heat exchanger fins.
- Improper handling may result in injury.
- Be very careful about product transportation. Some products use PP bands for packaging. Do not use any PP bands for a means of transportation. It is dangerous.
- Safely dispose of the packing materials.
 Packing materials, such as nails and other metal or wooden parts, may cause stabs or other injuries.
 Tear apart and throw away plastic packaging bags so that children will not play with them. If children play with a plastic bag which was not torn apart, they face the risk of suffocation.
- Do not turn off the power immediately after stopping operation. Always wait at least 5 minutes before turning off the power. Otherwise, water leakage and trouble may occur.
- In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Follow national standards for installation work.

2. BEFORE INSTALLATION

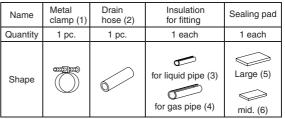
The accessories needed for installation must be retained in your custody until the installation work is completed. Do not discard them!

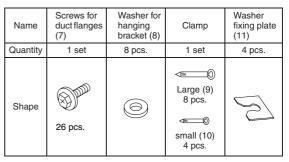
- 1. Decide upon a line of transport.
- Leave the unit inside its packaging while moving, until reaching the installation site. Where unpacking is unavoidable, use a sling of soft material or protective plates together with a rope when lifting, to avoid damage or scratches to the unit.

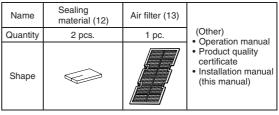
When moving the unit at or after opening, hold the unit by the hanger brackets. Do not apply force to the refrigerant piping, drain piping or flange parts.

Be sure to check the type of R410A refrigerant to be used before installing the unit.

(Using an incorrect refrigerant will prevent normal operation of the unit.)


For the installation of an outdoor unit, refer to the installation manual attached to the outdoor unit.


2-1 PRECAUTIONS


- Be sure to instruct customers how to properly operate the unit (operating different functions, and adjusting the temperature) by having them carry out operations themselves while looking at the operation manual.
- Do not install in locations where the air contains high levels of salt such as that near the ocean and where voltage fluctuates greatly such as that in factories, or in vehicles or vessels.

2-2 ACCESSORIES

Check the following accessories are included with your unit.

2-3 OPTIONAL ACCESSORIES

This indoor unit requires one of the operation remote controls listed below.

Remote	controller
Wired type	BRC1C62
Wireless type (Heat pump type/ Cooling only type)	BRC4C65/BRC4C66

FOR THE FOLLOWING ITEMS, TAKE SPECIAL CARE DURING CONSTRUCTION AND CHECK AFTER INSTALLATION IS FINISHED.

a. Items to be checked after completion of work

Items to be checked	If not properly done, what is likely to occur	Check
Are the indoor and outdoor unit fixed firmly?	The units may drop, vibrate or make noise.	
Is the gas leak test finished?	It may result in insufficient cooling.	
Is the unit fully insulated?	Condensate may drip.	
Does drainage flow smoothly?	Condensate may drip.	
Does the power supply volt- age correspond to that shown on the name plate?	The unit may malfunction or the components burn out.	
Are wiring and piping cor- rect?	The unit may malfunction or the components burn out.	
Is the unit safely grounded?	Imcomplete grounding may result in electric shocks.	
Is wiring size according to specifications?	The unit may malfunction or the components burn out.	

English

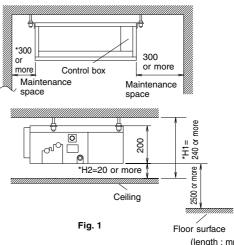
3PN09042-1A

Is something blocking the air outlet or inlet of either the indoor or outdoor units?	It may result in insufficient cooling.	
Are refrigerant piping length and additional refrigerant charge noted down?	The refrigerant charge in the system is not clear.	

Also review the "SAFETY PRECAUTIONS".

b. Items to be checked at time of delivery

Items to be checked	Check
Did you explain about operations while showing the operation manual to your customer?	
Did you hand the operation manual and warranty over to your customer?	
Did you explain about the way of maintaining and cleaning local procurements (air filter, grille (both air outlet and suc- tion grille), etc.) to your customer?	
Did you hand manuals of local procurements (in case equipped) over to your customer?	


c. Points for explanation about operations

The items with \triangle WARNING and \triangle CAUTION marks in the operation manual are the items pertaining to possibilities for bodily injury and material damage in addition to the general usage of the product. Accordingly, it is necessary that you make a full explanation about the described contents and also ask your customers to read the operation manual.

3. SELECTING INSTALLATION SITE

- Λ caution \cdot

- When moving the unit during or after unpacking, make sure to lift it by holding its lifting lugs. Do not exert any pressure on other parts, especially the refrigerant piping, drain piping and flange parts.
- If you think the humidity inside the ceiling might exceed 30°C and RH80%, reinforce the insulation on the unit body. Use glass wool or polyethylene foam as insulation so that it is no thicker than 10mm and fits inside the ceiling opening.
- (1) Select an installation site where the following conditions are fulfilled and that meets with your customer's approval.
 - Where optimum air distribution can be ensured.
 - Where nothing blocks air passage.
 - Where condensate can be properly drained.
 Where the ceiling is strong enough to bear the indoor unit weight.
 - Where the false ceiling is not noticeably on an incline.
 - Where there is no risk of flammable gas leakage.
 - Where sufficient clearance for maintenance and service
 - can be ensured. (Refer to Fig. 1)
 Where piping between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual for the outdoor unit.)

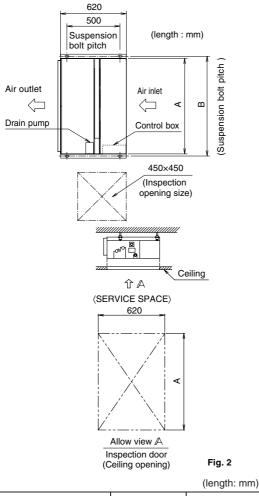
- (length : mm)
- *H1 dimension means the minimum height of the unit.
 Select the *H1, *H2 dimension such that a downward slope of at least 1/100 is ensured as indicated in "7. DRAIN PIPING WORK".
- The maintenance space marked with "*" is required when the installation box for adaptor PC board (KRP1BA101) sold separately is used.

[PRECAUTION]

- Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 m away from televisions or radios in order to prevent image interference or noise.
 (Depending on the radio waves, a distance of 1 m may not be sufficient enough to eliminate the noise.)
- If installing the wireless kit in a room with electronic fluorescent lighting (inverter or rapid start type), the remote controller's transmission distance may be shortened. Indoor units should be installed as far away from fluorescent lighting as possible.
- (2) Use suspension bolts for installation. Check whether the ceiling is strong enough to support the weight of the unit or not. If there is a risk, reinforce the ceiling before installing the unit.

(Installation pitch is marked on the carton box for installation. Refer to it to check for points requiring reinforcing.)

English


3

3PN09042-1A

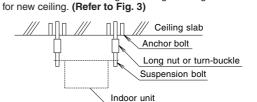
4. PREPARATIONS BEFORE INSTALLATION

(1) Confirm the positional relationship between the unit and suspension bolts. (Refer to Fig. 2)

 Install the inspection opening on the control box side where maintenance and inspection of the control box and drain pump are easy. Install the inspection opening also in the lower part of the unit.

Model	А	В
20 · 25 · 32 type	700	740
40 · 50 type	900	940
63 type	1100	1140

(2) Make sure the range of the unit's external static pressure is not exceeded.


(See the technical documentation for the range of the external static pressure setting.)

(3) Open the installation hole. (Pre-set ceilings)

 Once the installation hole is opened in the ceiling where the unit is to be installed, pass refrigerant piping, drain piping, transmission wiring, and remote controller wiring (It is not necessary if using a wireless remote controller) to the unit's piping and wiring holes.
 See "6. REFRIGERANT PIPING WORK", "7. DRAIN PIPING WORK", and "10. WIRING EXAMPLE".

PIPING WORK", and "10. WIRING EXAMPLE". After opening the ceiling hole, make sure ceiling is level if needed. It might be necessary to reinforce the ceiling

- frame to prevent shaking. Consult an architect or carpenter for details.
- (4) Install the suspension bolts. (Use W3/8 to M10 suspension bolts.) Use a hole-in-anchor for existing ceilings, and a sunken insert, sunken anchor or other part to be procured in the field to reinforce the ceiling to bearing the weight of the unit

Note: All the above parts are field supplied.

Fig. 3

- (5) For bottom intake, replace the chamber lid and protection net in the procedure listed in Fig. 4.
 - (1) Remove the protection net.(6 locations)...PBVE(T) type only
 - Remove the chamber /id. (7 locations)
 (2) Reattached the removed chamber lid in the orientation shown in Fig. 4. (7 locations) Reattached the removed protection net in the orienta-
 - tion shown in Fig. 4. (6 locations)...PBVE(T) type only
 - (3) Attach the air filter (accessory) in the manner shown in the diagram.
 - The four holes which cannot be covered by the air filter should be covered with commercially available tape.

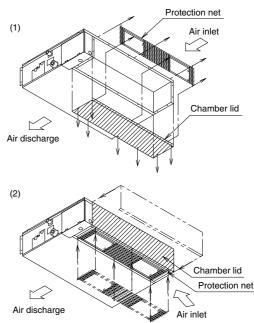
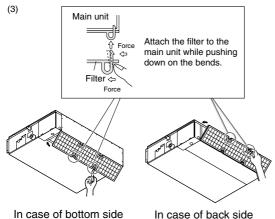
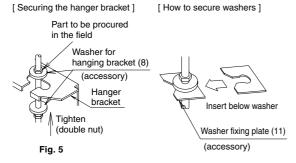



Fig. 4

3PN09042-1A

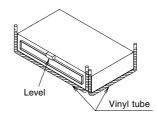


In case of bottom side

INDOOR UNIT INSTALLATION 5.

((As for the parts to be used for installation work, be sure to use the provided accessories and specified parts designated by our company.>>

- (1) Install the indoor unit temporarily.
 - Attach the hanger bracket to the suspension bolt. Be sure to fix it securely by using a nut and washer from the upper and lower sides of the hanger bracket. (Refer to Fig. 5)


[PRECAUTION]

Since the unit uses a plastic drain pan, prevent welding spatter and other foreign substances from the air outlet during installation.

(2) Adjust the height of the unit.

(3) Check the unit is horizontally level.

- · Make sure the unit is installed level using a level or a plastic tube filled with water. In using a plastic tube instead of a level, adjust the top surface of the unit to the surface of the water at both ends of the plastic tube and adjust the unit horizontally. (One thing to watch out for in particular is if the unit is installed so that the slope is not in the direction of the drain piping, this might cause leaking.)

(4) Tighten the upper nut.

REFRIGERANT PIPING WORK 6.

(For refrigerant piping of outdoor units, see the installation manual attached to the outdoor unit.>

(Execute heat insulation work completely on both sides of the gas piping and the liquid piping. Otherwise, a water leakage can result sometimes.

Use insulation that can withstand temperatures of at least 120°C. Reinforce the insulation on the refrigerant piping according to the installation environment. If the temperature above the ceiling might reach 30°C or the humidity RH80%. Condensation may form on the surface of the insulation.


CAUTION ·

Follow the points at below.

- Use a pipe cutter and flare suitable for the type of refrigerant. Apply ester oil or ether oil to the flare section when using a
- flare connection. Only use the flare nuts included with the unit. Using different flare nuts may cause the refrigerant to leak.
- To prevent dust, moisture or other foreign matter from infiltrating the piping, either pinch the end or cover it with tape.
- Do not allow anything other than the designated refrigerant to get mixed into the refrigerant circuit, such as air, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away.

(1) Connect the piping.

- The outdoor unit is charged with refrigerant.
- Be sure to use both a spanner and torque wrench together, as shown in the drawing, when connecting or disconnecting pipes to/from the unit. (Refer to Fig. 6)

- · Refer to the Table 1 for the dimensions of flare nut spaces.
- Apply ether oil or ester oil only to inner side of the flare when using flare nut connections and then turn 3 or 4 times by hand. (Refer to Fig. 7)

English

5

C: 3PN09042-1A

• Refer to Table 1 for tightening torque.

Table 1

Table I			
Pipe size	Tightening torque	Flare dimen- sion A (mm)	Flare shape
φ 6.4 (1/4")	14.2 – 17.2 N⋅m (144 – 176 kgf⋅cm)	8.7 – 9.1	
φ 9.5 (3/8")	32.7 – 39.9 N⋅m (333 – 407 kgf⋅cm)	12.8 – 13.2	°Z + 000 000 - 000 000 - 000 000 - 000 - 000
φ 12.7 (1/2")	49.5 – 60.3 N⋅m (504 – 616 kgf⋅cm)	16.2 – 16.6	
¢ 15.9 (5/8")	61.8 – 75.4 N⋅m (630 – 770 kgf⋅cm)	19.3 – 19.7	<i>,</i>

Overtightening may damage the flare and cause leaks. Be careful for oil not to adhere to any portions other than a flare part. If oil adhere to resin parts etc., there is a possibility of damaging by deterioration.

- Refer to Table 2 if no torque wrench is available. Using a wrench to tighten flare nuts causes the tightening torque to suddenly grow much tighter after a certain point. From there, tighten the nut further by the appropriate angle listed in Table 2.
- (2) After the work is finished, make sure to check that there is no gas leak.
- (3) After checking for gas leaks, be sure to insulate the pipe connections referring to Fig. 8.
 - Insulate using the insulation for fitting (3) (4) included with the liquid and gas pipes. Besides, make sure the insulation for fitting (3) (4) on the liquid and gas piping has its seams facing up.
 - (Tighten both edges with clamp (9).)
 - For the gas piping, wrap the mid. sealing pad (6) over the insulation for fitting (4) (flare nut part).

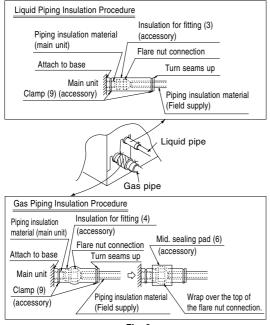
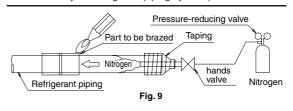


Fig. 8



Be sure to insulate any field piping all the way to the piping connection inside the unit. Any exposed piping may cause condensation or burns if touched.

 When brazing the refrigerant piping, perform nitrogen replacement first, or perform the brazing (CAUTION 2) while feeding nitrogen into the refrigerant piping (CAUTION 1), and finally connect the indoor unit using the flare connections. (Refer to Fig. 9)

- \bigwedge CAUTION \cdot

- When brazing a pipe while feeding nitrogen inside the pipe, make sure to set the nitrogen pressure to 0.02 MPa (0.2 kg/cm²) using the pressure reducing valve. (This pressure is such that breeze is blown to your cheek.)
- 2. Do not use a flux when brazing the refrigerant pipe joints. Use phosphor copper brazer (BCuP-2: JIS Z 3264/B-Cu93P-710/795: ISO 3677) which does not require flux. (Using a flux containing chlorine may cause the piping to corrode. Using a welding flux containing fluorine may cause the refrigerant lubricant to deteriorate, and affect adversely the refrigerant piping system.)

Not recommendable but in case of emergency

You must use a torque wrench but if you are obliged to install the unit without a torque wrench, you may follow the installation method mentioned below.

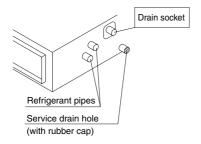
After the work is finished, make sure to check that there is no gas leak.

When you keep on tightening the flare nut with a spanner, there is a point where the tightening torque suddenly increases. From that position, further tighten the flare nut the angle shown below: Table 2

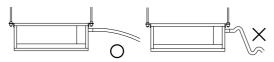
Pipe size	Further tightening angle	Recommended arm length of tool
¢ 6.4 (1/4")	60 to 90 degrees	Approx. 150mm
φ 9.5 (3/8")	60 to 90 degrees	Approx. 200mm
ф 12.7 (1/2")	30 to 60 degrees	Approx. 250mm
ф 15.9 (5/8")	30 to 60 degrees	Approx. 300mm

English

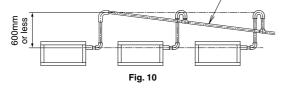
3PN09042-1A


7. DRAIN PIPING WORK

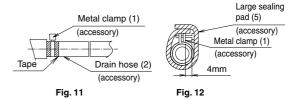
In case of PBVE, NBVE type (with drain pump)



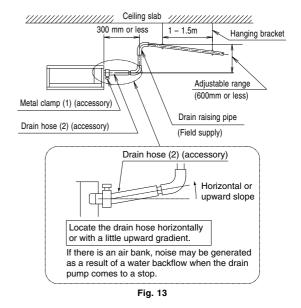
- The connection opening on the drain piping may vary depending on the model, so check the model name and use the right method for that model.
- Make sure all water is out before making the duct connection.


(1) Install the drain piping.

- Make sure the drain works properly.
- The diameter of the drain piping should be greater than or equal to the diameter of the connecting pipe (vinyl tube; pipe size: 20 mm; outer dimension: 26 mm). (not including the riser)
- Keep the drain piping short and sloping downwards at a gradient of at least 1/100 to prevent air pockets from forming. (Refer to Fig. 10)


Central drain piping (with a slope of at least 1/100)

CAUTION
 Water accumulating in the drain piping can cause the drain to clog.


- To keep the drain piping from sagging, space hanging bracket every 1 to 1.5 m.
- Use the drain hose (2) and the metal clamp (1). Insert the drain hose (2) fully into the drain socket and firmly tighten the metal clamp (1) with the upper part of the tape on the hose end. Tighten the metal clamp (1) until the screw head is less than 4 mm from the hose. (Refer to Fig. 11, 12)
- The two areas below should be insulated because condensation may form there causing water to leak.
 - Drain piping passing indoors
 - Drain socket

Referring the figure below, insulate the metal clamp (1) and drain hose (2) using the included large sealing pad (5). **(Refer to Fig. 12)**

〈 PRECAUTIONS FOR DRAIN RAISING PIPE 〉

- Make sure the drain raising pipe height is no higher than 600mm.
- Place the drain raising pipe vertically and make sure it is no further than 300mm from the unit. (Refer to Fig. 13)

〈 PRECAUTIONS 〉

Drain piping connections

- Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain piping and corrode the heat exchanger.
- Do not twist or bend the drain hose (2), so that excessive force is not applied to it.
 - (This type of treatment may cause leaking.)
- If you are using central drain piping, follow the procedure outlined in the figure 10.
- Select central drain piping of proper size according to the capacity of the connected unit.
- (2) After piping work is finished, check drainage flows smoothly, with manner described below.

- 🕂 CAUTION -

- The electric wiring work shall be performed by qualified electricians.
- If workers not having the electrician qualification have performed the electric wiring work, the steps 3 to 7 shall be performed after the **TEST RUN**.

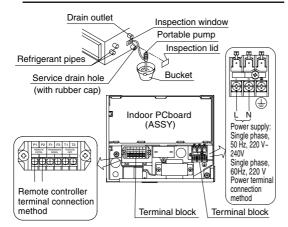
English

3PN09042-1A

1. Bemove the control box lid. Connect the remote controller and power supply (single-phase, 50 Hz 220-240 V or single-phase, 60Hz 220V) respectively to the terminal block and securely connect the earth also (as shown in the figure below)

Securely clamp the cables with the clamps (9)(10) offered as accessories as shown in Fig. 17 so that tension will not be applied on the cable connection areas

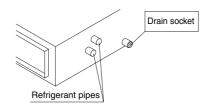
- 2. Confirm that the control box lid is closed before turning on the power.
- 3. Remove the inspection lid
- 4. Gradually pour approximately 1L of water from the inspection window into the drain pan to check drainage.



Be sure to prevent an external force from being exerted on the float switch. (This may cause breakage.)

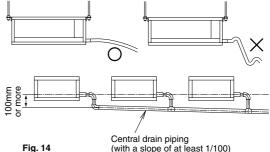
- 5. Attach the inspection lid.
- 6. Perform the following operation using the remote controller, and check drainage.
 - Select the inspection/test operation button "⁽¹⁾/_{TEST}" using the remote controller. The unit will engage the test operation. Press the operation selector button "2", and select FAN OPERATION "2".
 - Press the ON/OFF button "(1)". (The indoor fan and drain pump will operate.)

The fan will turn also at the same time. Take due care. Do not touch the drain pump to prevent electric shock.



7. Make sure to use the remote controller in finishing the operation

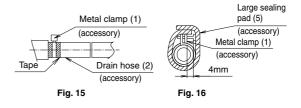
In case of PBVET, NBVET type (without drain pump)


- · The connection opening on the drain piping may vary depending on the model, so check the model name and use the right method for that model.
- · Make sure all water is out before making the duct connection.

(1) Install the drain piping.

Connect the drain pipe after removing the rubber cap and insulation tubing attached to the connection hole.

- Make sure the drain works properly.
- The diameter of the drain piping should be greater than or equal to the diameter of the connecting pipe (vinyl tube; pipe size: 20 mm; outer dimension: 26 mm). (not including the riser)
- Keep the drain piping short and sloping downwards at a gradient of at least 1/100 to prevent air pockets from forming. (Refer to Fig. 14)

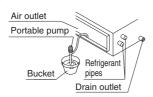


(with a slope of at least 1/100)

Water accumulating in the drain piping can cause the drain to clog.

- To keep the drain piping from sagging, space hanging bracket every 1 to 1.5 m.
- Use the drain hose (2) and the metal clamp (1). Insert the drain hose (2) fully into the drain socket and firmly tighten the metal clamp (1) with the upper part of the tape on the hose end. Tighten the metal clamp (1) until the screw head is less than 4 mm from the hose. (Refer to Fig. 15, 16)
- · The two areas below should be insulated because condensation may form there causing water to leak.
 - Drain piping passing indoors
 - Drain socket

Referring the figure below, insulate the metal clamp (1) and drain hose (2) using the included large sealing pad (5). (Refer to Fig. 16)


English

3PN09042-1A

〈 PRECAUTIONS 〉

Drain piping connections

- Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain piping and corrode the heat exchanger.
- Do not twist or bend the drain hose (2), so that excessive force is not applied to it.
- (This type of treatment may cause leaking.)
- If you are using central drain piping, follow the procedure outlined in the figure 14.
- Select central drain piping of proper size according to the capacity of the connected unit.
- (2) After piping work is finished, check drainage flows smoothly, with manner described below.

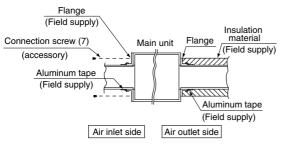
- Gradually pour approximately 1L of water from the outlet hole into the drain pan to check drainage.
- Check the drainage.

8. INSTALLING THE DUCT

Connect the duct supplied in the field.

Air inlet side

- Attach the duct and intake-side flange (field supply).
- Connect the flange to the main unit with accessory screws (7).


()			
Class	20 · 25 · 32	40 · 50	63
Number of positions	16	22	26

 Wrap the intake-side flange and duct connection area with aluminum tape or something similar to prevent air escaping.

When attaching a duct to the intake side, be sure to attach an air filter inside the air passage on the intake side. (Use an air filter whose dust collecting efficiency is at least 50% in a gravimetric technique.)

The included filter is not used when the intake duct is attached.

Air outlet side

- Connect the duct according to the air inside of the outlet-side flange.
- Wrap the outlet-side flange and the duct connection area with aluminum tape or something similar to prevent air escaping.

- Be sure to insulate the duct to prevent condensation from forming. (Material: glass wool or polyethylene foam, 25 mm thick)
- Use electric insulation between the duct and the wall when using metal ducts to pass metal laths of the net or fence shape or metal plating into wooden buildings.
- Be sure to explain about the way of maintaining and cleaning local procurements (air filter, grille (both air outlet and suction grille), etc.) to your customer.

9. ELECTRIC WIRING WORK

9-1 GENERAL INSTRUCTIONS

- Shut off the power before doing any work.
- All field supplied parts and materials, electric works must conform to local codes.
- Use copper wire only.
- See also the "Wiring Diagram plate" attached to the control box lid when laying electrical wiring.
- For details on hooking up the remote controller, refer to the "REMOTE CONTROLLER INSTALLATION MANUAL".
- All wiring must be performed by an authorized electrician.
- This system consists of multiple indoor units. Mark each indoor unit as unit A, unit B..., and be sure the terminal board wiring to the outdoor unit and BS unit are properly matched. If wiring and piping between the outdoor unit and an indoor unit are mismatched, the system may cause a malfunction.
- A circuit breaker capable of shutting down power supply to the entire system must be installed.
- Refer to the installation manual attached to the outdoor unit for the size of power supply wiring connected to the outdoor unit, the capacity of the circuit breaker and switch, and wiring instructions.
- · Be sure to ground the air conditioner.
- Do not the earth wire should come in contact with gas pipes, water pipes, lightning rods, or telephone earth wires.
 - · Gas pipes: gas leaks can cause explosions and fire
 - Water pipes: they cannot be grounded if hard vinyl pipes are used.
- Telephone earth wire and lightning rods: the ground potential when struck by lightning gets extremely high.
- To avoid short circuiting the power supply wire, be sure to use insulated terminals.
- Do not turn on the power supply (circuit breaker or earth leakage breaker) until all other work is done.

9-2 SPECIFICATIONS FOR FIELD SUPPLIED FUSES AND WIRE

Power-related

	Power supply wiring (including earth wire)			
Model	Number of units	Field fuses ───	Wire	Size
20 · 25 · 32 type		1 15A	H05VV-U3G (NOTE 1)	Size must comply with
40 · 50 type	1			
63 type			(local codes.

Model	Transmission wiring Remote controller wiring		
	Wire	Size (mm ²)	
20 · 25 · 32 type		0.75 - 1.25	
40 · 50 type	Sheathed vinyl cord or cable (2 wires) (NOTE 2)		
63 type			

9

3PN09042-1A

NOTES

- 1. Shows only in case of protected pipes. Use H07RN-F in case of no protection.
- 2. Insulated thickness : 1mm or more.
- If the wiring is in a place where people it can be easily touched by people, install an earth leakage breaker to prevent electric shock.
- When using an earth leakage breaker, make sure to select one useful also to protection against overcurrent and shortcircuit.

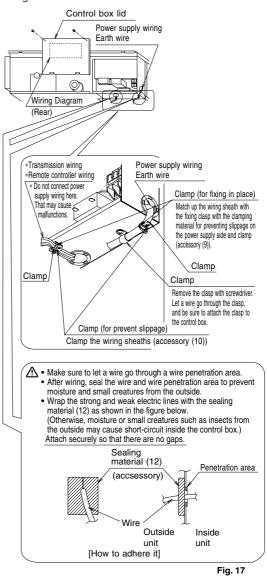
When using an earth leakage breaker only for earth device, make sure to use a wiring interrupter together.

 The length of the transmission wiring and remote controller wiring are as follows.

Length of the transmission wiring and remote controller wiring

	Outdoor unit – Indoor unit	Max. 1000m (Total wiring length: 2000m)	
Г	Indoor unit – Bemote controller	Max 500m	

9-3 ELECTRICAL CHARACTERISTICS


Units			Power supply		Fan motor		
Model	Hz	Volts	Voltage range	MCA	MFA	KW	FLA
20 · 25 · 32 PBVE				0.8		0.062	0.6
20 · 25 · 32 PBVET	50	50 220- 240	Min. 198 Max. 264	0.7	15	0.062	0.6
40 NBVE(T)				1.0		0.062	0.8
50 NBVE(T)				1.0		0.13	0.8
63 NBVE(T)				1.1		0.13	0.9
20 · 25 · 32 PBVE			Min. 198 Max. 242	0.9		0.062	0.7
20 · 25 · 32 PBVET				0.8		0.062	0.7
40 NBVE(T)	60	60 220		1.1	15	0.062	0.9
50 NBVE(T)				1.3		0.13	1.0
63 NBVE(T)				1.4		0.13	1.1

MCA: Minimum Circuit Amps (A) MFA:Max. Fuse Amps (A) KW: Fan motor output (kW) FLA:Full Load Amps (A)

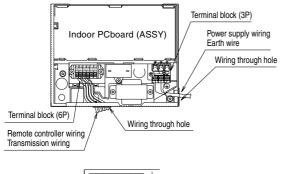
10. WIRING EXAMPLE

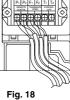
10-1 HOW TO CONNECT WIRINGS

• Wire only after removing the control box lid as shown in Fig. 17.

$-\underline{\land}$ caution \cdot

- When clamping the wiring, use the included clamp material (9) and (10) as shown in the Fig.17 to prevent outside pressure being exerted on the wiring connections and clamp firmly.
- Be sure to attach power supply wiring and earth wire to the control box with the clamp.
- When doing the wiring, make sure the wiring is neat and does not cause the control box lid to stick up, then close the cover firmly. When attaching the control box lid, make sure you do not pinch any wires.
- Outside the air conditioners, separate the weak wiring (remote controller and transmission wiring) and strong wiring (earth wire and power supply wiring) at least 50 mm so that they do not pass through the same place together. Proximity may cause electrical interference, malfunctions, and breakage.


Enalish


3PN09042-1A

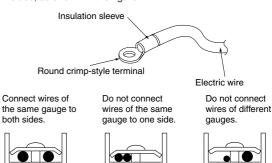
[PRECAUTIONS]

- Refer to the "REMOTE CONTROLLER INSTALLATION MANUAL" on how to install and lay the wiring for the remote controller.
- See also the "Wiring Diagram plate" attached to the control box lid when laying electrical wiring.
- Connect the remote controller and transmission wiring their respective terminal blocks.
- Do not, under any circumstances, connect the power supply wiring to the remote controller or transmission wiring terminal block. Doing so can destroy the entire system.

[Connecting electrical wiring, remote controller wiring, and transmission wiring] (Refer to Fig. 18)

• Power supply and Earth wiring Remove the control box lid.

Next, pull the wires into the unit through the wiring through hole and connect to the terminal block (3P).

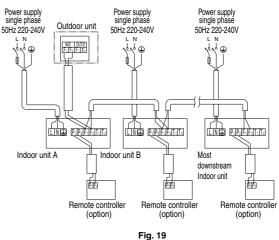

Be sure to put the part of the sheathed vinyl into the control box.

Remote controller and transmission wiring
 Pull the wires into the unit through the wiring through hole
 and connect to the terminal block (6P).

 Be sure to put the part of the sheathed vinyl into the control
 box.

<Precautions when laying power supply wiring >

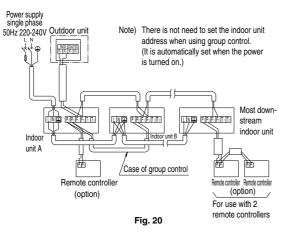
 Wiring of different thicknesses cannot be connected to the power supply wiring terminal block. (Slack in the power supply wiring may cause abnormal heat.) Use sleeve-insulated round crimp-style terminals for connections to the power supply wiring terminal block. When none are available, connect wires of the same diameter to both sides, as shown in the figure.


Follow the instructions are below if the wiring may get very hot due to slack in the power supply wiring.

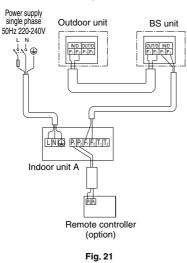
- For wiring, use the designated power supply wiring and connect firmly, then secure to prevent outside pressure being exerted on the terminal board.
- Use the correct screwdriver for tightening the terminal screws. If the blade of screwdriver is too small, the head of the screw might be damaged, and the screw will not be properly tightened.
- If the terminal screws are tightened too hard, screws might be damaged.
- Refer to the table below for the tightening torque of the terminal screws.

Terminal block	Tightening torque (N·m)
Remote controller / transmission wiring terminal block (6P)	0.79 – 0.97
Power supply wiring terminal block (3P)	1.18 – 1.44

[WIRING EXAMPLE]


No. 1 system When using 1 remote controller for 1 indoor unit

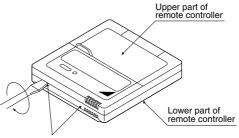
English


11

3PN09042-1A

No. 2 system For group control or use with 2 remote controllers

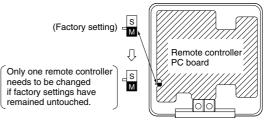
No. 3 system When including BS unit


10-2 CONTROL BY 2 REMOTE CONTROLLERS (Controlling 1 indoor unit by 2 remote controllers)

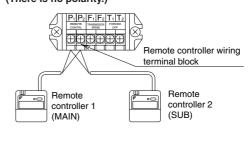
 When using 2 remote controllers, one must be set to "MAIN" and the other to "SUB".

MAIN/SUB CHANGEOVER

 Insert a
 ⇒ screwdriver into the recess between the upper and lower part of remote controller and, working from the 2 positions, pry off the upper part (2 locations).


The remote controller PC board is attached to the upper part of remote controller.

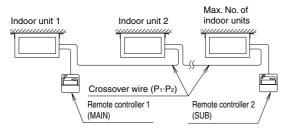
Insert the screwdriver here and gently work off the upper part of remote controller.


(2) Turn the MAIN/SUB changeover switch on one of the two remote controller PC boards to "S".

(Leave the switch of the other remote controller set to "M".)

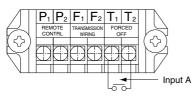
Wiring Method (See "9. ELECTRIC WIRING WORK")

- (3) Remove the control box lid.
- (4) Add remote controller 2 (SUB) to the terminal block for remote controller (P₁, P₂) in the control box. (There is no polarity.)



English

3PN09042-1A

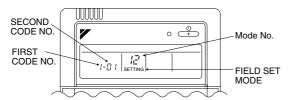

[PRECAUTIONS]

- Crossover wiring is needed when using group control and 2 remote controllers at the same time.
- Connect the indoor unit at the end of the crossover wire (P₁, P₂) to remote controller 2 (SUB).

10-3 REMOTE CONTROL (FORCED OFF AND ON/ OFF OPERATION)

- Connect input lines from the outside to the terminals T₁ and T₂ on the terminal block (6P) for remote controller to achieve remote control.
- See the "11. FIELD SETTING AND TEST RUN" for details on operation.

Wire specification	Sheathed vinyl cord or cable (2 wires)
Gauge	0.75 - 1.25 mm ²
Length	Max. 100 m
External terminal	Contact that can ensure the minimum applica- ble load of 15 V DC, 1 mA.


10-4 CENTRALIZED CONTROL

 For centralized control, it is necessary to designate the group No. For details, refer to the manual of each optional controllers for centralized control.

11. FIELD SETTING AND TEST RUN

 $\langle Field \mbox{ settings may have to be performed using the remote controller, depending on the type of installation.} \rangle$

- (1) Make sure the control box lids are closed on the indoor and outdoor units.
- (2) Depending on the type of installation, make the field settings from the remote controller after the power is turned on, following the "Field Settings" manual which came with the remote controller.
 - The settings can select "Mode No.", "FIRST CODE NO." and "SECOND CODE NO.".
 - The "Field Settings" included with the remote controller lists the order of the settings and method of operation.

 Lastly, make sure the customer keeps the "Field Settings" manual, along with the operating manual, in a safe place.

English

11-1 SETTING THE STATIC PRESSURE SELECTION

 Select the SECOND CODE NO. for the resistance of the connected duct.

(The SECOND CODE NO. is set to "01" when shipped.) • See the technical documentation for details.

External static pressure	Mode No.	FIRST CODE NO.	SECOND CODE NO.
Standard (10Pa)			01
High static pres- sure setting (30Pa)	13(23)	5	02

11-2 REMOTE CONTROL SETTING

 Forced off and ON/OFF operation should be selected by selecting the SECOND CODE NO. as shown in the table below.

(The SECOND CODE NO. is set to "01" when shipped.)

			•• /
External ON/OFF input	Mode No.	FIRST CODE NO.	SECOND CODE NO.
Forced off	12(22)	1	01
ON/OFE operation	12(22)	1	02

 Input A of forced off and ON/OFF operation work as shown in the table below.

Forced off	ON/OFF operation
	Unit operated by changing input A from "off" to "on"
	Unit stopped by changing input A from "on" to "off"

11-3 SETTING THE FILTER SIGN DISPLAY INTERVAL

- Explain the following to the customer if the filter dirt settings have been changed.
- The filter sign display time is set to 2500 hours (equivalent to 1 year's use) when shipped.
- The settings can be changed to not display.
- When installing the unit in a place with much dusts, set the filter sign display time to shorter intervals (1,250 hours).
- Explain it to the customer that the filter needs to be cleaned regularly to prevent clogging and also the time that is set.

Mode No.	FIRST	SECOND CODE NO.		
		01	02	
	0	Filter dirt	low	high
10 (20)	1 (low/high)	Displayed time (units: hours)	2500/ 1250	10000/ 5000
	3	Filter sign display	ON	OFF

3PN09042-1A

11-4 SETTINGS FOR SEPARATELY SOLD ACCESSORIES

• See the instruction manuals included with separately sold accessories for the necessary settings.

(When using a wireless remote controller)

 A wireless remote controller address needs to be set when using a wireless remote controller. See the installation manual included with the wireless remote controller for details on how to make the settings.

(3) Perform a test run according to the outdoor unit's installation manual.

 The operation lamp of the remote controller will flash when a malfunction occurs. Check the malfunction code on the liquid crystal display to identify the point of trouble. An explanation of malfunction codes and the corresponding trouble is provided in "CAUTION FOR SERVICING" of the outdoor unit.

If the display shows any of the following, there is a possibility that the wiring was done incorrectly or that the power is not on, so check again.

Remote control display	Content
"🗼" display	• There is a short circuit at the FORCED OFF terminals (T ₁ , T ₂).
" <u>[]</u>]" display	The test-run has not been performed.
" <i>냅닉</i> " display " <i>냅片</i> " display	 The power on the outdoor unit is off. The outdoor unit has not been wired for power supply. Wiring is incorrect for the transmission wiring and / or FORCED OFF wiring. The transmission wiring is cut.
" <i>i_¦l</i> ≓" display	 Reversed transmission wiring
No display	 The power on the indoor unit is off. The indoor unit has not been wired for power supply. Wiring is incorrect for the remote con- troller wiring, the transmission wiring and / or the FORCED OFF wiring. The remote controller wiring is cut.

- \land caution

- Always stop the test run using the remote controller to stop operation.
- (4) After finishing the test run, make sure to check drainage in the drain pump according to "7. DRAIN PIPING WORK".

English

12. Accessories

12.1 FXDQ-PB, FXDQ-NB

Standard Accessories

Name	Metal clamp (1)	Drain hose (2)	Insulation for fitting	Sealing pad	Screws for duct flanges (7)	Washer for hanging bracket (8)	Clamp
Quantity	1 pc.	1 pc.	1 each	1 each	1 set	8 pcs.	1 set
Shape		0	for liquid pipe (3) for gas pipe (4)	Large (5)	کی ک	0	 ✓ □□□ (9) 8 pcs. ✓ □□ (10) 4 pcs.

Name	Washer fixing plate (11)	Sealing material (12)	Air filter (13)		
Quantity	4 pcs.	2 pcs.	1 pc.	(Other)	
Shape	Z			 Operation manual Product quality certificate Installation manual (this manual) 	

Optional Accessories (For Unit)

Туре Item	FXDQ20PBVE (T) FXDQ25PBVE (T) FXDQ32PBVE (T)	FXDQ40NBVE (T) FXDQ50NBVE (T)	FXDQ63NBVE (T)
Insulation kit for high humidity	KDT25N32	KDT25N50	KDT25N63

C : 4D060939

3PN09042-1A

Optional Accessories (for Controls)

Item		Туре	FXDQ20PBVE (T) FXDQ25PBVE (T) FXDQ32PBVE (T)	FXDQ40NBVE (T) FXDQ50NBVE (T)	FXDQ63NBVE (T)	
Demote controller	Wired			BRC1C62		
Remote controller	Wireless	C/O		BRC4C66		
Wired remote controller with weekly schedule timer				BRC1D61		
Simplified remote controller (Exposed type)				BRC2C51		
Remote controller for hotel use (Concealed type)				BRC3A61		
Adaptor for wiring				KRP1B56		
Wiring adaptor for electrical appendices (1)			KRP2A53			
Wiring adaptor for electrical appendices (2)			KRP4A54			
Remote sensor			KRCS01-1B			
Installation box for adaptor PCB			KRP1BA101			
Central remote controller			DCS302CA61			
	2 blocks		KJB212AA			
Electrical box with earth terminal	3 blocks		KJB311AA			
Unified ON / OFF controller			DCS301BA61			
Noise filter (for electromagnetic interface use only)			KEK26-1A			
Schedule timer	Schedule timer		DST301BA61			
External control adaptor for outdoor unit (Must be installed on indoor units)			DTA104A53			

C:4D060939

KDT25N32 / 50 / 63 – Insulation Kit for High Humidity Dimensions Unit: mm THERMAL INSULATION(2) FOR SIDE PLATE (t10) 1 SHEET THERMAL INSULATION FOR BOTTOM PLATE(t10) 1 SHEET THERMAL INSULATION FOR TOP(1)(2) AND CHANBER(t10) 1 SHEET EACH FOR TOP AND CHANBER ADHESIVE (WITH JAPANESE PAPER) ADHESIVE (WITH JAPANESE PAPER) ADHESIVE (WITH JAPANESE PAPER) 207 9 AC 25 \$3 H 86. r RELEASED PAPER RELEASED PAPER RELEASED PAPER PERFORA 100 <u>slit</u> 80 126.5 AB AB AA SLIT AA 240 THERMAL INSULATION FOR HUNG PLATE(RIGHT) (t5) 1 SHEET 40THERMAL INSULATION(1) FOR SIDE PLATE (t10) 2 SHEETS 40 ADHESIVE (WITH JAPANESE PAPER) SLIT SLIT ADHESIVE (WITH JAPANESE PAPER) PERFORATION 280 Model Part Name AA AB AA KDT25N32 700 350 380 RELEASED PAPER 47 FOR TOP PLATE1 4 69 FOR TOP PLATE2 700 350 240 ĆŲ 390 207 el f FOR BOTTOM PLATE 704 352 420 621 310 200 FOR CHANBER 3 8 RELEASED PAPER KDT25N50 FOR TOP PLATE1 900 450 380 900 450 240 FOR TOP PLATE2 110 105 THERMAL INSULATION FOR HUNG PLATE(LEFT) (t5) 1 SHEET FOR BOTTOM PLATE 904 452 420 PERFORATION 821 410 200 FOR CHANBER <u>slit</u> 380 ADHESIVE (WITH JAPANESE PAPER) KDT25N63 FOR TOP PLATE1 1100 550 380 PERFORATION FOR TOP PLATE2 1100 550 240 Je FOR BOTTOM PLATE 1104 552 420 RELEASED PAPER FOR CHANBER 1021 510 200 69 390

Accessories

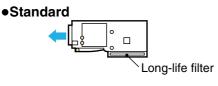
Item	Model	KDT25N32	KDT25N50	KDT25N63	
Material		Foam polyethylene (with Japanese paper)			

Installation manual

FXDQ-PB / FXDQ-NB

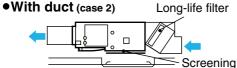
FXSQ-M Ceiling Mounted Built-In Type

1.	Features	202
2.	Specifications	205
3.	Dimensions	208
4.	Piping Diagrams	216
5.	Wiring Diagrams	217
6.	Electric Characteristics	218
7.	Capacity Tables	219
	7.1 Cooling Capacity	219
8.	Fan Performances	220
	8.1 50Hz	220
9.	Sound Levels	221
10	Installation	223
11	Accessories	226


1. Features

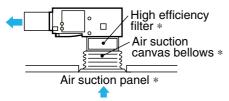
A highly flexible air-conditioning system that is adaptable to a wide range of needs, and is designed to facilitate maintenance while providing a high-quality environment.

Offers freedom of development for the body, outlets and inlets, and wide variety of optional functions, and gives you the freedom to choose the best set-up according to conditions and needs such as interior and layout design, maintenance, etc.

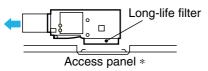


Installation Examples (*Optional Parts)

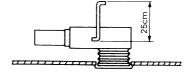




Access panel * door *



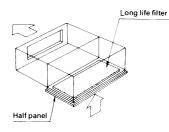
• Cassette style (high efficiency filter)



Ceiling return

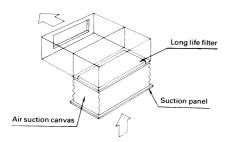
- In addition to regular ducts, layout is unrestricted and design is easy. You can also use flexible ducts that do not require the duct work of regular ducts.
- Offers a selection of nine models ranging from 20 class (equivalent to 0.8 HP) to Maximum 125 class (equivalent to 5 HP).

- All models feature thin design (350 mm height) making them applicable to ceiling pockets that tend to be shallow.
- Lets you set external static pressure in three stages ranging from max. 10 to min. 2 mm H₂O (2 stages, min. 4 mm H₂O for 80 class) according to conditions such as duct height or whether a high-efficiency filter is used, etc.
- Equipped with a programmed drying mechanism that dehumidifies while inhibiting changes in room temperature
- Includes as standard equipment a long-life filter that is maintenance-free for approximately one year. (Treated to mold resistant.)
- Includes as standard equipment drain pump kit that makes possible draining in the upward direction up to 250 mm from the drain pipe opening.


 Quiet-type air-conditioner doesn't destroy the quiet mood of your office.

Capacity	20	25	32	40	50	63	80	100	125
	type								
Operating sound (dBA)	37/32	37/32	38/32	38/32	41/36	42/35	43/37	43/37	46/41

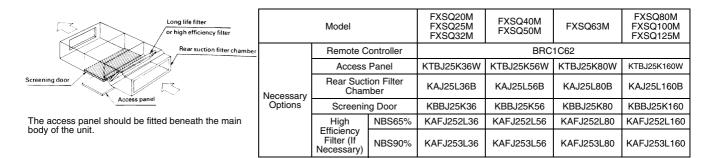
- Two types of high-efficiency filters, 65% and 90% (colorimetric method) are available. (Cannot be used if using rear suction type.)
- Suction half panel is thin and unimposing. Ceiling materials adhere to its surface and it provides an excellent finishing touch for the ceiling.
- A wide variety of optional accessories are available such as an auxiliary electric heater (except cooling only).
- If using duct air mounting, please consult with the local fire department for auxiliary heater installation.


Example of Installation (Built-In)

Direct installation of half panel

	Model		FXSQ40M FXSQ50M	FXSQ63M	FXSQ80M FXSQ100M FXSQ125M		
Necessary	Remote Controller	BRC1C62					
Options	Half Panel	BYBS32DJW1	BYBS45DJW1	BYBS71DJW1	BYBS125DJW1		

Installation of Half panel and suction canvas

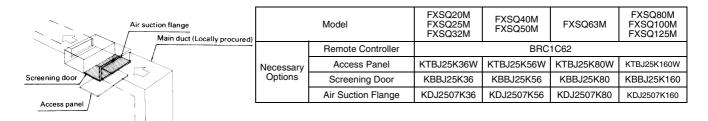


	Model		FXSQ40M FXSQ50M	FXSQ63M	FXSQ80M FXSQ100M FXSQ125M		
	Remote Controller	BRC1C62					
Necessary Options	Half Panel	BYBS32DJW1	BYBS45DJW1	BYBS71DJW1	BYBS125DJW1		
optione	Air Suction Canvas	KSA-25K36	KSA-25K56	KSA-25K80	KSA-25L160		

■ Installation like ceiling mounted cassette type with High efficiency filter

	Model			FXSQ20M FXSQ25M FXSQ32M	FXSQ40M FXSQ50M	FXSQ63M	FXSQ80M FXSQ100M FXSQ125M
		Remote Controller		BRC1C62			
Air suction canvas	Necessary Options	Half Panel		BYBS32DJW1	BYBS45DJW1	BYBS71DJW1	BYBS125DJW1
			NBS65%	KAFJ252L36	KAFJ252L56	KAFJ252L80	KAFJ252L160
Suction panel			NBS90%	KAFJ253L36	KAFJ253L56	KAFJ253L80	KAFJ253L160
High efficiency filter		Air Suction		KSA-25K36	KSA-25K56	KSA-25K80	KSA-25L160
		Bottom Suction Filter Chamber		KAJ25L36D	KAJ25L56D	KAJ25L80D	KAJ25L160D

Installation with duct (A)



Ceiling return

	Model		FXSQ20M FXSQ25M FXSQ32M	FXSQ40M FXSQ50M	FXSQ63M	FXSQ80M FXSQ100M FXSQ125M
	Necessary	Remote Controller	BRC1C62			
	Options	Access Panel	KTBJ25K36W	KTBJ25K56W	KTBJ25K80W	KTBJ25K160W
Access panel						

The access panel should be fitted beneath the main body of the unit.

Installation with duct (B)

The access panel should be fitted beneath the main body of the unit.

2. Specifications

Ceiling Mounted Built-In Type

Model		FXSQ20MVE	FXSQ25MVE	FXSQ32MVE		
*1 Cooling Capacity (19.5°CWB) kcal/h Btu/h kW		2,000 2,500		3,200		
		7,800 9,900		12,600		
		2.3 2.9		3.7		
*2 Cooling Capacity (19.0°CWB) kW		2.2 2.8		3.6		
Casing			Galvanized Steel Plate Galvanized Steel Plate		Galvanized Steel Plate	
Dimensions:	Dimensions: (H×W×D) mm		300×550×800	300×550×800	300×550×800	
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75	
Fin Coil)	Face Area	m²	0.088	0.088	0.088	
	Model		D18H3A	D18H3A	D18H3A	
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	
Fan	Motor Output × Number of Units	w	50×1	50×1	50×1	
	Air Flow Rate (H/L)	m³/min	9/6.5 9/6.5		9.5/7	
	AIT FIOW Rate (H/L)	cfm	318/230 318/230		335/247	
	*3 External Static Pressure	Pa	88-39-20	88-39-20	64-39-15	
	Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorbing Thermal Insulation Material			Glass Fiber	Glass Fiber	Glass Fiber	
Air Filter	Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	
Machine Weight (Mass) kg		30	30	30		
*5 Sound Level (H/L) (220V) dBA		37/32	37/32	38/32		
Safety Device	25		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series		
	Model		BYBS32DJW1	BYBS32DJW1	BYBS32DJW1	
Decoration Panel (Option)	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	
	Dimensions: (H×W×D)	mm	55×650×500	55×650×500	55×650×500	
	Weight	kg	3	3	3	
Standard Accessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.		
Drawing No.			C : 3D039431			

Note:

*1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.
 *2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.

*3 External static pressure is changeable to change over the connectors inside electrical box, this pressure means

"High static pressure-Standard -Low static pressure".

4 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat.

*5 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. These values are normally somewhat higher during actual operation as a result of ambient conditions.

6 Refer to page 218 for Fan Motor Input.

6

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Built-In Type

Model		FXSQ40MVE FXSQ50MVE		FXSQ63MVE		
*1 Cooling Capacity (19.5°CWB) kcal/h Btu/h kW		4,000 5,000		6,300		
		16,000 19,800		24,900		
		4.7 5.8		7.3		
*2 Cooling Capacity (19.0°CWB) kW		4.5 5.6		7.1		
Casing			Galvanized Steel Plate	Galvanized Steel Plate Galvanized Steel Plate		
Dimensions:	(H×W×D)	mm	300×700×800	300×700×800 300×700×800		
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75	
Fin Coil)	Face Area	m²	0.132	0.132	0.221	
	Model		D18H2A	D18H2A	2D18H2A	
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	
Fan	Motor Output × Number of Units	W	65×1	85×1	125×1	
		m³/min	11.5/9 15/11		21/15.5	
	Air Flow Rate (H/L)	cfm	406/318	530/388	741/547	
	*3 External Static Pressure	Pa	88-49-20	88-59-29	88-49-20	
	Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorbing Thermal Insulation Material			Glass Fiber	Glass Fiber	Glass Fiber	
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)	
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	§12.7 (Flare Connection)	φ15.9 (Flare Connection)	
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	
Machine Weight (Mass) kg		kg	30	31	41	
*5 Sound Level (H/L) (220V) dBA		38/32	41/36	42/35		
Safety Devices			Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	
Refrigerant C	Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable Outdoor Unit			R-410A PA Series	R-410A PA Series	R-410A PA Series	
	Model		BYBS45DJW1	BYBS45DJW1	BYBS71DJW1	
Decoration Panel (Option)	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	
	Dimensions: (H×W×D)	mm	55×800×500	55×800×500	55×1,100×500	
	Weight kg		3.5	3.5	4.5	
Standard Accessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.		
Drawing No.			C : 3D039431			

Note:

*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*3 External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard -Low static pressure".

4 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat.

*5 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. These values are normally somewhat higher during actual operation as a result of ambient conditions.

6 Refer to page 218 for Fan Motor Input.

Conversion Formulae kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

Ceiling Mounted Built-In Type

Model			FXSQ80MVE	FXSQ100MVE	FXSQ125MVE	
*1 Cooling Capacity (19.5°CWB) kW		8,000	8,000 10,000			
		31,700 39,600		49,500		
		9.3 11.6		14.5		
*2 Cooling Capacity (19.0°CWB) kW		9.0 11.2		14.0		
Casing			Galvanized Steel Plate Galvanized Steel Plate		Galvanized Steel Plate	
Dimensions:	(H×W×D)	mm	300×1,400×800	300×1,400×800	300×1,400×800	
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.75	3×14×1.75	3×14×1.75	
Fin Coil)	Face Area	m²	0.338	0.338	0.338	
	Model		3D18H2A	3D18H2A	3D18H2A	
Fan	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	
	Motor Output × Number of Units	W	225×1	225×1	225×1	
	Air Flow Rate (H/L)	m³/min	min 27/21.5 28/22		38/28	
	AIT FIOW Hale (H/L)	cfm	953/759 988/777		1,341/988	
	*3 External Static Pressure	Pa	113-82	107-75	78-39	
	Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorbing Thermal Insulation Material			Glass Fiber	Glass Fiber	Glass Fiber	
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	
	Liquid Pipes	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	
Piping	Gas Pipes	mm	§15.9 (Flare Connection)	§15.9 (Flare Connection)	φ15.9 (Flare Connection)	
Connections	Drain Pipe	mm	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	VP25 (External Dia. 32 Internal Dia. 25)	
Machine Weight (Mass) kg		51	51	52		
*5 Sound Level (H/L) (220V) dBA		dBA	43/37	43/37	46/41	
Safety Devic	es		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	
Refrigerant C	Control		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable	Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series	
Decoration Panel (Option)	Model		BYBS125DJW1	BYBS125DJW1	BYBS125DJW1	
	Panel Color		White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)	
	Dimensions: (H×W×D)	mm	55×1,500×500	55×1,500×500	55×1,500×500	
	Weight	kg	6.5	6.5	6.5	
Standard Accessories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Screws. Washers.		
Drawing No.			C : 3D039431			

Note:

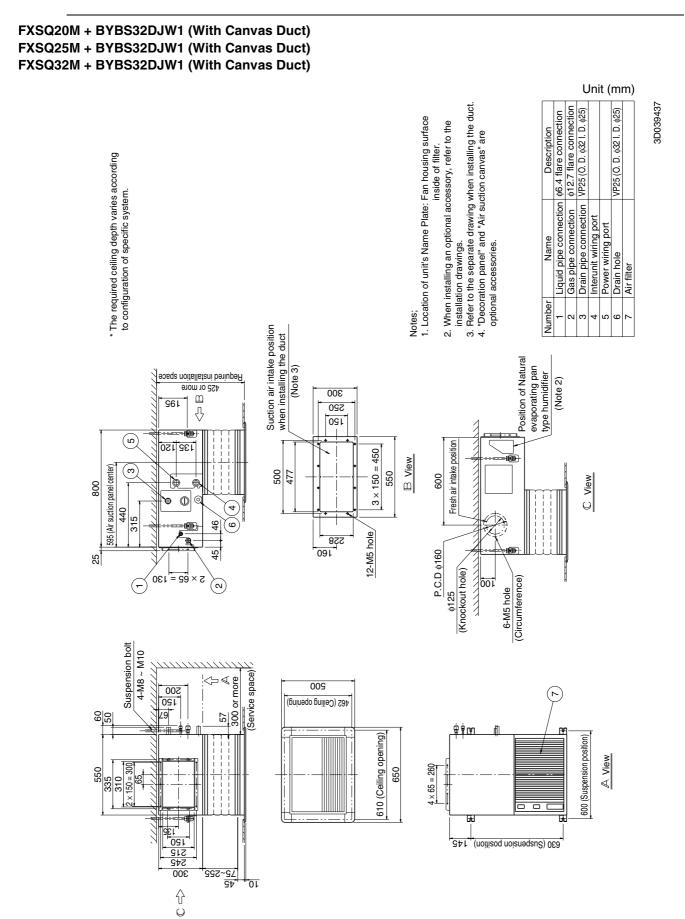
*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

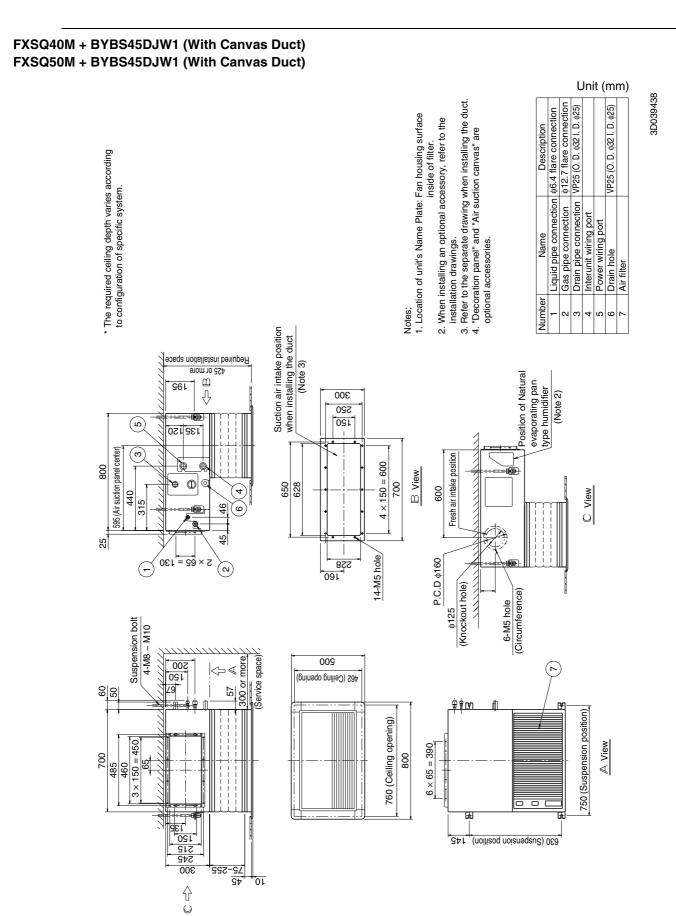
*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 *3 External static pressure is changeable to change over the connectors inside electrical box, this pressure means

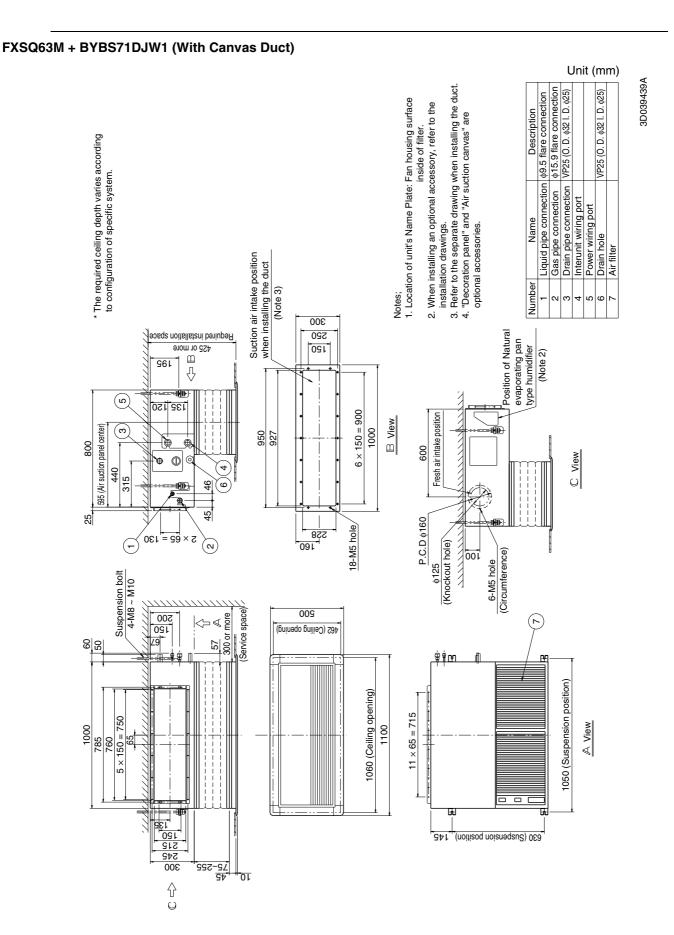
"J External static pressure is changeable to change over the connectors inside electrical box, this pressure means "High static pressure-Standard".

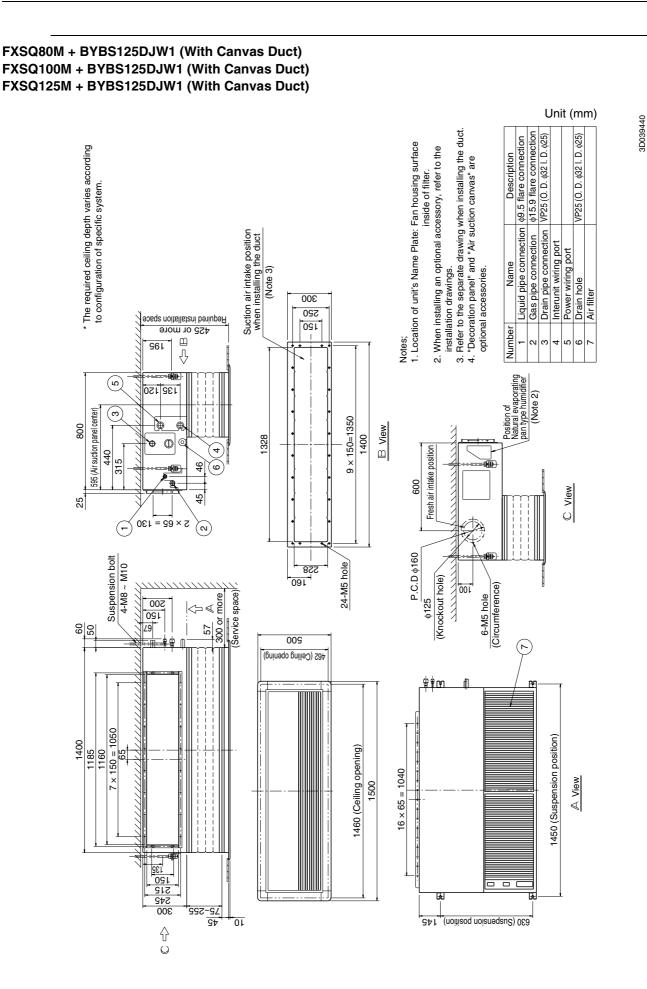
4 Capacities are net, including a deduction for cooling (an additional for heating) for indoor fan motor heat.

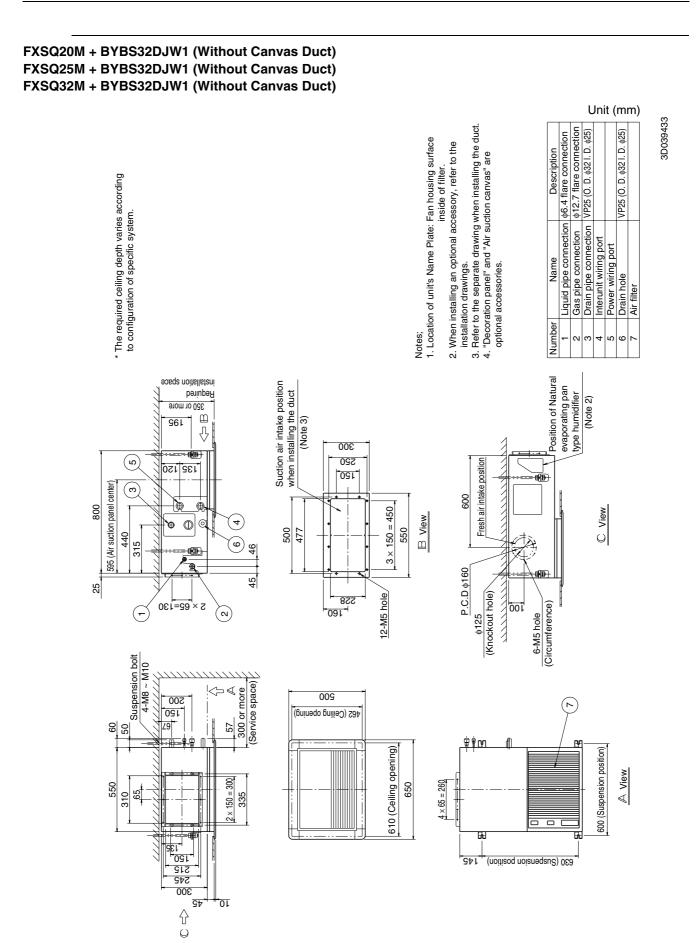
*5 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. These values are normally somewhat higher during actual operation as a result of ambient conditions.

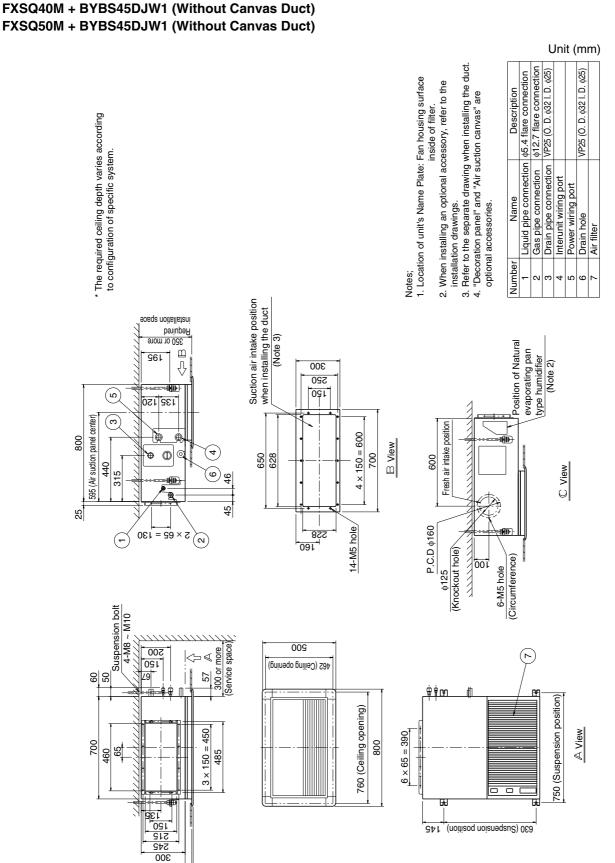

6 Refer to page 218 for Fan Motor Input.

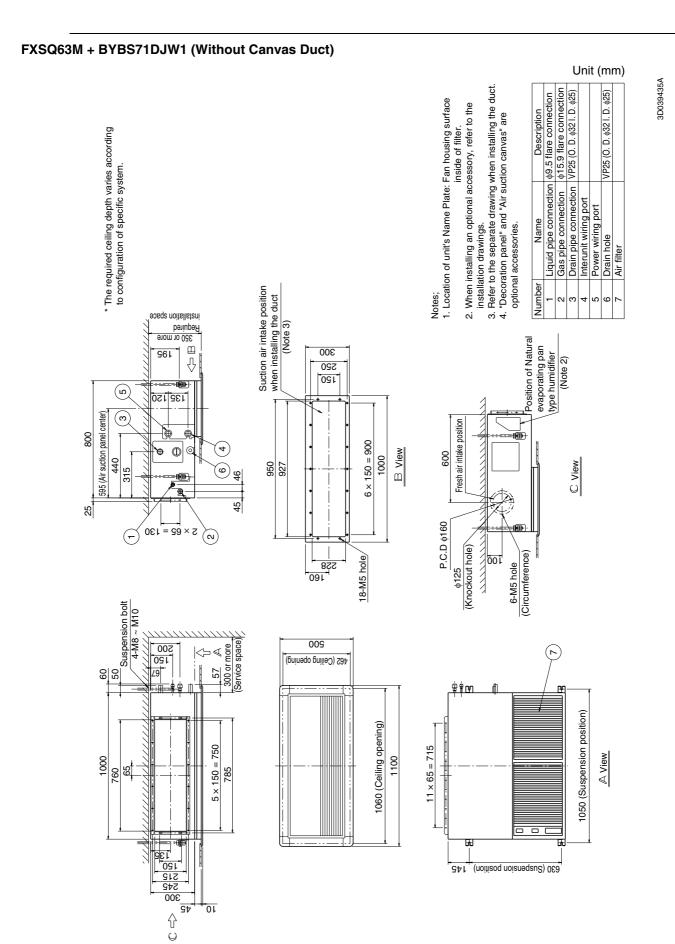

6


Conversion Formulae

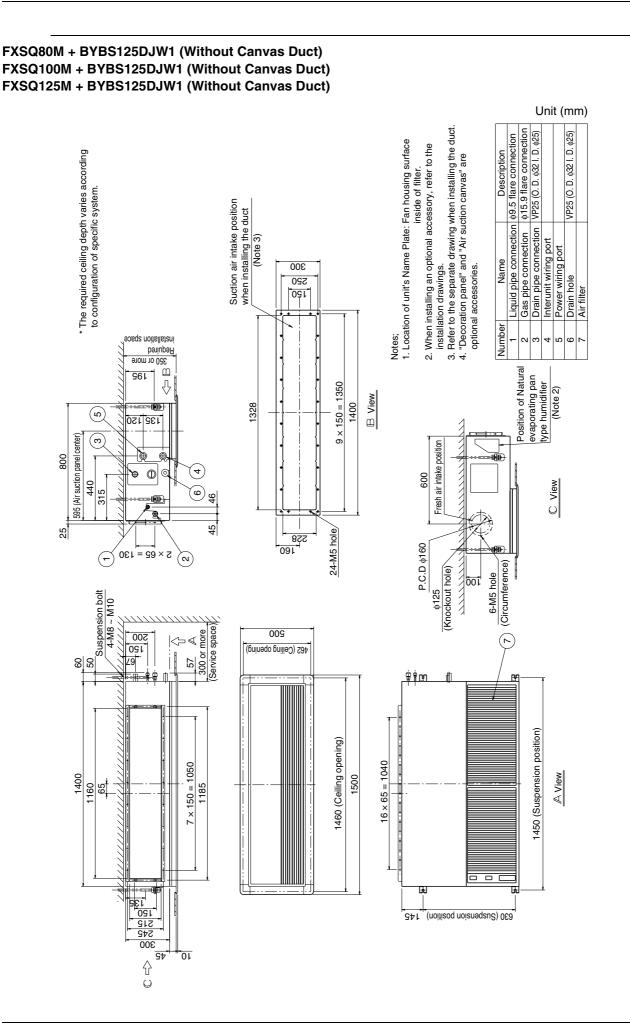

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3


3. Dimensions

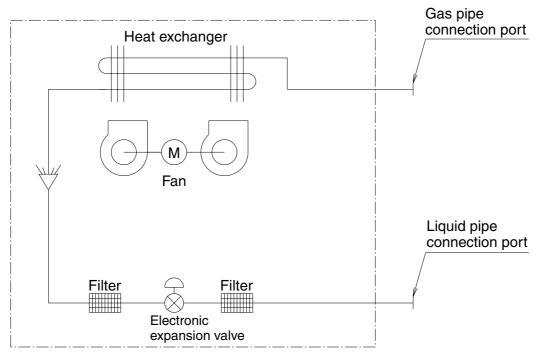




3D039434

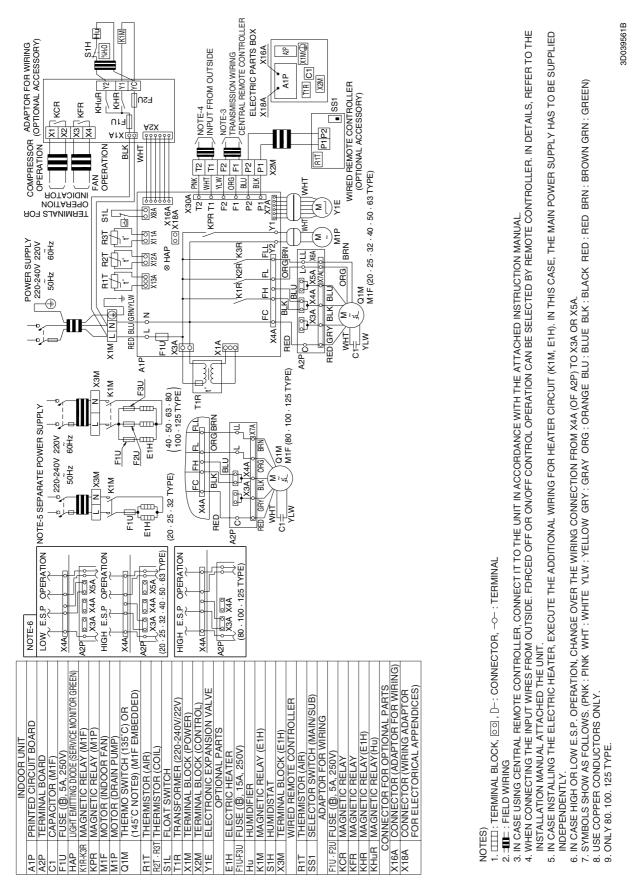


300 94 10


0 0

3D039436

4. Piping Diagrams


4D034245C

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXSQ20 · 25 · 32 · 40 · 50M	φ12.7	φ 6.4
FXSQ63 · 80 · 100 · 125M	φ 15 .9	φ9.5

5. Wiring Diagrams

FXSQ20 · 25 · 32 · 40 · 50 · 63 · 80 · 100 · 125MVE

6. Electric Characteristics

		Uni	ts			Power	supply	IFI	N	Inpu	ıt(W)
Model	Туре	Ηz	Volts	Voltage	e range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXSQ20M						0.5	15	0.05	0.4	110	90
FXSQ25M						0.5	15	0.05	0.4	110	90
FXSQ32M						0.5	15	0.05	0.4	114	94
FXSQ40M					0.04	0.6	15	0.065	0.5	127	107
FXSQ50M	VE	50	220-240	MAX. Min.	264 198	0.9	15	0.085	0.7	143	123
FXSQ63M				W 1 D .	190	1.1	15	0.125	0.9	189	169
FXSQ80M						1.4	15	0.225	1.1	234	214
FXSQ100M						1.5	15	0.225	1.2	242	222
FXSQ125M	7					2.0	15	0.225	1.6	321	301

Symbols:

MCA : Min. Circuit Amps (A)
MFA : Max. Fuse Amps (See note 5)
KW : Fan Motor Rated Output(KW)
FLA : Full Load Amps(A)
IFM : Indoor Fan Motor

Note:

1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals

is not below or above listed range limits,

2. Maximum allowable voltage unbalance between phases is 2%.

3. MCA/MFA

 $MCA = 1.25 \times FLA$

 $MFA \leq 4 \times FLA$

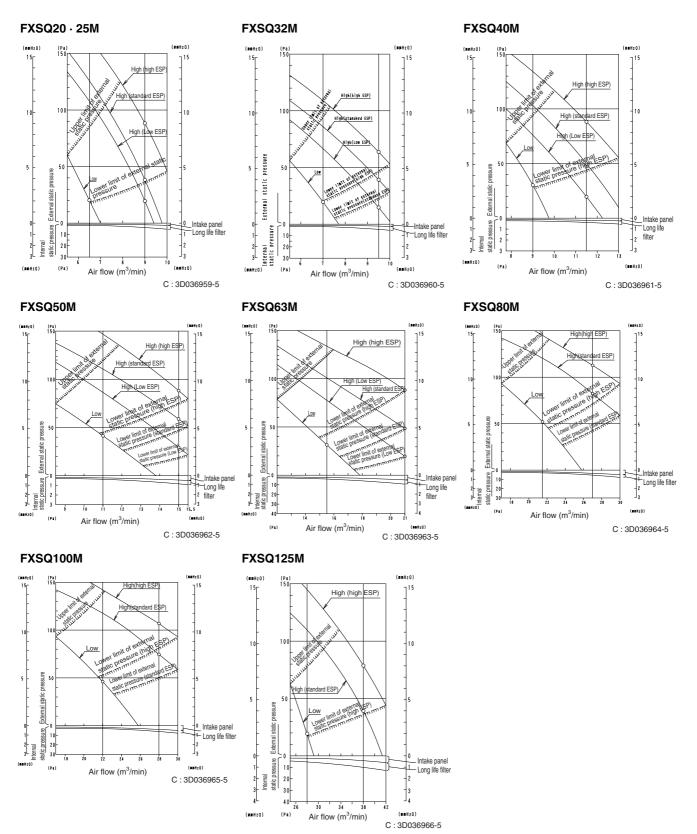
(Next lower standard fuse rating. Min.15A)

- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.

C:4D036936A

7. Capacity Tables

7.1 Cooling Capacity

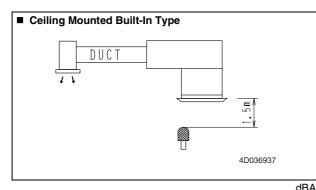

FXSQ-M

[50Hz]

Q-M			[50Hz	:]		
apacity		2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	88 85 88 89 10 10 10 10 10 10 10 10 10 10 10 10 10	1100 1000 1000 1000 1000 1000 1000 100	ndoor
Cooling capacity	32°C	00000000000000000000000000000000000000	11111111111111111111111111111111111111	447 447 447 447 447 447 447 447 447 447	182 142 142 142 142 142 142 142 142 142 14	Total capacity ; kW Sensible heat capacity ; kW Refer to Outdoor Unit Capacity Tables : on page 491~, 552~, for the actual performance data of each indoor and outdoor unit combination.
		ດ ດີ ດີ ດ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 7 7 7 7	10.7 10.7 10.7 10.7 10.7 10.7 10.4 9.8 9.9 9.9 9.6 9.7 9.6	data of
20.00	30.02	3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	mance
GWD			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 10.3\\$	al perfo
	28°C	70 70 70 70 70 70 70 70 70 70 70 70 70 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9	ne actu
air temp.			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.7 6.7 6.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	o, o	کے, for tl
Indoor a	27%	222222222222222222222222222222222222222	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1~, 552
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ଜ ଜ	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	age 49
¢ q	-26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	d uo : se
GWU	CDB	84444444444444444444444444444444444444			α α α α α α α α α α α α α α α α α α α	kw iity Table n.
0	23°		<u>8888888888888888888888888888888888888</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		; kW capacity ;
	CDB	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	city ; kv eat cap or Unit : nit comt
C T	200				のののののののののののののののの	al capacity isible heat. o Outdoor U idoor unit c
Outdoor	air temp. °CDB	33500 35000 350000000 350000 3500000000	100 1200 1200 1200 1200 1200 1200 1200	100 1200 1200 1200 1200 1200 1200 1200	100 1200 1200 1200 1200 1200 1200 1200	Total c Sensit Refer to O and outdo
tion I	Size	03	ô	00	-25	SHC SHC
oacity		22222222222222222222222222222222222222	84444444444444444444444444444444444444	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	ೞೢಁೞೢಁೞೢಁೞೢಁೞೢಁೞೢಁೞೢಁೞೢಁೞೢಁ ಄಄಄಄಄444ೞೢ಄೮೮೮೧++	44444444444444 44444444444 8666644444444
Cooling capacity	32°CD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ម្លេសស្តេសស្តេសត្ត 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2001-1000 2000 2	444444444444446 7766644466091-0088	ດູ ດ	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
	OB BC	۲ ۲ ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	30°CI	– 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	೪೪೪೪೪೪ 4444448 2000 000	4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 7 7 7 7	ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ 4 4 4 4 4 4 6 0 0 0 - 0 0 0 8 -	6.7 6.7 7.7 7.9 6.0 7.7 7.9 7.9 7.9 7.9 7.9 7.9 8.9 7.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7
		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	222222222222222222222222222222222222222	, , , , , , , , , , , , , , , , , , ,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	28°C	–		೮ ೮	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r temp.				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Indoor ai	27°C	288888888888888888888888888888888888888			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		997777777777777777777777	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0	26°C		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	೮.೮.೮.೮.೮.೮.೮.೮.೮.೮.೮.೮.೮.೮ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, , , , , , , , , , , , , , , , , , ,
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	, , , , , , , , , , , , , , , , , , ,	000000000000000000000000000000000000000	
0007	23°(D	ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ଟ ର ର ର ର	୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ରା ରା ର	, , , , , , , , , , , , , , , , , , ,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
awo				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1	20°(D ស ស ស ស ស ស ស ស ល ល ស ស ស ស ស ស ស D	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
tdoor	air temp. °CDB	10.0 12.0 14.0 14.0 14.0 14.0 14.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	10.0 12.0 14.0 14.0 14.0 23.0 25.0 25.0 25.0 23.0 33.0 33.0 33.0 33.0 33.0 33.0	10.0 14.0 14.0 14.0 14.0 14.0 23.0 23.0 33.0 33.0 33.0 33.0 33.0 33	10.0 12.0 14.0 14.0 14.0 14.0 23.0 23.0 23.0 23.0 33.0 33.0 33.0 33	100 120 140 140 140 140 140 250 250 250 250 250 250 330 330 330 330
õ						

8. Fan Performances

8.1 50Hz



Note:

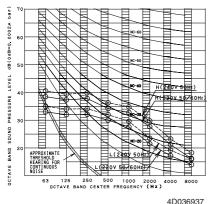
- 1. The remote controller can be used to switch between "high" and "low".
- 2. The air flow is set to "standard" before leaving the factory. It is possible to switch between "standard ESP" and "high ESP" by changing the terminals in the indoor unit electrical box.
- 3. The external static pressure indicates the characteristics of the fan when a suction panel (optional accessory) and a canvas for the suction panel (optional accessory) are incorporated into the main unit (with a long-life filter).

9. Sound Levels

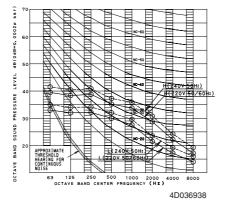
Overall

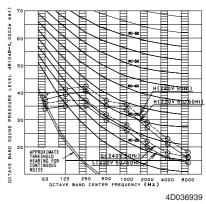
				udа
Model	220V,	50Hz	240V, 50Hz	
Model	Н	L	Н	L
FXSQ20M FXSQ25M	37	32	39	34
FXSQ32M FXSQ40M	38	32	40	34
FXSQ50M	41	36	43	38
FXSQ63M	42	35	44	37
FXSQ80M FXSQ100M	43	37	45	39
FXSQ125M	46	41	48	43

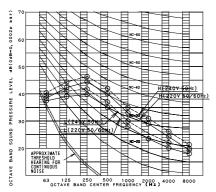
Note:

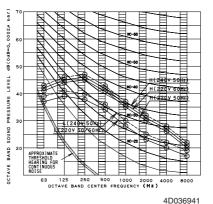

- 1. The operating conditions are assumed to be standard (JIS conditions).
- 2. These operating values were obtained in a dead room (conversion values).

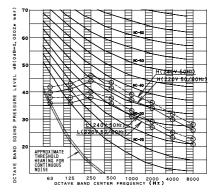
Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.


Octave Band Level

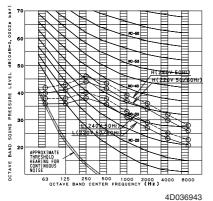

FXSQ20 · 25MVE


FXSQ32MVE


FXSQ40MVE


FXSQ50MVE

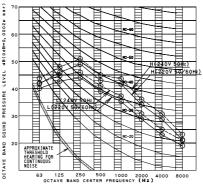
FXSQ63MVE



FXSQ80MVE

4D036942

FXSQ100MVE

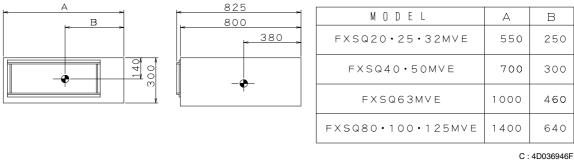


FXSQ125MVE

bar) 0002 C I

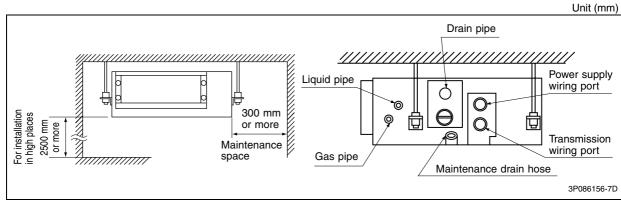
LEVEL SSURE PRE

4D036940



4D036944

10. Installation


Center of Gravity

Unit (mm)

C : 4D03694

Service Space

Note:

Above figure means minimum value. Please keep these value at least.

Bolt Pitch

			Rispension bolt
	((Unit : mm)	
Model	А	В	Pipe 145 630
FXSQ20 · 25 · 32MVE	550	600	Suspension bolt (× 4)
FXSQ40 · 50MVE	700	750	bolt pitch
FXSQ63MVE	1000	1050	800
FXSQ80 · 100 · 125MVE	1400	1450	
	•	•	3P086156-7D

For standard installation (air inlet on the bottom side),

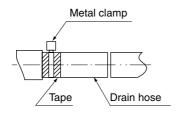
choose one of the below two means of installation.

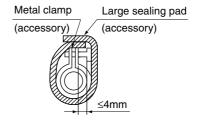
Note: For other than standard installation, contact your Daikin dealer for details.

Drain Pump Kit

Indoor unit	Drain pump kit
FXSQ-M	Standard (Equipped with indoor unit)

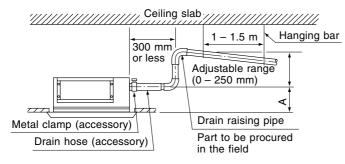
Drain Piping Work


<<Rig the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings.>>

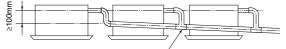

(1) Carry out the drain piping

- The diameter of the drain pipe should be greater than or equal to the diameter of the connecting pipe (vinyl tube; pipe size : 25 mm; outer dimension : 32 mm).
- Keep the drain pipe short and sloping downwards at a gradient of at least 1 / 100 to prevent air pockets from forming.
- If the drain hose cannot be sufficiently set on a slope, execute the drain raising piping.
- To keep the drain hose from sagging, space hanging wires every 1 to 1.5 m.

- Setting the unit at an angle opposite to the drain piping might cause leaks.
- Use the drain hose and the metal clamp. Tighten the clamp firmly. Insert the drain hose into the drain socket, up to the tape. Tighten the clamp until the screw head is less than 4 mm from the hose.
- Wrap the sealing pad over the metal clamp and drain hose to insulate.
- Insulate the drain hose inside the building.



\langle precautions for drain raising piping \rangle


$\langle \text{HOW TO INSTALL PIPING} \rangle$

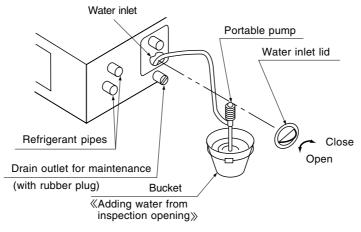
- (1) Connect the drain hose to the drain raising pipes, and insulate them.
- (2) Connect the drain hose to the drain outlet on the indoor unit, and tighten it with the metal clamp.
- (3) Insulate both metal clamp and drain hose with the sealing pad.

	A (mm)
When canvas duct is installed	350 – 530
When air inlet panel is directly installed	275

• If converging multiple drain pipes, install according to the procedure shown below.

T-joint converging drain pipes

Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

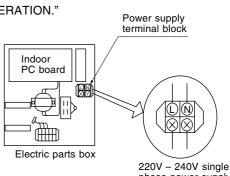

- Drain piping connections
- Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.
- Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

3P086156-7D

6

(2) After piping work is finished, check drainage flows smoothly.

- Open the water inlet lid, add approximately
 - 1 liter of water gradually and check drainage flow.


Note: Use this outlet to drain water from the drain pan.

[WHEN ELECTRIC WIRING WORK IS FINISHED]

Check drainage flow during COOL running, explained under "TEST OPERATION."

[WHEN ELECTRIC WIRING WORK IS NOT FINISHED]

Remove the electric parts box lid, connect a power supply and remote controller to the terminals. (Refer to the "HOW TO CONNECT WIRINGS") Be sure attach the electric parts box lid before turning on the power. Next, press the inspection / test operation button "♣" on the remote controller. The unit will engage the test operation mode. Press the operation mode selector button "♣" until selecting FAN OPERATION " ♣". Then, press the ON/OFF button " ⊕". The indoor unit fan and drain pump will start up. Check that the water has drained from the unit. Press "♣" to go back to the first mode.

- phase power supply.
- You can check whether drainage is satisfactory or not by removing the access opening lid and checking the water level of the drain pan through the access opening.
- Be careful when doing so because the fan is turning at the same time.

3P086156-7D

FXSQ-M

11. Accessories

Standard Accessories

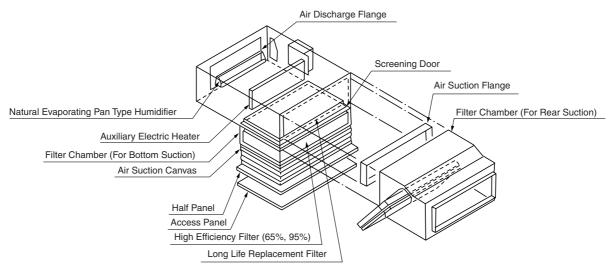
Name	Metal clamp	Paper pattern for installation	Drain hose	Insulation for fitting	Sealing pad	:	Screws for duct flanges	
Quantity	1 pc.	1 pc.	1 pc.	1 each.	1 each.	1 set		
Shape		\bigcirc		for gas pipe	Large mid	M	FXSQ20 · 25 · 32MVE FXSQ40 · 50MVE FXSQ63MVE FXSQ80 · 100 · 125MVE	8 12

Name	Washer for hanging bracket	Clamp	Screws for fixing the paper pattern for installation	(Other)
Quantity	8 pcs.	6 pcs.	6 pcs.	Operation manual
Shape	0		Om	 Installation manual Sealing material (Small 35×150)

• Screws for fixing panels are attached to decoration panel.

3P086156-7D

Optional Accessories (For Unit)

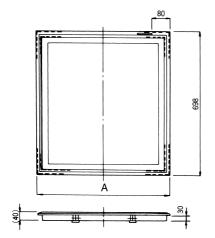

No.	Item	Type		FXSQ20M FXSQ25M FXSQ32M	FXSQ40M FXSQ50M	FXSQ63M	FXSQ80M FXSQ100M	FXSQ125M
4	Panel Decoration		banel	BYBS32DJW1	BYBS45DJW1	BYBS71DJW1	BYBS12	25DJW1
1	related	Access pane	el	KTBJ25K36W	KTBJ25K56W	KTBJ25K80W	KTBJ25	5K160W
	*1	Model	240V/220V	KEA25K32VE	KEA25K50VE	KEA25K63VE	KEA25K100VE	KEA25K125VE
2	Auxiliary electric heater	Capacity	kW	0.75	1.2	1.4	2.1	2.8
		*2 High efficiency filter 65%		KAFJ252L36	KAFJ252L56	KAFJ252L80	KAFJ2	52L160
		*2 High efficiency filter 90%		KAFJ253L36	KAFJ253L56	KAFJ253L80	KAFJ253L160	
3	Filter related	Long life replacement filter		KAFJ251K36	KAFJ251K56	KAFJ251K80	KAFJ251K160	
	Totalou	Filter chamber	For bottom suction	KAJ25L36D	KAJ25L56D	KAJ25L80D	KAJ25	L160D
			For rear suction	KAJ25L36B	KAJ25L56B	KAJ25L80B	KAJ25	L160B
	Air inlet	Air suction c	anvas	KSA-25K36	KSA-25K56	KSA-25K80	KSA-25K160	
	and air	Screening de	oor	KBBJ25K36	KBBJ25K56	KBBJ25K80	KBBJ2	5K160
4	discharge outlet	Air suction flange		KDJ2507K36	KDJ2507K56	KDJ2507K80	KDJ250	07K160
	related	Air discharge adaptor		KDAJ25K36A	KDAJ25K56A	KDAJ25K71A	KDAJ25K140A	
5	Natural evaporating pan type humidifier *1		n type	KNM25K32V1	KNM25K50V1	KNM25K63V1	KNM25	K125V1

Note:

*1 One adaptor for wiring (KRP1B61) per indoor unit is required if installing an electric heater or a natural evaporating pan type humidifier. An electric heater cannot be used for VRV system cooling only.

*2 If installing a high filter in the ceiling mounted built-in type, an assembly chamber for either bottom or rear suction is required.

Optional Accessories (For Controls) : Refer to P.645

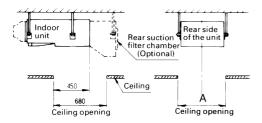


Access Panel

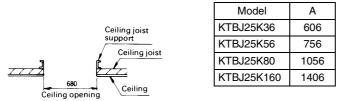
Specifications

Model Item	KTBJ25K36W	KTBJ25K56W	KTBJ25K80W	KTBJ25K160W	
Color	White				
Applicable Model	20~32 Class	40 · 50 Class	63 Class	80~125 Class	

Dimension



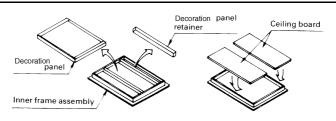
Model	А
KTBJ25K36W	626
KTBJ25K56W	776
KTBJ25K80W	1076
KTBJ25K160W	1476


Installation

[Before installation]

1. Make an opening on the ceiling

2. Install ceiling joist supports to fit the ceiling opening

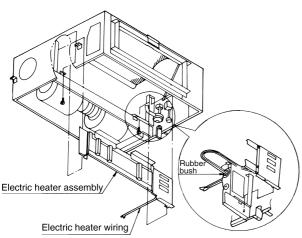

[Installation of the ceiling board]

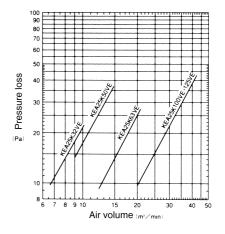
The ceiling board can be installed into the inner frame assembly as follows.

- 1. Remove decoration panel retainer from the inner frame assembly.
- 2. Remove the decoration panel and substitute with the ceiling board.
- 3. Set the ceiling board by retainer removed in step 1 of above.

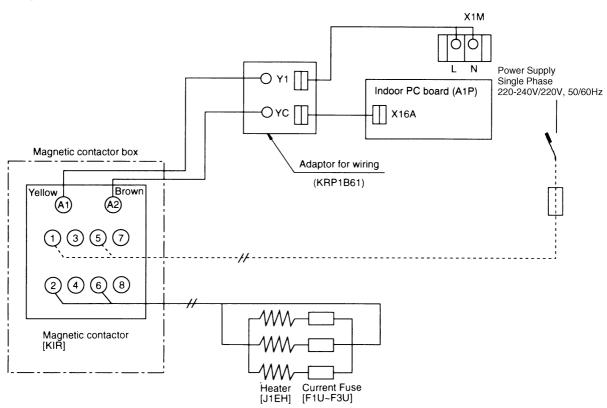
-/! CAUTION

When the ceiling board is installed, the decoration panel is not needed.


Auxiliary Electric Heater (A wiring adaptor is needed)


Specifications

Items	KEA25K32VE	KEA25K50VE	KEA25K63VE	KEA25K100VE	KEA25K125VE	
Heater Capacity (kW)	0.75	1.2	1.4	2.1	2.8	
Power Supply	Single Phase, 220-240V/220V 50/60Hz					
Applicable Models	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 100 Class	125 Class	


Characteristics of filter

Installation

Wiring

Precaution at use

1. When the aux. electric heater will be installed, "Wiring adaptor (KRP1B61)" is separately needed for one indoor unit by one piece of the adaptor.

Natural Evaporating Pan Type Humidifier (Wiring adaptor is required.)

Specifications

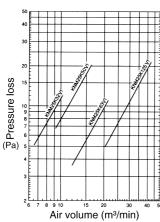
Model Item	KNM25K32V1	KNM25K50V1	KNM25K63V1	KNM25K125V1		
Humidifying Capacity (L/h)	0.4	0.6	1.0	1.8		
Power Supply (W)	Single Phase, 220-240V 50Hz					
Power Consumption		12/9.6				
Water Inlet Port		1/2B				
Water Outlet Port	VP25 (External dia. ϕ 32) (drain pipe at indoor unit)					
Applicable Models	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 100 · 125 Class		

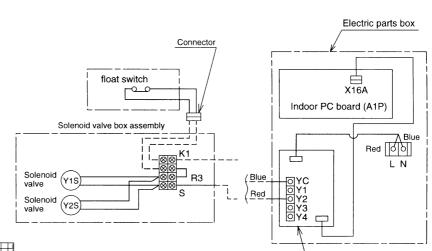
Precaution at use

- 1. "Wiring adaptor (KRP1B61)" is separately needed for one indoor unit by one piece of the adaptor.
- 2. This humidifier will be built in a indoor unit, while the solenoid valve box will be mounted out of the unit's body (refer to the dimensions of optional accessories).
- 3. The field setting should be changed by a remote controller.

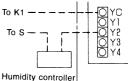
Note:

The value in JIS heating condition's standard.

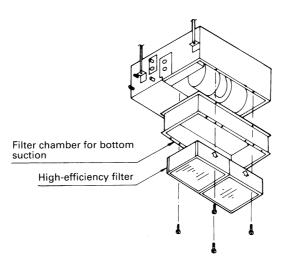

Feed water piping


- 1. Provide a stop valve of feed water for the feed water circuit.
- 2. Supply clean water for the feed water. Contaminated water clogs a valve and the contaminants accumulate in a water tank, disturbing a normal operation of the humidifier. (Never use cooling water for a cooling tower or hot water for heating purpose). Moreover, since white powder will appear if the feed water contains much silica, it is recommended to install a water purifier or a water softener if these phenomena are found.
- 3. Use water in the range of water temperature 5 ~ 50°C and water pressure 0.049 ~ 0.294 MPa[0.5 ~3kg/cm²]. Provide a reducing valve between a strainer and this kit, in case of 0.294MPa or more for feed water pressure.
- 4. The feed water pipe can not be connected to a public water route. Accordingly, if water must be supplied through a public water by all means, provide a cistern tank (approved model only).

Wiring diagram

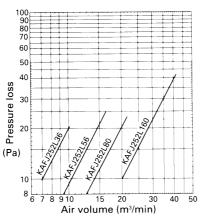

------ Field wiring Make wiring as shown on the right, if a humidity controller will be mounted. Arrange the wiring shown right locally for that case. Set the turn-over switch to OFF for the choice of ON/OFF of group humidity controlling input on the "Wiring adaptor PC board" .

Characteristics of Filter

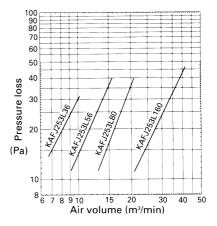


(to be procured in the field)

High Efficiency Filter Specifications


•	-	-		-			-	
Model Items	KAFJ252L36	KAFJ252L56	KAFJ252L80	KAFJ252L160	KAFJ253L36	KAFJ253L56	KAFJ253L80	KAFJ253L160
Dust Collection Efficiency (%)		Colorimetric method 65%				Colorimetric method 90%		
Initial Pressure Loss (Pa)	12 or less	14 o	r less	22 or less	21 or less	24 o	r less	34 or less
Final Pressure Loss (Pa)		98 c	or less	•		98 c	or less	
Filter	N	Non-woven fabric of synthetic fiber			Non-woven fabric of synthetic fiber			ber
Life Time (h)	2,5	2,500 hours (Dust density 0.15mg/m ³)			1,800 hours (Dust density 0.15mg/m ³)			
High Efficiency Filter Chamber (for the Bottom Suction)	KAJ25L36D	KAJ25L56D	KAJ25L80D	KAJ25L160D	KAJ25L36D	KAJ25L56D	KAJ25L80D	KAJ25L160D
High Efficiency Filter Chamber (for the Rear Suction)	KAJ25L36B	KAJ25L56B	KAJ25L80B	KAJ25L160B	KAJ25L36B	KAJ25L56B	KAJ25L80B	KAJ25L160B
External Dimension (mm) (T×W×D)	25×500×360	25×650×360	(25×475×360)×2	(25×700×360)×1 (25×650×360)×1	25×500×360	25×650×360	(25×475×360)×2	(25×700×360)×1 (25×650×360)×1
Applicable Models	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 100 · 125 Class	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 100 · 125 Class

Installation

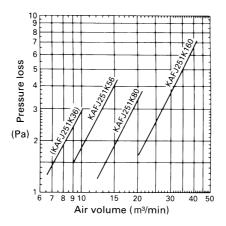


Characteristics of Filter

■ 65% type

■ 90% type

Long-Life Replacement Filter


Specifications

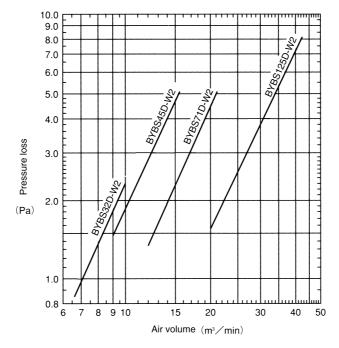
Item	Model	KAFJ251K36	KAFJ251K56	KAFJ251K80	KAFJ251K160	
Average Efficience	ge Efficiency (%) 50% (Gravity method)				•	
Pressure Loss	Initial	10 or	less	4.9 or less		
(Pa)	Final	4	9	49 or less		
Materials			Mildew Proc	of Resin Net		
Number Required	l per Model	1	1	2	2	
Life Time (h)		2,500 hours (dust particle concentration at 0.15 mg/m ³)				
Applicable Model		20 · 25 · 32 Class 40 · 50 Class 63 Class 80 · 100 ·			80 · 100 · 125 Class	

Note:

The filter models for 20 \sim 50 Class can be used also as Rear-suction types.

Characteristics of filter

Canvas Duct (Air Suction Canvas) Specifications


Item	Model	KSA-25K36	KSA-25K56	KSA-25K80	KSA-25K160	
	Н	255	255	255	255	
Dimensions (mm)	W	550	700	1000	1400	
()	D	405	405	405	405	
Canvas Duct		TOYOBO · SL1000 · SIMVER Flame resistant				
Applicable Mod	el	BYBS32DJW1	BYBS45DJW1	BYBS71DJW1	BYBS125DJW1	

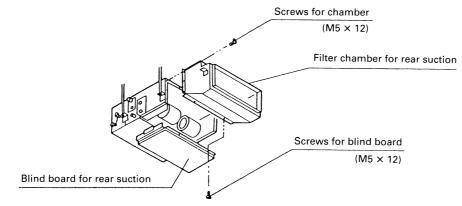
Installation

Suction Panel

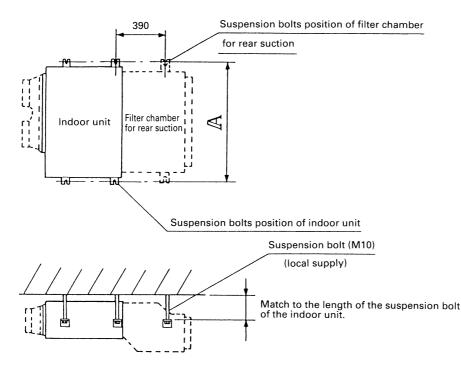
Characteristics of Filter

Air Discharge Adaptor Specifications

Item	KDAJ25K36A	KDAJ25K56A	KDAJ25K71A	KDAJ25K140A
Connection Dia. (omm)	φ200×1 port	φ200×2 port	φ200×2 port	φ200×4 port
Applicable Models	20 · 25 · 32 Class	40 · 50 Class	63 Class	80 · 100 · 125 Class


Filter Chamber (for Rear-suction Type)

This kit will be used for the rear-suction type when the high efficiency filter or the long life filter will be built in.


Applicable Model

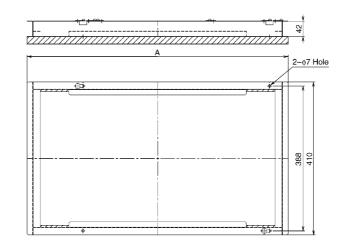
Model	Applicable Model
KAJ25L36B	20 · 25 · 32 Class
KAJ25L56B	40 · 50 Class
KAJ25L80B	63 Class
KAJ25L160B	80 · 100 · 125 Class

Installation

Be sure to remove the long life filter and attach the rear-suction type's sealing plate there when the filter chamber (for the rear-suction type) must be installed.

Model	А
KAJ25L36B	600
KAJ25L56B	750
KAJ25L80B	1050
KAJ25L160B	1450

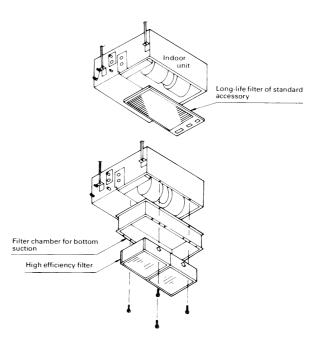
Note:


Refer to the appearance figure of optional accessory describing later for further details.

Filter Chamber for Bottom Suction

Applicable Model

Model	Applicable Model
KAJ25L36D	20 · 25 · 32 Class
KAJ25L56D	40 · 50 Class
KAJ25L80D	63 Class
KAJ25L160D	80 · 100 · 125 Class


Dimension

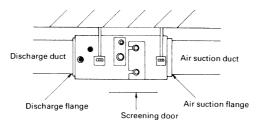
JC : D3K1420A

Model	A
KAJ25L36D	550
KAJ25L56D	700
KAJ25L80D	1000
KAJ25L160D	1400

Installation

Note:

Refer to the appearance figure of optional accessory describing later for further details.

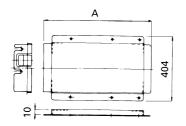

Air Suction Flange

When this kit will be used, the rear suction type's sealing plate will be required separately.

Specifications

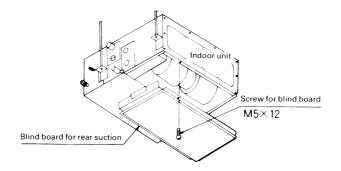
	Model	Air Suction Flange					
Item		KDJ2507K36	KDJ2507K56	KDJ2507K80	KDJ2507K160		
	W	527	677	977	1377		
Dimensions (mm)	Н	278					
	Т	25					
Size of Connecting	W	477	627	927	1327		
Duct (mm)	L	228					
Materials		Galvanized steel plate					
Applicable Model		20 · 25 · 32 Class 40 · 50 Class 63 Class 80 · 100 · 125 Cla					

Example of Installation



Blind Board (Screening Door) used for the rear-suction type

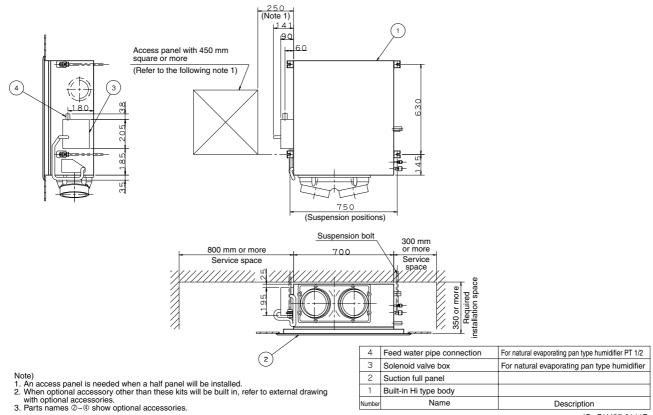
Specifications


Item	Model	KBBJ25K36	KBBJ25K56	KBBJ25K80	KBBJ25K160		
	W	535	685	985	1385		
Dimensions (mm)	D	404					
Т		10					
Materials		Galvanized Steel Plate					
Applicable Model 20 · 25 · 32 Class 40 · 50 Class 63 Class 80 · 100 · 125							

Dimension


Applicable Model	А
KBBJ25K36	535
KBBJ25K56	685
KBBJ25K80	985
KBBJ25K160	1385

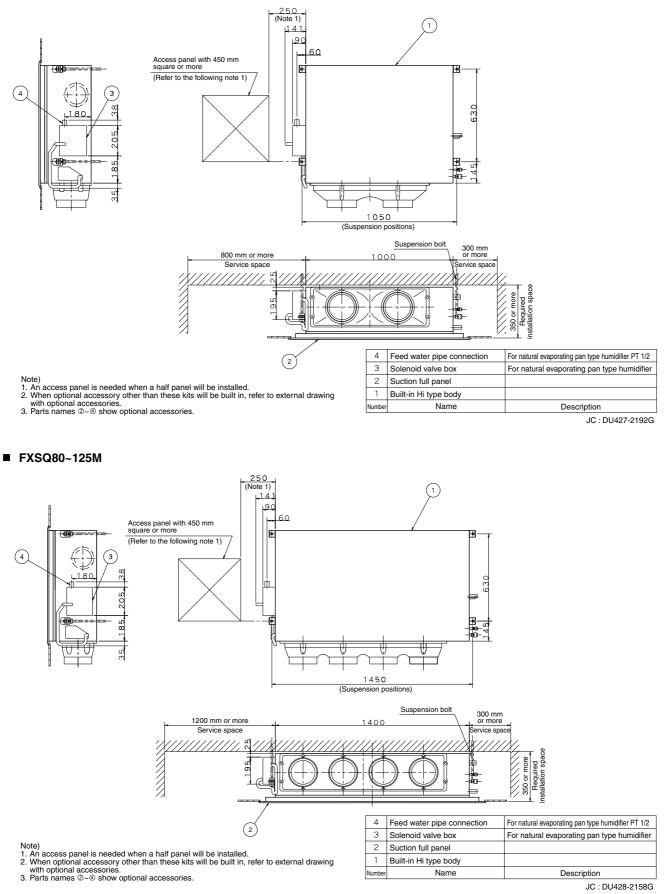
Installation



Dimensions with the Optional Accessories Natural evaporating pan type humidifier (Air discharge adaptor)

■ FXSQ20~32M

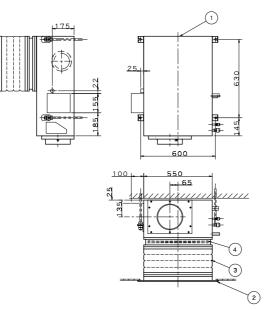
■ FXSQ40 · 50M

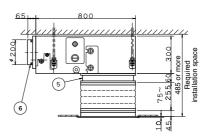


JC : DU425-2111F

Dimensions with the Optional Accessories

Natural evaporating pan type humidifier (Air discharge adaptor)

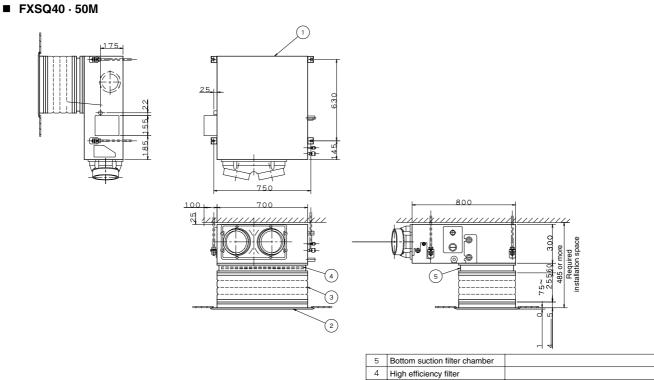

FXSQ63M



JC : DU428-2158G

High Efficiency Filter (Air discharge Adaptor)

■ FXSQ20~32M



6	Air discharge adaptor	
5	Bottom suction filter chamber	
4	High efficiency filter	
3	Air suction canvas	
2	Suction half panel	
1	Built-in unit body	
Number	Name	Description
-		

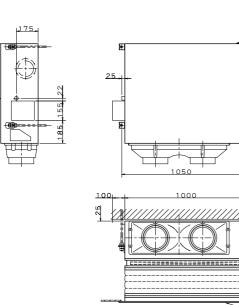
JC : DU820-238B

6

Note)
 When optional accessory other than these kits will be built in, refer to the external drawing with optional accessories.
 Parts names ^Q~[®] show optional accessories.

З Air suction canvas 2 Suction half panel 1 Built-in Hi type body Name

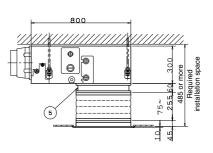
Numbe


Note)
1. When optional accessory other than these kits will be built in, refer to the external drawing with optional accessories.
2. Parts names ^Q~[¬] show optional accessories.

JC : DU823-226E

Description

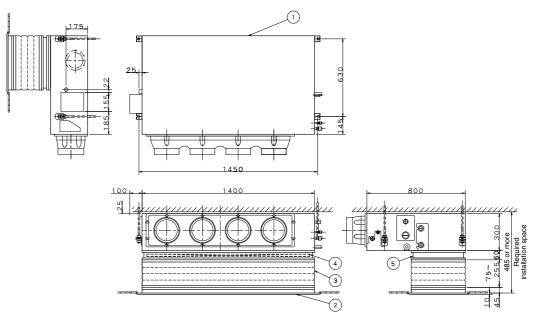
High Efficiency Filter (Air discharge Adaptor)


FXSQ63M

45

(з

2

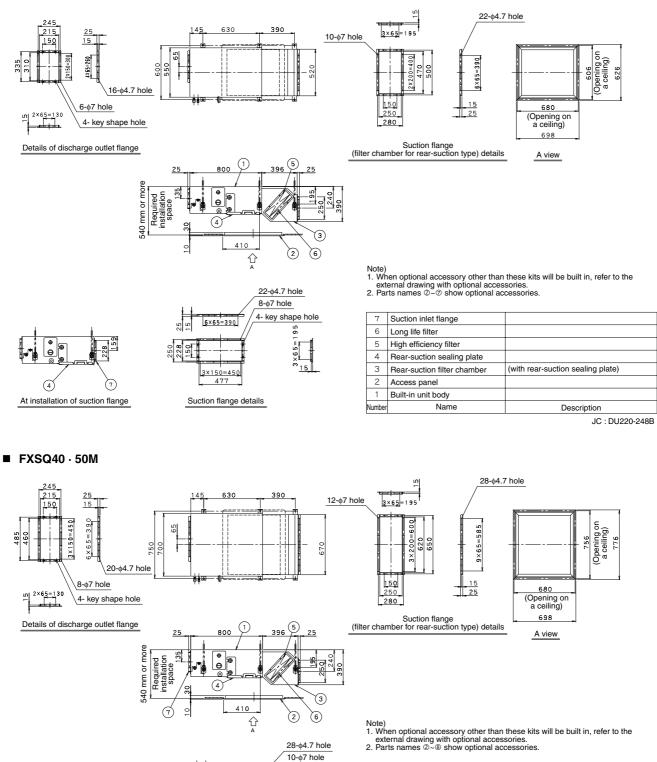


Note)
1. When optional accessory other than these kits will be built in, refer to the external drawing with optional accessories.
2. Parts names ^Q~[¬] show optional accessories.

5	Bottom suction filter chamber		
4	High efficiency filter		
З	Air suction canvas		
2	Suction half panel		
1	Built-in Hi type body		
Number	Name	Description	

JC : DU826-207F

■ FXSQ80~125M



5	Bottom suction filter chamber	
4	High efficiency filter	
3	Air suction canvas	
2	Suction half panel	
1	Built-in Hi type body	
Number	Name	Description

Note)
1. When optional accessory other than these kits will be built in, refer to the external drawing with optional accessories.
2. Parts names ^Q~[¬] show optional accessories.

Duct Style Installation

■ FXSQ20~32M

4- key shape hole

×65=195

9×65=585

4×150=600

627 650

Suction flange details

25

250

8	Suction inlet flange	
7	Suction flange	
6	Long life filter	
5	High efficiency filter	
4	Rear-suction sealing plate	
3	Rear-suction filter chamber	(with rear-suction sealing plate)
2	Access panel	
1	Built-in Hi type body	
Number	Name	Description

JC : DU425-2115F

(8)

Φ

(4)

(7

FXSQ-M

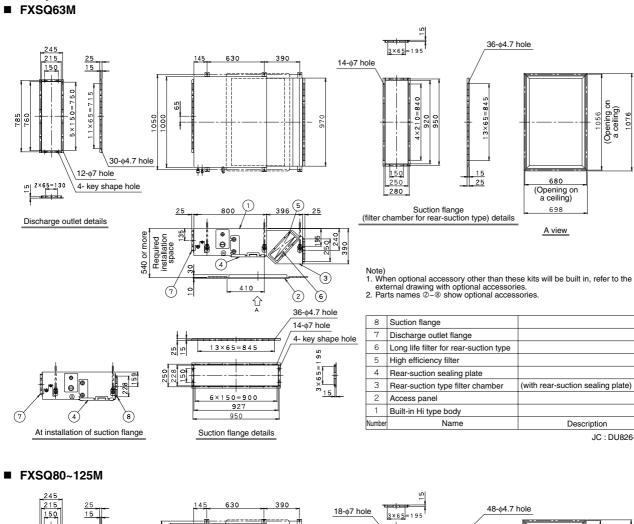
ě

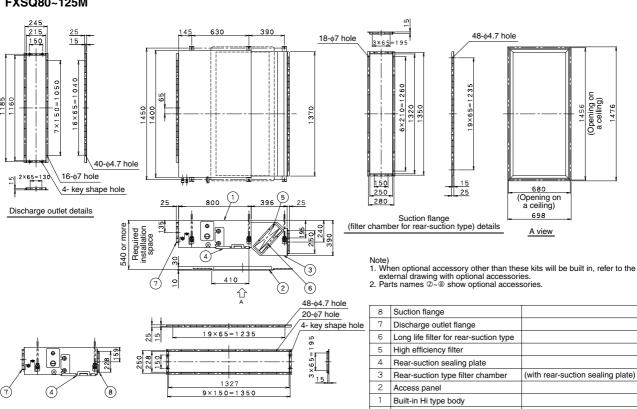
At installation of suction flange

1056 (Opening on a ceiling) 1076

680

(Opening on a ceiling)


698


A view

Description

JC : DU826-208F

Duct Style Installation

Number

Name

At installation of suction flange Suction flange details

JC : DU828-216F

Description

185

FXMQ-P Ceiling Mounted Duct Type (Middle and High Static Pressure)

1. Features		244					
2. Specifications	Specifications						
	Dimensions						
4. Piping Diagram	Piping Diagrams2						
	Wiring Diagrams2						
	eristics						
7. Capacity Tables	5						
• •	pacity						
8. Fan Performand	xes						
8.1 Fan Perfor	nance						
8.2 "Air Flow A	uto Adjustment" Characteristics						
9. Sound Levels							
10.Center of Gravi	y						
	1.Installation Manual						
12.Accessories							

1. Features

Ceiling Mounted Duct Type

FXMQ20P/FXMQ25P FXMQ32P/FXMQ40P New FXMQ50P/FXMQ63P FXMQ80P/FXMQ100P FXMQ125P

Middle and high static pressure allows for flexible duct design

- •A DC fan motor increases the external static pressure capacity range to include middle to high static pressures, increasing design flexibility. 30 Pa-100 Pa for FXMQ20P-32P 30 Pa–160 Pa for FXMQ40P 50 Pa–200 Pa for FXMQ50P-125P
- •All models are only 300 mm in height, an improvement over the 390 mm height of conventional models. The weight of the FXMQ40P has been reduced from 44 kg to 28 kg.
- Drain pump is equipped as standard accessory with 700 mm lift.

700 mm
Ceiling

•Control of the airflow rate has been improved from 2-step to 3-step control.

Low operation sound level

•	•Low operation sound level (dB(A))										
	FXMQ-P	20	30	32	40	50	63	80	100	125	
	Sound level (HH/H/L)	33/3	1/29	34/32/30	39/37/35	41/39/37	42/40/38	43/4	1/39	44/42/40	

- Energy-efficient
- The adopted DC fan motor is much more efficient than the conventional AC motor, yielding an approximate 20% decrease in energy consumption. (FXMQ125P)

Improved ease of installation

- · Airflow can be controlled using a remote controller. With the conventional model, the airflow rate was controlled from the PC board. It is automatically adjusted to the range between approximately ±10% of the rated HH tap airflow.
- Improved ease of maintenance
- The drain pan can be detached for easy cleaning. A new antibacterial treatment that uses silver ions has been applied to the drain pan, preventing the growth of slime, mould and bacteria that cause blockages and odours.

2. Specifications

Ceiling Mounted Duct Type

Model				FXMQ20PVE	FXMQ25PVE	FXMQ32PVE	
			kcal/h	2,000	2,500	3,200	
*1 Cooling Capacity (19.5°CWB) Btu/h kW		7,800	9,900	12,600			
		2.3	2.9	3.7			
*2 Cooling Ca	apacity (19.0°C)	NB)	kW	2.2	2.8	3.6	
Casing				Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions:	(H×W×D)		mm	300×550×700	300×550×700	300×550×700	
Coil (Cross	Rows×Stages	×Fin Pitch	mm	3×16×1.75	3×16×1.75	3×16×1.75	
Fin Coil)	Face Area		m²	0.098	0.098	0.098	
	Model			—	—	—	
	Туре			Sirocco Fan	Sirocco Fan	Sirocco Fan	
	Motor Output : of Units	× Number	w	90×1	90×1	90×1	
Fan	Air Flow Rate	(111/11/1)	m³/min	9/7.5/6.5	9/7.5/6.5	9.5/8/7	
	All How hate	(1111111)	cfm	318/265/230	318/265/230	335/282/247	
	External Static Pressure		Pa	Standard 50 (100-30 *3)	Standard 50 (100-30 *3)	Standard 50 (100-30 *3)	
	Drive			Direct Drive Direct Drive		Direct Drive	
Temperature	re Control Microprocessor Thermostat for Cooling and Heating Cooli		Microprocessor Thermostat for Cooling and Heating				
Air Filter				*4	*4	*4	
	Liquid Pipes		mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	
Piping	Gas Pipes	Pipes mm		§12.7 (Flare Connection)	§12.7 (Flare Connection)	<pre> \$\$\overline\$12.7 (Flare Connection) \$\$\overline\$12.7 (Flare</pre>	
Connections	Drain Pipe		mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	
Mass (Weigh	t)		kg	25	25	25	
*6 Sound Lev	(a) ()) () () ()	BA	220V	33/31/29	33/31/29	34/32/30	
*6 Sound Lev		DA	240V	33/31/29	33/31/29	34/32/30	
Safety Devices				Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	
Refrigerant Control				Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable Outdoor Unit				R-410A PA Series	R-410A PA Series	R-410A PA Series	
Standard Accessories				Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	
Drawing No.					C : 3D060388A		

Note:

*1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*3 External static pressure is changeable in 13 or 14 stages within the () range by remote controller.

Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

5 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*6 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

7 Refer to page 255 for Fan Motor Input.

7

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Duct Type

Model				FXMQ40PVE	FXMQ50PVE	FXMQ63PVE	FXMQ80PVE
kcal/h			kcal/h	4,000	5,000	6,300	8,000
*1 Cooling Capacity (19.5°CWB)	Btu/h	16,000	19,800	24,900	31,700		
kW			kW	4.7	5.8	7.3	9.3
*2 Cooling Capacity (19.0°CWB) kW			kW	4.5	5.6	7.1	9.0
Casing				Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions: (H×W×D)		mm	300×700×700	300×1,000×700	300×1,000×700	300×1,000×700	
Coil (Cross Rows×Stages×Fin Pitch		mm	3×16×1.75	3×16×1.75	3×16×1.75	3×16×1.75	
Fin Coil)	Face Area		m²	0.148	0.249	0.249	0.249
	Model			_	—	_	_
	Туре			Sirocco Fan	Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output of Units	ut × Number	W	140×1	350×1	350×1	350×1
Fan		+- /I II I/I I/I)	m³/min	16/13/11	18/16.5/15	19.5/17.5/16	25/22.5/20
	Air Flow Ra	te (HH/H/L)	cfm	565/459/388	635/582/530	688/618/565	883/794/706
	External Static Pressure		Pa	Standard 100 (160-30 *3)	Standard 100 (200-50 *3)	Standard 100 (200-50 *3)	Standard 100 (200-50 *3)
Drive				Direct Drive Direct Drive Direct Drive		Direct Drive	Direct Drive
Temperature	Control			Microprocessor Thermostat for Cooling and Heating			
Air Filter				*4	*4	*4	*4
		mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)		φ9.5 (Flare Connection)	
Piping	Gas Pipes		mm	§12.7 (Flare Connection)	§12.7 (Flare Connection)	§15.9 (Flare Connection)	§15.9 (Flare Connection)
Connections	Drain Pipe		mm	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32) Internal Dia. 25)
Mass (Weigh	t)		kg	28	36	36	36
	(a) (1) 1/1 1/1 1/1)	dBA	220V	39/37/35	41/39/37	42/40/38	43/41/39
*6 Sound Lev	ei (nn/n/L)	UDA	240V	39/37/35	41/39/37	42/40/38	43/41/39
Safety Devices				Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.
Refrigerant Control				Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable Outdoor Unit				R-410A PA Series	R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Accessories				Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.
Drawing No.					C : 3D0	60388A	

Note:

 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 External static pressure is changeable in 13 or 14 stages within the () range by remote controller.
 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
Refer to page 255 for Fan Motor Input. *6

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Ceiling Mounted Duct Type

Model				FXMQ100PVE	FXMQ125PVE		
kcal/h		kcal/h	10,000	12,500			
*1 Cooling Ca	apacity (19.5°C	WB)	Btu/h	39,600	49,500		
kW		kW	11.6	14.5			
*2 Cooling Ca	apacity (19.0°C	WB)	kW	11.2	14.0		
Casing				Galvanized Steel Plate	Galvanized Steel Plate		
Dimensions:	(H×W×D)		mm	300×1,400×700	300×1,400×700		
Coil (Cross	Rows×Stages	×Fin Pitch	mm	3×16×1.75	3×16×1.75		
Fin Coil)	Face Area		m²	0.383	0.383		
	Model			—	—		
	Туре			Sirocco Fan	Sirocco Fan		
	Motor Output of Units	× Number	W	350×1	350×1		
Fan	Air Flow Rate	(111/11/1)	m³/min	32/27/23	39/33/28		
	All HOW Hate	(1111/1//)	cfm	1,130/953/812	1,377/1,165/988		
	External Static Pressure		Pa	Standard 100 (200-50 *3)	Standard 100 (200-50 *3)		
	Drive			Direct Drive	Direct Drive		
Temperature	Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Air Filter				*4	*4		
	Liquid Pipes		mm	φ9.5 (Flare Connection)			
Piping	Gas Pipes	Gas Pipes mm		<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	<pre> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>		
Connections	Drain Pipe	n Pipe mm		VP25 (External Dia. 32 (Internal Dia. 25)	VP25 (External Dia. 32 (Internal Dia. 25)		
Mass (Weight	t)		kg	46	46		
*6 Sound Los			220V	43/41/39	44/42/40		
*6 Sound Level (HH/H/L) dBA		IDA	240V	43/41/39	44/42/40		
Safety Devices			Fuse. Fan Driver Overload Protector.	Fuse. Fan Driver Overload Protector.			
Refrigerant Control				Electronic Expansion Valve	Electronic Expansion Valve		
Connectable Outdoor Unit				R-410A PA Series	R-410A PA Series		
Standard Accessories				Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.	Operation Manual. Installation Manual. Drain Hose. Clamp Metal. Insulation for Fitting. Sealing Pads. Clamps. Washers. Screws. Air Discharge Flange. Air Suction Flange.		
Drawing No.				C : 3D060388A			

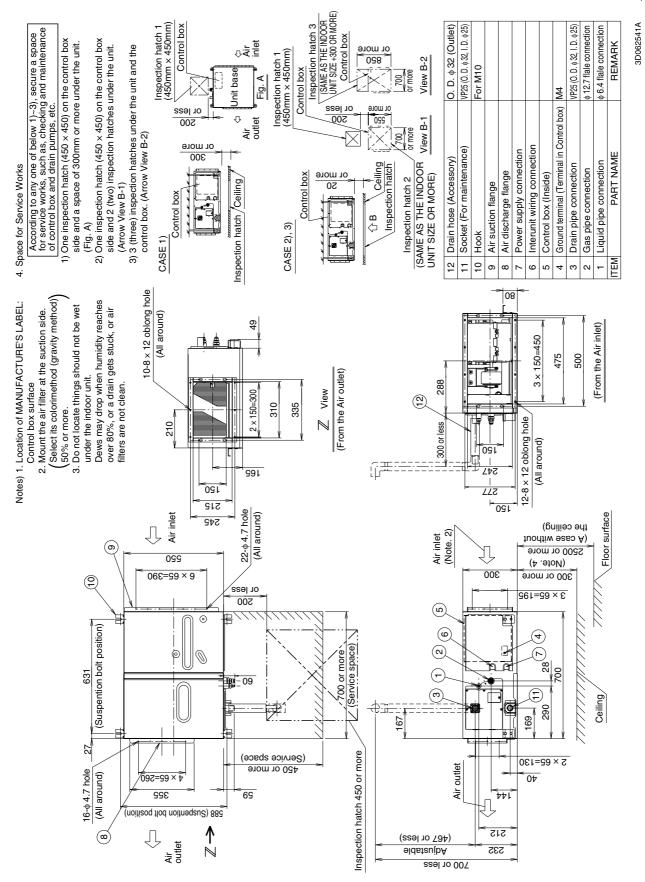
Note:

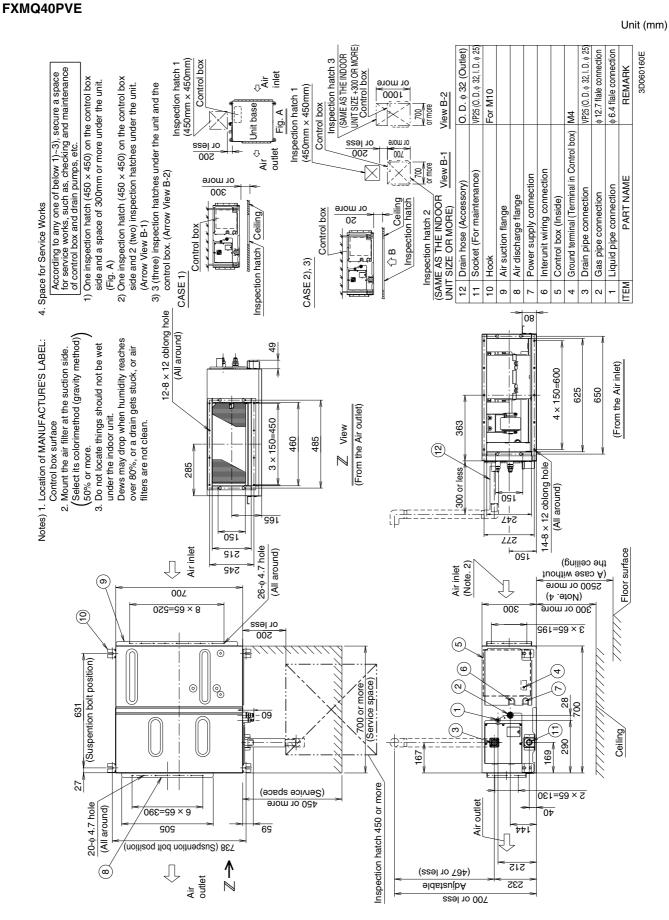
*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*3 External static pressure is changeable in 13 or 14 stages within the () range by remote controller.

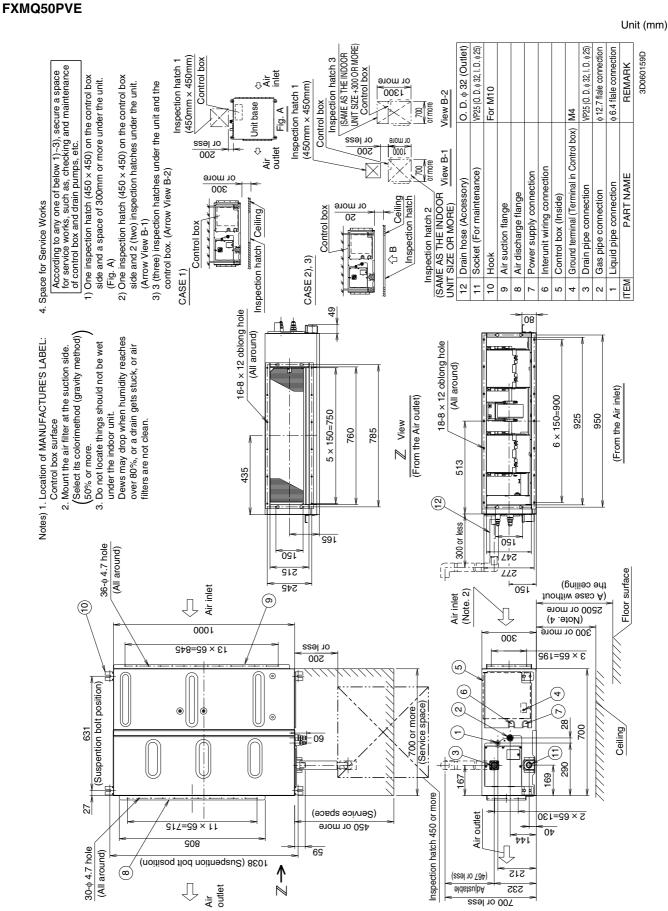
4 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

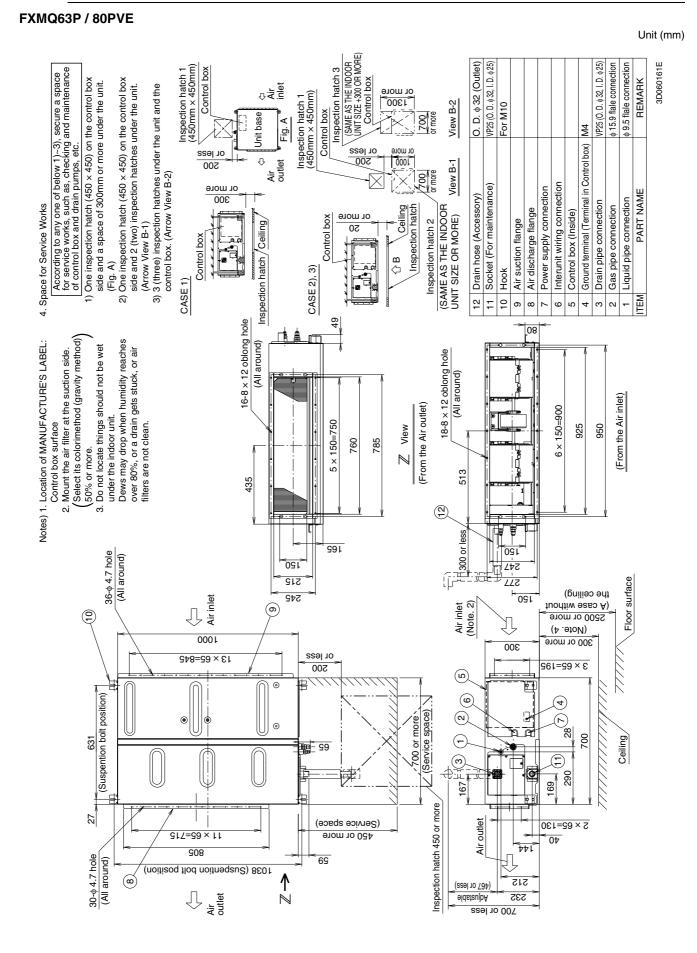

5 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

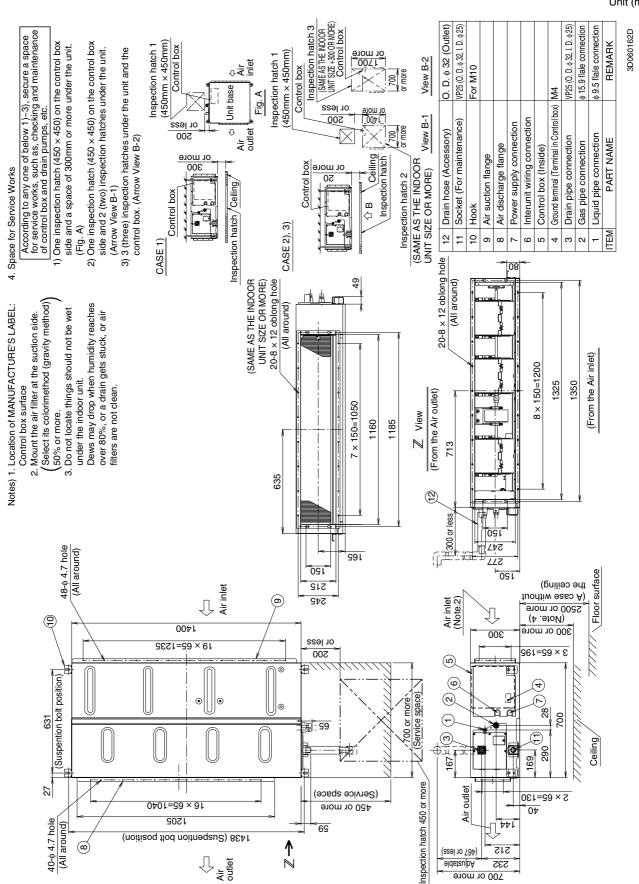

*6 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit centre. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

7 Refer to page 255 for Fan Motor Input.

FXMQ20P / 25P / 32PVE

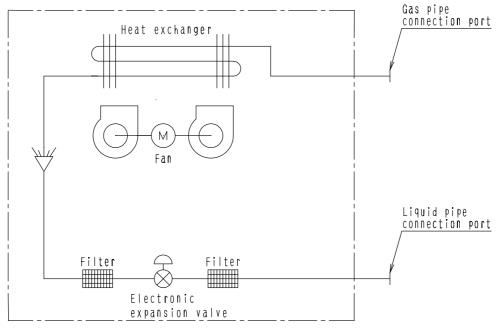

Unit (mm)




ED34-862

7

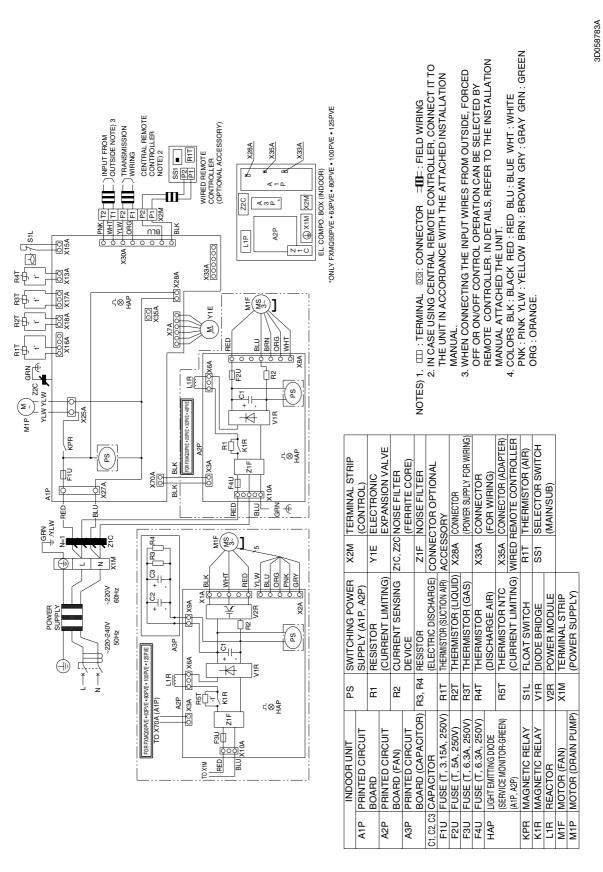
ED34-862



FXMQ100P / 125PVE

Unit (mm)

4. Piping Diagrams


4D034245C

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXMQ20P / 25P / 32P / 40P / 50PVE	φ12.7	φ 6.4
FXMQ63P / 80P / 100P / 125PVE	φ 15 .9	φ 9 .5

Wiring Diagrams

6. Electric Characteristics

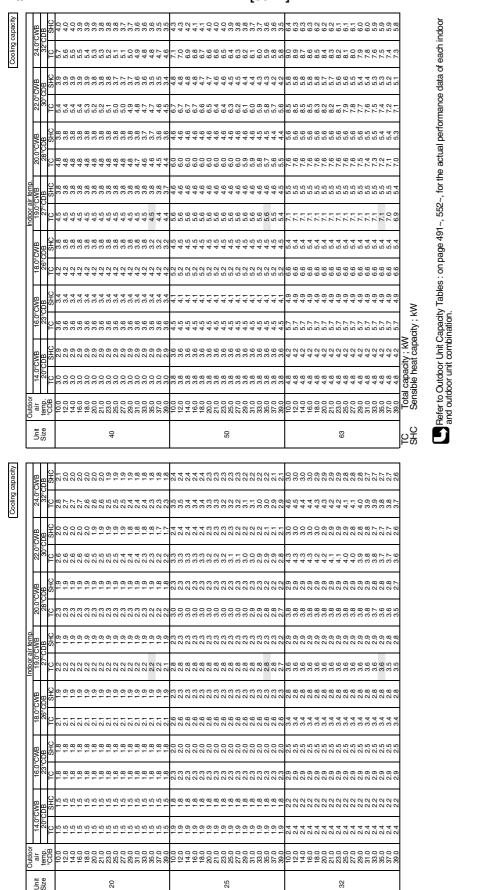
Model		Power supply				IFM		Input(W)		
Model	Ηz	Volts	Voltage range	MCA	MFA	ΚW	FLA	Cooling	Heating	
FXMQ20PVE				0.6	16	0.090	0.5	81	69	
FXMQ25PVE				0.6	16	0.090	0.5	81	69	
FXMQ32PVE				0.6	16	0.090	0.5	85	73	
FXMQ40PVE				1.4	16	0.140	1.1	194	182	
FXMQ50PVE	50	220~240V	Max.264V Min.198V	1.6	16	0.350	1.3	215	203	
FXMQ63PVE			MIN, 190V	1.8	16	0.350	1.4	230	218	
FXMQ80PVE				2.3	16	0.350	1.8	298	286	
FXMQ100PVE				2.9	16	0.350	2.3	376	364	
FXMQ125PVE				3.4	16	0.350	2.7	461	449	

Symbols:

- MCA : Min. Circuit Amps (A) MCA : Max. Fuse Amps (See note 5) KW : Fan Motor Rated Output(kW) FLA : Full Load Amps(A) IFM : Indoor Fan Motor

Note:

- 1. Voltage range Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits, 2. Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA
 - $MCA = 1.25 \times FLA$
 - MFA ≦ 4 X FLA
 - (Next lower standard fuse rating. Min. 16A)
- Select wire size based on the MCA.
 Instead of fuse, use circuit breaker.

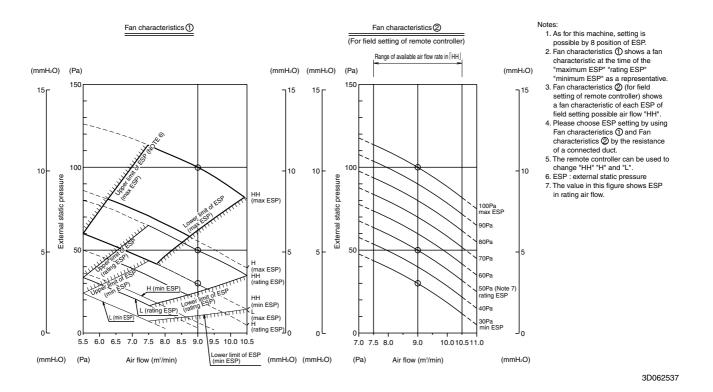

C:4D060439A

7. Capacity Tables

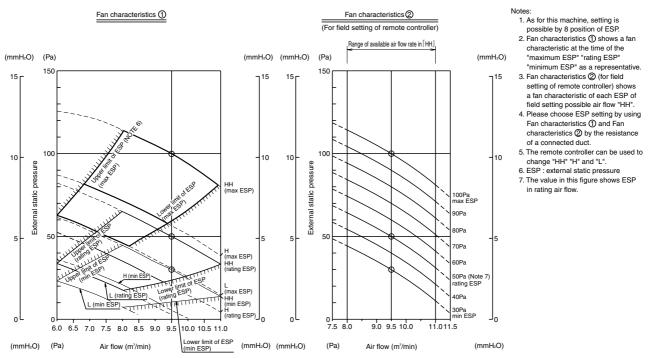
7.1 Cooling Capacity

FXMQ-P

[50Hz]

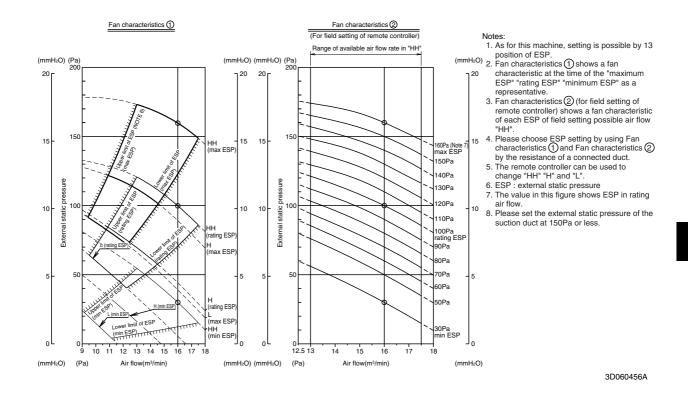


Ρ																							[5	50	H	z]											
0°CWB	CDB	SHC 7.4	7.4	7.3	10	7.1	7.1	7.0	0.0 0	0 0 0 0	6.7	6.7	6.6	6.5 6.5	6.0 0	0.00	8.7	8.0 1.0	0 0 0 0	8.4	8 9 9	8.1	8.0	2. C	7.7	1.1	10.9	10.8	10.6	10.5	10.3	10.2	10.1	0.8	9.7	9.0 9.2	
24.0°(ŝ	1C	11.2	11.1	10.8	10.6	10.6	10.4	10.3	- 0	9.8	9.7	9.5	9 6 6	14.2	13.8	13.6	13.4	13.2	13.0	12.8	12.4	12.2	- 6	11.7	17.7	17.2	17.0	16.8 16.6	16.4	16.0	15.8	15.5 15.5	15.1	14.9	14.6 14.4	
0°CWB	CDB	SHC 7.4	7.4	7.4	t 2	7.2	7.2	7.1	0.7	0.4	0.0 0.0	6.7	6.6	6.5 6.5	0.0 0	0.6	9.0	0.0 0.0	0 00 0 00 0 00	8.7	8.0 7.0	8.4 8	8 0 0	0 F 8	8.0	11.1		11.1	10.9	10.9	10.8	10.5	10.4	10.2	10.1	9.9	
22.0%	ò		10.8	10.8	10.6	10.4	10.4	10.2	10.1	ກ ດ	0.0 0.0	9.5	9.3	8 0 6	13.4	13.4	13.3	13.2	12.9	12.7	12.5	122	12.0	9 U	1.1	16.7	16.7	16.7	16.2 16.2	16.1	15.9 15.6	15.4	15.2	14.7	14.5	14.3 14.1	
0°CWB	00B	SHC 7.1	7.1	1.1	7.1	7.1	7.1	7.1	1.1		2.0	7.0	6.9	6.8 6.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	0.7 8.6	8.5 7	0.0	8.9 6.9	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.7	10.5	10.4	10.3	
20.0	28°(TC 0.6	9.6	9.6	0 0 0 0	9.6	9.6	9.6	9.0	0 4	9.9 7.0	9.3	9.1	0.8	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.9	11.7	- F	11.2	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9 14.6	14.4	14.2	13.9 13.7	
CWB	CDB	SHC 7.0	7.0	0.7	0.7	7.0	7.0	7.0	0.7	0.0	2.0	7.0	7.0	6.9 0.8	8.5 8.5	8.5	8.5	8.5 7	0.5 8.5	8.5	8.5 7	8.5 0.0	8.5	0 G	8.4 7 0	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5 10.5	10.5	10.5	10.4	
č	2	00	9.0 0.6	0.0	0.6	0.0	9.0	9.0	0.0	0.0	0.0	9.0	9.0	8.7 8.7	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.0	11.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.8 13.5	
0°CWB	CDB	SHC	0.0	6.9 0	6.0	6.9	6.9	6.9	0.0 0.0	0.0 9	0.0 0	6.9	6.9	5 O 0 O	8.0 0.0	0.0	8.3	8 9 9	ກ ແ ເຊ	8.3	00 0 00 0	0 0 0 0 0	8 0 0	ი. ი. ი.	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	
18.0°	õ	TC B 4	8.4	8.4	5 0 7 0	8.4	8.4	8.4	8.4	ο. 4 Δ	8.4 8.4	8.4	8.4	8.8 4 4	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1 13.1	
0°CWB	DB	SHC 6.1	6.1	6.1		6.1	6.1	6.1	6.1		9 1	6.1	6.1	6.1 6.1	7.3	7.3	7.3	7.3	5.7 7.3	7.3	7.3	7.3	7.3	0.7 2.6	7.3	9.5	9.5 0.5	9.2	200	9.2	2.6	9.2	9.2 0 2	0.2	0.2	9.2	N
16.0°	23°C	7.9	7.2	7.2	1.7	7.2	7.2	7.2	7.2	N 0	7.2	7.2	7.2	7.2	9.0	0.6	9.0	0.0	0.0	9.0	9.0	9.0 9.0	0.0	000	0.0	11.3		11.3	5 E E	11.3	5 H 3	11.3	11.3	. E	11.3	5.11.3 5.11.3	; kW
CWB	CDB	SHC	5.3	0.0 0.0	0.00	5.3	5.3	5.3	0 U	0 u	0.0	5.3	5.3	2 C C C C C C	6.4 6.4	6.4	6.4	6.4	6.4 4.0	6.4	6.4	6.4	6.4	6.4 7	6.4	t 0.8	8.0	8.0	0.0	8.0	0.8	8.0	8.0	8.0	8.0	8.0	
14.0°CWB	ô	LC P	6.1	6.1	9.0	6.1	6.1	6.1	6.1	4	6.1	6.1	6.1	6.1 6.1	7.6	7.6	7.6	7.6	9.7 9.7	7.6	7.6	7.6	7.6	9.7	7.6	9.4	9.0 4.4	9.4	4.0	9.4	9.9 4.9	9.4	9.4	1.0 1.7	9.4	9.9 4.4	Total capacity
Outdoor air temp.	°CDB	100	12.0	14.0	18.0	20.0	21.0	23.0	25.0	0.72	31.0	33.0	35.0	39.0	10.0	14.0	16.0	18.0	21.0	23.0	25.0	29.0	31.0	35.0	37.0	10.0	14.0	16.0	20.0	21.0	23.0	27.0	29.0	33.0	35.0	37.0 39.0	Total
Chit								80	2											100	8										125						


8. Fan Performances

8.1 Fan Performance

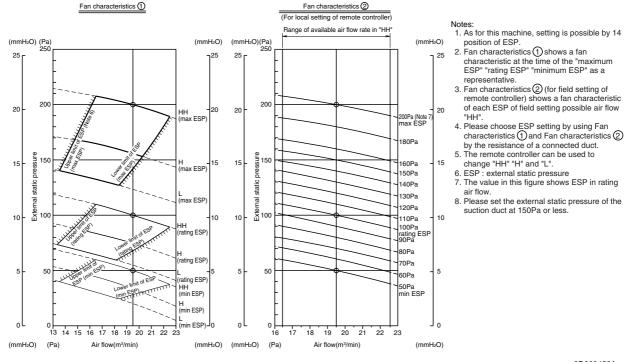
FXMQ20P / 25PVE


FXMQ32PVE

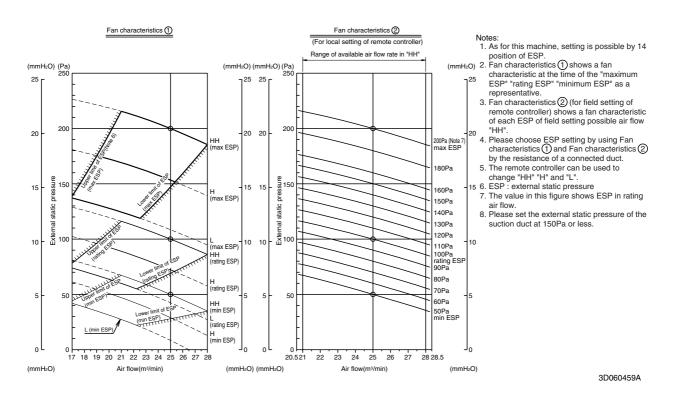
3D062538

7

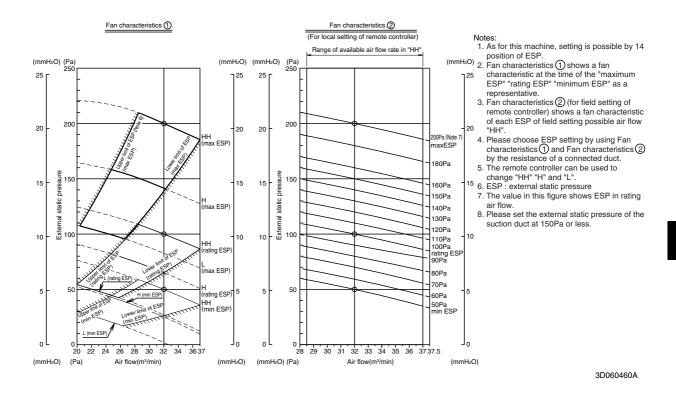
FXMQ40PVE



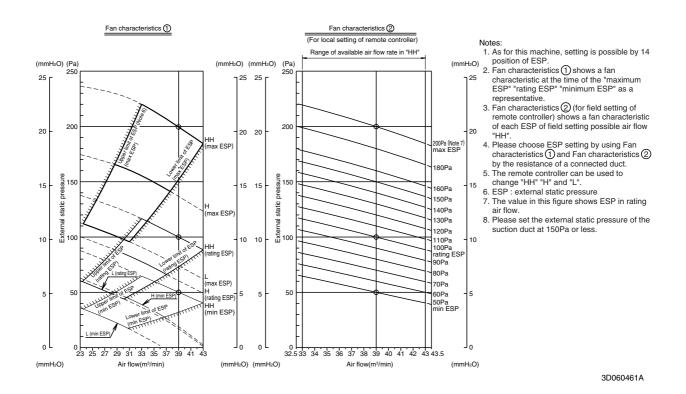
FXMQ50PVE


3D060457B

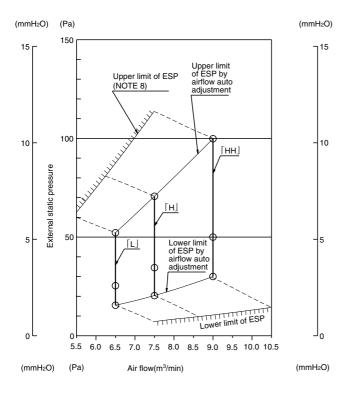
FXMQ63PVE



3D060458A


FXMQ80PVE

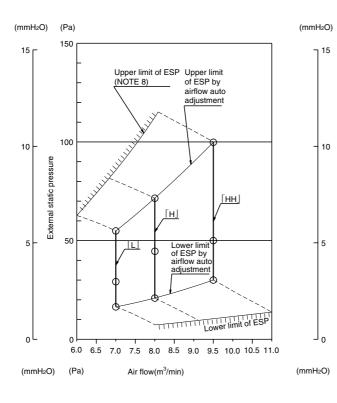
FXMQ100PVE



FXMQ125PVE

8.2 "Air Flow Auto Adjustment" Characteristics

FXMQ20P / 25PVE

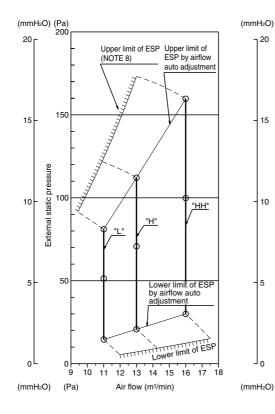


Notes:

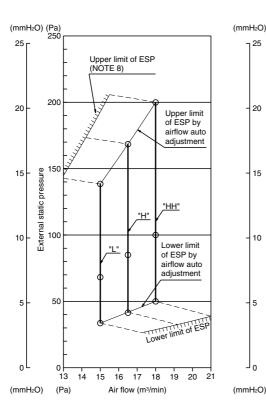
- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- External static pressure that can adjust by "airflow auto adjustment" function is 30Pa-100Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.

3D062539

FXMQ32PVE



Notes:


- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- 2. After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- External static pressure that can adjust by "airflow auto adjustment" function is 30Pa-100Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.

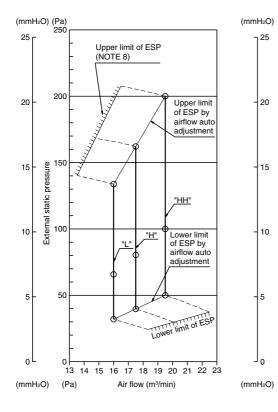
3D062540

FXMQ40PVE

FXMQ50PVE

Notes:

- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- 4. External static pressure that can adjust by "airflow auto adjustment" function is 30Pa 160Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

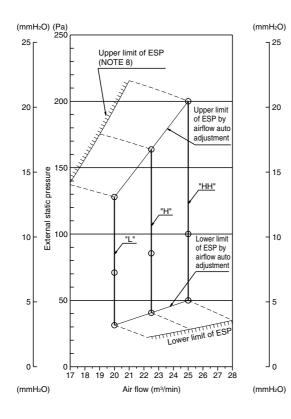

3D060577A

Notes:

- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- External static pressure that can adjust by "airflow auto adjustment" function is 50Pa - 200Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

3D060578A

FXMQ63PVE

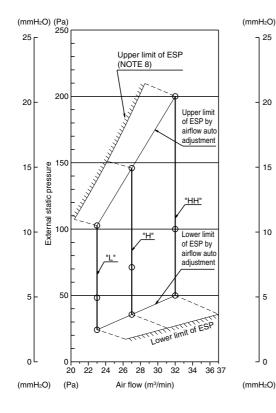


Notes:

- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- 2. After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- External static pressure that can adjust by "airflow auto adjustment" function is 50Pa - 200Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

3D060579A

FXMQ80PVE

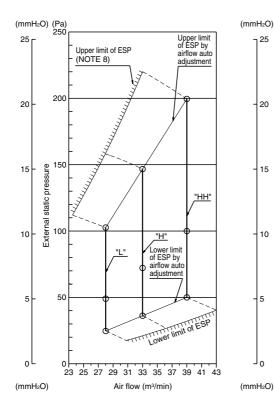


Notes:

- As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller.
- About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- External static pressure that can adjust by "airflow auto adjustment" function is 50Pa - 200Pa (When air flow is HH).
- It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- This figure shows a fan characteristics at the time of "HH" "H" and "L".
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

3D060580A

FXMQ100PVE

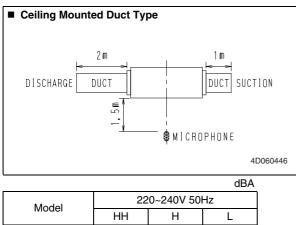


Notes:

- 1. As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- 2. After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller
- 3. About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- 4. External static pressure that can adjust by "airflow auto adjustment" function is 50Pa - 200Pa (When air flow is HH).
- 5. It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L"
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

3D060581A

FXMQ125PVE


Notes:

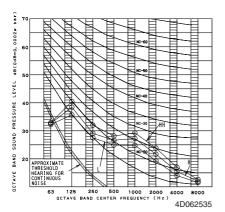
- 1. As for this machine, less than 10% of the volume of blow-off air is automatically adjusted to the rated quantity by airflow auto adjustment at the time of installation.
- 2. After duct construction completion, please perform local setting "airflow auto adjustment" by remote controller
- 3. About the local setting method of the "airflow auto adjustment", look at the installation manual which is attached to an indoor unit.
- 4. External static pressure that can adjust by "airflow auto adjustment" function is 50Pa - 200Pa (When air flow is HH).
- 5. It is not operated auto adjustment, operated in air flow that is different from rated quantity in the case of use out of external static pressure range mentioned above.
- 6. This figure shows a fan characteristics at the time of "HH" "H" and "L'
- 7. The remote controller can be used to change "HH" "H" and "L".
- 8. ESP : external static pressure.
- 9. Please set the external static pressure of the suction duct at 150Pa or less.

3D060582A

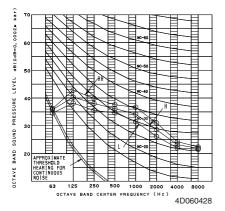
9. Sound Levels

Overall

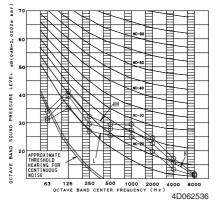
Model	HH	Н	L
FXMQ20P / 25P	33	31	29
FXMQ32P	34	32	30
FXMQ40P	39	37	35
FXMQ50P	41	39	37
FXMQ63P	42	40	38
FXMQ80P	43	41	39
FXMQ100P	43	41	39
FXMQ125P	44	42	40

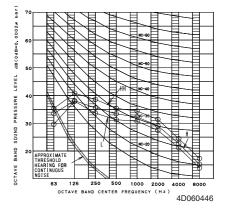

Note:

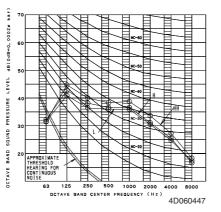
- 1. The operating conditions are assumed to be standard (JIS conditions).
- These operating values were obtained in a dead room (conversion values).
 Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

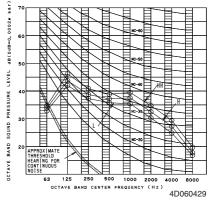

Octave Band Level

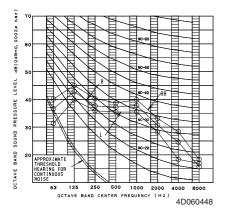
O-----O 220~240V 50Hz

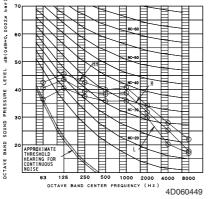

FXMQ20P / 25PVE


FXMQ50PVE

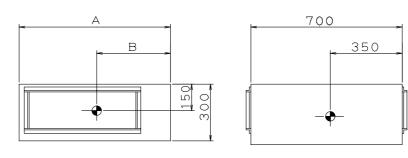

FXMQ32PVE


FXMQ40PVE


FXMQ63PVE


FXMQ80PVE

FXMQ100PVE


FXMQ125PVE

Unit (mm)

10. Center of Gravity

FXMQ20P / 25P / 32P / 40P / 50P / 63P / 80P / 100P / 125PVE

MODEL NAME	А	В
FXMQ20·25·32PVE	550	210
FXMQ40PVE	700	280
FXMQ50•63•80PVE	1000	460
FXMQ100 • 125PVE	1400	600

4D060438A

11.Installation Manual

VRV SYSTEM Inverter Air Conditioners

Installation manual

CONTENTS

1. SAFETY PRECAUTIONS 1	
2. BEFORE INSTALLATION 2	
3. SELECTING INSTALLATION SITE 3	
4. PREPARATIONS BEFORE INSTALLATION 4	
5. INDOOR UNIT INSTALLATION 5	
6. REFRIGERANT PIPING WORK 5	
7. DRAIN PIPING WORK 7	
8. DUCT WORK 8	
9. ELECTRIC WIRING WORK 9	
10. WIRING EXAMPLE AND HOW TO SET	
THE REMOTE CONTROLLER 10	
11. FIELD SETTING 12	
12. TEST OPERATION 14	

1. SAFETY PRECAUTIONS

Please read these "SAFETY PRECAUTIONS" carefully before installing air conditioning unit and be sure to install it correctly. After completing installation, conduct a trial operation to check for faults and explain to the customer how to operate the air conditioner and take care of it with the aid of the operation manual. Ask the customer to store the installation manual along with the operation manual for future reference.

This air conditioner comes under the term "appliances not accessible to the general public".

Safety Precaution

This unit is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Meaning of WARNING and CAUTION notices

<u>/ · · · · · · · · · · · · · · · · · · ·</u>	Failure to follow these instructions properly may result in personal injury or loss of life.
	Failure to observe these instructions properly may result in property dam- age or personal injury, which may be serious depending on the circum- stances.

 Ask your dealer or qualified personnel to carry out installation work.

Do not attempt to install the air conditioner yourself. Improper installation may result in water leakage, electric shocks or fire.

 Install the air conditioner in accordance with the instructions in this installation manual.

Improper installation may result in water leakage, electric shocks or fire.

 Consult your local dealer regarding what to do in case of refrigerant leakage. When the air conditioner is to be installed in a small room, it is necessary to take proper measures so that the amount of any leaked refrigerant does not exceed the concentration limit in the event of a leakage. Otherwise, this may lead to an accident due to oxygen depletion. • Be sure to use only the specified accessories and parts for installation work.

Failure to use the specified parts may result in the unit falling, water leakage, electric shocks or fire.

- Install the air conditioner on a foundation strong enough to withstand the weight of the unit.
 A foundation of insufficient strength may result in the equipment falling and causing injury.
- Carry out the specified installation work after taking into account strong winds, typhoons or earthquakes.
 Failure to do so during installation work may result in the unit falling and causing accidents.
- Make sure that a separate power supply circuit is provided for this unit and that all electrical work is carried out by qualified personnel according to local laws and regulations and this installation manual.

An insufficient power supply capacity or improper electrical construction may lead to electric shocks or fire.

 Make sure that all wiring is secured, the specified wires are used, and that there is no strain on the terminal connections or wires.

Improper connections or securing of wires may result in abnormal heat build-up or fire.

- When wiring the power supply and connecting the remote controller wiring and transmission wiring, position the wires so that the control box lid can be securely fastened. Improper positioning of the control box lid may result in electric shocks, fire or the terminals overheating.
- If refrigerant gas leaks during installation, ventilate the area immediately.

Toxic gas may be produced if the refrigerant comes into contact with fire.

- After completing installation, check for refrigerant gas leakage. Toxic gas may be produced if the refrigerant gas leaks into the room and comes into contact with a source of fire, such as a fan heater. stove or cooker.
- Be sure to switch off the unit before touching any electrical parts.
- Be sure to earth the air conditioner.
 Do not earth the unit to a utility pipe, lightning conductor or telephone earth lead. Imperfect earthing may result in electric shocks or fire.

A high surge current from lightning or other sources may cause damage to the air conditioner.

Be sure to install an earth leakage breaker.
 Failure to install an earth leakage breaker may result in electric shocks or fire.

- Λ caution -

 While following the instructions in this installation manual, install drain piping to ensure proper drainage and insulate piping to prevent condensation.

Improper drain piping may result in indoor water leakage and property damage.

- Install the indoor and outdoor units, power cord and connecting wires at least 1 meter away from televisions or radios to prevent picture interference and noise.
 (Depending on the incoming signal strength, a distance of
- 1 meter may not be sufficient to eliminate noise.)
- Remote controller (wireless kit) transmitting distance can be shorter than expected in rooms with electronic fluorescent lamps (inverter or rapid start types).
 Install the indoor unit as far away from fluorescent lamps as

possible.

1

- Do not install the air conditioner in the following locations:
 - Where there is a high concentration of mineral oil spray or vapour (e.g. a kitchen).
 Plastic parts will deteriorate, parts may fall off and water
 - leakage could result.2. Where corrosive gas, such as sulphurous acid gas, is produced.

Corroding of copper pipes or soldered parts may result in refrigerant leakage.

- Near machinery emitting electromagnetic radiation. Electromagnetic radiation may disturb the operation of the control system and result in a malfunction of the unit.
- 4. Where flammable gas may leak, where there is carbon fibre or ignitable dust suspensions in the air, or where volatile flammables such as paint thinner or gasoline are handled.

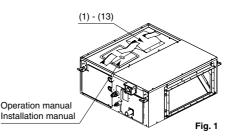
Operating the unit in such conditions may result in fire.

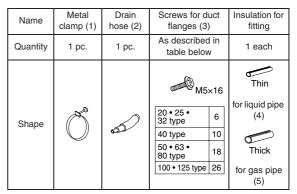
2. BEFORE INSTALLATION

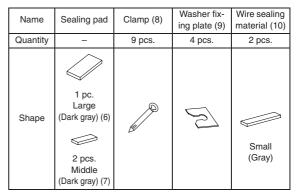
- When moving the unit while removing it from the carton box, be sure to lift it by holding on to the four lifting lugs without exerting any pressure on other parts, especially, the refrigerant piping, drain piping, flanges and other resin parts.
- Be sure to check the type of R410A refrigerant to be used before installing the unit. (Using an incorrect refrigerant will prevent normal operation of the unit.)
- The accessories needed for installation must be retained in your custody until the installation work is completed. Do not discard them!
- Decide upon a line of transport.
- Leave the unit inside its packaging while moving, until reaching the installation site. Where unpacking is unavoidable, use a sling of soft material or protective plates together with a rope when lifting, to avoid damage or scratches to the unit.
- When moving the unit or affter opening, hold the unit by the hanger brackets (x 4). Do not apply force to the refrigerant piping, drain piping, flanges or plastic parts.
- For the installation of outdoor unit, refer to the installation manual attached to the outdoor unit.
- Do not install or operate the unit in rooms mentioned below.
 Laden with mineral oil, or filled with oil vapor or spray like in kitchens. (Plastic parts may deteriorate which
 - could eventually cause the unit to fall out of place, or could lead to leaks.)
 Where corrosive gas like sulfurous gas exists. (Cop-
 - Where corrosive gas like sulfurous gas exists. (Copper tubing and brazed spots may corrode which could eventually lead to refrigerant leaks.)
 - Where exposed to combustible gases and where volatile flammable gas like thinner or gasoline is used. (Gas in the vicinity of the unit could ignite.)
 - Where machines can generate electromagnetic waves. (Control system may malfunction.)
 - Where the air contains high levels of salt such as that near the ocean and where voltage fluctuates greatly such as that in factories.
 - Also in vehicles or vessels.
- This unit, both indoor and outdoor, is suitable for installation in a commercial and light industrial environment.
 If installed as a household appliance it could cause electromagnetic interference.

2-1 PRECAUTIONS

- Be sure to read this manual before installing the indoor unit.
 Entrust installation to the place of purchase or a qualified serviceman. Improper installation could lead to leaks and, in
 - worse cases, electric shock of fire.


- Use only parts provided with the unit or parts satisfying required specifications. Unspecified parts could cause the unit to fall out of place, or could lead to leaks and, in worse cases, electric shock or fire.
- Be sure to mount an air filter (part to be procured in the field) in the suction air passage in order to prevent water leaking, etc.


2-2 ACCESSORIES


Check that the following accessories are provided and that each accessory is correct in amount. Refer to the Fig. 1 of this sheet.

[PRECAUTION]

The accessories are required for the installation of the air conditioner. Be sure to keep them until the installation work is completed.

Name Quantity	Washer (11) 8 pcs.	Wire fixing bracket (12) 2 pcs.	Wire fixing screw (13) 2 pcs.	(Other) • Operation
Shape	0	S	M4×8 ()111118	manual • Installation manual

English

2-3 OPTIONAL ACCESSORIES

• These are two types of remote controllers: wired and wireless. Select a remote controller according to customer request and install in an appropriate place.

Table 1

Remote	controller
Wired type	
Wireless type	Heat pump type
wireless type	Cooling only type

NOTE

• If you wish to use a remote controller that is not listed in Table 1, select a suitable remote controller after consulting catalogs and technical materials.

FOR THE FOLLOWING ITEMS, TAKE SPECIAL CARE DURING CONSTRUCTION AND CHECK AFTER INSTALLATION IS FINISHED.

a. Items to be checked after completion of work

If not properly done, what is likely to occur.	Check
The units may drop, vibrate or make noise.	
The unit may malfunction or the components burn out.	
No cooling or heating.	
Condensate water may drip.	
Condensate water may drip.	
The unit may malfunction or the components burn out.	
The unit may malfunction or the components burn out.	
Dangerous in case of cur- rent leakage.	
The unit may malfunction or the components burn out.	
No cooling or heating.	
No cooling or heating.	
The refrigerant charge in the system is not clear.	
Electric shock or fire.	
	likely to occur. The units may drop, vibrate or make noise. The unit may malfunction or the components burn out. No cooling or heating. Condensate water may drip. Condensate water may drip. Condensate water may drip. The unit may malfunction or the components burn out. Dangerous in case of cur- rent leakage. The unit may malfunction or the components burn out. Dangerous in case of cur- rent leakage. The unit may malfunction or the components burn out. No cooling or heating. No cooling or heating. The refrigerant charge in the system is not clear.

Also review the "SAFETY PRECAUTIONS".

b. Items to be checked at time of delivery

Items to be checked	Check
Are you sure the control box lid, air filter, air inlet grille, and air outlet grille are mounted?	
Did you explain about operations while showing the opera- tion manual to your customer?	
Did you deliver the operation manual along with the instal- lation manual to the customer?	
Did you explain the customer the handling and cleaning methods of the field supplies (e.g., the air filter, air inlet grilles, and air outlet grille)?	
Did you deliver instruction manual, if any, for the field supplies to the customer?	

c. Points for explanation about operations

The items with \triangle WARNING and \triangle CAUTION marks in the operation manual are the items pertaining to possibilities for bodily injury and material damage in addition to the general usage of the product. Accordingly, it is necessary that you make a full explanation about the described contents and also ask your customers to read the operation manual.

2-4 NOTE TO INSTALLER

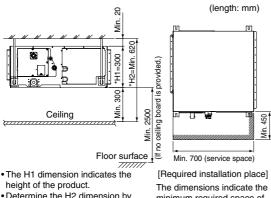
• Be sure to instruct customers how to properly operate the unit (especially cleaning filters, operating different functions, and adjusting the temperature) by having them carry out operations themselves while looking at the manual.

3. SELECTING INSTALLATION SITE

 \langle Hold the hanging brackets in the case of moving the indoor and outdoor units at the time of and after opening the packages. Do not impose undue force on other parts, such as the refrigerant piping, drain piping, or flanges, in particular. \rangle

 $\langle Add$ heat insulation material to the indoor unit if the temperature above the ceiling is likely to exceed 30°C and a relative humidity of 80%. \rangle

 \langle Make sure that the insulation material is made of glass wool or polyethylene foam, has a minimum thickness of 10 mm, and can be accommodated in the opening on the ceiling. \rangle

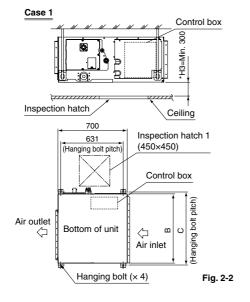

- (1) Select an installation site where the following conditions are fulfilled and that meets with your customer's approval.
 - A place where cool (warm) air is delivered to the entire room.
 - Where nothing blocks the air passage.
 - · Where condensate can be properly drained.
 - If supporting structural members are not strong enough to take the unit's weight, the unit could fall out of place abd cause serious injury.
 - Where the false ceiling is not noticeably on an incline.
 - Where there is no risk of flammable gas leakage.
 - Where sufficient clearance for maintenance and service can be ensured. (Refer to Fig. 2-1)
 - Where piping between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual of the outdoor unit.)

 Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 meter away from televisions or radios in order to prevent image interference or noise.
 (Depending on the radio waves, a distance of 1 meter may not be sufficient enough to eliminate the noise.)

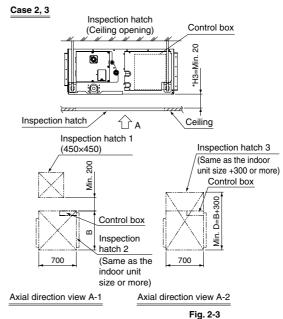
English

3

- In the case of the installation of a wireless remote controller, the transmission distance of the wireless remote controller may be shortened if the room has a fluorescent light of electronic lighting type (i.e., an inverter or rapid-start fluorescent light). Keep the distance between the receiver and the fluorescent light as far as possible.
- (2) Use hanging bolts to install the indoor unit. Check that the place of installation withstands the weight of the indoor unit. Secure the hanging bolts with proper beams if necessary.


• Determine the H2 dimension by maintaining a downward slope of at least 1/100 as specified in "7. DRAIN PIPING WORK"

minimum required space of installation.


Fia. 2-1

4. PREPARATIONS BEFORE INSTALLATION

- (1) Check the positional relationship between the ceiling opening hole and the hanging bolt of the unit.
 - · For the maintenance, inspection, and other servicing purposes of the control box and drain pump, prepare one of the following service spaces.
 - 1. Inspection hatch 1 (450 × 450) for the control box and a minimum space of 300 mm for the lower part of the product. (Refer to Fig. 2-2)
 - 2. Inspection hatch 1 (450×450) for the control box and inspection hatch 2 for the lower part of the product (see axial direction view A-1). (Refer to Fig. 2-3)
 - 3. Inspection hatch 3 for the lower part of the product and the lower part of the control box (see axial direction view A-2). (Refer to Fig. 2-3)

• Determine the H3 dimension by maintaining a downward slope of at least 1/100 as specified in "7. DRAIN PIPING WORK".

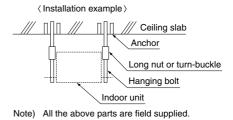
20 • 25 • 32 type	550	583	850
40 type	700	738	1000
50 • 63 • 80 type	1000	1038	1300
100 • 125 type	1400	1438	1700
		(lenat	1. mm)

В С D

583 850

(2) Mount the canvas ducts to the air outlet and inlet so that the vibration of the air conditioner will not be transmitted to the duct or ceiling. Apply a sound-absorbing material (insulation material) to the inner wall of the duct and vibration insulation rubber to the hanging bolts (refer to 8. DUCT WORK).

Model


(3) Open installation holes (if the ceiling already exists).

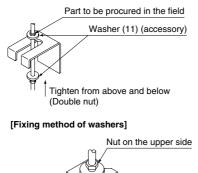
· Open the installation holes on the ceiling. Lay the refrigerant piping, drain piping, power line, transmission wiring, and remote controller wiring for the piping and wiring connection port of the unit.

In the case of the installation of a wireless remote controller, refer to the installation manual provided with the wireless remote controller.

Refer to 6. REFRIGERANT PIPING WORK, 7. DRAIN PIPING WORK, and 10. WIRING EXAMPLE AND HOW TO SET THE REMOTE CONTROLLER

- The ceiling framework may need reinforcement in order to keep the ceiling horizontal and prevent the vibration of the ceiling after the installation holes are opened. For details, consult your construction or interior contractor.
- (4) Install the hanging bolts. Make sure that the hanging bolts are M10 in size.
 - Use hole-in anchors if the hanging bolts already exist; otherwise use embedded inserts and embedded foundation bolts so that they will withstand the weight of the unit. Adjust the distance to the ceiling surface in advance.

English

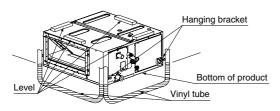

5. INDOOR UNIT INSTALLATION

 \langle It may be easier to install accessories (sold separately) before installing the indoor unit. Refer to the installation manuals provided to the accessories as well. \rangle

Be sure to use the accessories and specified parts for installation work.

- (1) Temporally install the indoor unit.
 - Connect the hanging brackets to the hanging bolts. Be sure to use and tighten the nut and washer (11) for each hanging bracket from both upper and lower sides of the hanging bracket. (Refer to Fig. 3) At that time, the fall of the washer (11) for the hanging bracket can be prevented if the washing fixing plate (9) is used.

[Fixing hanging brackets]


Washer fixing plate (9) (accessory) Fig. 3

 During the installation work, perform the curing of the air outlet and protect the resin drain pan of the indoor unit from the intrusion of foreign substances, such as welding spatters.

Otherwise, water leakage may occur as a result of damage, such as hole damage, to the resin drain pan.

- (2) Make adjustments so that the unit will be in the right position.
- (3) Check the level of the unit.
- (4) Remove the washer fixing plates for the falling prevention of the washers for the hanging brackets, tighten the nuts on the upper side, and securely fix the unit.

English

- 🕂 CAUTION -

- Use the level and check that the unit is installed horizontally. (4-directions)
- In the case of using a vinyl tube in place of the level, put the both edges of the vinyl tube in close contact with the bottom of the product to make levelness adjustment.
 If the unit is installed at a slant with the drain pipe side set high, in particular, the float switch will not operate normally

6. REFRIGERANT PIPING WORK

and water leakage may result.

 \langle As for the refrigerant piping of the outdoor unit, refer to the installation manual provided to the outdoor unit. \rangle \langle Perform heat insulation work on both gas piping and liquid

piping, or otherwise water leakage may result.

(Use the insulation material that withstands a temperature of 120°C.)

⟨Reinforce the insulation material for the refrigerant piping if the ambient temperature is high, or otherwise dew condensation may result on the surface of the insulation material.⟩ ⟨Make sure that the refrigerant is R410A before refrigerant piping work. If the refrigerant is different, the air conditioner will not operate normally.⟩

– \Lambda CAUTION –

This product uses new refrigerant (R410A) only. Be sure to keep the items on the right-hand side and conduct the installation work.

- Use a dedicated pipe cutter and flare tool for R410A.
- When connecting the flare, apply ether oil or ester oil only to inner side of the flare.
- Be sure to use the flare nut provided with the unit. (Do not use a different flare nut (such as a type-1 flare nut), or otherwise refrigerant leakage may result.)
- Perform the curing of the piping with pinching or taping of the piping in order to prevent the intrusion of dirt, dust, and moisture into the piping.

- 🕂 CAUTION -

- Be sure to use the specified type of refrigerant for the refrigeration cycle and do not contaminate the refrigerant with air.
- Ventilate the room in case of refrigerant leakage during installation work.

(1) Connect the piping.

- The outdoor unit is filled with refrigerant.When connecting or disconnecting piping to or from the
- unit, be sure to use two spanners and two torque wrenches. (Refer to Fig. 4)

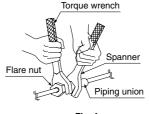


Fig. 4

- Refer to Table 2 for the processing dimensions of the flare.
- Use the flare nut provided with the unit.
- Apply ether oil or ester oil only to inner side of the flare and screw in the flare nut three to four turns first by hand at the time of connecting the flare nut. (Refer to Fig. 5)

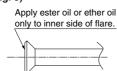


Fig. 5

Refer to Table 2 for the corresponding tightening torque.

Table 2

Pipe size	Tightening torque	Flare dimensions A (mm)	Flare shape
φ 6.4	14.2 – 17.2N·m	8.7 – 9.1	X
φ 9.5	32.7 – 39.9N·m	12.8 – 13.2	°u (°+) − R0.4-0.8
φ 12.7	49.5 – 60.3N·m	16.2 – 16.6	
φ 15.9	61.8 – 75.4N·m	19.3 – 19.7	\searrow

· Do not excessively tighten the flare nut.

Doing so will break the flare nut and refrigerant leakage may result.

- Make sure that all parts around the flare are free of oil. The drain pan and the resin part may be deteriorated if oil is attached.
 - If no torque wrenches are available, refer to Table 3 as a standard.

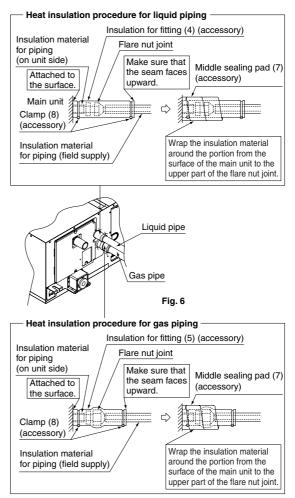

When the flare nut is tightened with the spanner, the tightening torque should increase suddenly. Tighten the flare nut further for the corresponding angle shown in Table 3.

Table 3

Pipe size	Further tightening angle	Recommended arm length of tool
φ 6.4	60 to 90 degrees	Approx. 150mm
φ 9.5	60 to 90 degrees	Approx. 200mm
φ 12.7	30 to 60 degrees	Approx. 250mm
φ 15.9	30 to 60 degrees	Approx. 300mm

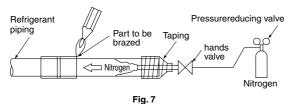
(2) On completion of installation work, **check that there is no** gas leakage.

(3) Refer to the illustration on the right-hand side and be sure to perform heat insulation work on the piping joints after gas leakage checks. (Refer to Fig. 6)

• Use the insulation for fitting (4) and (5) provided to the liquid piping and gas piping, respectively, and conduct heat insulation work.

(Tighten both edges of the insulation for fitting (4) and (5) for each joint with the clamp (8).)

- Make sure that the joint of the insulation for fitting (4) and (5) for the joint on the liquid piping and gas piping side faces upward.
- Wrap the middle sealing material (7) around the insulation for fitting (4) and (5) for the joint (flare nut part).


 Be sure to perform the heat insulation of the local piping up to the piping joint.

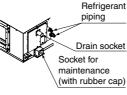
If the piping is exposed, dew condensation may result. Furthermore, a burn may be caused if a human body comes in contact with the piping.

6

English

 Perform nitrogen substituent or apply nitrogen into the refrigerant piping (see NOTE 1) in the case of refrigerant piping blazing (see NOTE 2). Then perform the flare connection of the indoor unit. (Refer to Fig. 7)

- Λ caution \cdot

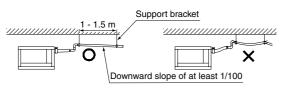

• Do not use any antioxidant at the time of piping blazing. The piping may be clogged with a residual antioxidant and parts may malfunction.

NOTE 👕

- At the time of blazing, set the pressure of nitrogen to approximately 0.02 MPa (close to the pressure of a breeze coming in contact with the cheek) with a decompression valve.
- Do not use flux at the time of blazing and connecting the refrigerant piping. Use a copper phosphorus brazing alloy (BCuP-2: JIS Z 3264/BCu 93P-710/795: ISO3677), which does not require flux, for blazing. (Flux has a bad influence on the refrigerant piping. Chlo
 - rine-based flux will cause piping corrosion. Furthermore, if it contains fluorine, the flux will deteriorate refrigerant oil.)
- As for the branching of the refrigerant piping or refrigerant, refer to the installation manual provided with the outdoor unit.

7. DRAIN PIPING WORK

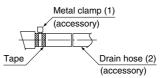
- (1) Conduct drain piping work. Check that the piping ensures proper draining.
 - Make sure that the diameter of the piping excluding the rising part is the same as or larger than the diameter of the con-



necting pipe (vinyl chloride pipe with an outer diameter of 32 mm and a nominal inner diameter of 25 mm).

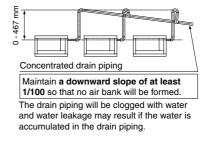
 Make sure that the piping is short enough with a downward slope of at least 1/100 and that there is no air bank formed. No drain trap is required.

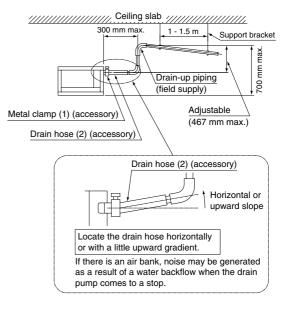
-<u>/</u> CAUTION


- The drain piping will be clogged with water and water leakage may result if the water is accumulated in the drain piping.
 - Conduct drain-up piping work if the gradient is insufficient.
 - Attach a support bracket at 1 to 1.5 m intervals for the prevention of piping deflection.

English

Be sure to use the drain hose (2) and metal clamp (1).
 Insert the drain hose (2) deep into the base of the drain socket, and securely fasten the metal clamp (1) within the taped part on the insertion front end of the hose.


Be sure to fasten the screw of the metal clamp (1) until the margin of the screw thread decreases to 4 mm or less.


NOTE

Be sure to follow the instructions as below.

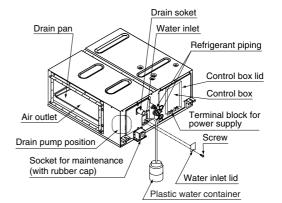
- Do not connect the drain piping directly to a sewer that smells of ammonia.
 - The ammonia in the sewer may reach through the drain piping and corrode the heat exchanger of the indoor unit.
- Do not bend or twist the provided drain hose (2) in order not to impose excessive force on the hose. (Doing so may result in water leakage.)
- Take the procedure shown in the following illustration to perform concentrated drain piping.

• Select the diameter of the concentrated drain piping to suit the capacity of equipment connecting to the concentrated drain piping (see the equipment design sheet).

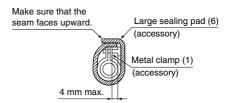
7

(2) Check the smooth draining of the piping on completion of the installation of the piping.

[Before electrical work]


- A licensed electrical engineering technician must conduct electrical wiring work (including grounding work).
- If no licensed electrical engineering technician is available, take steps 3 and 4 after the test operation of the air conditioner is finished.
- 1. Remove the control box lid, and connect the singlephase electric wires to terminals L and N of the terminal block and the ground wire to the ground terminal. Perform wiring according to 10-1 CONNECTING POWER SUPPLY, GROUND, REMOTE CONTROLLER, AND TRANSMISSION WIRING in 10. WIRING EXAMPLE AND HOW TO SET THE REMOTE CONTROLLER.
- \land caution -
- In order not to impose tension on the wire connections, perform clamping securely with the provided clamp (8) specified in 3 in 10-1 CONNECTING POWER SUPPLY, GROUND, REMOTE CONTROLLER, AND TRANSMISSION WIRING.
 - 2. Check that the control box lid is closed before turning the air conditioner ON.
 - 3. Provide **approximately one liter of water** gradually into the drain pan through the water inlet on the bottom of the drain socket or the outlet. Make sure that the water is not spilled onto the drain pump.
 - 4. The drain pump will operate with the power turned ON. Check that the pump drains water smoothly. (The drain pump will stop automatically in 10 minutes.) The drainage can be checked with the water level change in the drain pan through the water inlet.

$-\underline{\land}$ caution \cdot


- Do not touch the drain pump.
- Otherwise, an electric shock may be received. • **Do not impose external force on the float switch.** Otherwise, a failure may result.
 - 5. On completion of the drainage check, shut off the power supply and disconnect the power supply line.
- 6. Put the control box lid to the original position.

[After electrical work]

- After completion of 8. DUCT WORK provide approximately one liter of water gradually into the drain pan through the water inlet on the bottom of the drain socket, and check that the water is drained while the air conditioner is in cooling operation according to 11. FIELD SETTING and 12. TEST OPERATION. Make sure that the water is not spilled onto the electric parts of the drain pump and others.
- (3) Be sure to conduct heat insulation work on the following portions, or otherwise water leakage may occur as a result of dew condensation.
 - Drain piping indoors
 - Drain socket

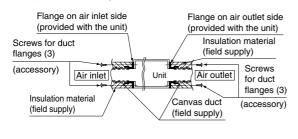
On completion of the drainage check, refer to the following illustration, and use the provided large sealing pad (6) and heat insulate the metal clamp (1) and drain hose (2).

8. DUCT WORK

Pay the utmost attention to the following items and conduct the ductwork.

- Check that the duct will not be in excess of the setting range of external static pressure for the unit. (Refer to the technical datasheet for the setting range.)
- Attach a canvas duct each to the air outlet and air inlet so that the vibration of the equipment will not be transmitted to the duct or ceiling.

Use a sound-absorbing material (insulation material) for the lining of the duct and apply vibration insulation rubber to the hanging bolts.


- At the time of duct welding, perform the curing of the duct so that the sputter will not come in contact with the drain pan for the filter.
- If the metal duct pass through a metal lath, wire lath, or metal plate of a wooden structure, separate the duct and wall electrically.
- Be sure to heat insulate the duct for the prevention of dew condensation. (Material: Glass wool or styrene foam; Thickness: 25 mm)
- Be sure to attach the field supply air filter to the air inlet of the unit or field supply inlet in the air passage on the air suction side. (Be sure to select an air filter with a duct collection efficiency of 50 weight percent.)
- Explain the operation and washing methods of the locally procured components (i.e., the air filter, air inlet grille, and air outlet grille) to the customer.
- Locate the air outlet grille on the indoor side for the prevention of drafts in a position where indirect contact with people.
- The air conditioner incorporates a function to adjust the fan to rated speed automatically. (11. FIELD SETTING)
 Therefore, do not use booster fans midway in the duct.

English

3PN06583-7L

Connection method of ducts on air inlet and outlet sides.

- Connect the field supply duct in alignment with the inner side of the flange.
- Connect the flange and unit with the flange connection screw (3).
- Wrap aluminum tape around the flange and duct joint in order to prevent air leakage.

Connect the flange and unit with the flange connection screw (3) regardless of whether the duct is connected to the air inlet side.

9. ELECTRIC WIRING WORK

9-1 GENERAL INSTRUCTIONS

- All field supplied parts and materials and electric works must conform to local codes.
- Use copper wire only.
- For electric wiring work, refer to also "Wiring diagram" attached to the control box lid.
- For remote controller wiring details, refer to the installation manual attached to the remote controller.
- All wiring must be performed by an authorized electrician.
 This system consists of multiple indoor units. Mark each indoor unit as unit A, unit B..., and be sure the terminal board
- wiring to the outdoor unit and BS unit are properly matched. If wiring and piping between the outdoor unit and an indoor unit are mismatched, the system may cause a malfunction.
- A circuit breaker capable of shutting down power supply to the entire system must be installed.
- Refer to the installation manual attached to the outdoor unit for the size of power supply wiring connected to the outdoor unit, the capacity of the circuit breaker and switch, and wiring instructions.
- Be sure to ground the air conditioner.
- Do not connect the ground wire to gas and water pipes, lightning rods, or telephone ground wires.
 - Gas pipes : might cause explosions or fire if gas leaks.
 - Water pipes : no grounding effect if hard vinyl piping is used.
 - Telephone ground wires or lightning rods : might cause abnormally high electric potential in the ground during lighting storms.

9-2 ELECTRICAL CHARACTERISTICS

Units				Power	supply	Fan r	notor
Model	Hz	Volts	Voltage range	MCA	MFA	kW	FLA
FXMQ20PVE				0.6	16	0.09	0.5
FXMQ25PVE				0.6	16	0.09	0.5
FXMQ32PVE				0.6	16	0.09	0.5
FXMQ40PVE				1.4	16	0.140	1.1
FXMQ50PVE	50	220- 240	Max. 264 Min. 198	1.6	16	0.350	1.3
FXMQ63PVE		240	J IMIII. 190	1.8	16	0.350	1.4
FXMQ80PVE				2.3	16	0.350	1.8
FXMQ100PVE				2.9	16	0.350	2.3
FXMQ125PVE				3.4	16	0.350	2.7
FXMQ20PVE			0.6	16	0.09	0.5	
FXMQ25PVE				0.6	16	0.09	0.5
FXMQ32PVE				0.6	16	0.09	0.5
FXMQ40PVE				1.4	16	0.140	1.1
FXMQ50PVE	60 220	220	Max. 242 Min. 198	1.6	16	0.350	1.3
FXMQ63PVE		Will. 190	1.8	16	0.350	1.4	
FXMQ80PVE			2.3	16	0.350	1.8	
FXMQ100PVE				2.9	16	0.350	2.3
FXMQ125PVE			3.4	16	0.350	2.7	

MCA: Min. Circuit Amps (A); MFA: Max. Fuse Amps (A) kW: Fan Motor Rated Output (kW); FLA: Full Load Amps (A)

9-3 SPECIFICATIONS FOR FIELD SUPPLIED FUSES AND WIRE

Madal	Power supply wiring			Remote controller wiring Transmission wiring		
Model	Field fuses	Wire	Size	Wire	Size	
FXMQ20PVE						
FXMQ25PVE	16A		Size must	Sheathed	0.75	
FXMQ32PVE						
FXMQ40PVE						
FXMQ50PVE		16A	H05VV- U3G	comply with local	wire	0.75 - 1.25 mm ²
FXMQ63PVE		000	codes.	(2 wire)	1.25 11111	
FXMQ80PVE						
FXMQ100PVE						
FXMQ125PVE						

Allowable length of transmission wirings and remote controller wiring are as follows.

(1) Outdoor unit – Indoor unit:

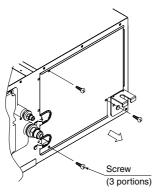
- Max. 1000 m (Total wiring length: 2000 m)
- (2) Indoor unit Remote controller:

Max. 500 m

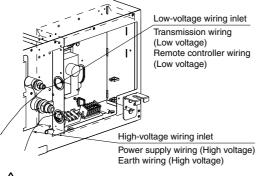
NOTE -

- 1. Shows only in case of protected pipes. Use H07RN-F in case of no protection.
- 2. Vinyl cord with sheath or cable (Insulated thickness : 1mm or more)

English

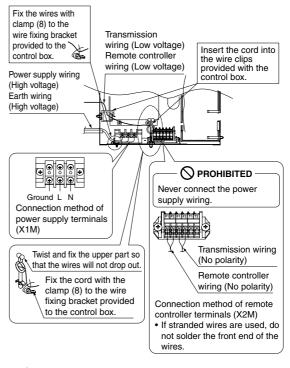

9

10. WIRING EXAMPLE AND HOW TO SET THE REMOTE CONTROLLER


10-1 CONNECTING POWER SUPPLY, GROUND, REMOTE CONTROLLER, AND TRANSMISSION WIRING

(Remove the control box lid as shown below and connect each wire.)

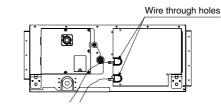
(1) Remove the control box lid.


(2) Lay the wires in the control box through the wire inlet on the side of the control box.

- \land caution \cdot

- Do not lay the remote controller wiring or transmission wiring along with the power supply wiring or other electric wiring in the same route. Separate the remote controller wiring and transmission wiring at least 50 mm from the power supply wiring or other electric wiring, or otherwise malfunctions or failures may be caused by external electric noise that may interfere with the remote controller wiring and transmission wiring.
- For the installation and wiring of the remote controller, refer to the remote controller installation manual provided with the remote controller.
- For power supply wiring, refer to the wiring diagram as well.
- Be sure to connect the remote controller wiring and transmission wiring correctly to the right terminal block.

(3) Follow the instructions below, and lay the wires in the control box.

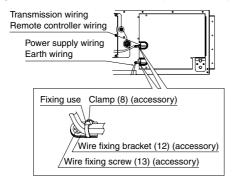


- \Lambda WARNING

Trim and lay the wiring neatly and attach the control box lid securely.

An electric shock or fire may result if the control box lid catches any wiring or the wires push up the lid.

(4) Put the control box lid, and wrap the wire sealing material (Small) (10) around the wires so as to block the wire through holes.



 After all the wiring connections are done, fill in any gaps in the through holes with putty or insulation (procured locally) to prevent small animals and insects from entering the unit from outside. (If any do get in, they could cause short circuits in the control box.)

3PN06583-7L

(5) Mount the provided wire fixing bracket (12) with the wire fixing screw (13). Fix each wire with the provided clamp (8).

[Precautions for Power Supply Wiring]

• Connect round crimp-style terminals provided with insulation sleeves to the terminal block for power supply.

Attach insulation sleeve

Be sure to follow the instructions provided below if the specified terminals cannot be used.

Otherwise, abnormal heat may be generated as a result of the loosening of the wires.

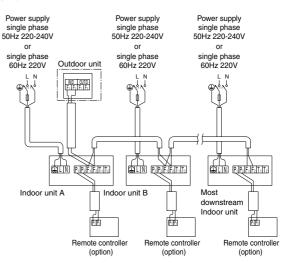
Connect the wires evenly. Do not connect a wire to the single side only.

Do not connect wires different from each other in diameter.

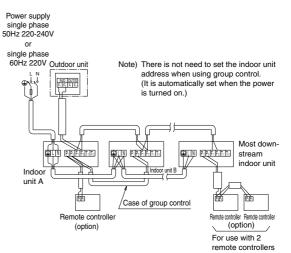
- If stranded wires are used, do not solder the front end of the wires.
- Connect proper wires securely and fix the wires so that external force will not be imposed on the terminals.
- Use an appropriate screwdriver to tighten the terminal screws. The screw heads may be damaged if the screwdriver is too small and the terminal screws will not be tightened properly.
- Do not tighten the terminal screws excessively, or otherwise the screw heads may be damaged.
- Refer to the table below for the required tightening torque values of the terminal screws.

	Tightening torque (N·m)
Terminal block for remote controller and transmission wires	0.80 - 0.96
Terminal block for power supply	1.18 - 1.44

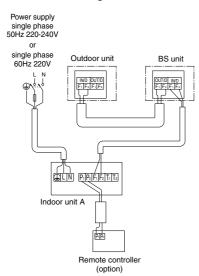
10-2 WIRING EXAMPLE



Install an earth leakage breaker.


The installation of an earth leakage breaker is imperative for the prevention of electric shocks and fire accidents.

English

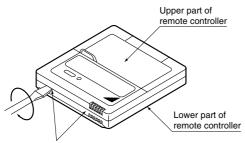

No. 2 system: For group control or use with 2 remote controllers

11

FXMQ-P

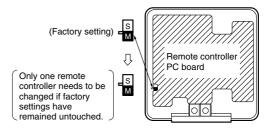
No. 3 system: When including BS unit

[PRECAUTIONS]

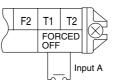

- If no earth leakage breaker is required, install a breaker or load switch with a fuse for the wiring. If an earth leakage breaker is required, make sure that the earth leakage breaker is designed to protect the air conditioner from ground faults, overloads, and short-circuiting.
- 2. The remote controller wiring (P1 and P2) and transmission wiring (F1 and F2) have no polarity.

10-3 CONTROL BY 2 REMOTE CONTROLLERS (Controlling 1 indoor unit by 2 remote controllers)

• Set one of the remote controllers to main and the other to sub in the case of remote control with two remote controllers.


Switching Main/Sub

 Insert a ⊖ screwdriver into the clearance between the grooves of the lower casing and the upper casing to remove the upper casing. (2 grooves) (The remote controller PCB is attached to the upper casing.)


Insert the screwdriver here and gently work off the upper part of remote controller.

(2) Set the main/sub switch on one of the remote controller PCBs to sub. (Keep the switch of the other remote controller PCB set to main.)

10-4 COMPUTERISED CONTROL (FORCED OFF AND ON/OFF OPERATION)

- (1) Wire specifications and how to perform wiring
- Connect the input from outside to terminals T1 and T2 of the terminal block for remote controller.

Wire specification	Sheathed vinyl cord or cable (2 wire)
Gauge	0.75 - 1.25 mm ²
Length	Max. 100 m
External terminal	Contact that can ensure the minimum appli- cable load of 15 V DC, 10 mA.

(2) Actuation

 The following table explains FORCED OFF and ON/OFF OPERATIONS in response to Input A.

FORCED OFF	ON/OFF OPERATION
Input "ON" stops operation (impossible by remote controllers.)	Input OFF \rightarrow ON turns ON unit.
Input OFF enables control by remote con- troller.	Input ON \rightarrow OFF turns OFF unit.

(3) How to select FORCED OFF and ON/OFF OPERATION
 Turn the power on and then use the remote controller to select operation.

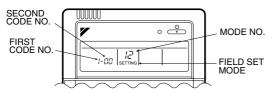
10-5 CENTRALIZED CONTROL

• For centralized control, it is necessary to designate the group No. For details, refer to the manual of each optional controllers for centralized control.

11. FIELD SETTING

NOTE -

• Before the test operation of the outdoor unit as explained in **12. TEST OPERATION**, be sure to make the following field settings as explained in **11. FIELD SETTING**.


Make sure the control box lids are closed on the indoor and outdoor units.

Field setting must be made from the remote controller in accordance with the installation condition.

 Setting can be made by changing the "MODE NO.", "FIRST CODE NO.", and "SECOND CODE NO.".

English

• For setting and operation, refer to the "FIELD SETTING" in the installation manual of the remote controller.

- Set the remote controller to the "FIELD SET MODE". For details, refer to the "HOW TO SET IN THE FIELD", in the remote controller manual.
- When in the "FIELD SET MODE", select "MODE NO. 12", then set the "FIRST CODE NO." to "1". Then set "SECOND CODE NO." to "01" for FORCED OFF and "02" for ON/OFF OPERATION. (FORCED OFF at factory set)

With Wireless Remote Controller Used

Set the wireless remote controller address before using the wireless remote controller.

For the setting method of the address, refer to the operation manual provided with the wireless remote controller.

NOTE

• A "MODE NO." is set on a group basis. To make a mode setting on a room unit basis or check the setting made, however, set the corresponding mode number in the parentheses.

1. Settings for Optional Accessories

 In the case of connecting optional accessories, refer to the operation manuals provided with the optional accessories and make necessary settings.

2. External Static Pressure Settings

Make settings in either method (a) or method (b) as explained below.

- (a) Use the airflow auto adjustment function to make settings. Airflow auto adjustment: The volume of blow-off air is automatically adjusted to the rated quantity.
 - (1) Check that power supply wiring to the air conditioner is completed along with duct installation. If a closing damper is installed in the air-conditioning system, make sure that the closing damper is opened. Furthermore, check that the air filter as a field supply is attached to the air passage on the suction side.
 - (2) If there are a number of air outlets and inlets, adjust the throttles so that the airflow rate of each air outlet and inlet will coincide with the designed airflow rate. At that time, operate the air conditioner in "fan operation mode". To change the airflow rate, press and set the airflow adjustment button of the remote controller to HH, H, or L.
 - (3) Make settings for airflow automatic adjustment. After setting the air conditioner to "fan operation mode", stop the air conditioner, go to "FIELD SET MODE", select "MODE NO. 21" (11 in the case of group settings), set the setting "FIRST CODE NO." to 7, and set the setting "SECOND CODE NO." to 03. Return to normal mode after these settings, and press the ON/OFF OPERATION button. Then the operation lamp will be lit and the air conditioner will go into fan operation for airflow automatic adjustment. Do not adjust the throttles of the air outlets or inlets during automatic adjustment of the air conditioner. After the air conditioner runs approximately one to eight minutes, the air conditioner will finish airflow adjustment automatically, the operation lamp will be turned OFF, and the air conditioner will come to a stop.

English

Table 4	
---------	--

MODE NO.	FIRST CODE NO.	Setting contents
11 (21)	7	Airflow adjustment
	SECOND CODE NO.	
01	02	03
OFF	Completion of airflow adjustment	Start of airflow adjustment

(4) After the air conditioner stops operating, check with "MODE NO. 21" on an indoor unit basis that 02 is set for the "SECOND CODE NO." in Table 4. If the air conditioner does not stop operating automatically or the "SECOND CODE NO." is not 02, repeat steps from (3). If the outdoor unit is not turned ON, U4 or UH as explained in Table 8 will be displayed. This display is not problematic, because this function is set for the indoor unit. Continue setting the function. After setting this function, be sure to turn ON the outdoor unit before the test operation of the outdoor unit. If any other error is displayed, refer to Table 8 and the operation manual provided with the outdoor unit and check the defective point.

- \land caution \cdot

- If there is any change after airflow adjustment in the ventilation paths (e.g., the duct and air outlet), be sure to make airflow auto adjustment again.
- Consult your Daikin representative if there is any change in the ventilation paths (e.g., the duct and air outlet) after the test operation of the outdoor unit is finished or the air conditioner is moved to another place.
 - (b) Select External Static Pressure with Remote Controller Check that 01 (OFF) is set for the "SECOND CODE NO." in "MODE NO. 21" for airflow adjustment on an indoor unit basis in Table 4. The "SECOND CODE NO." is set to 01 (OFF) at factory set. Change the "SECOND CODE NO." as shown in Table 5 according to the external static pressure of the duct to be connected.
 - (1) The "SECOND CODE NO." is set to 07 (an external static pressure of 100 Pa) at factory set. (FXMQ40 -50 · 63 · 80 · 100 · 125PVE)

The "SECOND CODE NO." is set to 02 (an external static pressure of 50 Pa) at factory set. (FXMQ20 \cdot 25 \cdot 32PVE)

- *1 The FXMQ50 · 63 · 80 · 100 · 125PVE cannot be set to 30 Pa.
- *2 The FXMQ40PVE cannot be set to 180 or 200 Pa. *3 The FXMQ20 · 25 · 32PVE cannot be set to 110-200 Pa.

Table 5

External Static Pressure	MODE NO.	FIRST CODE NO.	SECOND CODE NO.
30Pa (*1)			01
50Pa			02
60Pa			03
70Pa			04
80Pa			05
90Pa			06
100Pa	13 (23)		07
110Pa (*3)			08
120Pa (*3)		06	09
130Pa (*3)			10
140Pa (*3)			11
150Pa (*3)			12
160Pa (*3)			13
180Pa (*2)(*3)			14
200Pa (*2)(*3)			15

Keep in mind that a shortage of airflow quantity or water leakage will result because the air conditioner will be operated outside the rated range of airflow quantity if the external static pressure is wrongly set.

3. Filter Sign Settings

- The remote controller is provided with an LCD that tells the time of air filter cleaning.
- If the air conditioner is used in places with excessive dust, change the "SECOND CODE NO." as shown in Table 6. The "SECOND CODE NO." is set to 01 (standard) at factory set.

Table 6

Dirt	Time for display	MODE NO.	FIRST CODE NO.	SECOND CODE NO.
Standard	Approxi- mately 2500 hours		0	01
Excessive dust	Approxi- mately 1250 hours	10 (20)	0	02
No dis	play (*)		3	

* Select "No display" under conditions in which the cleaning display is not required, such as the time of regular maintenance.

12. TEST OPERATION

Refer to the installation manual of the outdoor unit.

 The operation lamp of the remote controller will flash when an malfunction occurs. Check the malfunction code on the liquid crystal display to identify the point of trouble. An explanation of malfunction codes and the corresponding trouble is provided in "CAUTION FOR SERVICING" of the outdoor unit. If any of the items in Table 8 are displayed, there may be a problem with the wiring or power, so check the wiring again.

Table 7

Remote controller display	Contents
"A8" lit	Error in power supply voltage to indoor unit.
"C1" lit	Fan driver PCB of indoor unit ↔ indoor control PCB transmission error.
"C6" lit	Improper combination of fan driver PCB of indoor unit or setting failure in control PCB type.
"U3" lit	Test operation of outdoor unit has not been finished.

Table 8

Remote control display	Content				
" 法 " is lit up	• There is a short circuit at the FORCED OFF terminals (T1, T2)				
"U4" is lit up "UH" is lit up	 The power on the outdoor unit is off. The outdoor unit has not been wired for power supply. Incorrect wiring for the transmission wiring and / or FORCED OFF wiring. 				
No display	 The power on the indoor unit is off. The indoor unit has not been wired for power supply. Incorrect wiring for the remote controller wiring, the transmission wiring and / or the FORCED OFF wiring. 				

- \land caution -

If interior finish work is continuing on completion of the test operation of the air conditioner, explain the customer not to operate the air conditioner until the interior finish work is completed for the protection of the air conditioner.

Otherwise, substances that will be generated from interior finish work materials, such as paint and adhesive agents, may contaminate the air conditioner.

English

3PN06583-7L

12. Accessories

Standard Accessories FXMQ20~125P

Name	Metal clamp (1)	Drain hose (2)	Screws for duct flanges (3)	Insulation for fitting	Sealing pad	Clamp (8)	Washer fix- ing plate (9)	Wire sealing material (10)
Quantity	1 pc.	1 pc.	As described in table below	1 each	_	9 pcs.	4 pcs.	2 pcs.
Shape	Ő	n	M5×16 20 • 25 • 32 type 6 40 type 10 50 • 63 • 80 type 18 100 • 125 type 26	Thin for liquid pipe (4) Thick for gas pipe (5)	1 pc. Large (Dark gray) (6) 2 pcs. Middle (Dark gray) (7)	<u>a</u>	S	Small (Gray)

Name	Washer (11)	Wire fixing bracket (12)	Wire fixing screw (13)	(Other)	
Quantity	8 pcs.	2 pcs.	2 pcs.	Operation manual	
Shape	0	Je	M4×8	Installation manual	

3PN06583-7L

7

Optional Accessories (For Unit)

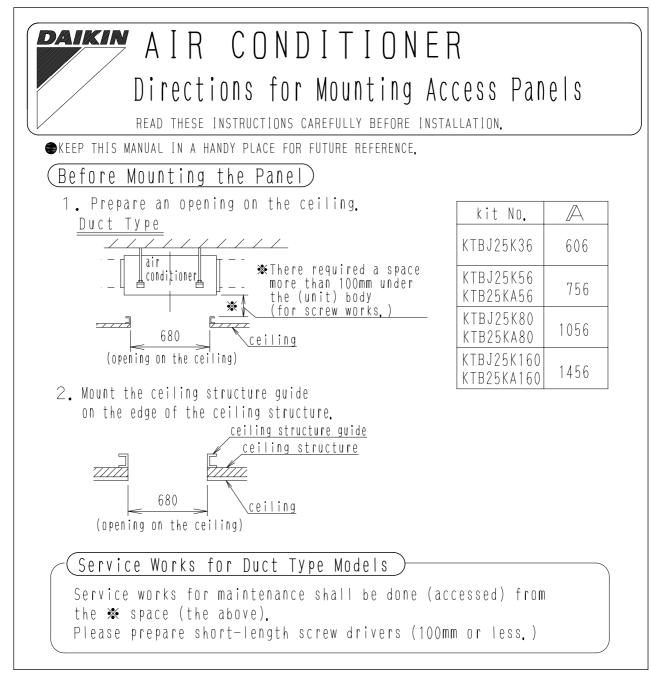
Type Item		FXMQ20PVE	FXMQ25PVE	FXMQ32PVE	FXMQ40P	FXMQ50P	FXMQ63P	FXMQ80P	FXMQ100P	FXMQ125P
High efficiency filter	65%	KAF372AA36		KAF372AA56	KAF372AA80			KAF372AA160		
	90%	KAF373AA36		KAF373AA56	KAF373AA80			KAF373AA160		
Filter chamber		KDDF37AA36			KDDF37AA56	KDDF37AA80			KDDF37AA160	
Long life replacement filter		KAF371AA36			KAF371AA56	KAF371AA80			KAF371AA160	
Service panel		KTBJ25K36W			KTBJ25K56W	KTBJ25K80W			KTBJ25K160W	
		KTBJ25K36F			KTBJ25K56F	KTBJ25K80F			KTBJ25K160F	
		KTBJ25K36T			KTBJ25K56T	KTBJ25K80T			KTBJ25K160T	
Air discharge adapter		KDAJ25K36A		KDAJ25K56A	KDAJ25K71A		KDAJ25K140A			
		•			•	•			•	3D060443B

Optional Accessories (For Controls) : Refer to P.645

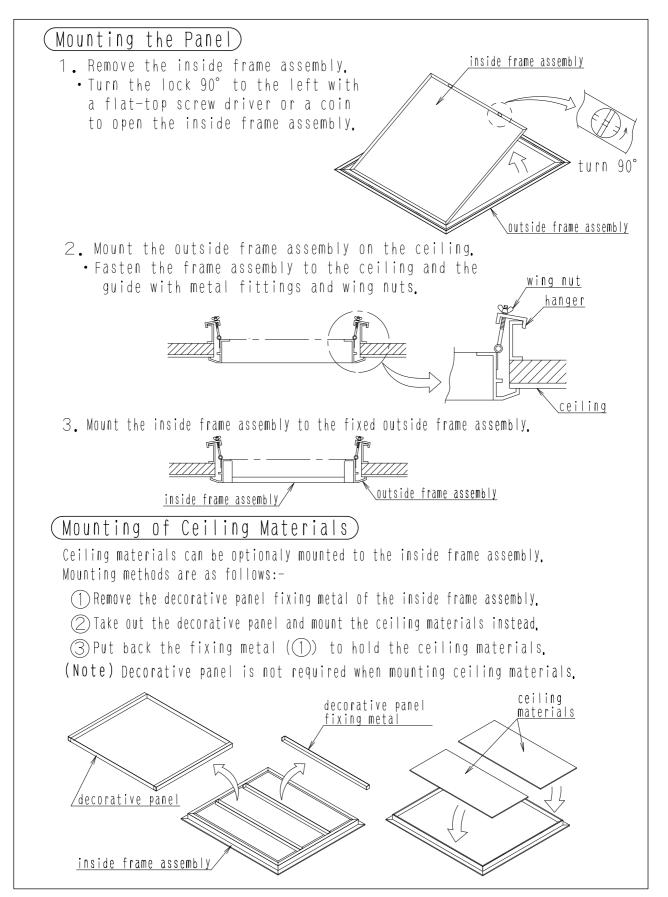
KTBJ25K36·56·80·160W — Service Access Panel

KTBJ25K80W

Dimensions			Unit:mm
698	Model	А	Ceiling opening
	KTBJ25K36W(T)(F)	626	606 × 680
	KTBJ25K56W(T)(F)	776	756 × 680
40 108	KTBJ25K80W(T)(F)	1,076	1,056 × 680
A	KTBJ25K160W(T)(F)	1,476	1,456 × 680


- The inspection hatch can be made to look nice with the service access panel.
- Thin 10 mm design for the exposed part.

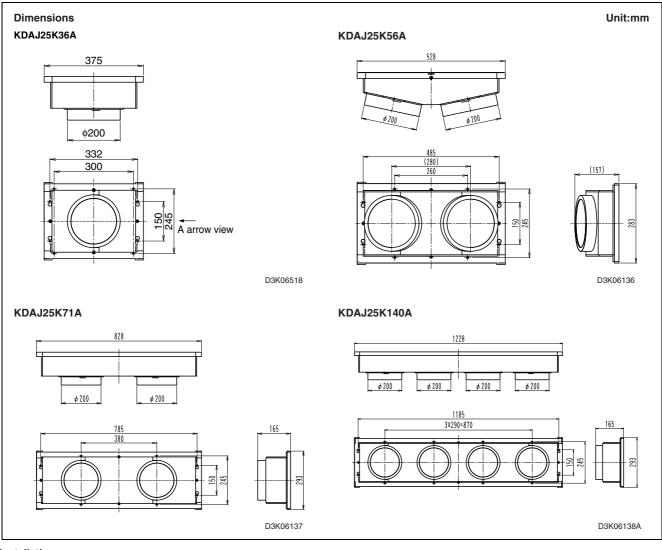
KTBJ25K36W(T)(F)	KTBJ25K56W(T)(F)	KTBJ25K80W(T)(F)	KTBJ25K160W(T)(F)			
20~32 Class	40 · 50 Class	63 · 80 Class	100 · 125 Class			
	W : White, T : Brown, F : Fresh white					
Installation manual						
6.0	6.0 6.5 9.0		10.7			
	20~32 Class	K1BJ25K36W(1)(F) K1BJ25K36W(1)(F) 20~32 Class 40 · 50 Class W : White, T : Brown Installation	K1BJ25K36W(1)(F) K1BJ25K36W(1)(F) K1BJ25K60W(1)(F) 20~32 Class 40 · 50 Class 63 · 80 Class W : White, T : Brown, F : Fresh white Installation manual			


Caution

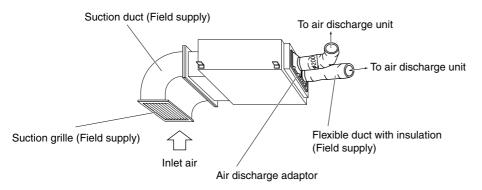
• Ceiling joist and ceiling joist support required. (Locally procured.)

Installation

C : 3P225173A


3P225173A

KDAJ25K36·56·71·140A — Air Discharge Adaptor


KDAJ25K71A

Item	Model	KDAJ25K36A	KDAJ25K56A	KDAJ25K71A	KDAJ25K140A		
Duct connection diameter			φ200×2 port		φ200×2 port φ200×4 p		
Material		Steel plate Hot-dip zinc coated steel sheets, EPS, and insulation					
Accessories		Screws, Installation manual					
Mass (weight)	kg	1.1	1.1 1.5		3.5		
Component parts	3	Air discha	Air discharge adaptor. Screws (except KDAJ25K36A). Installation manual.				

Installation

Installation

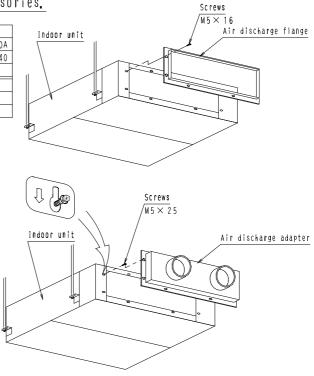
Air discharge adapter installation manual

1. This kit contains the following parts and accessories.

	Quantity					
	KDAJ25K36A	KDAJ25K56A	KDAJ25K71A	KDAJ25K140A		
Name	KDAJ25KA36	KDAJ25KA56	KDAJ25KA71	KDAJ25KA140		
	KDA25D32	KDA25D45	KDA25D63	KDA25D125		
Air discharge adapter	1	1	1	1		
Installation manual	1	1	1	1		
Screws	8	8	8	12		

2.Required tools

Screwdriver 🕀


3. Operating procedures

1. Remove the air discharge flange from indoor unit.

- 2. Attach the air discharge adapter to the indoor unit.
 - ① Tighten two installation screws to the indoor unit.
 - (Leave about 20mm of the thread exposed.)
 (2) Hang the air discharge adapter on the screws and then tighten all screws definitively.

4. Cautions for the installation

Fasten the screws tightly so as no gap between the indoor unit and the air discharge adapter.

3P012475C

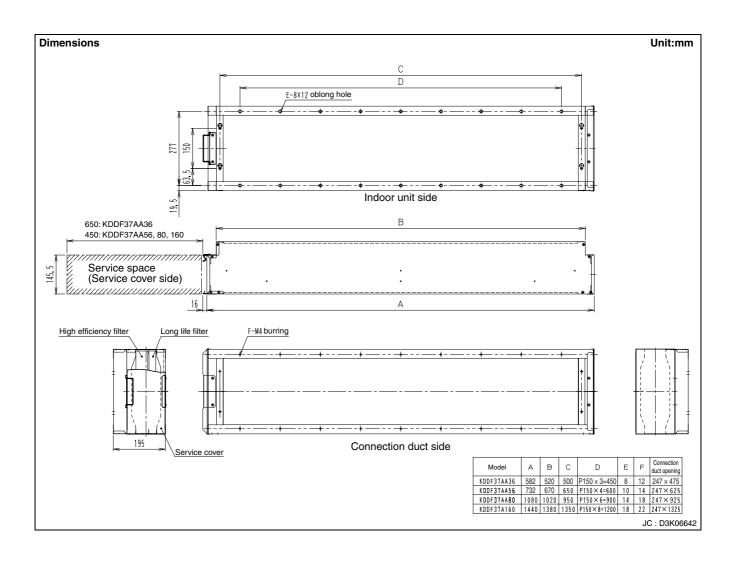
KAF372AA36·56·80·160, KAF373AA36·56·80·160 — High efficiency filter

· Cannot be water-washed for reuse.

• The Filter Chamber (for high efficiency filter) (KDDF37AA36 · 56 · 80 · 160) is required when the high efficiency filter will be installed.

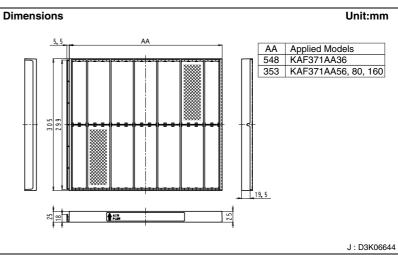
Model Item		KAF372 AA36	KAF373 AA36	KAF372 AA56	KAF373 AA56	KAF372 AA80	KAF373 AA80	KAF372 AA160	KAF373 AA160
Initial pressure loss	Ра	15 or less	21 or less	35 or less	54 or less	35 or less	54 or less	38 or less	56 or less
Final pressure loss	Ра		98 or less						
Average efficiency (colorimetric method)	%	65	90	65	90	65	90	65	90
Life *1	h	2,500	1,800	2,500	1,800	2,500	1,800	2,500	1,800
Filter element Non-woven fabric of synthetic fiber									
Number of sheet included	1	1	2	2	3	3	4	4	

Note:


*1. Dust concentration 0.15 mg/m³

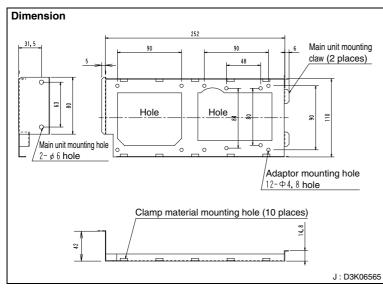
Dimensions Unit:mm Applied Models AA Hook and loose AIR FLOW Hook and KAF372AA36 550 loose fastener fastener KAF373AA36 AA (black) (white) KAF372AA56, 80, 160 355 KAF373AA56, 80, 160 Note KAF372AA36, KAF373AA36: Without hook and loose fastener. 305 Filter connecting figure Filter element Filter frame J : D3K06645

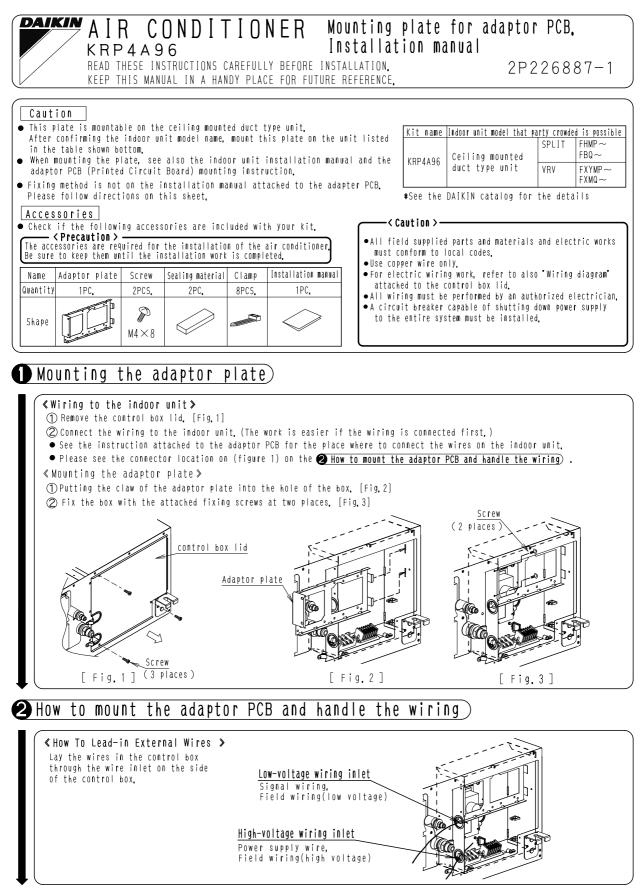
289


KDDF37AA36.56.80.160 — High efficiency filter chamber

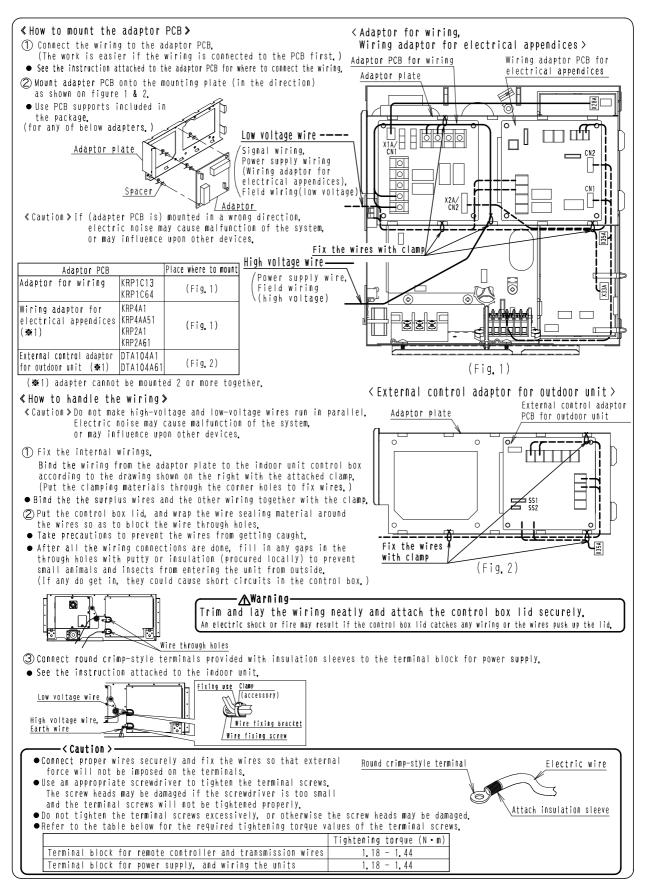
Item		I	Model	KDDF37AA36	KDDF37AA56	KDDF37AA80	KDDF37AA160
High		65% (colorimetric me	ethod)	KAF372AA36	KAF372AA56	KAF372AA80	KAF372AA160
Inserted filter	efficiency filter	90% (colorimetric me	ethod)	KAF373AA36	KAF373AA56	KAF373AA80	KAF373AA160
	Long life filt	er		KAF371AA36	KAF371AA56	KAF371AA80	KAF371AA160
Accessori	es			Mounting screws, Installation manual			
Mass (wei	Mass (weight) kg				4.5	5.5	7.5

KAF371AA36.56.80.160 — Long life filter




- $\cdot\,$ Can be water-washed. Can be reused.
- The Filter chamber (KDDF37AA36 56 80 160) is required when the long life filter will be installed.

Item	Model	KAF371AA36	KAF371AA56	KAF371AA80	KAF371AA160			
Initial pressure loss	Ра	3 or less	7 or	less	8 or less			
Final pressure loss	Ра		49 oi	r less				
Average efficiency	%		50 (gravity method)					
Air flow rate / 1 sheet	m ³ /min		9	.8				
Life	h	2,5	500 (dust concen	tration 0.15 mg/n	n ³)			
Filter element		Mildew-proof resin net (Polypropylene)						
Filter frame		Polystyrene						
Number of sheets inc	luded	1	2	3	4			


KRP4A96 — Mounting plate for adaptor PC board

Model Item	KRP4A96
Material	Steel sheet (t=0.8 coating)
Adaptor for wiring	KRP1C64 KRP4AA51
Accessories	Mounting screws (M4×8) : 2, Sealing material : 2, Clamp : 8, Installation manual

2P226887

2P226887

FXMQ-MA Ceiling Mounted Duct Type

1.	Features	.296
2.	Specifications	.297
3.	Dimensions	.298
4.	Piping Diagrams	.299
	Wiring Diagrams	
	Electric Characteristics	
	Capacity Tables	
	7.1 Cooling Capacity	.302
8.	Fan Performances	.303
	8.1 50Hz	.303
9.	Sound Levels	.304
10	Installation	.305
11	Accessories	.309

1. Features

Ceiling mounted duct type is newly added to the line-up of the indoor unit for VRV series, which gives you much more flexibility in designing of the air conditioning system to satisfy the needs of individual air-conditioning even in the broad area. High external static pressure allows extensive duct work for flexible applications.

200 · 250 type

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

2. Specifications

Ceiling Mounted Duct Type

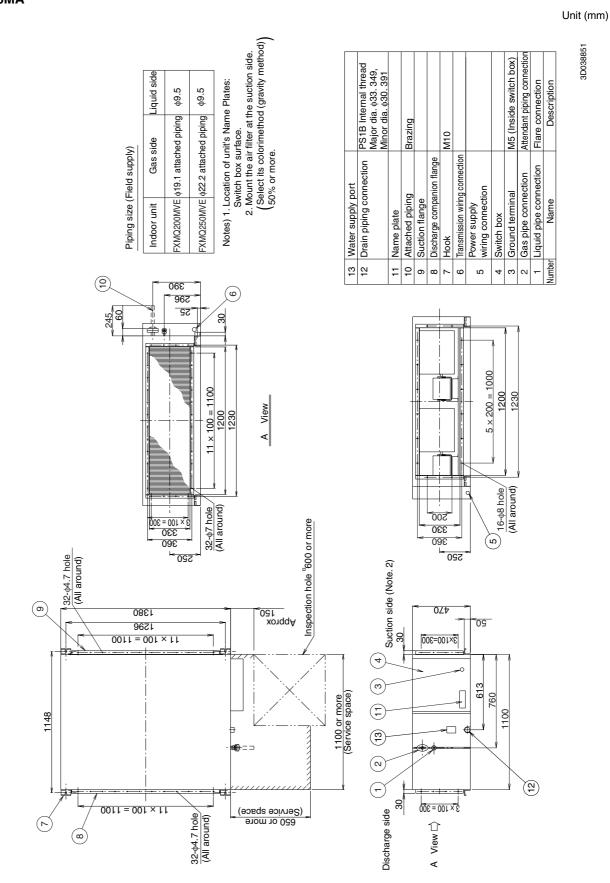
Model			FXMQ200MAVE	FXMQ250MAVE		
		kcal/h	19,800	24,800		
*1 Cooling C	apacity (19.5°CWB)	Btu/h	78,500	98,300		
		kW	23.0	28.8		
*2 Cooling C	apacity (19.0°CWB)	kW	22.4	28.0		
Casing			Galvanized Steel Plate	Galvanized Steel Plate		
Dimensions: (H×W×D) mm		mm	470×1,380×1,100	470×1,380×1,100		
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×26×2.0	3×26×2.0		
Fin Coil)	Face Area	m²	0.68	0.68		
	Model		D13/4G2DA1×2	D13/4G2DA1×2		
Fan	Туре		Sirocco Fan	Sirocco Fan		
	Motor Output × Number of Units	w	380×2	380×2		
		m³/min	58/50	72/62		
	Air Flow Rate (H/L)	cfm	2,047/1,765	2,542/2,189		
	External Static Pressure 50Hz	Pa	221-132 *3	270-191 *3		
	Drive		Direct Drive	Direct Drive		
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absor	bing Thermal Insulation Ma	terial	Glass Fiber	Glass Fiber		
Air Filter			*4	*4		
D : 1	Liquid Pipes	id Pipes mm				
Piping Connections	Gas Pipes	mm	<pre></pre>	φ22.2 (Brazing Connection)		
Temperature C Sound Absorbin Air Filter	Drain Pipe	mm	PS1B	PS1B		
Machine Wei	ght (Mass)	kg	137	137		
*6 Sound Lev	/el (H/L) (220V)	dBA	48/45	48/45		
Safety Device	es		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.		
Refrigerant C	ontrol		Electronic Expansion Valve	Electronic Expansion Valve		
Connectable	Outdoor Unit		R-410A PA Series	R-410A PA Series		
Standard Acc	essories		Operation Manual. Installation Manual. Sealing Pads. Connection Pipes. Screws. Clamps.	Operation Manual. Installation Manual. Sealing Pads. Connection Pipes. Screws. Clamps.		
Drawing No.			C : 3D0	038814A		

Note:

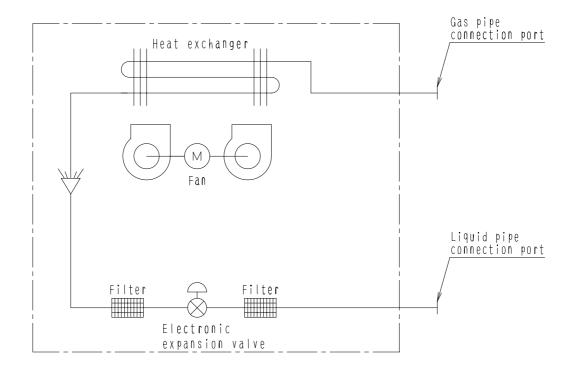
*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*3 External static pressure is changeable to change over the connectors inside electrical box, this pressure means

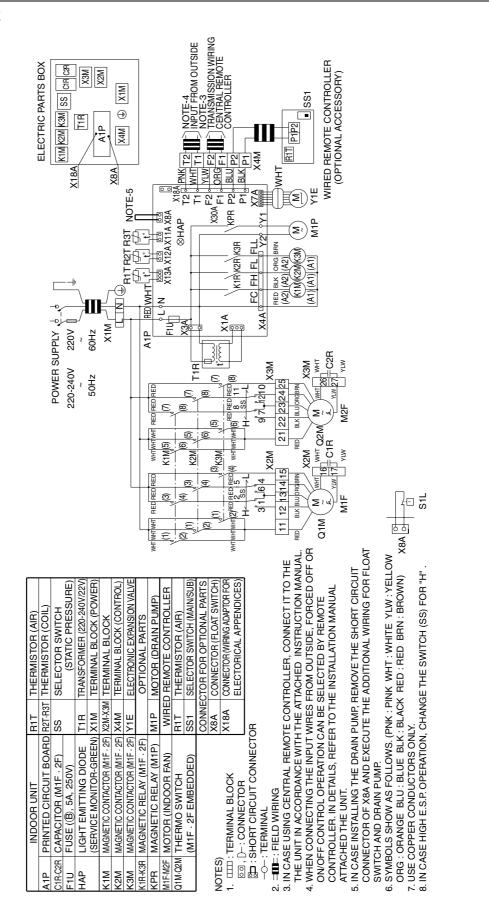

"High static pressure-Standard".

*4 Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.


 Scapacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
 Anechoic chamber conversion value, measured at a point 1.5 m downward from the unit center. These values are normally somewhat higher during actual operation as a result of ambient conditions.7 Refer to page 301 for Fan Motor Input.

3. Dimensions

4. Piping Diagrams


Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXMQ200MA	φ 19.1	φ 9.5
FXMQ250MA	φ22.2	φ9.5

4D034245B

8

FXMQ200 · 250MAVE

3D039621B

6. Electric Characteristics

Units				Power	supply	IFM		Input(W)			
Model	Туре	Ηz	Volts	Voltage	range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXMQ200MA	VE	50	220-240	MAX.	264	8.1	15	0.380×2	6.5	1294	1294
FXMQ250MA		20	220 240	Min.	198	9.0	15	0.380×2	7.2	1465	1465

Symbols:

MCA : Min. Circuit Amps (A)
MFA : Max. Fuse Amps (See note 5)
KW : Fan Motor Rated Output(KW)
FLA : Full Load Amps(A)
IFM : Indoor Fan Motor

Note:

1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits,

- Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA

 $MCA = 1.25 \times FLA$

 $MFA \leq 4 \times FLA$

(Next lower standard fuse rating. Min. 15A)

- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.

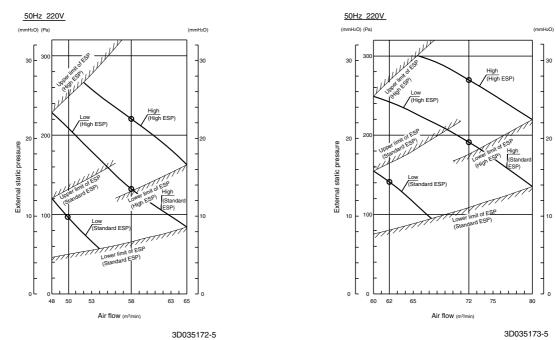
C : 4D040330A

7. Capacity Tables

7.1 Cooling Capacity

FXMQ-MA

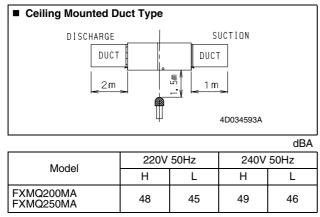
Cooling capacity


[50Hz]

0000	Î									1000			
20~02	DB DB	23°CDB	DB DB	26°	26°CDB	27%	27°CDB	280	28°CDB	30,1	30°CDB	32°(32°CDB
TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.8	17.6	29.4	17.8
10.1	13.4	18.0	14.9	0.12	5 G 1 D 1 D	4.72 4.72	10.8	8.02 20.02	14.0	20.02	17.6	0.82	
Ξ Υ	134	0.0	140	200	2.0	100	9.9	200	20	0.00	2.4	202	10
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.8	17.6	27.9	16.9
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.8	17.6	27.5	16.7
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.8	17.6	27.4	16.6
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.4	17.3	27.0	16.4
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	26.1	17.1	26.6	16.2
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	25.7	16.8	26.2	16.1
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	25.3	16.6	25.8	15.9
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	24.9	16.4	25.4	15.7
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.8	17.0	24.5	16.3	25.0	15.6
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.6	17.0	24.2	16.1	24.6	15.4
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	23.2	16.8	23.8	16.0	24.3	15.3
15.1	13.4	18.0	14.9	21.0	16.3	22.4	16.8	22.8	16.6	23.4	15.8	23.9	15.
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.5	22.1	36.8	22.1
18.9	16.9	22.2	18.5	26.2	20.4	28.0	20.9	29.8		33.5	22.1	36.3	21.8
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.5	22.1	35.9	21.6
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.5	22:1	35.4	21.3
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8	21.2	33.5	22.1	34.9	21.0
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.5	5	34.4	20.
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.5	22:1	34.2	20.6
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		33.0	21.7	33.7	20.0
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		32.6	21.5	33.2	20.2
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8		32.1	21.2	32.8	20.0
18.9	16.9	22.5	18.5	26.2	20.4	28.0	20.9	29.8	212	31.6	20.9	32.3	19.9
18.9	16.9	522	18.5	26.2	20.4	28.0	20.9	29.8		31.1	20.6	81.8	6
18.9	16.9	5.22	18.5	26.2	20.4	28.0	20.9	29.8		30.6	20.4	31.3 E	19.5
18.9	16.9	9.22	18.5	26.2	20.4	28.0	20.9	29.5		30.2	20.2	30.8	19.4
18.9	16.9	22.2	18.5	26.2	20.4	28.0	20.9	29.0		29.7	20.0	30.4	19.0
18.9	16.9		18.5	2.02	20.4	78.0	21.0	C'97		29.2	19.8	59.9	19.0
u capac	at cans	/ http://	M										
	al cape	rury , r	~										
	Second Se	 15.1 15.1<td></td><td>15:1 13:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1<td>15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 16:9 22:5 18:5 18:5</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td><td></td><td></td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td></td><td></td></td>		15:1 13:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1 15:4 15:1 <td>15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 16:9 22:5 18:5 18:5</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td></td> <td></td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td>	15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 15:1 13:4 18:0 14:9 16:9 22:5 18:5 18:5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

8. Fan Performances

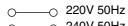
8.1 50Hz


FXMQ250MA

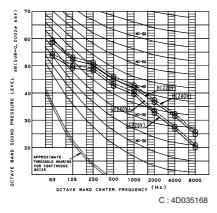
Note:

- 1. The remote controller can be used to switch between "high" and "low".
- 2. The air flow is set to "standard" before leaving the factory. It is possible to switch between "standard ESP" and "high ESP" by changing the switch in the indoor unit electrical box.

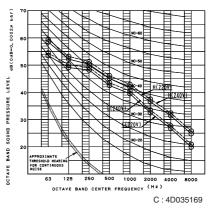
9. Sound Levels


Overall

Note:

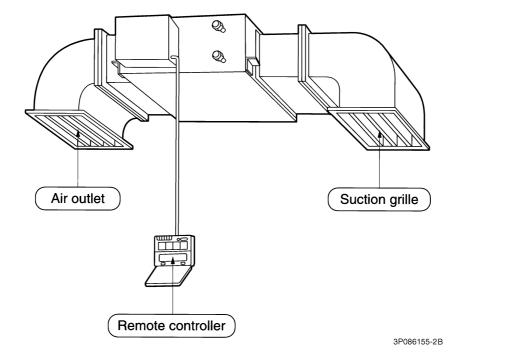

- 1. The operating conditions are assumed to be standard (JIS conditions).
- These operating values were obtained in a dead room (conversion values).
 Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

Octave Band Level

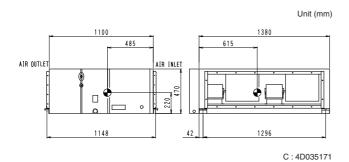


○ - - - - ○ 240V 50Hz

FXMQ200MAVE



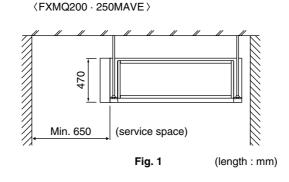
FXMQ250MAVE



10.Installation

Installation Example

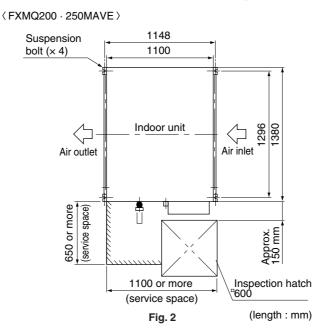
Center of Gravity FXMQ200 · 250MA


Service Space

Please attach additional thermal insulation material to the unit body when it is believed that the relative humidity in the ceiling exceeds 80%. Use glass wool, polyethylene foam, or similar with a thickness of 10 mm or more as thermal insulation material.

- (1) Select an installation site where the following conditions are fulfilled and that meets with your customer's approval.
 - In the upper space (including the back of the ceiling) of the indoor unit where there is no possible dripping of water from the refrigerant pipe, drain pipe, water pipe, etc.
 - Where optimum air distribution can be ensured.
 - · Where nothing blocks the air passage.
 - Where condensate can be properly drained.
 - If supporting structural members are not strong enough to take the unit's weight, the unit could fall out of place and cause serious injury.
 - Where the false ceiling is not noticeably on an incline.
 - Where there is no risk of flammable gas leakage.
 - Where sufficient clearance for maintenance and service can be ensured. (Refer to Fig. 1)
 - Where piping between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual of the outdoor unit.)

- Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 meter away from televisions or radios in order to prevent image interference or noise.
 - (Depending on the radio waves, a distance of 1 meter may not be sufficient enough to eliminate the noise.)
- (2) Use suspension bolts for installation. Check whether the ceiling is strong enough to support the weight of the unit or not. If there is a risk, reinforce the ceiling before installing the unit.

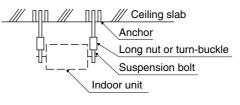

C: 3P086156-6U

Note:

Above figure means minimum value. Please keep these value at least.

Bolt Pitch

(1) Relative positions of indoor unit and suspension bolt. (Refer to Fig. 2)


(2) Install a canvass duct to the air discharge outlet and air inlet so that vibration from the machine body isn't transmitted to the duct or ceiling.

You should also apply acoustic (insulation material) to the inside of the duct, and vibration insulation rubber to the suspension bolts.

(3) Install suspension bolts. (Use bolts of 10 mm diameter.)

Install the equipment where supporting structures are strong enough to bear the equipment's weight. Use
embedded inserts or anchor bolts with new buildings and hole-in-anchors with old buildings.

 \langle Installation example \rangle

Note) All the above parts are field supplied.

C: 3P086156-6U

8

Drain Piping Work

 $\langle\langle Rig the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings. <math>\rangle\rangle$ $\langle\langle Insulate the drain hose inside the building. \rangle\rangle$

(1) Carry out the drain piping.

FXMQ200 · 250MAVE

- A drain trap need not be installed.
- The diameter of the piping is the same as that of the connecting pipe (PS1B), and should be kept equal to or greater than that of the connecting pipe.
- (2) After piping work is finished, check drainage flows smoothly.

FXMQ200 · 250MAVE

• Open the water supply port, add approximately 1 liter of water slowly into the drain pan and check drainage flow.

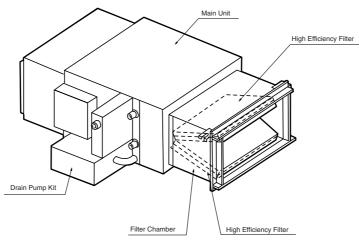
$-\dot{N}$ CAUTION

• Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

C: 3P086156-6U

11. Accessories

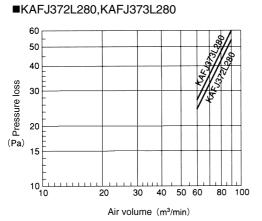

Standard Accessories

Name	Attached piping (1)	(Other) • Operation manual
Quantity	1 set	 Installation manual Screws for flange connection (M5) (48 pcs.)
Shape	a co	 Insulation material (for hanger)(2 pcs.) Washers (8 pcs.) Clamps (2 pcs.) Hexagon head bolt for pipe flange (M10) (2 pcs.) Spring washer for pipe flange (M10) (2 pcs.)

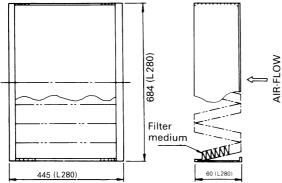
Optional Accessories (For Unit)

	Туре	FXMQ200MA	FXMQ250MA
Item		T AMOZOOMA	T AMO250MA
Drain pump kit		KDU30	L250VE
High officionay filter	65%	KAFJ3	72L280
High efficiency filter	90%	KAFJ3	73L280
Filter chamber		KDJ370	05L280
Long life replacement	filter	KAFJ3	71L280
			3D040334B

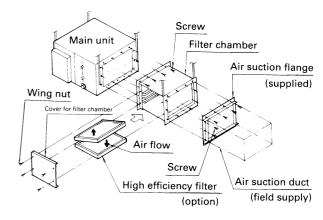
Optional Accessories (For Controls) : Refer to P.645


High Efficiency Filter Specification

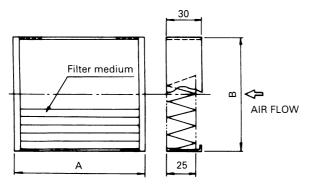
Model	65%	type	90%	type
Items	KAFJ37	72L280	KAFJ37	73L280
Filter Chamber	KDJ370)5L280	KDJ370	05L280
Dimension (W×D×T) (mm)	684×4	45×60	684×4	45×60
Average Dust Collection Efficiency (%)	Colorimetric method 65%		Colorimetric	method 90%
Initial Pressure Loss (Pa)	27 42		29	45
Final Pressure Loss (Pa)	9	8	9	8
Filter	Non-woven fabric	of synthetic fiber	Non-woven fabric	of synthetic fiber
Life Time (h)	Time (h) 2500 hours (dust density 0.15mg/m ³) 1800 hours (dust dens		lensity 0.15mg/m ³)	
Seats Structured	2	2	2	2
Applicable Models	200- Cla		200- Cla	


Note:

The filter chamber is separately required when the high efficiency filter will be installed.


Characteristics of filter

Installation

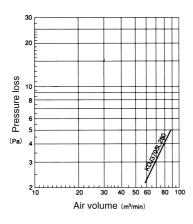

- Meet the airflow direction and arrow mark putting on the High efficiency filter.
- It is impossible to be built in with the air cleaning unit together.

Long Life Replacement Filter

Specifications

Item	Model	KAFJ371L280
Filter Chamber for Bot	tom Suction	KDJ3705L280
Dimensions (W×D×T)	mm	684×445×30
Average Efficiency (%)	50% (Gravity method)
	Initial	9.8 (1mmH2O)
Pressure Loss (Pa)	Final	49 (5mmH2O)
Material		Mildew Proof Resin Net
Number Required per	Imber Required per Unit 2	
Life Time (h)		2,500 h (dust particle concentration at 0.15mg/m ³)
Applicable Model		200-250 Class

Dimensions


Model	A×B	Quantity
KAFJ371L280	684×445	2

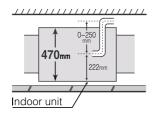
Note:

The filter chamber is required when the long life filter will be installed.

Characteristics of filter

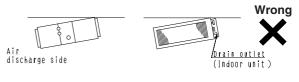
■KDJ3705L280

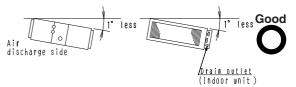
Drain Pump Kit Specification

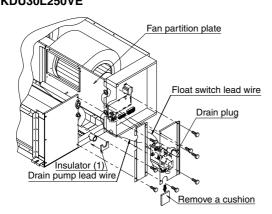

Model Items	KDU30L250VE
Power Supply	Single phase 220V 50/60Hz
Power Consumption (W)	19/17 (50/60Hz)
Drain-up Lift (mm)	Standard drain outlet of the unit + 222 + 250
Drain Outlet	VP25 (Internal diameter ϕ 25, external diameter ϕ 32)
Safety Device	Float switch
Weight (kg)	10
Applied Models	200 · 250 Class

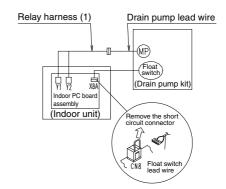
Precaution at use

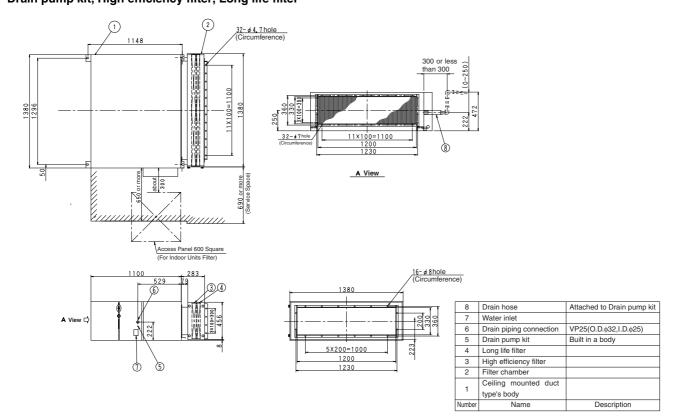
- 1. When this kit will be used with the natural evaporation pan type humidifier together, the piping of unit's drain and humidifier's drain can be used in common.
- 2. Be sure to do test run (cooling) to make sure the drain flows out.
- 3. Prohibit providing a drain trap when the drain pump kit will be mounted.


Installation Space


KDU30L250VE


If the drain pump kit has already been installed, note the following when installing the indoor unit.


• Do not install the indoor unit on an incline against drainage flow (away from the drain outlet). This can lead to water leaks.



Internal Wiring Method ■ KDU30L250VE

Dimensions with the Optional Accessories Drain pump kit, High efficiency filter, Long life filter

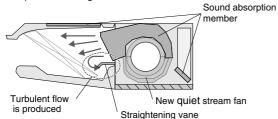
JC:3D011124G

8

FXHQ-MA Ceiling Suspended Type

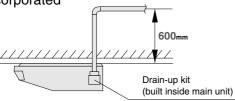
1.	Features	.316
2.	Specifications	.317
3.	Dimensions	.318
4.	Piping Diagrams	.321
5.	Wiring Diagrams	.322
6.	Electric Characteristics	.323
7.	Capacity Tables	.324
	7.1 Cooling Capacity	
8.	Sound Levels	.325
9.	Installation	.326
10	Accessories	.329

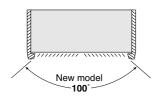
1. Features


External Appearance

Slim body with quieter and wider air flow

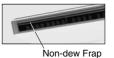
•Adoption of newly designed QUIET STREAM FAN


Uses the new quiet stream fan and many more quiet technologies.


•	Low operating	sound		(dB(A))
	Class	32	63	100
	Operating sound (H/L)	36/31	39/34	45/37

Installation is easy

• Drain-up kit (optional) can be easily incorporated


•Wide air discharge openings produce a spreading 100° air flow

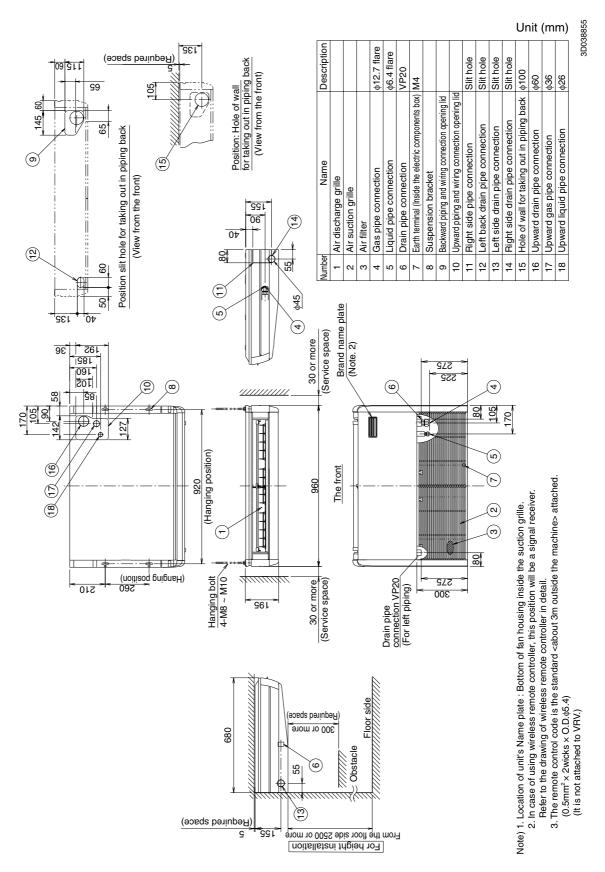
- Maintenance is easy
 - New Non-dew Frap with no implanted

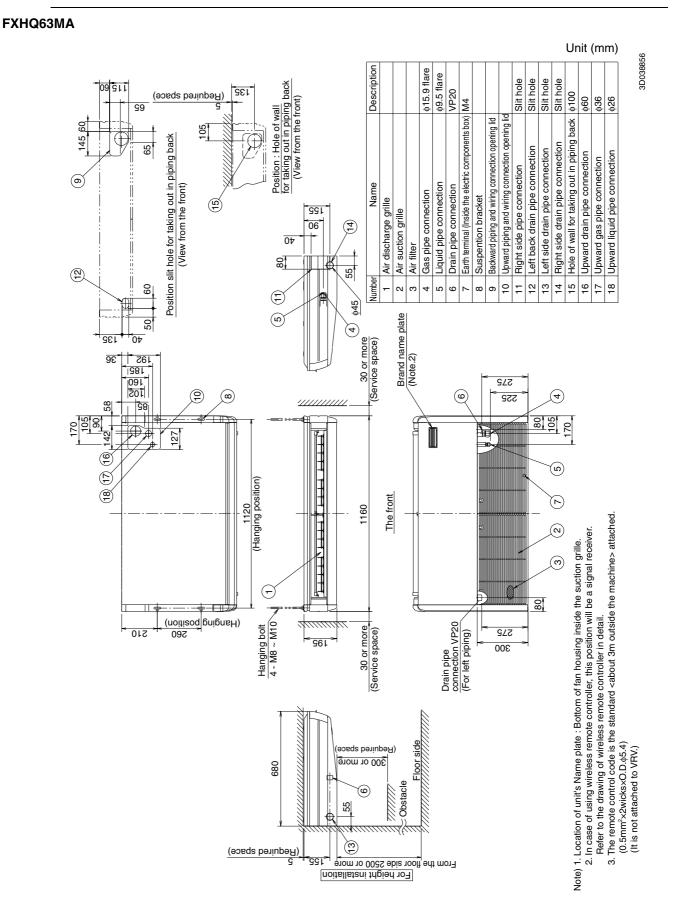
Bristle-free Frap minimizes contamination and makes cleaning simpler.

- Easy to clean flat design
- Maintenance is easier because everything can be performed from below the unit
- A long-life filter (maintenance free up to one year) is equipped as standard

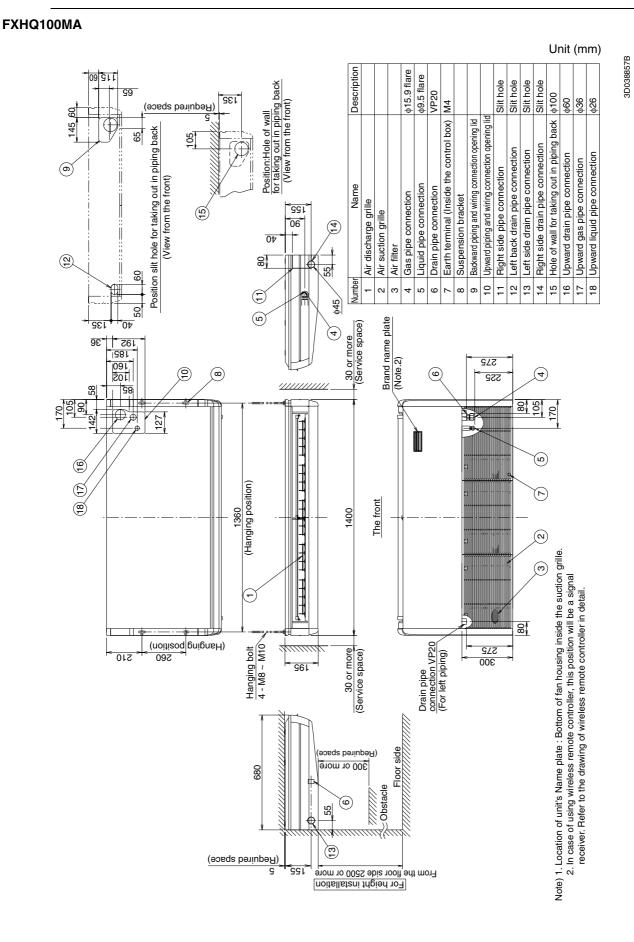
2. Specifications

Ceiling Suspended Type

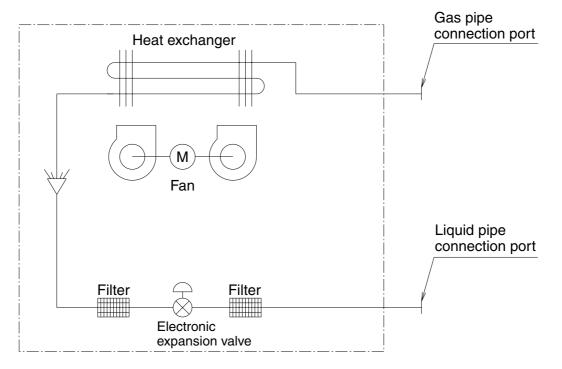

Model			FXHQ32MAVE	FXHQ63MAVE	FXHQ100MAVE
		kcal/h	3,200	6,300	10,000
*1 Cooling Ca	pacity (19.5°CWB)	Btu/h	12,600	24,900	39,600
		kW	3.7	7.3	11.6
*2 Cooling Ca	pacity (19.0°CWB)	kW	3.6	7.1	11.2
Casing Color			White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)
Dimensions: (H×W×D)	mm	195×960×680	195×1,160×680	195×1,400×680
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×12×1.75	3×12×1.75	3×12×1.75
Fin Coil)	Face Area	m²	0.182	0.233	0.293
	Model		3D12K1AA1	4D12K1AA1	3D12K2AA1
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
Fan	Motor Output × Number of Units	W	62×1	62×1	130×1
	Air Flow Date (U/L)	m³/min	12/10	17.5/14	25/19.5
	Air Flow Rate (H/L)	cfm	424/353	618/494	883/688
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	ing Thermal Insulation Mat	erial	Glass Wool	Glass Wool	Glass Wool
Air Filter		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	
Liquid Pipes		mm	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)
Piping	Gas Pipes	mm	§12.7 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)
Connections	Drain Pipe	mm	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)
Machine Weig	ht (Mass)	kg	24	28	33
*4 Sound Lev	el (H/L) (220-240V)	dBA	36/31	39/34	45/37
Safety Device	S		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.
Refrigerant Co	ontrol		Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable (Dutdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Acco	essories		Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Clamps. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Clamps. Washers.	Operation Manual. Installation Manual. Paper Pattern for Installation. Drain Hose. Clamp Metal. Insulation for Fitting. Clamps. Washers.
Drawing No.				C : 3D038815A	


Note:

*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fam motor heat.
*4 Anechoic chamber conversion value, measured at a point 1 m in front of the unit and 1 m downward. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
5 Refer to page 323 for Fan Motor Input.

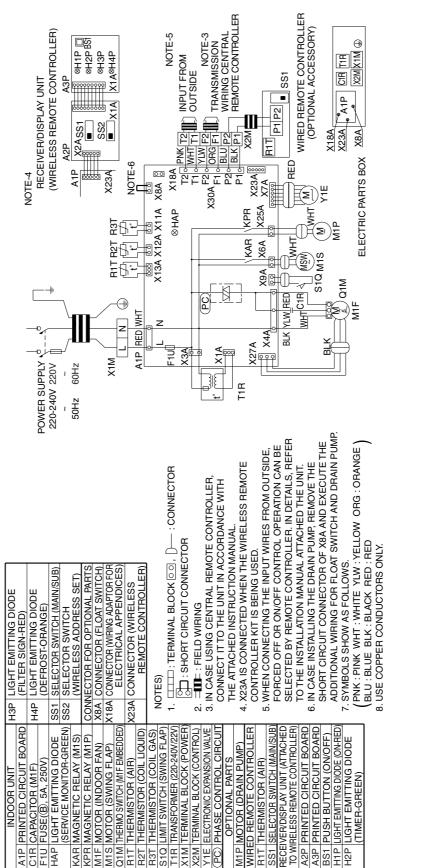

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

FXHQ32MA



9

4. Piping Diagrams


4D034245C

9

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXHQ32MA	φ12.7	φ 6.4
FXHQ63 · 100MA	φ 15 .9	φ9.5

FXHQ32 · 63 · 100MAVE

3D039801D

6. Electric Characteristics

	Un	its			Power	supply	IFM	1	Inpu	t(W)
Model	Ηz	Volts	Voltage	range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXHQ32MAVE					0.8	15	0.062	0.6	111	111
FXHQ63MAVE	50	220-240	MAX. 2 Min. 1	264 198	0.8	15	0.062	0.6	115	115
FXHQ100MAVE			, , , , , , , , , , , , , , , , , , ,	50	0.9	15	0.130	0.7	135	135

Symbols:

MCA	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
КW	:	Fan Motor Rated Output(KW)
FLA	:	Full Load Amps(A)
ΙFΜ	:	Indoor Fan Motor

Note:

1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals

is not below or above listed range limits,

2. Maximum allowable voltage unbalance between phases is 2%.

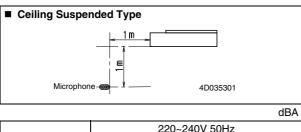
- 3. MCA/MFA MCA = 1.25 X FLA MFA \leq 4 X FLA (Next lower standard fuse rating. Min. 15A)
- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.

9

C:4D035304B

7. Capacity Tables

7.1 Cooling Capacity


FXHQ-MA

[50Hz]

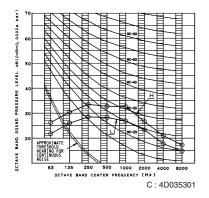
Term Tat. Constrained Constrained Constrained Cons		Outdoor		0.10	00.01		000	0,000		air temp.	0000	0.110		0.110	00.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ize	air temp.	14.0°(CWB	16.0° 23°C	CWB	18.0°C	CWB	19.0%	CWB	20.0	CWB	30°C		24.0°	0°CWB
		900-	TC	SHC	o	SHC	U O	SHC	o		o	ц С	0	SHC		SHC
		10.0 12.0	2:4 2:4	5 0 5 0	2.9	2.6 2.6			9.0 9.0	2.9 2.9	8.8 8.8	5.9 5.9	4 4 0 0	3.0 3.0	4.7	з.1 3.1
		14.0	4	0 0 0	5.0 0.0	0.0 0.0			9.0 9.0	6, 0 0, 0	8, 0 8, 0	6 0 0 0	4.3	3.0	4.6	0.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18.0	5 t	n N N N	2.9	2.0 9.0			0 0 0 0 0 0	2 6	0 80 0 80	5 6 5	4 9 Φ	9.0 9.0	4.5	0 0 0 0 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.0	2.4	2.3	2.9	2.6			3.6	2.9	3.8	2.9	4.3	3.0	4.4	2.9
		21.0	4 4	m ci c	0, 0 0, 0	0.0 0.0			0 0 0 0	0, 0 0, 0	00 00 07 00	ດີດ	4 v ο c	0.0	4.4	ດີ
	R	25.0	5 t	200	6 0 0	0.9 9.0			0 0 0 0	5 0 0 0	0.00	5 0 10	4 4	5.0	4 0 0	0 80 V V
		27.0	2.4	2.3	2.9	2.6			3.6	2.9	3.8	2.9	4.1	2.9	4.2	2.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		29.0 34.0	4 vi o	0 0 0 0	0, 0 0, 0	0 u 0 i 0			0 4 0 7	ס, ס גי כ	00 00 00 00	0 0 0 0	4 4	6, a 0, c	4 5	~ ~ ci c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33.0	1 4 1 4	500	2.6	2.0 10.0			0 0 0 0	2 0	0 0 0 0 0 0 0	2.9	n n n	2.8	- 0.4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		35.0	2.4	2.3	2.9	2.6			3.6	2.9	3.8	2.9	3.9	2.8	4.0	2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		39.0	2.4 4 4	0 0 0 0	0,0 0,0	0.0			9 9 9 0	ი ი ი ი	3.7	6 6 0 0	0 0 0 0	2.8	0 0 0 0	2.0
		10.0	4.8	4.1	5.7	4.6	6.6		7.1	5.2	7.6	5.3	8.5	5.5	9.3	5.6
		12.0	8.4	4.1	5.7	4.6	0.0 0.0	ري ۲.1		0 0 0	9.0	ດ. ເ ຕ	80 U	5.5	0.5 7	5.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		16.0	4 4 8 8	4.1	2 / / 2 / /	6 4 9 9	0.0 9.0	0 L	1.7	n n n	9.9 / /	0 C 0 C	ດ ເດີ	0 U 0 U	- 0 6	0 10 4 60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18.0	8.4	4	5.7	4.6	6.6	5.1	7.1	2010	7.6	5.3	8.5	5.5	8.8	5.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	4.8	4.1	5.7	4.6	6.6	5.1	7.1	5.2	7.6	5.3	8.5	5.5	8.7	5.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21.0	89 Q	4.4	5.7	4.6 6.4	6.6 2		1.1	ci c	7.6	0. u	8°.0	5.5	8.7	0. r
	83	25.0 25.0	4 4 0 8	- 1	2.7	4 4 0 9	0.0 0.0		7.1	ч ч о ю	0. / / 9. /	0 0 0	0 00 1 (0)	5.4	0.0 4.0	- t-
		27.0	4.8	4.1	5.7	4.6	6.6	5.1	7.1	5.2	7.6	5.3	8.1	5.3	8.3	5.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		29.0	4 4 8 8	4.1	2.7	9.4 9.6	9.9 9.9	ۍ د ۲		n n n	9.7	0 0 0 0	00	2 5	8.2	0.0 4 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33.0	8.4	4.1	5.7	4.6	9.9 9.0	5.1	7.1	2010	7.6	5.0	7.8	5.1	7.9	4.9
		35.0	4.8	4.1	5.7	4.6	6.6		7.1	5.2	7.5	5.3	7.7	5.1	7.8	4.8
100 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 14.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 14.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 16.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 20.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 20.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 20.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.2 20.0 7.6 6.2 9.0 6.9 <td></td> <td>0.75 39.0</td> <td>4.4 8.8</td> <td>1.4 1.1</td> <td>5.7</td> <td>4.6 9.9</td> <td>6.6 0.6</td> <td></td> <td></td> <td>10 I/ 0 0</td> <td>4.7</td> <td>5.7 2.7</td> <td>d.7 4.7</td> <td>5.0</td> <td>7.6 7.6</td> <td>4 4 8 1-</td>		0.75 39.0	4.4 8.8	1.4 1.1	5.7	4.6 9.9	6.6 0.6			10 I/ 0 0	4.7	5.7 2.7	d.7 4.7	5.0	7.6 7.6	4 4 8 1-
		10.0	7.6	6.2	0.6	6.9	10.5		11.2	8.0	11.9	8.1	13.4	8.5	14.7	8.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.0 14.0	7.6	0.12 0.12	0.0	6.9 9	10.5		0 I2	0.0	6.H	τ. - τ	13.4	80 80 10 10 10 10	14.5 14.4	8.0
1800 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 21.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 21.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 27.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 27.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 27.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 29.0 7.8 11.2 8.0 11.9 8.1 12.6 30.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9<		16.0	7.6	6.2	0.0	0.0	10.5		12	8.0	11.9		13.4	8.5	14.2	80
Zi0 7.8 5.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 Zi10 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 Zi10 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.4 Zi10 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 13.2 Zi70 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.8 Zi70 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.6 31.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.6 33.0 7.6 6.2 9.0 6.9 <td></td> <td>18.0</td> <td>7.6</td> <td>6.2</td> <td>0.0</td> <td>6.9 0</td> <td>10.5</td> <td></td> <td>112</td> <td>8.0</td> <td>11.9</td> <td>8.1</td> <td>13.4</td> <td>8.5 1</td> <td>14.0</td> <td>8.2</td>		18.0	7.6	6.2	0.0	6.9 0	10.5		112	8.0	11.9	8.1	13.4	8.5 1	14.0	8.2
Z200 7.5 6.2 90 6.9 105 7.8 112 80 119 81 132 27.0 7.6 6.2 90 6.9 105 7.8 112 80 119 81 132 27.0 7.6 6.2 90 6.9 105 7.8 112 80 119 81 126 27.0 7.6 6.2 90 6.9 105 7.8 112 80 119 81 126 310 7.6 6.2 90 6.9 105 7.8 112 80 119 81 124 310 7.6 6.2 90 6.9 105 7.8 112 80 113 81 124 350 7.6 6.2 90 6.9 105 7.8 112 80 113 81 124 370 7.6 6.2 90 6.9 105 7.8 <		20.0	7.6	0 IS	0.0	6.0 9.9	10.5		0 I 0	0.0	6.H	τ. 	13.4	ສ ບັບ	13.8	8. a
ZF0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.0 2700 7.6 6.2 9.0 6.9 105 7.8 11.2 8.0 11.9 8.1 12.6 2900 7.8 11.2 8.0 11.9 8.1 12.6 310 7.6 6.2 9.0 6.9 105 7.8 112 8.0 11.9 8.1 12.6 310 7.6 6.2 9.0 6.9 105 7.8 112 8.0 119 8.1 12.6 330 7.6 6.2 9.0 6.9 10.5 7.8 112 8.0 113 8.1 12.1 37.0 7.6 6.2 9.0 6.9 10.5 7.8 112 8.0 11.8 11.1 37.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.8 11.1 <td>0</td> <td>23.0</td> <td>7.6</td> <td>6.2</td> <td>0.0</td> <td>6.9</td> <td>10.5</td> <td></td> <td>11.2</td> <td>8.0</td> <td>11.9</td> <td>. 8</td> <td>13.2</td> <td>8.3</td> <td>13.5</td> <td>2.9</td>	0	23.0	7.6	6.2	0.0	6.9	10.5		11.2	8.0	11.9	. 8	13.2	8.3	13.5	2.9
20.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.6 31.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.6 31.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 31.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 33.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.1 37.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.1 37.0 7.6 6.2 9.0 6.9 <td></td> <td>25.0</td> <td>7.6</td> <td>6.2</td> <td>0.0</td> <td>6.9 9</td> <td>10.5</td> <td></td> <td>44</td> <td>0.0</td> <td>6. 1 1 0</td> <td></td> <td>13.0</td> <td>8 7 8 7</td> <td>13.3</td> <td>7.8</td>		25.0	7.6	6.2	0.0	6.9 9	10.5		44	0.0	6. 1 1 0		13.0	8 7 8 7	13.3	7.8
310 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.4 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.8 8.1 12.2 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.8 8.1 12.2 30.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 30.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 30.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 30.0 7.6 6.2 9.0 6.9 <td></td> <td>29.0</td> <td>7.6</td> <td>6.2</td> <td>0.6</td> <td>6.0 9</td> <td>10.5</td> <td></td> <td>4 4</td> <td>8.0</td> <td>6. 11.9</td> <td>- .</td> <td>12.6</td> <td>8.0</td> <td>12.9</td> <td>7.6</td>		29.0	7.6	6.2	0.6	6.0 9	10.5		4 4	8.0	6. 11.9	- .	12.6	8.0	12.9	7.6
330 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.9 8.1 12.2 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.8 8.1 12.2 35.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.8 8.1 12.1 37.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 8.0 11.1 39.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 Total capacity: kW 7.0 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 Total capacity: kW 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7		31.0	7.6	6.2	0.6	6.9	10.5		11.2	8.0	11.9	8.1	12.4	7.9	12.7	7.6
37:0 7:6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.5 30:0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 Total capacity: km 7.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7		33.0 35.0	7.6	0 0 0 0	0.0	0.0 9.0	10.5		4 5	0.0 0	6, ∓	60 a	12:2	2.8	12.5	5.5
<u> 38.0 7.6 6.2 9.0 6.9 10.5 7.8 11.2 8.0 11.4 7.9 11.7 </u> Total capacity ; kW		37.0	7.6	6.2	0.6	6.9	10.5		112	8.0	11.6	- 0.8	11.9	7.7	12.2	7.9
Total capacity ;		39.0	7.6		ი	6.9	10.5		11.2	8.0	11.4	7.9	11.7	7.6	12.0	7.2
Sensible heaf of		Sens	ll capac	at cana	/ icity · k	N										
	2			an order												

8. Sound Levels

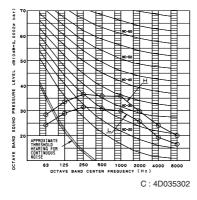
Overall

Model	220~240V 50Hz			
Model	Н	L		
FXHQ32MA	36	31		
FXHQ63MA	39	34		
FXHQ100MA	45	37		

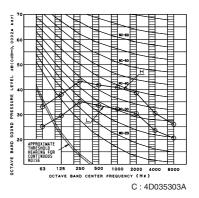
Note:


- 1. The operating conditions are assumed to be standard (JIS conditions).
- 2. These operating values were obtained in a dead room (conversion values).

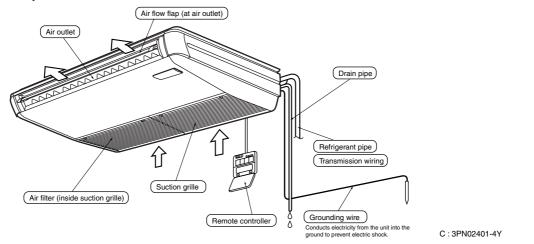
Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.


Octave Band Level

O-----O 220~240V 50Hz


FXHQ32MAVE

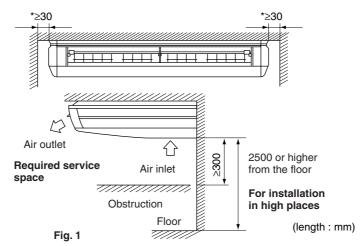
FXHQ63MAVE



FXHQ100MAVE

9. Installation

Installation Example

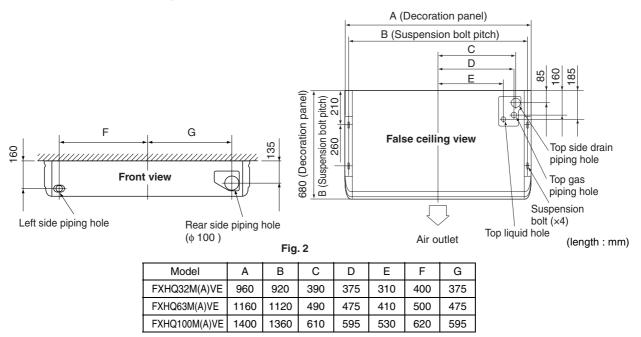

Service Space

- (1) Select an installation site where the following conditions are fulfilled and that meets your customer's approval.
 - In the upper space of the indoor unit where there is no possible dripping of water from the refrigerant pipe, drain pipe, water pipe, etc.
 - · Where optimum air distribution can be ensured.
 - Where nothing blocks air passage.
 - · Where condensate can be properly drained.
 - If supporting structural members are not strong enough to take the unit's weight, the unit could fall out of place and cause serious injury.
 - Where the false ceiling is not noticeably on an incline.
 - Where there is no risk of flammable gas leakage.
 - Where sufficient clearance for maintenance and service can be ensured. (Refer to Fig. 1)
 If sufficient clearance could be ensured at*, leave a space of 200 mm or more between the unit and it's surround ings easier maintenance and service.
 - Where piping between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual for the outdoor unit.)

-/! CAUTION

• Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 meter away from televisions or radios in order to prevent image interference or noise.

(Depending on the radio waves, a distance of 1 meter may not be sufficient enough to eliminate the noise.)



- (2) This indoor unit may be installed on ceilings up to 3.5 m in height. However, if the ceiling is higher than 2.7m, the remote control will have to be set locally. (Refer to "FIELD SETTING")
- (3) Use suspension bolts for installation. Check whether the ceiling is strong enough to support the weight of the unit or not. If there is a risk, reinforce the ceiling before installing the unit. (Installation pitch is marked on the paper pattern for installation. Refer to it to check for points requiring reinforcing.)

C : 3PN01417-7P

Bolt Pitch

(1) Relative positions of indoor unit, suspension bolt, piping hole, drain piping hole, and electric wire hole position. (Refer to Fig. 2)

(2) Make the suspension bolt hole, piping hole, drain piping hole.

• Refer to the paper pattern for installation for hole positions.

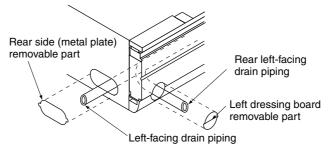
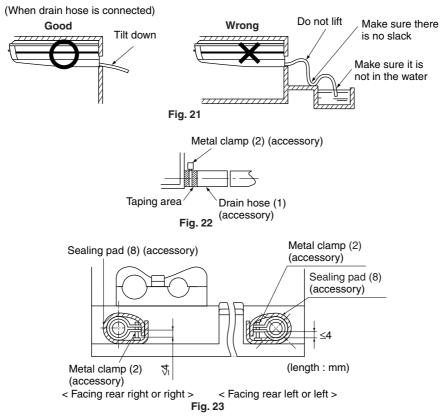
• Fix the positions for suspension bolt, piping hole, drain piping hole, and electric wire hole, and make the openings.

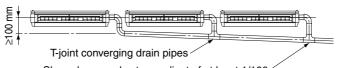
Drain Piping Work

Rig the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings.

(1) Carry out the drain piping.

- For drain work, rig the pipes so that they drain reliably.
- The drain pipe outlet direction can be chosen from the right rear, right, left rear, and left. Refer to "REFRIGER-ANT PIPING WORK" for right rear and right direction, and refer to Fig. 20 for left rear and left direction.


Fig. 20

- For left drain pipe outlet, remove the rubber plug and the insulation on the drain pipe connecting opening on the left side of the unit and change the position to the right side.
- Insert the rubber stopper securely, all the way to the base, in order to prevent water leakage.
- The diameter of the drain pipe should be greater than or equal to the diameter of the connecting pipe. (Vinyl tube ; pipe size : 20 mm ; outer dimension : 26 mm)
- Keep the drain pipe short and sloping downwards at a gradient of at least 1/100 to prevent air pockets from forming. (Refer to Fig. 21)
- Use the drain hose (1) and the metal clamp (2). Insert the drain hose into the drain socket, up to the gray tape. (Refer to Fig. 22) Tighten the metal clamp until the screw head is less than 4 mm from the hose. (Refer to Fig. 23) (Be careful of the installation direction. Install so that the metal clamp does not contact the intake grill.)
- Wrap the sealing pad (8) (accessory) over the clamp and drain hose to insulate. (Refer to Fig. 23)
 No folding of drain hose inside the indoor unit. (Refer to Fig. 24)
- (If there is slack in the drain hose, it may cause damage to the intake grill.)

NOTE

- To ensure no excessive pressure is applied to the included drain hose (1), do not bend or twist when installing. (This may cause leakage.)
- If converging multiple drain pipes, install according to the procedure shown below.

Slope downwards at a gradient of at least 1/100

Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

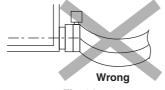
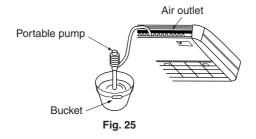



Fig. 24

(2) Confirm that smooth drainage is achieved after the piping work.

• Add 0.6 liter of water in the drain pan from the air outlet for confirming drainage. (Refer to Fig. 25)

-/! CAUTION -

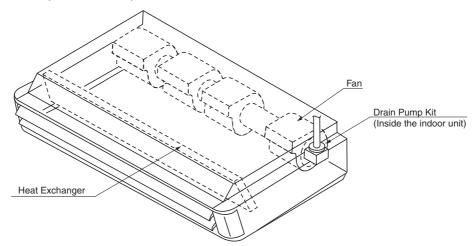
· Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

10. Accessories

Standard Accessories FXHQ32~100MA


						1
Name	(1) Drain hose	(2) Metal clamp	(3) Washer for hanging bracket	(4) Clamp	(5) Paper pattern for installation	Insulation for fitting
Quantity	1 pc.	1 pc.	8 pcs.	6 pcs.	1 pc.	1 each
						(6)For gas pipe
Shape	6		0		0 0	(7)For liquid pipe

1 each	
(8) Large (9) Small	(Other) • Operation manual • Installation manual

Optional Accessories (For Unit)

No.	Model	FXHQ32MAVE	FXHQ63MAVE	FXHQ100MAVE		
1	Drain pump kit	KDU50M60VE	KDU50	4125VE		
2	Replacement long-life filter (Resin net)	KAFJ501D56	KAFJ501D80 KAFJ501D112			
3	L-type piping kit (for upward direction)	KHFP5M35	KHFP5M63			
				C : 4D040446A		

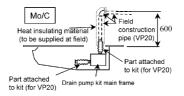
Optional Accessories (For Controls) : Refer to P.645

C: 3P172532-7

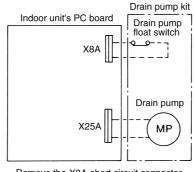
Drain Pump Kit

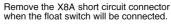
Specifications

Items	Model	KDU50M60VE	KDU50I	M125VE		
Drain-up Li	ft (mm)	600				
Drain Con.	Diameter	VP20 (Ex. dia. \phi26, Int. dia. \phi20)				
Bump	Power Supply	Single (fr	e phase 220-240V/220V rom Indoor Unit PC Boar	50Hz rd)		
Pump	Power Consumption (W)		20/17 (50Hz)			
Applicable	Models	32 class	63 class	100 class		


Precaution at use

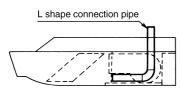
- 1. Don't turn off the power within 5 minutes after cooling operation stops.
- 2. The liquid crystal display blinks to inform us that safety device actuated.
- 3. When cooling operation's season is over, extract drain water.


Installation guide of the drain pump kit


<Changes in drain pump kit>

- Exit drain pipe has been changed from VP25 to VP20 (to meet the drain diameter of main frame).
- Attached drain pipe (450 mm chloride vinyl straight pipe bellow, elbow) -> only bellow hose for VP20
- All units of drain up height was unified to 600mm (From the bottom of the ceiling)

Wiring diagram



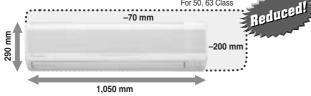
L Shape Connection Pipe Kit

Application purpose

This kit must be bent inside the unit as shown below, when the refrigerant piping is carried out in a ceiling space. This L shape kit is an optional accessory which has been developed for improving the work of the processing on site.

Installation

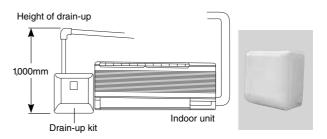
FXAQ-MA Wall Mounted Type


1.	Features	.332
2.	Specifications	.333
3.	Dimensions	.335
4.	Piping Diagrams	.338
5.	Wiring Diagrams	.339
6.	Electric Characteristics	.340
7.	Capacity Tables	.341
	7.1 Cooling Capacity	
8.	Sound Levels	.342
9.	Installation	.343
10	Accessories	.351
10	Accessories	.35

1. Features

External Appearance

- •Compact and stylish design that does not detract from the decor of the room.
- •More compact than compared with previous model. (50, 63 class)


- Drastic 10 kg weight reduction from 24 kg to 14 kg.
- Volume reduced by 22%.
- Space savings of up to 47%.
- Low operating sound

Lon opora	ung oc	(2	200-240	V)(dB(A))		
Class	20	25	32	40	50	63
Operating sound (H/L)	35/29	36/29	37/29	39/34	42/36	46/39

- •Drain pan and air filter can be kept clean by mildew-proof polystyrene.
- •Washable grille, the front grille can be easily removed for washing.
- •Auto-swing ensures efficiency of air distribution. The louver closes automatically when the unit stops.
- •5 steps of discharge angle can be set by remote controller.
- •Discharge angle is automatically set at the same angle as the previous operation when restarts. (Initial setting; 10° for cooling and 70° for heating)

- •Drain-pump kit is available as optional accessory, which lifts the drain 1,000mm from the bottom of the unit.
- •Flexible installation.
 - Drain pipe can be fitted to from either left or right sides.

2. Specifications

Wall Mounted Type

Model			FXAQ20MAVE	FXAQ25MAVE	FXAQ32MAVE
		kcal/h	2,000	2,500	3,200
*1 Cooling Capacity (19.5°CWB)		Btu/h	7,800	9,900	12,600
kW			2.3 2.9		3.7
*2 Cooling Ca	pacity (19.0°CWB)	kW	2.2 2.8		3.6
Casing Color			White (3.0Y8.5/0.5)	White (3.0Y8.5/0.5)	White (3.0Y8.5/0.5)
Dimensions: (H×W×D)	mm	290×795×230	290×795×230	290×795×230
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×14×1.4	2×14×1.4	2×14×1.4
Fin Coil) Face Area		m²	0.161	0.161 0.161	
	Model		QCL9661M	QCL9661M	QCL9661M
	Туре		Cross Flow Fan	Cross Flow Fan	Cross Flow Fan
Fan	Motor Output × Number of Units	W	40×1	40×1	40×1
	Air Flow Date (U/L)	m³/min	7.5/4.5	8/5	9/5.5
	Air Flow Rate (H/L)	cfm	265/159	282/177	318/194
Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating
Sound Absorb	ping Thermal Insulation Mat	erial	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene
Air Filter			Resin Net (Washable)	Resin Net (Washable)	Resin Net (Washable)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
Connections	Drain Pipe r		VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)
Machine Weig	pht (Mass)	kg	11	11 11	
*4 Sound Lev	el (H/L) (220-240V)	dBA	35/29	36/29	37/29
Safety Devices		Fuse	Fuse	Fuse	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable (Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Acco	essories		Operation Manual. Installation Manual. Installation Panel. Paper Pattern for Installation. Insulation Tape. Clamps. Screws.	Operation Manual. Installation Manual. Installation Panel. Paper Pattern for Installation. Insulation Tape. Clamps. Screws.	Operation Manual. Installation Manual. Installation Panel. Paper Pattern for Installation. Insulation Tape. Clamps. Screws.
Drawing No.				C : 3D039370B	

Note:

*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fam motor heat.
*4 Anechoic chamber conversion value, measured at a point 1 m in front of the unit and 1 m downward. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
5 Refer to page 340 for Fan Motor Input.

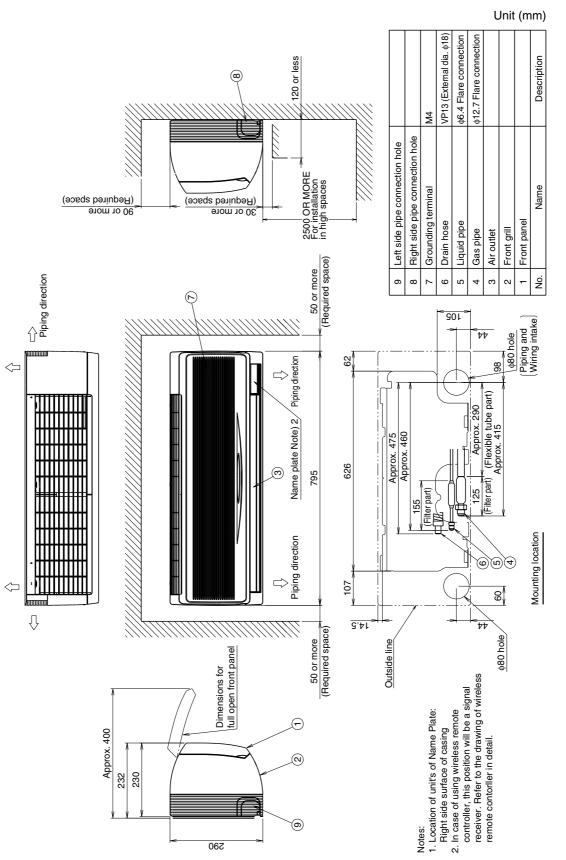
Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

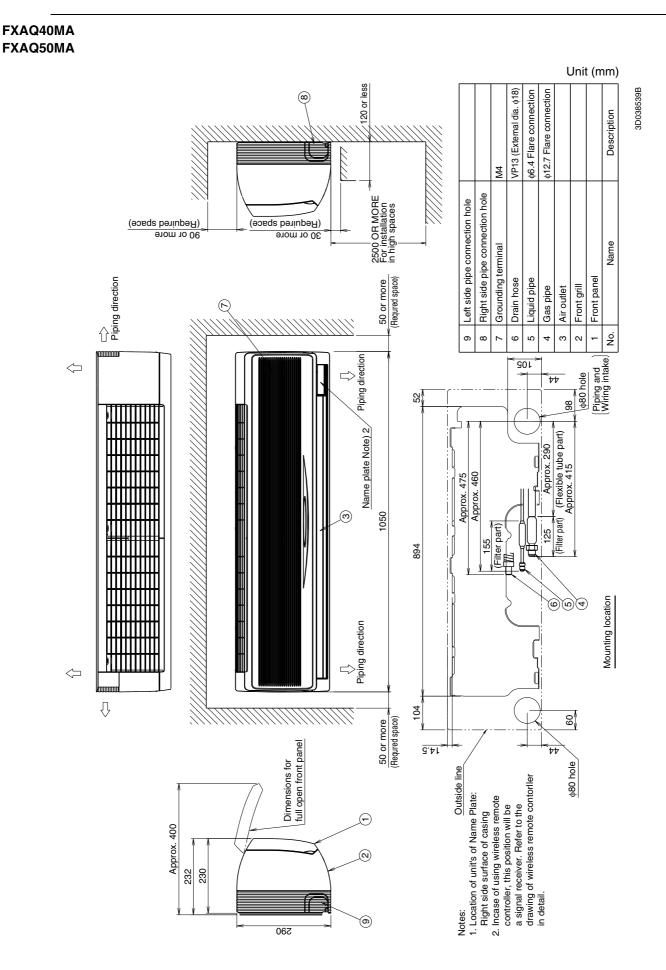
Wall Mounted Type

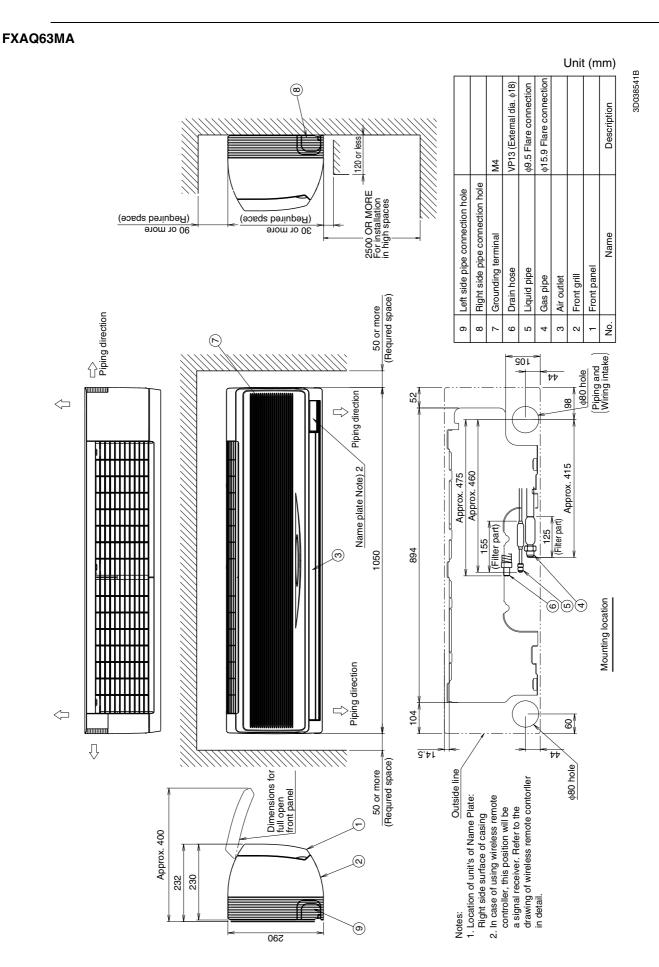
Model			FXAQ40MAVE	FXAQ50MAVE	FXAQ63MAVE		
		kcal/h	4,000	5,000	6,300		
*1 Cooling Ca	apacity (19.5°CWB)	Btu/h	16,000	19,800	24,900		
		kW	4.7	5.8	7.3		
*2 Cooling Ca	apacity (19.0°CWB)	kW	4.5	5.6	7.1		
Casing Color		•	White (3.0Y8.5/0.5)	White (3.0Y8.5/0.5)	White (3.0Y8.5/0.5)		
Dimensions: ((H×W×D)	mm	290×1,050×230	290×1,050×230	290×1,050×230		
Coil (Cross	Rows×Stages×Fin Pitch	mm	2×14×1.4	2×14×1.4	2×14×1.4		
Fin Coil)	Face Area	m²	0.213	0.213	0.213		
	Model		QCL9686M	QCL9686M	QCL9686M		
	Туре		Cross Flow Fan	Cross Flow Fan	Cross Flow Fan		
Fan	Motor Output × Number of Units	w	43×1	43×1	43×1		
	Air Flow Date (U/U)	m³/min	12/9	15/12	19/14		
	Air Flow Rate (H/L)	cfm	424/318	530/424	671/494		
	Drive		Direct Drive	Direct Drive	Direct Drive		
Temperature	Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absort	ping Thermal Insulation Mat	erial	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene	Foamed Polystyrene / Foamed Polyethylene		
Air Filter			Resin Net (Washable)	Resin Net (Washable)	Resin Net (Washable)		
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)		
Piping	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)		
Connections	Drain Pipe	mm	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)	VP13 (External Dia. 18 Internal Dia. 13)		
Machine Weig	ght (Mass)	kg	14	14	14		
*4 Sound Lev	rel (H/L) (220-240V)	dBA	39/34	42/36	46/39		
Safety Device	es		Fuse	Fuse	Fuse		
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve		
Connectable Outdoor Unit			R-410A PA Series	R-410A PA Series	R-410A PA Series		
Standard Accessories			Operation Manual. Installation Manual. Installation Panel. Paper Pattern for Installation. Insulation Tape. Clamps. Screws.	Operation Manual. Installation Manual. Installation Panel. Paper Pattern for Installation. Insulation Tape. Clamps. Screws.			
Drawing No.			C : 3D039370B				

Note:

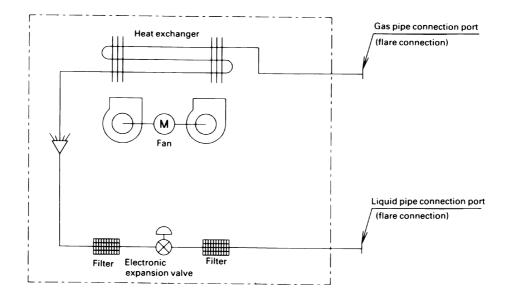
*1 Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.
 *2 Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp: 35°CDB / Equivalent piping length: 7.5 m, level difference: 0 m.


3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.


Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3


*4 Anechoic chamber conversion value, measured at a point 1 m in front of the unit and 1 m downward. During actual operation, these values are normally somewhat higher as a result of ambient conditions. 5 Refer to page 340 for Fan Motor Input.

3. Dimensions



4. Piping Diagrams

JC : DU220-602J

Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXAQ20 · 25 · 32 · 40 · 50MA	φ12.7	φ6.4
FXAQ63MA	φ15.9	φ9.5

5. Wiring Diagrams

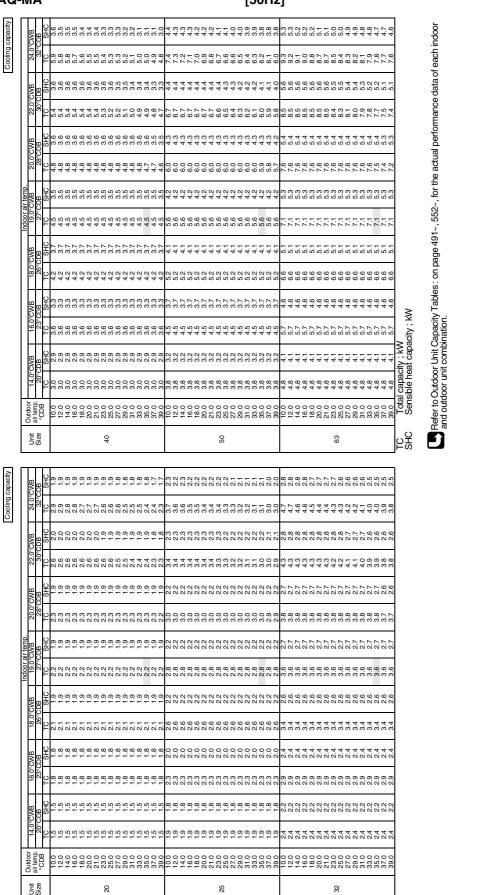
$\mathsf{FXAQ20} \cdot 25 \cdot 32 \cdot 40 \cdot 50 \cdot 63 \mathsf{MAVE}$

NDOOR UNT NDOOR UNT AIP PENTRED CIRCUIT BOARD FU UEG FER(II): AL FU USE (SE) (AL 200) FU USE (SE) (AL 200) RIT THERMISTOR (INDOOR FAW) MIS WOTOR (INDOOR FAW) MI
Poor Poor SS1 T T SS1 T T SS1 T T SS1 T T SS1 T T SS1 T SS1 T SS1 T SS1 T SS1 T SS1 T SS2 SS1 T SS2 SS1 T SS2 SS2 SS2 SS2 SS2 SS2 SS2 SS2 SS2 S
INDOOR UNIT INDOOR UNIT FUSE ((B), 3A, 250V) LIGHT EMITTING DIODE (SERVICE MONITOR GREEN) MOTOR (INDOOR FAN) MOTOR (INDOOR FAN) MOTOR (SWING FLAP) THERMISTOR (INDOOR FAN) MOTOR (SWING FLAP) THERMISTOR (COLL LIQUID PIPE) THERMISTOR (COLL LIQUID PIPE) LIGHT EMITTING DIODE (ON-RED) LIGHT EMITTING DIODE (ON-R
A1P HAP M1F M1F M1F M1F M1F M1F M1F M1F M1F M1F

6. Electric Characteristics

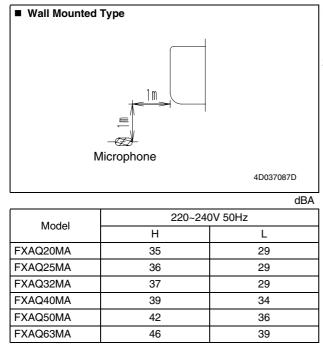
	Units						supply	I F	М	Inpu	ıt(W)
Model	Туре	Ηz	Volts	Voltage	range	MCA	MFA	kΨ	FLA	Cooling	Heating
FXAQ20MA						0.3	15	0.040	0.2	16	24
FXAQ25MA	VE				0.4	15	0.040	0.3	22	27	
FXAQ32MA		гΛ	222 240	MAX.	264	0.4	15	0.040	0.3	27	32
FXAQ40MA		50	220-240	Min.	198	0.4	15	0.043	0.3	20	20
FXAQ50MA	VE					0.4	15	0.043	0.3	27	32
FXAQ63MA						0.6	15	0.043	0.5	50	60

```
Symbols:
         Min. Circuit Amps (A)
Max. Fuse Amps (See note 5)
Fan Motor Rated Output(kW)
Full Load Amps(A)
  MCA :
  MFA :
  kΨ
      :
  FLA :
  IFM :
          Indoor Fan Motor
 Note:
  1. Voltage range
       Units are suitable for use on electrical
        systems where voltage supplied to unit terminals
        is not below or above listed range limits,
   2. Maximum allowable voltage unbalance between
       phases is 2%.
   3. MCA/MFA
       MCA = 1.25 \times FLA
       MFA \leq 4 \times FLA
         (Next lower standard fuse rating. Min. 15A)
   4. Select wire size based on the MCA.
   5. Instead of fuse, use Circuit Breaker.
```


C:4D034907E

7. Capacity Tables

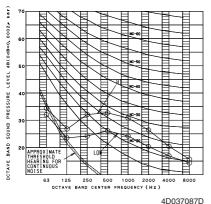
7.1 Cooling Capacity


FXAQ-MA

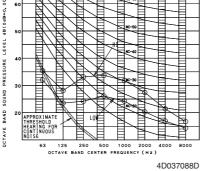
[50Hz]

8. Sound Levels

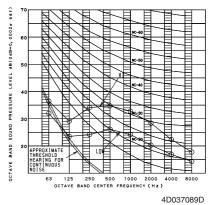
Overall

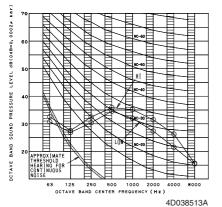

Note:

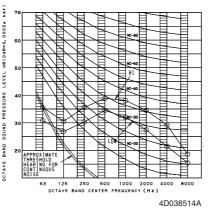
- 1. The operating conditions are assumed to be standard (JIS conditions).
- These operating values were obtained in a dead room (conversion values).
 Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

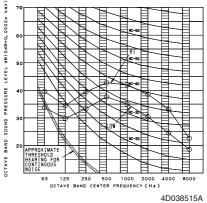

Octave Band Level

O-----O 220~240V 50Hz

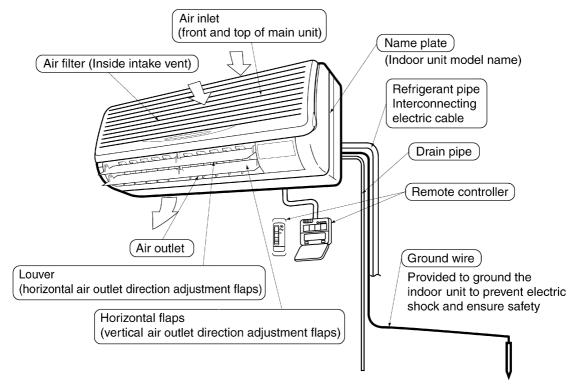

FXAQ20MAVE


FXAQ25MAVE

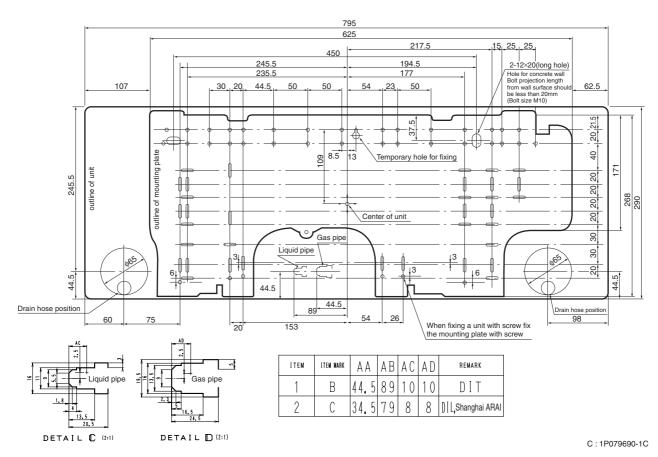

FXAQ32MAVE


FXAQ40MAVE

FXAQ50MAVE

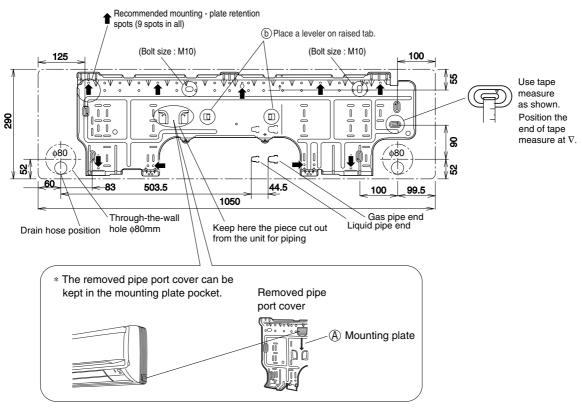


FXAQ63MAVE



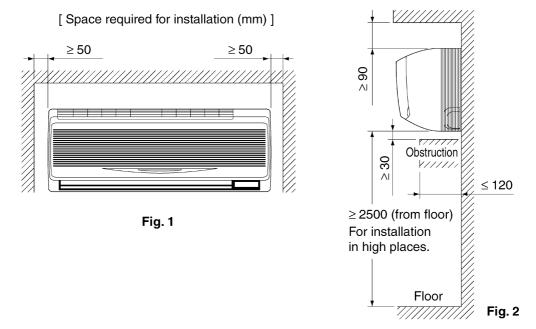
9. Installation

Installation Example



Recommended mounting-plate retention spots and Dimensions 20 \cdot 25 \cdot 32 class

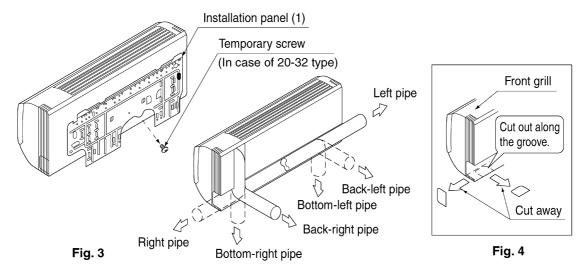
C: 3PN02401-8Q


$40\cdot 50\cdot 63\ class$

C:2P095003-1C

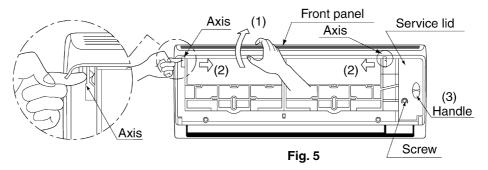
Service Space

- (1) Select an installation site where the following conditions are fulfilled and that meets with your customer's approval.
 - In the upper space (including the back of the ceiling) of the indoor unit where there is no possible dripping of water from the refrigerant pipe, drain pipe, water pipe, etc.
 - Where the wall is strong enough to bear the indoor unit weight.
 - Where sufficient clearance for installation and maintenance can be ensured.
 - (Refer to Fig. 1 and Fig. 2)
 - Where optimum air distribution can be ensured.
 - Where nothing blocks the air passage.
 - Where condensate can be properly drained.
 - Where the wall is not significantly tilted.
 - Where not exposed to combustible gases.
 - Where pipe between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual of the outdoor unit.)
 - Install the indoor and outdoor units, power cable and transmission wiring, at least 1 m from TVs and radios, to prevent distorted pictures and static. (Depending on the type and source of the electrical waves, static may be heard even when more than 1 m away.)
 - Install the indoor unit no less than 2.5 m above the floor. Where unavoidably lower, take what measures are necessary to keep hands out of the air inlet.
 - Where the cool (warm) air reaches all across the room.


- (2) Consider whether the place where the unit will be installed can support the full weight of the unit, and reinforce it with boards and beams, etc. if needed before proceeding with the installation. Also, reinforce the place to prevent vibration and noise before installing. (The installation pitch can be found on the paper pattern for installation (3), so refer to it when considering the necessity for reinforcing the location.)
- (3) The indoor unit may not be directly installed on the wall. Use the attached installation panel (1) before installing the unit.

Installation

- (1) Open the piping through-hole.
 - The refrigerant pipe and drain pipe can be passed out in one of 6 directions: left, bottom-left, back-left, right, bottom-right, and back-right. (Refer to Fig. 3)
 - Using the paper pattern for installation (3), choose where to pass the piping out and open a through-hole (φ80) in the wall.


Open the hole so that there is a downward slope for the drain piping. (See "DRAIN PIPING WORK")

- (2) Remove the installation panel (1) from the unit and attach to the wall. (The installation panel is temporarily attached to the unit with screw. (In case of 20-32 type)) (Refer to Fig. 3)
 - (a) Check the location for the hole using the included paper pattern for installation (3).
 - Choose a location so that there is at least a 90 mm gap between the ceiling and the main unit.
 - (b) Temporarily attach the installation panel (1) at the temporary-securing position on the paper pattern for installation (3) and use a level to make sure the drain hose is either level or tilted slightly downward.
 - (c) Secure the installation panel (1) to the wall using either screws or bolts.
 - If using the attachment screws for the installation panel (2), attach using at least 4 screws on either side (for a total of 8 screws (20-32 type), 9 screws (40-63 type)) of the recommended installation cleat position on the included paper pattern for installation (3).
 - If using bolts, attach using a M8 M10 bolt (for a total of 2 bolts) on either side.
 - If dealing with concrete, use commercially available foundation bolts (M8 M10).
- (3) If using the left, bottom-left, right, or bottom-right positions for the piping, cut out the through-hole for the piping in the front grill. (Refer to Fig. 4)

(4) Remove the front panel and the service lid. (Refer to Fig. 5)

- < How to remove the front panel and service lid >
- (1) Open the front panel to the point where it stops.
- (2) Push the axes on either side of the front panel towards the center of the main unit and remove. (You can also remove it by sliding the front panel either to the left or right and pulling it forward.)
- (3) Remove the screw from the service lid and pull the handle forward.

Insulating tape (4)

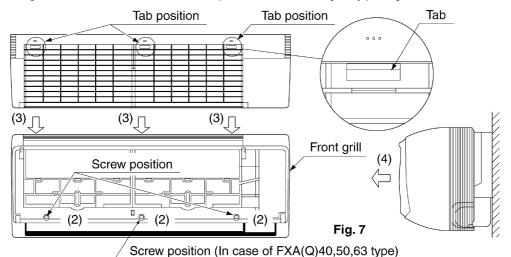
Refrigerant piping

Drain hose

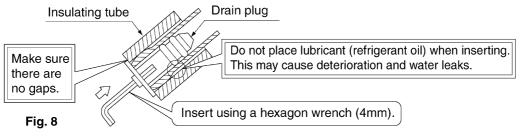
Fig. 6

(5) Point the pipe in the direction it will be passed out.

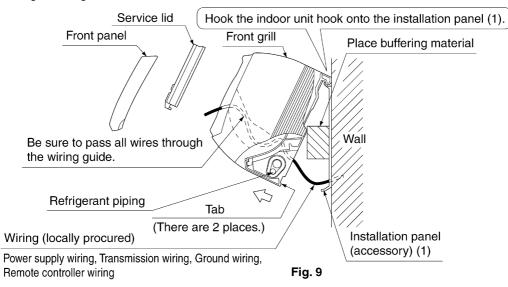
For right, bottom-right, and back-right piping (Refer to Fig. 6)


• Wrap the drain hose and the refrigerant piping together with the insulating tape (4) so that the drain hose is below the refrigerant piping.

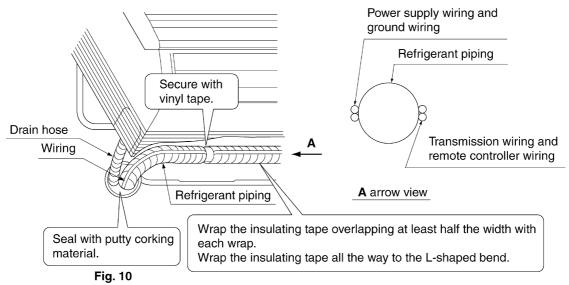
For left, bottom-left, and left-back piping


• Remove the front grill. (Refer to Fig. 7) < How to remove the front grill >

Remove the front grill as described below when securing the indoor unit with screws or when attaching Optional Accessories (wireless remote controller, adapter PC board, etc.).

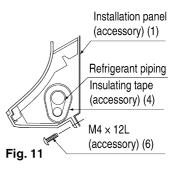

- (1) Remove the front panel.
- (2) Remove the screws (2 places in case of FXA(Q)20,25,32 type/3 places in case of FXA(Q)40,50,63 type) securing the front grill.
- (3) Remove the tabs (3 places) securing the front grill by pushing them in the direction of the arrows.
- (4) Making sure not to catch the horizontal flaps, remove the front grill by pulling in the direction of the arrow.

- Remove the drain plug, the insulation tubing, and the drain hose from the drain pan and replace. (Refer to Fig. 8)
- Connect the local refrigerant piping ahead of time, matching it to the liquid pipe and gas pipe marks engraved on the installation panel (1).
- < Replacing the drain hose and drain plug >
- (1) Remove the drain plug and insulation tubing.
- (2) Remove the drain hose and replace onto the left side.
- (3) Replace the drain plug and the insulation tubing onto the right side.

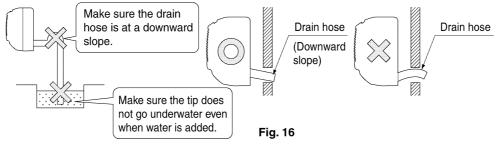


(6) Hook the indoor unit onto the installation panel. (Refer to Fig. 9)

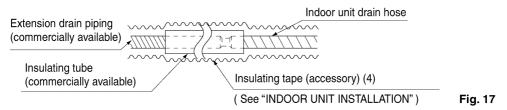
• Placing buffering material between the wall and the indoor unit at this time will make work easier.


For right, bottom-right, and back-right pipingPass the drain hose and the refrigerant piping to the wall.

- (7) Pass power supply wiring, transmission wiring, ground wiring, and remote controller wiring through the wiring guide in through the back of the indoor unit and to the front.
- (8) Connect the piping. (See Fig. 10)


- To avoid the influence of noise from the power supply line on the transmission wiring and the remote controller wiring, these wirings must be kept as far as possible from the power/ground wirings. As shown in the figure, keep the power supply wiring and the ground wiring together. Keep the transmission and remote controller wirings together and route them maintaining a good distance from the power supply/ground wirings (that is, on the other side of the power supply/ground wirings). Then, fix them securely on the refrigerant pipe.
 Seal the piping through-hole with putty corking material.
- (9) Push on both bottom edges of the indoor unit using both hands and hook the tab on the back of the indoor unit onto the installation panel (1). (Refer to Fig. 9)
 - At this time remove the buffering material placed in step (6).

- Make sure power supply wiring, transmission wiring, ground wiring and remote controller wiring are not caught inside the indoor unit.
- When screwing in the indoor unit
 - Remove the front grill. (Refer to Fig. 7)
 - Secure the indoor unit to the installation panel (1) with the securing screws (6). (Refer to Fig. 11)



Drain Piping Work

- (1) Install the drain piping. (Refer to Fig. 16)
 - The drain pipe should be short with a downward slope and should prevent air pockets from forming.
 - Watch out for the points in the figure 16 when performing drain work.

• When extending the drain hose, use a commercially available drain extension hose, and be sure to insulate the extended section of the drain hose which is indoors. (Refer to Fig. 17)

- Make sure the diameter of the piping is the same as the piping (hard vinyl chloride, nominal diameter 13mm) or bigger.
- When directly connecting a hard vinyl chloride pipe joint (nominal diameter 13mm) to the drain hose connected to the indoor unit (i.e. for embedded piping, etc.), use a commercially available hard vinyl chloride pipe joint (nominal diameter 13mm). (Refer to Fig. 18)

Drain hose connected to the indoor unit

Commercially available hard vinyl chloride pipe joint (nominal diameter 13mm) Commercially available hard vinyl chloride pipe (nominal diameter 13mm)

(2) Make sure the drain works properly. • After drain work is complete, perform a drain check by opening the front panel, removing the air filter, pouring water into the drain pan, and making sure water flows smoothly out of the drain hose. (Refer to Fig. 19) Plastic container for pouring Plastic container for pouring Fig. 19 Make sure not to splash the water.

Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger. Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

10. Accessories

Standard Accessories FXAQ20~63MA

Name	(1) Installation panel	(2) Attachment screws for the installation panel	(3) Paper pattern for installation	(4) Insulating tape	(5) Clamp
Quantity	1 set	$\begin{array}{l} 8 \text{ pcs.} \rightarrow FXA(Q) 20,\!25,\!32 \text{ type} \\ 9 \text{ pcs.} \rightarrow FXA(Q) 40,\!50,\!63 \text{ type} \end{array}$	1 pc.	1 pc.	1 large 3 small
Shape		() M4 × 25L		\bigcirc	

Name	(6) Securing screws	
Quantity	2 pcs.	
Shape	M4 × 12L	 (Other) Operation manual Installation manual

C: 3P156215-6D

Optional Accessories (For Unit)

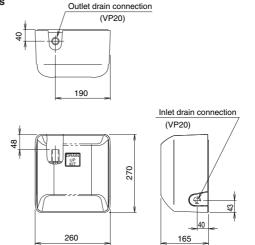
No.	Type Item	FXAQ20MA	FXAQ25MA	FXAQ32MA	FXAQ40MA	FXAQ50MA	FXAQ63MA
1	Drain pump kit			K-KDU	572EVE		

Optional Accessories (For Controls) : Refer to P.645

Unit : mm

Drain Pump Kit — K-KDU572EVE (Supplying goods to order)

Operating sound as small as 25dB

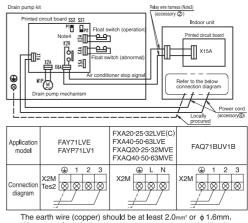

Features

- 1. Silent operation with no sign of pump operation
- 2. Design matching with wall mounted type air conditioner
- 3. Can be interlocked with air conditioner.

Usage

- · Home, office, and store
- Optimum for redesign
- Caution : Drain pump kit is only for the air conditioner. Please use it for the drain treatment of the air conditioner.
 - · Be sure to lay the piping inclined down after drain-up, which is different from drain pump.
 - Please do not use it in the place where soot such as kitchens is shrouded and the place where an organic solvent drifts.

Dimensions


Specification

	K-KDU572EVE
Drain pump head (mm) (Note 1)	1,000
Power supply	Single phase 220-240V/220V, 50/60Hz
Power consumption	14.1/12.9 (W)
Operating current	0.18/0.16 (A)
Insulation	Class E
Drain inlet connection pipe diameter	VP20 (Note 2)
Drain exit connection pipe diameter	VP20
Safety device	Float switch
Operating sound (dB)	25
Machine weight (Mass)(kg)	3.2
Drain exhaust flow rate (ml/min)	400

Note : 1. Height from bottom of drain pump kit up to the drain pipe.

2. Connect to the VP13 using the soft reducing socket.

Wiring Diagram

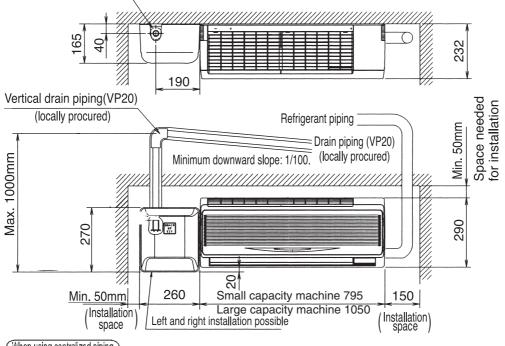
The earth wire (copper) should be at least 2.0mm³ or φ 1.6mm. When the relay wire harness is connected, remove the X15A short-circuit connector. Note : 1. Don't forget to turn on the power. If it is not turned on, the air conditioner

Will perform an error stop and operation will not be possible.
 Make sure that slide switch SS1 on the drain pump kit printed circuit board assembly is set to P2 and slide switch SS2 is set to P1.

- The relay wire harness cannot be extended.

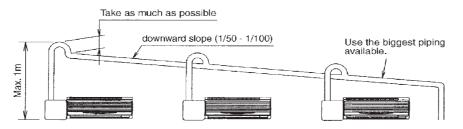
Turning on the power will close the K2R connector, making is a non-volt B connector.

Name	Shape	Quantity	Name	Shape	Quantity	Name	Shape	Quantity
Drain Pump Kit		1	Insulation	(1) 50X300Xt10	1	Rigid polyvinyl chloride pipe (Note3)	(13) VP13 0 365	1
			Clamp	8	2	Soft drain pipe	14 VP20	1
Relay wire	(2) (Green) (Red)	1		\bigcirc			<u>< 200</u>	
harness	PHILO (Med)			9		Screw	(15) (White)	1
Connecting	3 53	1	Clamp	\odot	1	washer	(c) and (c)	
harness	(White)		Soft reducing	10 VP13		Screw		5
Power cord	4	1	socket	\square	1		M5X35	
	(Blue)			(1)		Clamp material		4
Insulation pipe cover	⁵ _ 0	1	Drain hose		1	Paper pattern for Installation		1
Insulation	6 90X300Xt2	1	Rigid polyvinyl chloride pipe joint	12 VP13	1	Installation manual	(1)	1

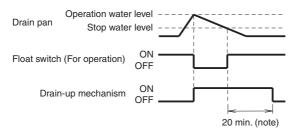

Component Parts

Note 3: This pipe must be procured locally for the large capacity machine.

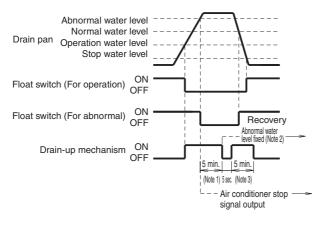
External drawing of drain pump kit and Service space


Position of hole in the ceiling(\$50)

The drain pump kit can be installed to the left or the right of the air conditioner. The diagram below illustrates a left installation.

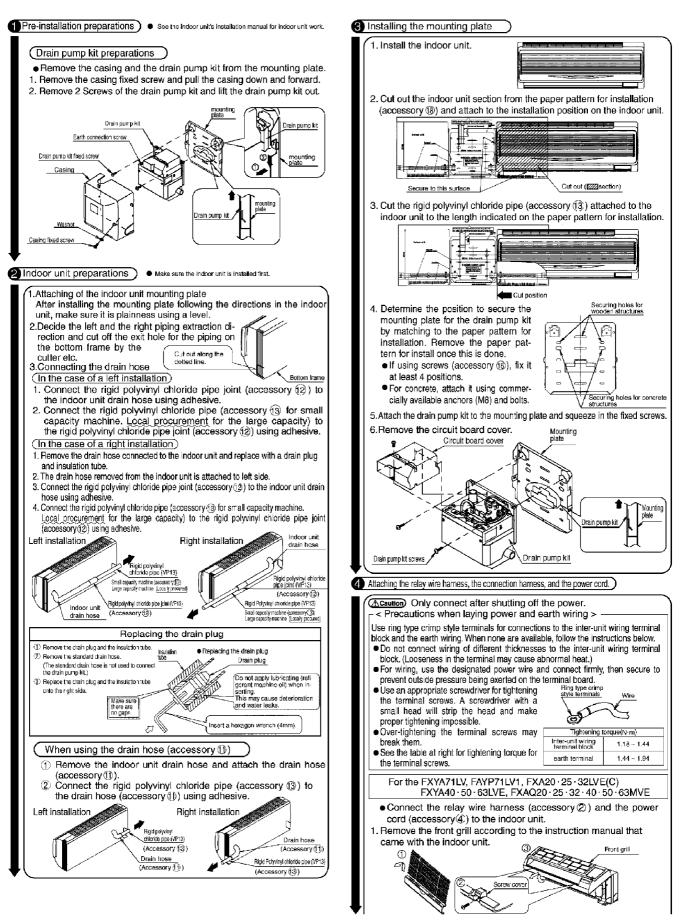

(When using centralized piping)

 Follow the figure below to make sure there is absolutely no back-up when using centralized piping.

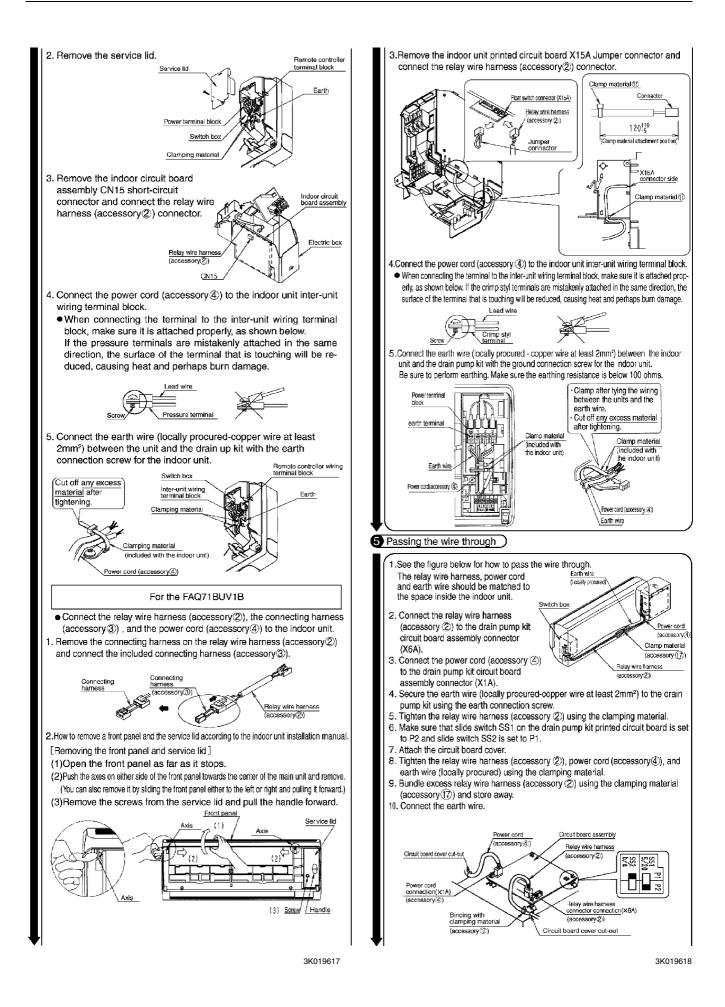

Description of operation

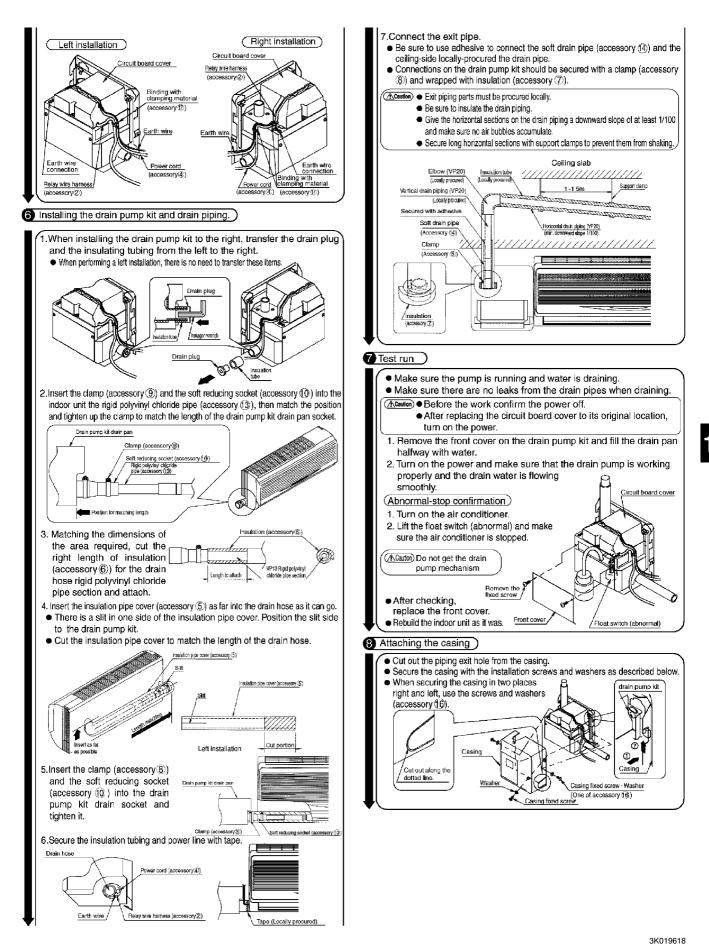
1: Operation at normal water level (Air conditioner operates when water level is at operation level, and when water level is at stop level, residual operation is performed.)

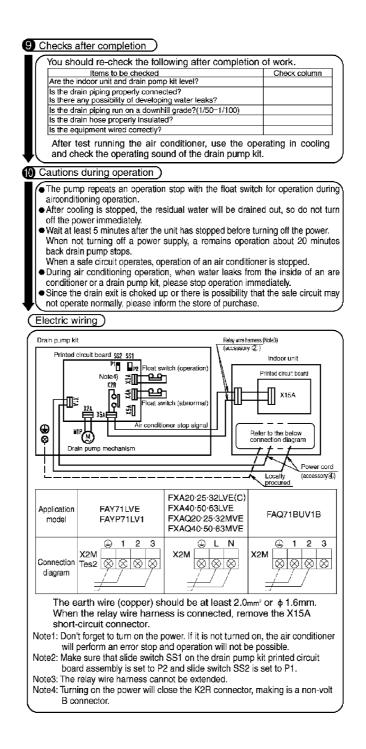
2: Operation at abnormal water level


(When water level is abnormal, the air conditioner stops. When abnormal water level is kept five minutes or longer, abnormal water level is established, and residual operation is performed.)

Note 1) When the float switch (for abnormal water level) is reset within five minutes, the air conditioner operates again with "normal water level".

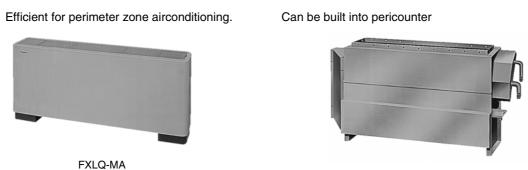

Note 2) When abnormal water level is fixed, power must be turned on again for operating again.


Note 3) When the cycle of operation 5 minutes - stop 5 seconds - operation 5 minutes is finished, if the float switch (for abnormal water level) is not reset, keep operation of drain pump until the switch is reset.


3K019617

10

10

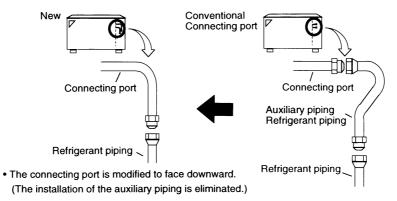


3K019618

FXLQ-MA / FXNQ-MA Floor Standing Type / Concealed Floor Standing Type

1.	Features	
2.	Specifications	
	2.1 FXLQ-MA	
	2.2 FXNQ-MA	
3.	Dimensions	
	3.1 FXLQ-MA	
	3.2 FXNQ-MA	
4.	Piping Diagrams	371
5.	Wiring Diagrams	372
6.	Electric Characteristics	373
7.	Capacity Tables	
	7.1 Cooling Capacity	
8.	Sound Levels	
9.	Installation	
10	Accessories	

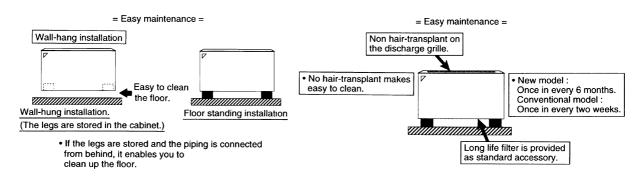
1. Features



(1) New round-shape adds the gentle feeling to office environment.

- Mild color is applied to the discharge grille and the bottom frame.
- The slimming top plate ensures elegance in dynamics.

(2) Improvement on the installation


■ The piping connection work is facilitated drastically.

(3) Easy maintenance

When the unit is hung on the wall, it is easy to clean the floor. (Exposed type)

- The maintenance of the discharge grille is improved.
- The interval of filter cleaning is prolonged.

Specifications

2. Specifications

2.1 **FXLQ-MA**

Floor Standing Type

Model			FXLQ20MAVE	FXLQ25MAVE	FXLQ32MAVE
		kcal/h	2,000	2,500	3,200
*1 Cooling Capacity (19.5°CWB) Btu/h kW			7,800	9,900	12,600
			2.3	2.9	3.7
*2 Cooling Ca	apacity (19.0°CWB)	kW	2.2	2.8	3.6
Casing Color			Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Dimensions: (H×W×D) mm		600×1,000×222	600×1,000×222	600×1,140×222	
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Fin Coil)	Face Area	m²	0.159	0.159	0.200
	Model		D14B20	D14B20	2D14B13
Fan	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output × Number of Units	w	15×1	15×1	25×1
	Air Flow Rate (H/L)	m³/min	nin 7/6 7/6		8/6
	All FIOW hale (H/L)	cfm	247/212 247/212		282/212
	Drive		Direct Drive	Direct Drive Direct Drive	
Temperature	Temperature Control		Microprocessor Thermostat for Cooling and Heating Cooling and Heating		Microprocessor Thermostat for Cooling and Heating
Sound Absor	und Absorbing Thermal Insulation Material		Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam
Air Filter	0		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)
Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Wei	ght (Mass)	kg	25	25	30
*4 Sound Lev	/el (H/L) (220V)	dBA	35/32	35/32	35/32
Safety Device	es		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable Outdoor Unit			R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Acc	xessories		Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.		Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.
Drawing No.				C : 3D038816A	

Note:

Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fam motor heat.

Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
Refer to page 373 for Fan Motor Input.

Conversion Formulae

kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

Floor Standing Type

Model			FXLQ40MAVE	FXLQ50MAVE	FXLQ63MAVE
		kcal/h	4,000	5,000	6,300
	Btu/h	16,000	19,800	24,900	
kW			4.7	5.8	7.3
*2 Cooling Ca	pacity (19.0°CWB)	kW 4.5 5.6 7.1			
Casing Color			Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)	Ivory White (5Y7.5/1)
Dimensions: (H×W×D)	mm	600×1,140×222	600×1,420×222	600×1,420×222
	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Coil (Cross Fin Coil)	Face Area	m²	0.200	0.282	0.282
	Model		2D14B13	2D14B13 2D14B20 Sirocco Fan Sirocco Fan	
Fin Ĉoil)	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output × Number of Units	w	25×1	35×1	35×1
	Air Flow Rate (H/L)	m³/min	11/8.5	14/11	16/12
	AIT FIOW Rale (H/L)	cfm	388/300 494/388		565/424
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature Control		Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	
Sound Absorb			Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam
Air Filter	0		Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Temperature C Sound Absorbir Air Filter Piping Connections Machine Weigh *4 Sound Level	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
001110010110	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Weig	ht (Mass)	kg	30	36	36
*4 Sound Lev	el (H/L) (220V)	dBA	38/33	39/34	40/35
Safety Device	S		Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable (Dutdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Accessories			Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.
Drawing No.				C : 3D038816A	

Note:

Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

4 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.
5 Refer to page 373 for Fan Motor Input.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

2.2 FXNQ-MA

Concealed Floor Standing Type

Model			FXNQ20MAVE	FXNQ25MAVE	FXNQ32MAVE	
		kcal/h	2,000	2,500	3,200	
*1 Cooling Capacity (19.5°CWB) Btu/h kW			7,800	9,900	12,600	
			2.3	2.9	3.7	
*2 Cooling Ca	apacity (19.0°CWB)	kW	2.2	2.8	3.6	
Casing Color			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate	
Dimensions: (H×W×D)	mm	610×930×220	610×930×220	610×1,070×220	
Dimensions: (Coil (Cross Fin Coil)	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5	
	Face Area	m²	0.159	0.159	0.200	
	Model		D14B20	D14B20	2D14B13	
Fan	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan	
Fan	Motor Output × Number of Units	W	15×1	15×1	25×1	
i an	Air Flow Rate (H/L)	m³/min	7/6	7/6	8/6	
		cfm	247/212 247/212		282/212	
	Drive		Direct Drive	Direct Drive	Direct Drive	
Temperature Control			Microprocessor Thermostat for Cooling and Heating Microprocessor Thermostat for Cooling and Heating		Microprocessor Thermostat for Cooling and Heating	
Sound Absorb	oing Thermal Insulation Mat	erial	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	Glass Fiber/ Urethane Foam	
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	
Sound Absorbi Air Filter Piping Connections Machine Weigh	Gas Pipes	mm	§12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	
	Drain Pipe	mm		¢21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)	
Machine Weig	ght (Mass)	kg	19	19	23	
*4 Sound Lev	el (H/L) (220V)	dBA	35/32	35/32	35/32	
Safety Devices			Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve	
Connectable (Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series	
Standard Accessories			Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	
Drawing No.				C : 3D038817A		

Note:

*1 Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

*2 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.

3 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

*4 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

5 Refer to page 373 for Fan Motor Input.

Conversion Formulae

kcal/h=kWx860 Btu/h=kWx3412 cfm=m³/minx35.3

Model			FXNQ40MAVE FXNQ50MAVE		FXNQ63MAVE
		kcal/h	4,000	5,000	6,300
*1 Cooling Capacity (19.5°CWB) Btu/r		Btu/h	16,000	19,800	24,900
kW			4.7	5.8	7.3
*2 Cooling Ca	apacity (19.0°CWB)	kW	4.5	5.6	7.1
Casing Color			Galvanized Steel Plate	Galvanized Steel Plate	Galvanized Steel Plate
Dimensions:	(H×W×D)	mm 610×1,070×220 610×1,350×220 610×1,350×2			610×1,350×220
Coil (Cross	Rows×Stages×Fin Pitch	mm	3×14×1.5	3×14×1.5	3×14×1.5
Coil (Cross Fin Coil)	Face Area	m²	0.200	0.282	0.282
	Model		2D14B13	2D14B20	2D14B20
Fan	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan
	Motor Output × Number of Units	W	25×1	35×1	35×1
	Air Flow Rate (H/L)	m³/min	11/8.5	14/11	16/12
	AIT FIOW Hate (H/L)	cfm	388/300	494/388	565/424
	Drive		Direct Drive	Direct Drive	Direct Drive
Temperature	Temperature Control		Microprocessor Thermostat for Cooling and Heating Microprocessor Thermostat for Cooling and Heating		Microprocessor Thermostat for Cooling and Heating
Sound Absort	Absorbing Thermal Insulation Material		Glass Fiber / Urethane Foam	Glass Fiber / Urethane Foam	Glass Fiber / Urethane Foam
Air Filter			Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)	Resin Net (with Mold Resistant)
	Liquid Pipes	mm	φ6.4 (Flare Connection)	φ6.4 (Flare Connection)	φ9.5 (Flare Connection)
Sound Absorbi Air Filter Piping Connections	Gas Pipes	mm	φ12.7 (Flare Connection)	φ12.7 (Flare Connection)	φ15.9 (Flare Connection)
	Drain Pipe	mm	φ21 O.D (Vinyl Chloride)	¢21 O.D (Vinyl Chloride)	φ21 O.D (Vinyl Chloride)
Machine Weig	ght (Mass)	kg	23	27	27
*4 Sound Lev	el (H/L) (220V)	dBA	38/33	39/34	40/35
Safety Devices			Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.	Fuse. Thermal Protector for Fan Motor.
Refrigerant Control			Electronic Expansion Valve	Electronic Expansion Valve	Electronic Expansion Valve
Connectable	Outdoor Unit		R-410A PA Series	R-410A PA Series	R-410A PA Series
Standard Accessories			Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.	Operation Manual. Installation Manual. Insulation for Fitting. Drain Hose. Clamps. Screws. Washers. Level Adjustment Screw.
Drawing No.				C : 3D038817A	

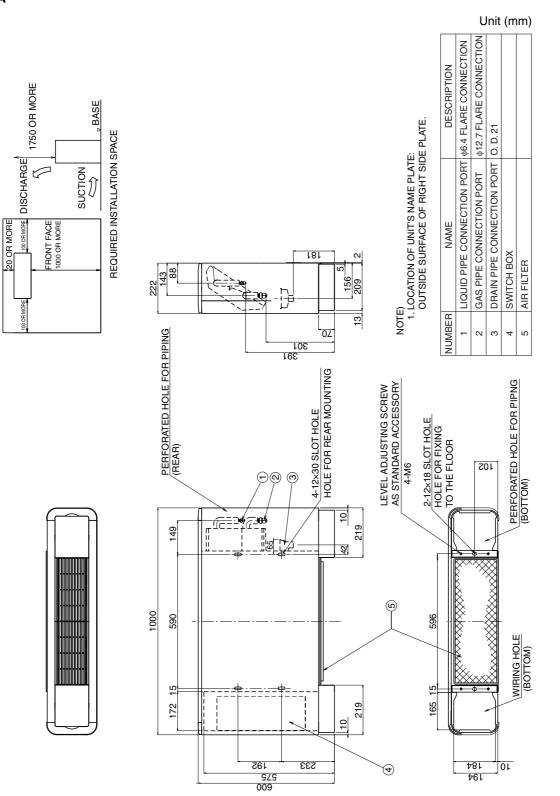
Concealed Floor Standing Type

Note:

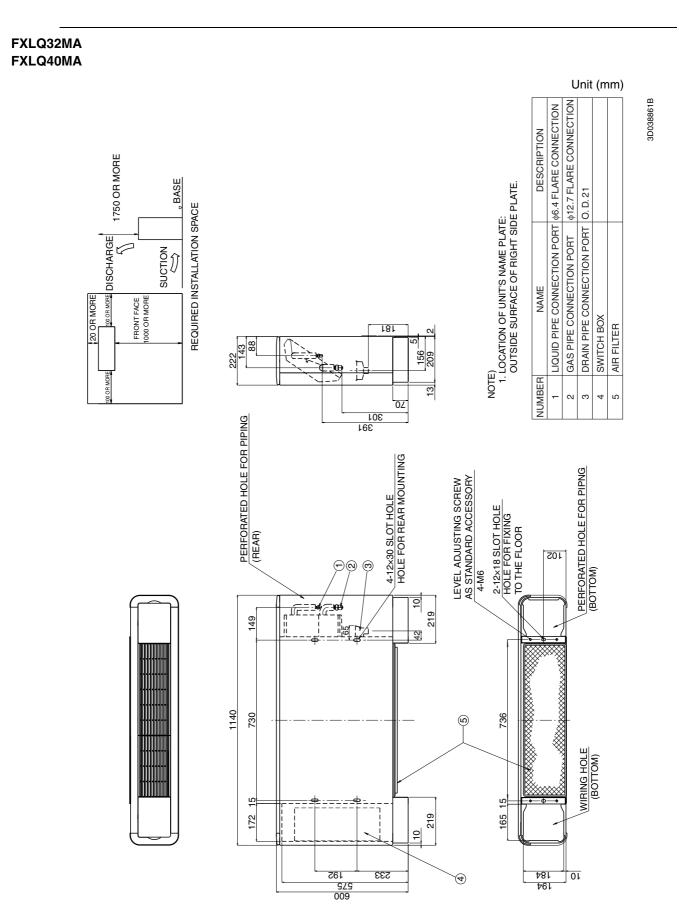
Indoor temp. : 27°CDB, 19.5°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Indoor temp. : 27°CDB, 19.0°CWB / outdoor temp. : 35°CDB / Equivalent piping length : 7.5 m, level difference : 0 m.
 Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.

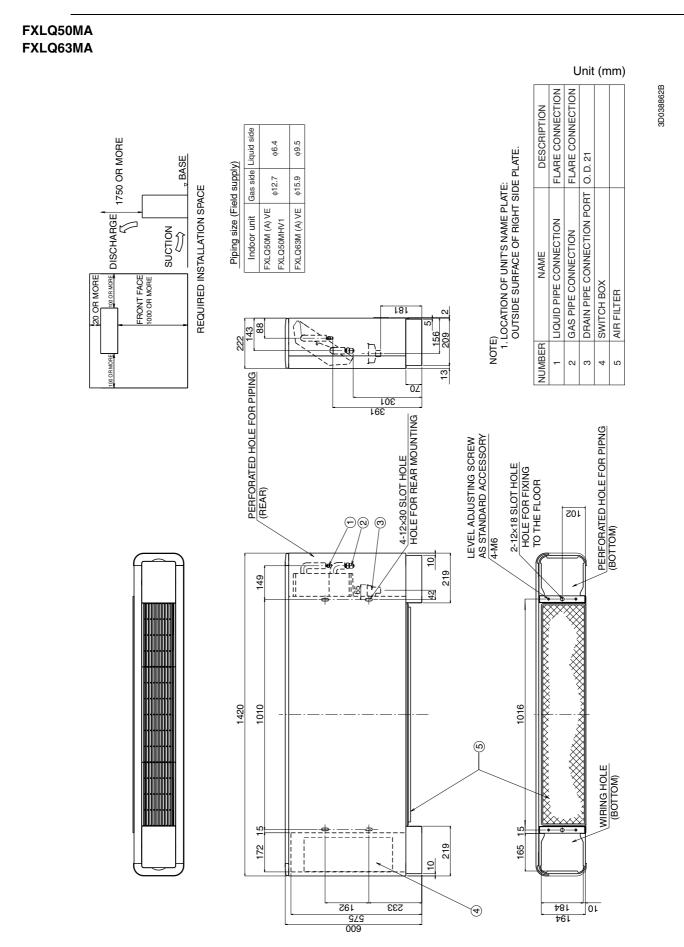
*4 Anechoic chamber conversion value, measured at a point 1.5 m in front of the unit at a height of 1.5 m. During actual operation, these values are normally somewhat higher as a result of ambient conditions.

5 Refer to page 373 for Fan Motor Input.

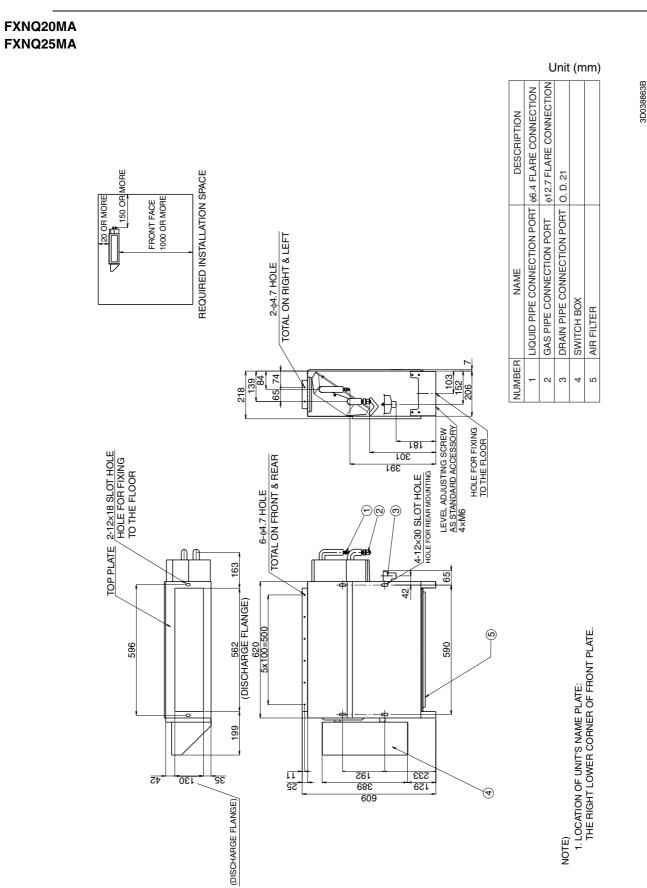

Conversion Formulae

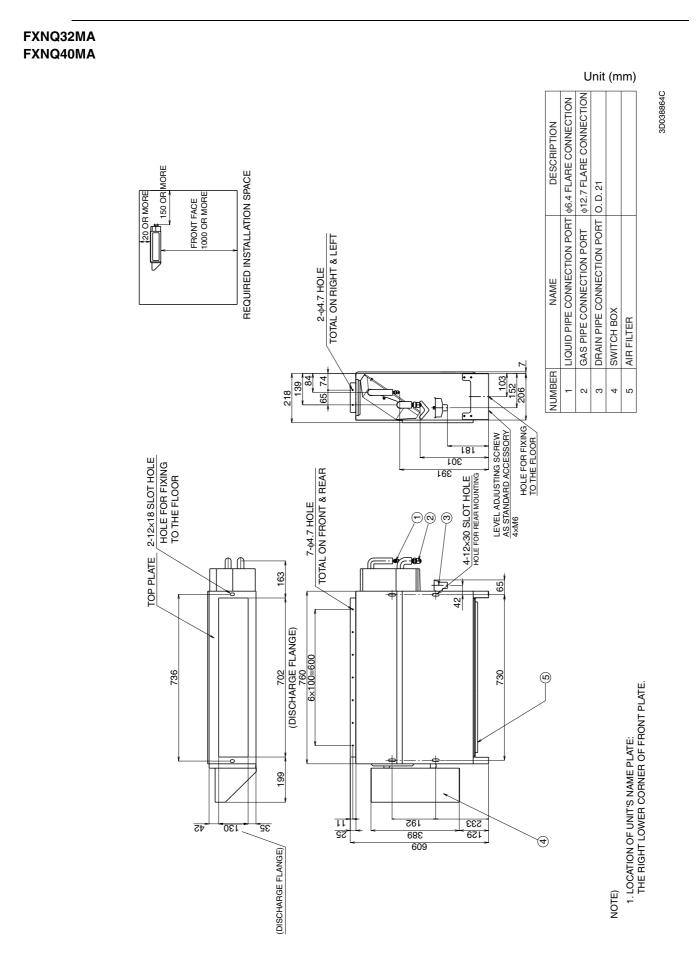
kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

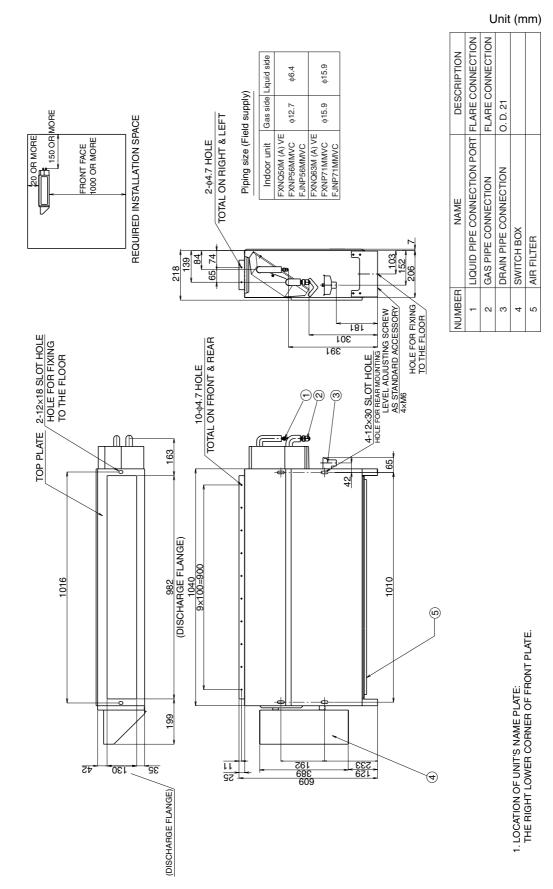

3. Dimensions

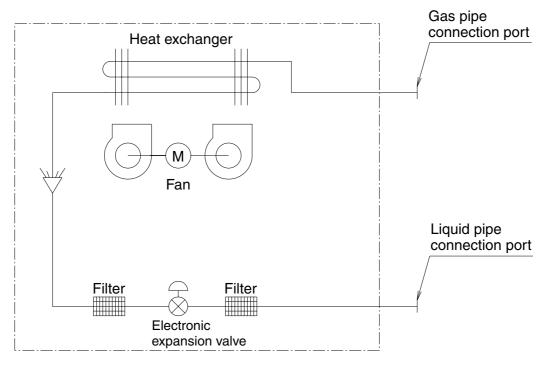

3.1 FXLQ-MA

FXLQ20MA FXLQ25MA




3D038860B


3.2 FXNQ-MA



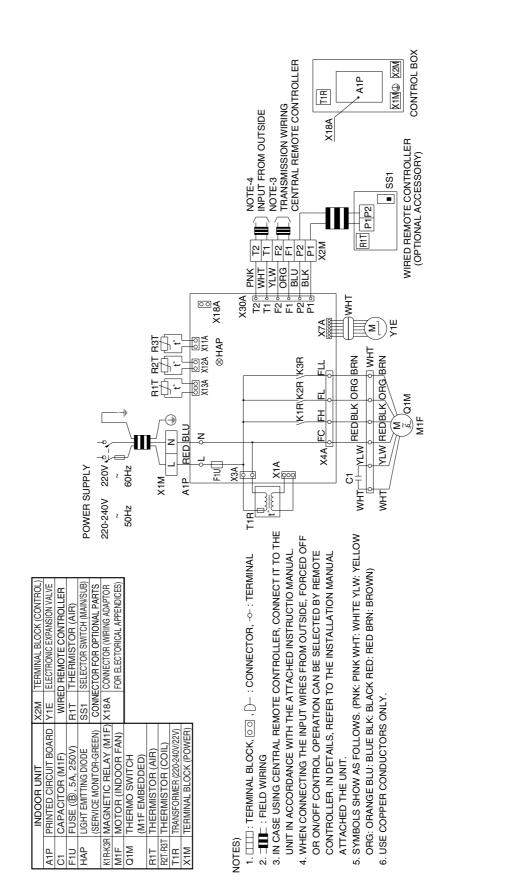
3D038865C

FXNQ50MA FXNQ63MA

4. Piping Diagrams

4D034245C

1


Refrigerant pipe connection port diameters

		(mm)
Model	Gas	Liquid
FXLQ20 · 25 · 32 · 40 · 50MA FXNQ20 · 25 · 32 · 40 · 50MA	φ12.7	φ 6 .4
FXLQ63MA FXNQ63MA	φ15.9	φ9.5

3D039826D

5. Wiring Diagrams

FXLQ20 · 25 · 32 · 40 · 50 · 63MAVE FXNQ20 · 25 · 32 · 40 · 50 · 63MAVE

6. Electric Characteristics

Uni	Units					supply	ΙF	М	Inpu	t(W)	
Model	Ηz	Volts	Voltage	range	MCA	MFA	ΚW	FLA	Cooling	Heating	
FXLQ • FXNQ20MAVE					0.3	15	0.015	0.2	4 9	49	
FXLQ • FXNQ25MAVE					0.3	15	0.015	0.2	49	49	
FXLQ • FXNQ32MAVE	50	220-240	MAX. Min.		0.6	15	0.025	0.5	90	90	
FXLQ • FXNQ40MAVE					. 198	0.6	15	0.025	0.5	90	90
FXLQ • FXNQ50MAVE]				0.6	15	0.035	0.5	110	110	
FXLQ • FXNQ63MAVE					0.6	15	0.035	0.5	110	110	

Symbols:

MCA	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
ΚW	:	Fan Motor Rated Output(KW)
FLA	:	Full Load Amps(A)
ΙFΜ	:	Indoor Fan Motor

Note:

1. Voltage range

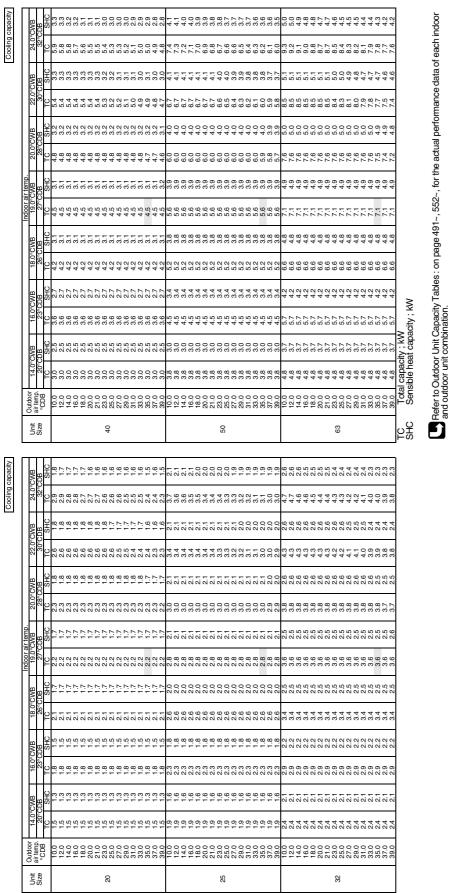
Units are suitable for use on electrical systems where voltage supplied to unit terminals

is not below or above listed range limits,

- Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA

MCA = 1.25 X FLA MFA ≦ 4 X FLA (Next lower standard fuse rating. Min.15A)

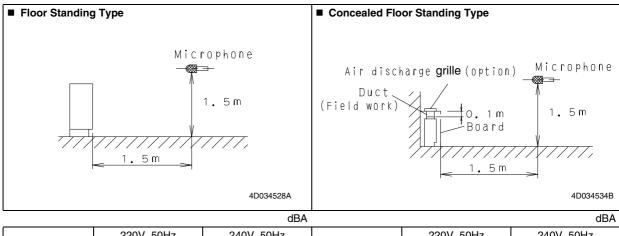
- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.


C:4D034579C

7. Capacity Tables

7.1 Cooling Capacity

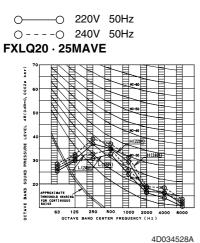
FXLQ-MA / FXNQ-MA


[50Hz]

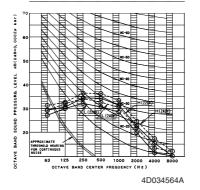
ED34-862

8. Sound Levels

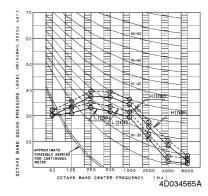
Overall

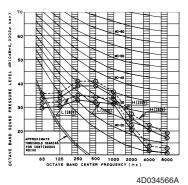

Model	220V, 50Hz		240V, 50Hz		Model	220V, 50Hz		240V, 50Hz	
woder	Н	L	Н	L	woder	Н	L	Н	L
FXLQ20MA FXLQ25MA FXLQ32MA	35	32	37	34	FXNQ20MA FXNQ25MA FXNQ32MA	35	32	37	34
FXLQ40MA	38	33	40	35	FXNQ40MA	38	33	40	35
FXLQ50MA	39	34	41	36	FXNQ50MA	39	34	41	36
FXLQ63MA	40	35	42	37	FXNQ63MA	40	35	42	37

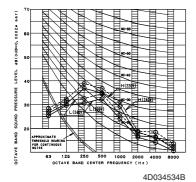
Note:

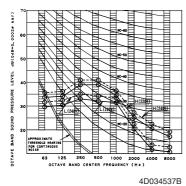

 These operating values were obtained in a dead room (conversion values). Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

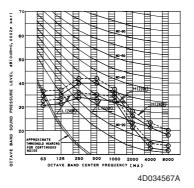
^{1.} The operating conditions are assumed to be standard (JIS conditions).

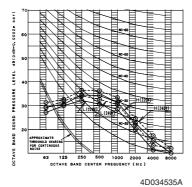

Octave Band Level

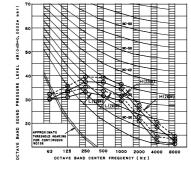



FXLQ40MAVE

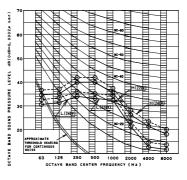

FXLQ50MAVE


FXNQ20 · 25MAVE


FXNQ50MAVE

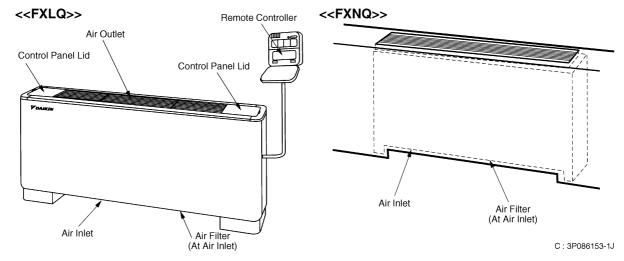

FXLQ63MAVE

FXNQ32MAVE



FXNQ40MAVE

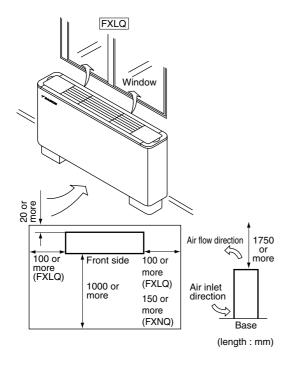
4D034536B

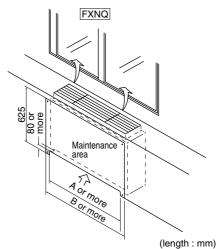

FXNQ63MAVE

4D034538B

9. Installation

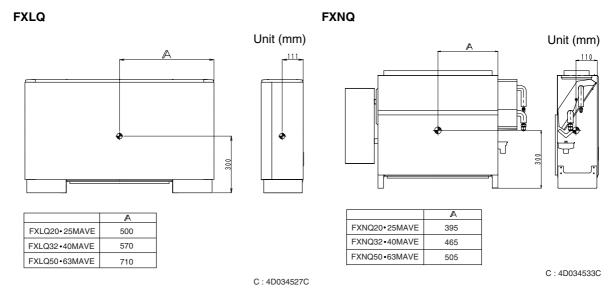
Installation Example


Service Space


- (1) Select an installation site where the following conditions are satisfied and that meets with your customer's approval.
 - · Where the floor is strong enough to dear the indoor unit weight.
 - Where the floor is not significantly inclined.
 - Where nothing blocks the air passage.
 - Where condensate can be properly drained.
 - · Where sufficient clearance for installation and maintenance can be ensured.
 - Where optimum air distribution can be ensured.
 - Where there is no risk of flammable gas leakage.
 - Where piping between indoor and outdoor units is possible within the allowable limit. (Refer to the installation manual of the outdoor unit.)

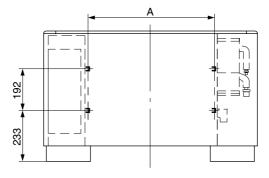
Install the indoor and outdoor units, power supply wiring and connecting wires at least 1 meter away from televisions or radios in order to prevent image interference or noise.

(Depending on the radio waves, a distance of 1 meter may not be sufficient enough to eliminate the noise.)


(IMPORTANT) Leave sufficient clearance for air inlet and maintenance.

Mo	A (mm)	B (mm)	
FXLQ20 · 25MAVE	FXNQ20 · 25MAVE	570	1030
FXLQ32 · 40MAVE	FXNQ32 · 40MAVE	710	1170
FXLQ50 · 63MAVE	FXNQ50 · 63MAVE	990	1450

11


C: 3P086154-2N

Center of Gravity

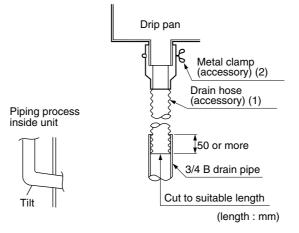
Bolt Pitch

(1) Positioning of holes for fastening to the wall

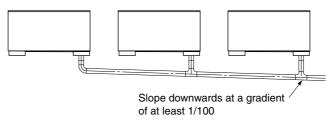
Model	A (mm)
FXNQ20 · 25MAVE	590
FXNQ32 · 40MAVE	730
FXNQ50 · 63MAVE	1010

(2) How to open / close the front panel

- 1. Open the lid of control panel (both left and right)
- 2. Remove screws (both left and right) that lock the knobs in position.
- 3. Push the knobs (both left and right) to the rear.
- 4. Lift the front of the top plate.
- 5. Lower the front panel towards the front of the unit.


• To close, perform the procedure in opposite order. Pull towards the front unit the knob snaps in place.

Drain Piping Work


 $\langle\!\langle Rig$ the drain pipe as shown below and take measures against condensation. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings. $\rangle\!\rangle$

(1) Carry out the drain piping.

Connect the drain hose (1) using the attached hose and parts, as shown in the right drawing.

• If converging multiple drain pipes, install according to the procedure shown below.

Select converging drain pipes whose gauge is suitable for the operating capacity of the unit.

- (2) After piping work is finished, check drainage flows smoothly.
- Add approximately 1 liter of water slowly from the air outlet and check drainage flow.
- (3) Be sure to insulate all indoor pipes.

-/! CAUTION -

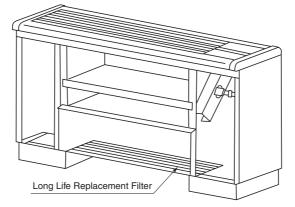
Drain piping connections

Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

· Keep in mind that it will become the cause of getting drain pipe blocked if water collects on drain pipe.

C: 3P086154-2N

10. Accessories

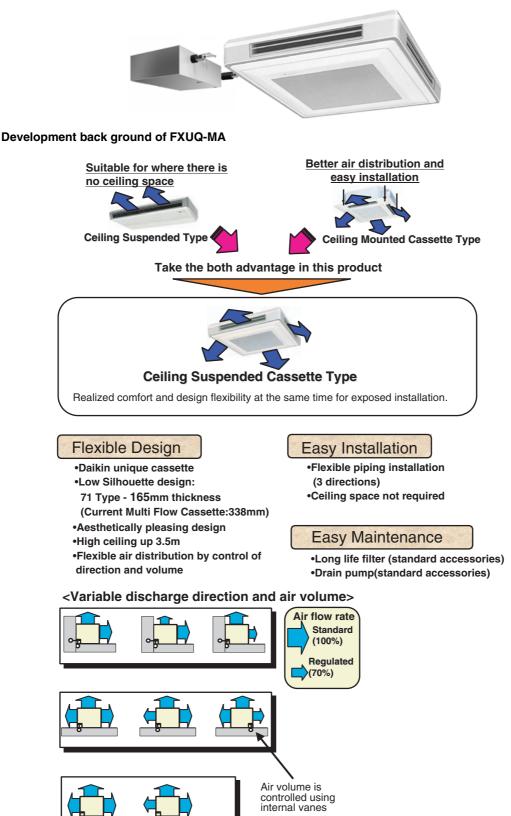

Standard Accessories FXLQ20~63MA FXNQ20~63MA

	Name	Drain hose	Insulation for fitting	Sealing pad	Clamp	Leveling	
Metal clamp × 1 (b) of gac pipe (1) (2) (5) (6) (7) [Other] • Operation m. • Installation m.	Quantity	1 set	1 each.	1 pc.	8 pcs.	4 pcs.	
	Shape	Metal clamp × 1 (1) (2)	0	(5)	(6)	Ø	[Other] • Operation manual • Installation manual

Optional Accessories (For Unit)

No.	Type Item	FXLQ20MA FXNQ20MA	FXLQ25MA FXNQ25MA	FXLQ32MA FXNQ32MA	FXLQ40MA FXNQ40MA	FXLQ50MA FXNQ50MA	FXLQ63MA FXNQ63MA
1	Long life replacement filter	KAFJ361K28		KAFJ361K45		KAFJ361K71	
							C · 4D034574B

Optional Accessories (For Controls) : Refer to P.645


FXUQ-MA Ceiling Suspended Cassette Type (Connection Unit Series)

1.	Features	.382
2.	Specifications	.383
	Dimensions	
4.	Piping Diagrams	.388
	Wiring Diagrams	
	Electric Characteristics	
7.	Capacity Tables	.392
	7.1 Cooling Capacity	
8.	Air Velocity and Temperature Distributions	
	(Reference Data)	393
9.	Sound Levels	.395
10	.Installation	.396
	10.1 Indoor Units	
	10.2 Connecting Units	.401
11	Accessories	411

1. Features

Flexibility in installation location

Because the installation location, air flow direction and air flow rate can be selected according to the shape, lighting, and interior design of a room, the Ceiling Suspended Cassette Type air conditioner will create a comfortable environment throughout the room. This is a completely new air conditioning system that produces the comfort level of a four-way air flow, ceiling-mounted cassette type air conditioner with the ease of a ceiling-suspended unit.

2. Specifications

Ceiling Suspended Cassette Type

Model		Indoor Unit		FXUQ71MAV1	FXUQ100MAV1	FXUQ125MAV1		
wodei		Connection	Unit	BEVQ71MAVE	BEVQ100MAVE	BEVQ125MAVE		
			kcal/h	7,100	10,000	12,500		
★1 Cooling Ca	apacity (19.5°	°CWB)	Btu/h	28,300	39,600	49,500		
			kW	8.3	11.6	14.5		
★2 Cooling Capacity (19.0°CWB) kW			kW	8.0	11.2	14.0		
Casing Color				White (10Y9/0.5)	White (10Y9/0.5)	White (10Y9/0.5)		
Dimensions: (H×W×D)		mm	165×895×895	230×895×895	230×895×895		
Coil (Cross	Rows×Stag	ges×Fin Pitch	mm	3×6×1.5	3×8×1.5	3×8×1.5		
Fin Coil)	Face Area		m²	0.265	0.353	0.353		
	Model			QTS48A10M	QTS50B15M	QTS50B15M		
	Туре			Turbo Fan	Turbo Fan	Turbo Fan		
Fan	Motor Output × Number of Units		W	45×1	90×1	90×1		
	Air Flow Rate (H/L)		m³/min	19/14	29/21	32/23		
			cfm	671/494 1,024/741		1,130/812		
	Drive			Direct Drive	Direct Drive	Direct Drive		
Temperature Control				Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorb	ing Thermal	Insulation Mat	erial	Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene		Heat Resistant Foamed Polyethylene, Regular Foamed Polyethylene		
	Liquid Pipe	s	mm	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)	φ9.5 (Flare Connection)		
Piping	Gas Pipes		mm	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)	φ15.9 (Flare Connection)		
Connections	Drain Pipe		mm	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)	VP20 (External Dia. 26 Internal Dia. 20)		
Machine Weig	ht		kg	25	31	31		
★4 Sound Level (H/L) (230V) dBA		dBA	40/35	43/38	44/39			
Safety Devices				Thermal Protector for Fan Motor	Thermal Protector for Fan Motor	Thermal Protector for Fan Motor		
Standard Accessories				Operation Manual, Installation Manual, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding Plate. Operation Manual, Installation Manual, Drain Hose, Clamp Met Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding		Operation Manual, Installation Manual, Drain Hose, Clamp Metal, Insulation for Fitting, Sealing Pads, Clamps, Screws, Washers, Holding Plate.		
Drawing No.				C : 4D045395A				

Notes:

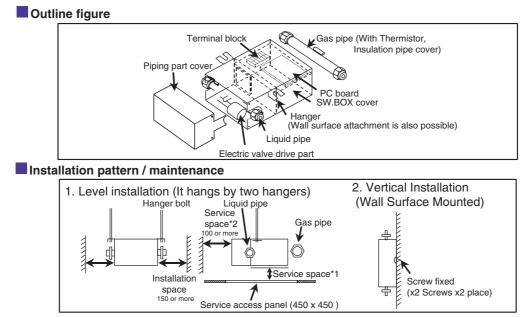
Indoor temp.: 27°CDB, 19.5°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
Indoor temp.: 27°CDB, 19.0°CWB / outdoor temp.: 35°CDB / Equivalent piping length: 7.5m, level difference: 0m.
Capacities are net, including a deduction for cooling (an additional for heating) for indoor fam motor heat.


*4 Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center. These values are normally somewhat higher during actual operation as a result of ambient conditions.
5 Refer to page 391 for Fan Motor Input.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

BEV Units

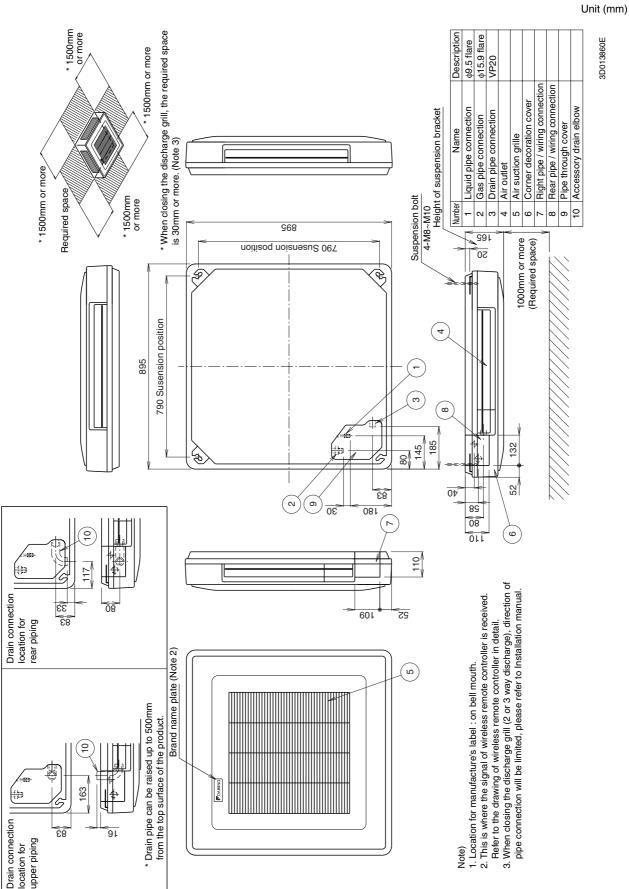
Model				BEVQ71MAVE	BEVQ125MAVE		
Power Supply				1 Phase 50Hz 220~240V	1 Phase 50Hz 220~240V	1 Phase 50Hz 220~240V	
Casing				Galvanized Steel Plate	Galvanized Steel Plate		
Dimensions:	(H×W×D)		mm	100×350×225	100×350×225		
Sound Abso Material	rbing Ther	mal Insulatior	1	Flame and Heat Resistant Foamed Polyethylene	Flame and Heat Resistant Foamed Polyethylene	Flame and Heat Resistant Foamed Polyethylene	
	Indoor	Liquid Pipes		9.5mm (Flare Connection)	9.5mm (Flare Connection)	9.5mm (Flare Connection)	
Pinina	Unit	Gas Pipes		15.9mm (Flare Connection)	15.9mm (Flare Connection)	15.9mm (Flare Connection)	
Piping Connection	Outdoor	Liquid Pipes		9.5mm (Flare Connection)	9.5mm (Flare Connection)	9.5mm (Flare Connection)	
	Unit	Suction Gas Pipes		15.9mm (Flare Connection) 15.9mm (Flare Connection)		15.9mm (Flare Connection)	
Machine We	ight (Mass	5)	kg	3.0	3.0	3.5	
Standard Accessories			•	Installation manual, Gas piping connections, Insulation for fitting, Sealing material, Clamps Installation manual, Gas pip connections, Insulation for fitt Sealing material, Clamps		Installation manual, Gas piping connections, Insulation for fitting, Sealing material, Clamps	
Drawing No.				4D045387A 4D045387A		4D045388A	

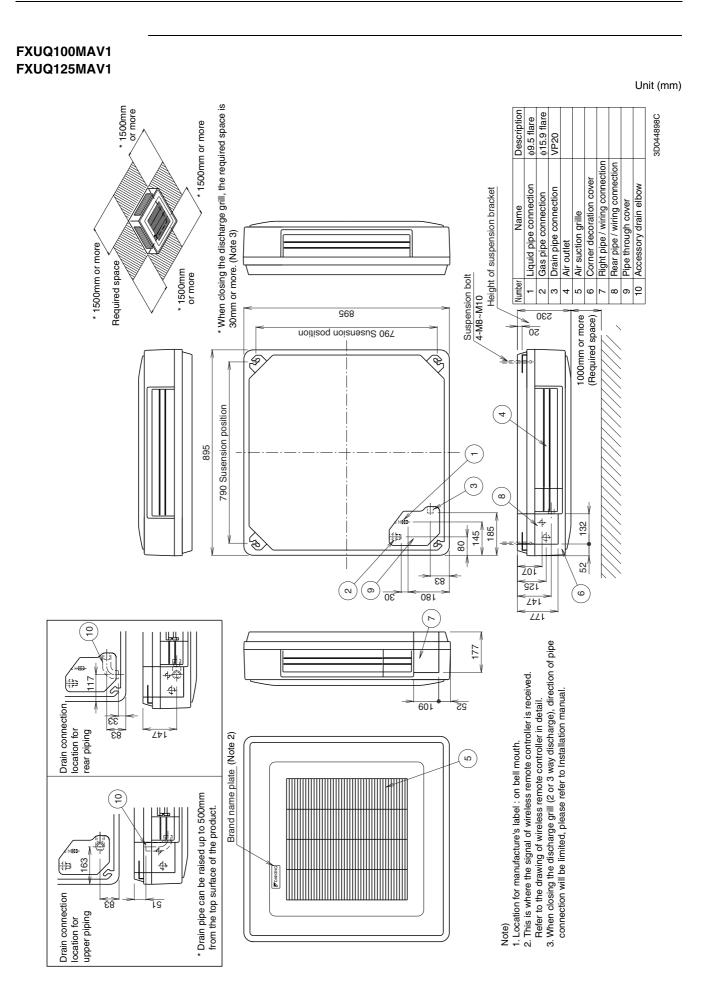

Connection Example

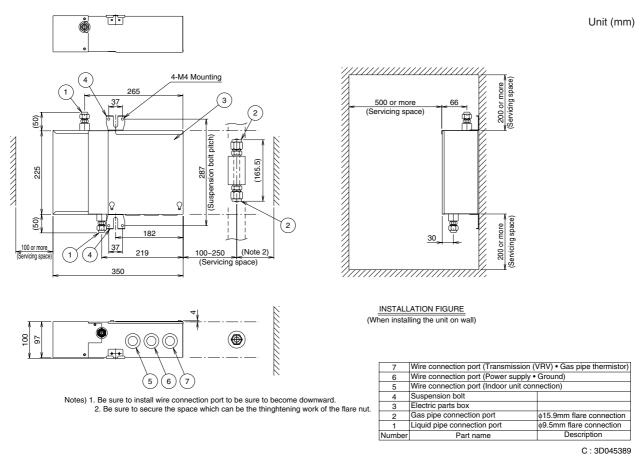
Consideration matter

- When connecting centralized-control device, it is necessary to **install an interface** adaptor for SkyAir series in an indoor unit.

-Distance between indoor unit and -BEV unit must be within 5m.

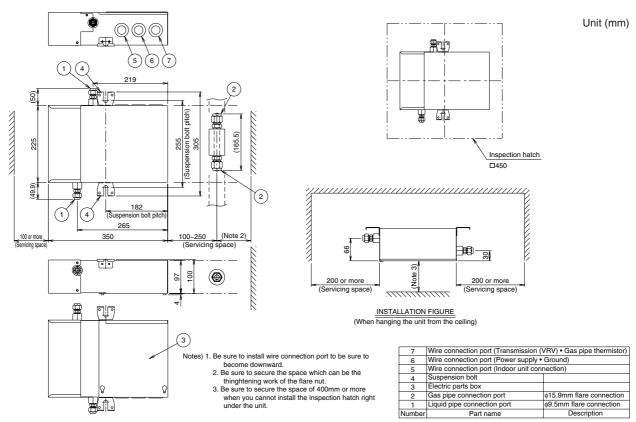



*1; Service space for switch box.

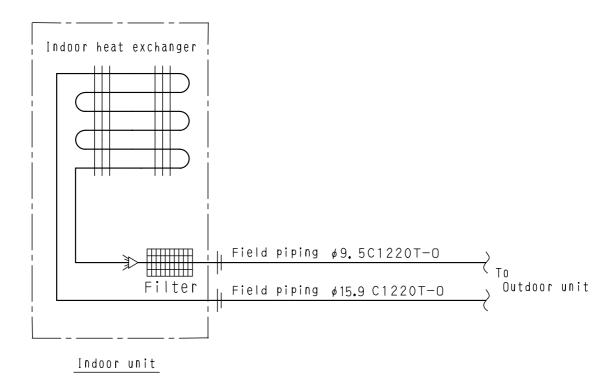

(Service access panel is required for the bottom side. When there is nothing, 350 or more spaces are required.) *2; For electric valve drive part's maintenance. (a control box is removed)

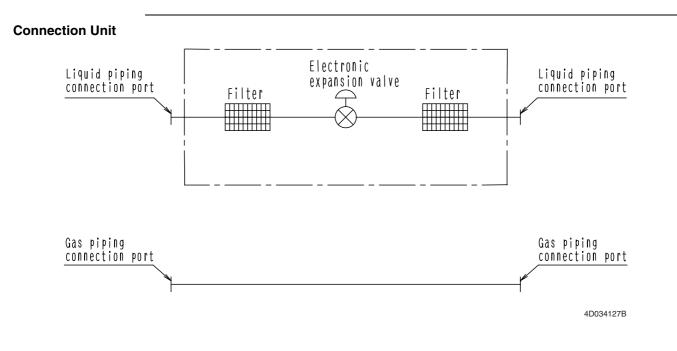
3. Dimensions

FXUQ71MAV1



BEVQ71MA / 100MA / 125MAVE (When installing the unit on wall)

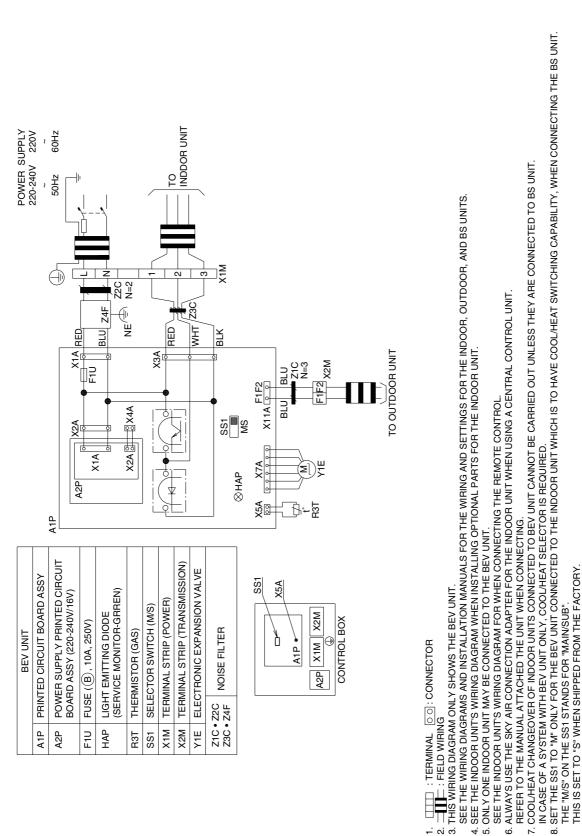

BEVQ71MA / 100MA / 125MAVE (When hanging the unit from the ceiling)


C:3D045390

4. Piping Diagrams

Indoor unit

C: 4D037995H



5. Wiring Diagrams

FXUQ71MAV1 / FXUQ100MAV1 / FXUQ125MAV1

Dotter support Dotter support Revenue International internatinternational international international international i	
(NOTE 3) BEV UNIT BEV UNI	
INDOR UNIT A1P PRINTED CIRCUIT BOARD (TRANSFORMER 220-240V/16V) A2P PRINTED CIRCUIT BOARD (TRANSFORMER 220-240V/16V) C1 CAPACITOR (M1F) HBP LIGHT EMITTING DIODE (SERVICE MONITOR GREEN) MIF MOTOR (SWING FLAP) M1P MOTOR (SWING FLAP) M1P MOTOR (INDOOR FAN) M1P MOTOR (INDOOR FAN) M1P MOTOR (INDOOR FAN) M1P MOTOR (UNDOR FAN) M1P MOTOR (DRAIN PUMP) O1M THERMISTOR (AIR) R21 THERMISTOR (AIR) R22 THERMISTOR (AIR) R23 SELECTOR SWITCH (EMERGENCY) V1TT PHASE CONTROL CIRCUIT R21 THERMISTOR (AIR) R21 THERMISTOR (CIRCUIT R22 SELECTOR SWITCH (SWING FLAP) R23 SELECTOR SWITCH (SWING FLAP) R24 MORELISSION CIRCUIT	

3D044973A

BEVQ71MAVE / BEVQ100MAVE / BEVQ125MAVE

3D044901B

9. CONNECT THE ATTACHED THERMISTOR TO THE R3T

ດ່ ຕ່

NOTES) 1.

4 ы. 10. SYMBOLS SHOW AS FOLLOWS.

(BLU : BLUE RED : RED WHT : WHITE BLK : BLACK)

6. Electric Characteristics

Units					Power supply		IFM		Input(W)	
Model	Ηz	Volts	Voltage	range	MCA	MFA	KW	FLA	Cooling	Heating
BEVQ71M(A)VE + FXUQ71M(A)V1					0.8	15	0.045	0.6	189	169
BEVQ100M(A)VE + FXUQ100M(A)V1	50	220-240	MAX. 264 Min. 198	264 198	13	15	0.090	1,0	298	278
BEVQ125M(A)VE + FXUQ125M(A)V1					I, J	IJ	0.000	1 0	230	210

Symbols:

МСА	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
ΚW	:	Fan Motor Rated Output(KW)
FLA	:	Full Load Amps(A)
ΙFΜ	:	Indoor Fan Motor

Note:

1.	Voltage range
	Units are suitable for use on electrical
	systems where voltage supplied to unit terminals
	is not below or above listed range limits,
2.	Maximum allowable voltage unbalance between
	phases is 2%.
З.	MCA/MFA

	MCA = 1.25 X FLA	
	MFA ≦ 4 X FLA	
	(Next lower standard fuse rating.	Min. 15A)
4.	Select wire size based on the MCA.	
5.	Instead of fuse, use Circuit Breaker.	

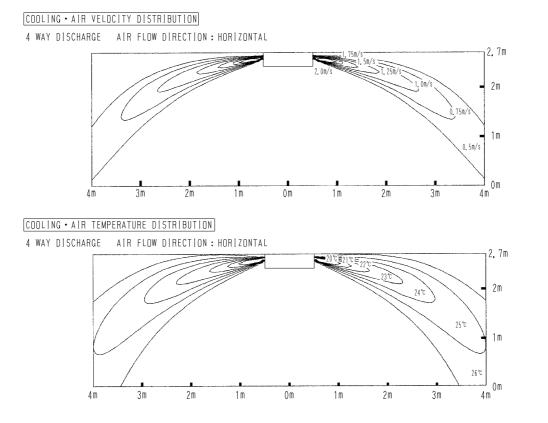
C: 4D034128B

12

FXUQ-MA

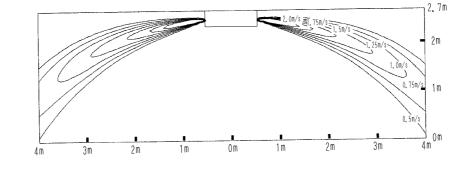
7. Capacity Tables

7.1 Cooling Capacity

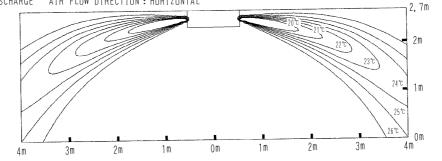

FXUQ-MA

[50Hz]

Size air			r N.		ľ	X									
	air temp.	20.02	0°CDB	23°C	3°CDB	26°C	0-CWB	19.0	27°CDB	28°C	SCDB	30°05	0°CDB	32°(0-CDB
-	2	0		0	SHC			o	SHC	TC	SHC	TC	SHC		SHC
	10.0	4 4	4 4 8 8	6.4	5.2	7.5	5.8	0.0	6.0	8.5 8.5	6.0	9 9 6 6	0 N 9	10.5	6.3
-	14.0			6.4	5.2	7.5	5.8	8.0	6.0	8.5	6.0	9.6	6.2	10.3	6.2
	16.0		4. ¢	6.4 7	2 C 2 C	7.5	0.0 0.0	000	6.0	8.5 7.3	0.0	0 9 0 0	0.2 0 0	10.1	9.1 9
- ៧	0.0			6.4	5.2	7.5	5.8	80.0	6.0	8.5	0.0	9.0 9.0	6.2 0	9.8	2.0
CV	21.0			6.4	5.2	7.5	5.8	8.0	6.0	8.5	6.0	9.6	6.2	9.8	5.9
7	0.0			4.9	2.2	7.5	60 G	0.0	6.0	8.5 1	0.0	9.4	0.5 0.5	9.0 1	0,1 0,1
	0.0	0 C 4 4	4 4 8 8	4.9 4.4	200	0, V	0 00 0 00		0.0	0 C 2 C	0.0	ກດ ກ່ອ	- 0 9	0.9	 0
1 (1)	0.62			6.4	5.2	7.5	5.8	8.0	6.0	8.5	6.0	9.0	5.9	9.2	5.7
<i>с</i> о (31.0			6.4	5.2	7.5	5.8 0	8.0	6.0	8.5 7	6.0	010	5.8 8.0	9.1	5.6
) (*	23.0	0 u 4 d		4 V	2010	ל ה ה	0. u 0. u	0.0	6.0	8.5 7 A	0.0	, 9 9 б	0.0 70.0	0.0 0.0	0. u 0. u
	37.0	5.4	4.8 8.4	6.4	5.2	7.5	5.8	8.0	5.9	8.3	0.0	8.5	5.8	8.7	5.4
	39.0	5.4		6.4	5.2	7.5	5.8	8.0	6.1		5.9	8.3	5.6	8.5	5.4
	0.0	9.7		0.0		10.5	0.0	210	20 00 C I C	9.E	0 0 0 0	13.4	8 8 4 7	14.5	0, 4 0, 4
	0.4	7.6		0.6	7.1	10.5	8.0	101	9 00 1 01 1 01	11.9	0 0 0 0 0	13.4	. 4.8	14.4	5 C. O
-	16.0	7.6		9.0	7.1	10.5	8.0	11.2	8.2	11.9	8.3	13.4	8.4	14.2	8
	18.0	7.6		0.6	7.1	10.5	8.0	11.2	8.2	11.9	8.3	13.4	8.4	14.0	8.1
	0.0	7.6		0.0	1.1	10.5	0.0	¢1 ¢	0 0 0	11.9	00 0 00 0	13.4	8.4	13.8	0.0
	0.080	9.4		0.0		10.5		4 ¢	9 0 9 0	5 F	000	10.1	t 0 0 0	13.5	- 1-
100	25.0	7.6		0.6	7.1	10.5	8.0	112	8.2	11.9	8.3	13.0	8.1	13.3	7.7
00	27.0	7.6		0.0	1.1	10.5	8.0	4 1 1 1 1 1 1	8 0 0	11.9	0 0 0	12.8	0.0	13.1	1.7
4 63	0.0	9.7		0.0	7.1	10.5	0.0	10	0 00 0 00	5. 1 0	0 m	12.4	n. 	12.7	0.6
, e)	33.0	7.6		0.6	7.1	10.5	8.0	112	82	11.9	8.3	12.2	7.8	12.5	7.6
e	35.0	7.6		9.0	7.1	10.5	8.0	11.2	8.2	11.8	8.3	12.1	7.7	12.3	7.4
00	0.75	7.6		0.0	7.1	10.5	0.0	112	0 0 0 0	11.6	80 80 67 60	11.9	7.7	12.2	5. C
-	10.0	9.5			9.0	13.1	6.6	14.0	10.4	14.9	10.6	16.8	10.7	18.4	10.8
	12.0	9.5		11.3	9.0	13.1	6.6	14.0	10.4	14.9	10.6	16.8	10.7	18.2	10.7
	0.4	9.0 9.0		Е 1 ю с	0.0	13.1	5, 0 5, 0	14.0	10.4	14.9	10.6	16.8	10.7	18.0	10.5
	80.0	9.5		τ τ	0.6	131	0.0	14.0	10.4		10.6	16.8	10.7	17.5	10.2
CN	20.0	9.5		11.3	9.0	13.1	9.9	14.0	10.4		10.6	16.8	10.7	17.2	10.1
	0.13	9.D		τ; ε, ε	0.0	13.1	6.6 6	14.0	10.4	14.9	10.6	16.8	10.7	17.1	10.0
125	0.0	ດ ແ ດີດ		= : 	0.0	201	ກ່ວ	14.0	10.4	14.9	9.01	10.0	0.01 7.01	10.9 16.6	ה ה ה
1 01	27.0	9.5		11.3	0.0	13.1	0.0	14.0	10.4	14.9	10.6	16.1	10.2	16.4	0.0 8.0
CU I	29.0	9.5		11.3	9.0	13.1	6.6	14.0	10.4	14.9	10.6	15.8	10.1	16.2	6.7
	0.12	9.0 10		Е † ю́с	0.0	13.1	5, 0 5, 0	14.0	10.4	14.9	10.6	15.6	10.0	15.9	0.0 9.0
	200	ດທີ		= ± 0 0	000		ກອ	14.0	10.4	14.9	0.0	0.01	ກອ	15.4	0.0
	37.0	9.5	8.0	11.3	0.0	13.1	0.0	14.0	10.4	14.5	10.5	14.9	8.0	15.2	4.6
_	39.0		8.0	÷	9.0	13.1	9.9	14.0	10.4	14.3	10.2	14.6	9.6	15.0	9.3
SHC	Total	capacity ible heat	Total capacity ; kW Sensible heat capacity : kW	/ ncitv : k	8										
2	2	2													

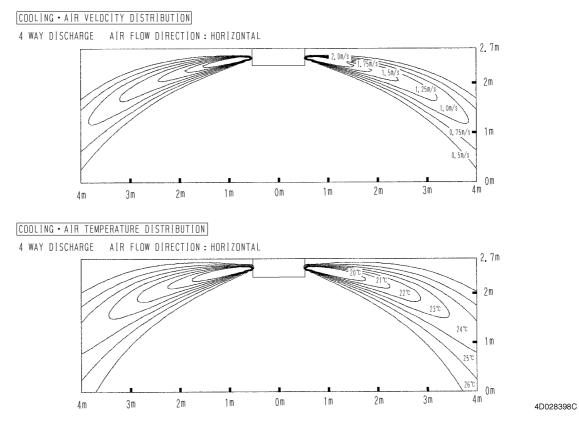

8. Air Velocity and Temperature Distributions (Reference Data)

FXUQ71MA

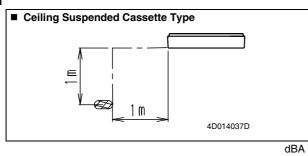

FXUQ100MA

COOLING • AIR VELOCITY DISTRIBUTION 4 WAY DISCHARGE AIR FLOW DIRECTION : HORIZONTAL

COOLING • AIR TEMPERATURE DISTRIBUTION



4D028396C


4D028397C

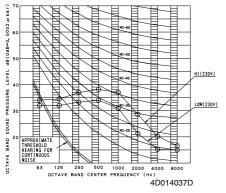
FXUQ125MA

9. Sound Levels

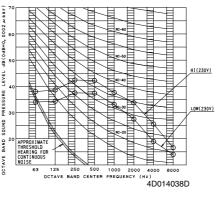
Overall

Model	230V,	50Hz
Model	Н	L
FXUQ71MAV1	40	35
FXUQ100MAV1	43	38
FXUQ125MAV1	44	39

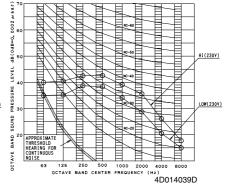
Notes:


- 1. The operating conditions are assumed to be standard (JIS conditions).
- These operating values were obtained in a dead room (conversion values).
 Sound level will vary depending on a range of factors such as the construction (acoustic absorption

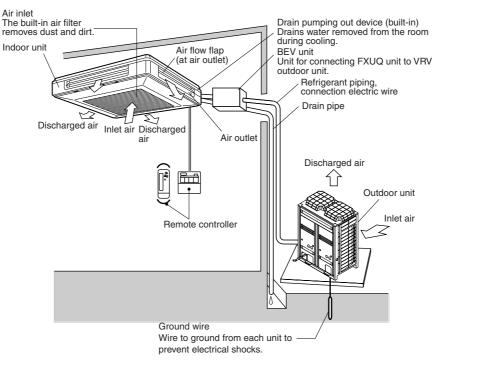
coefficient) of the particular room in which the equipments installed.


Octave Band Level

○——○ 230V 50Hz


FXUQ71MAV1

FXUQ100MAV1

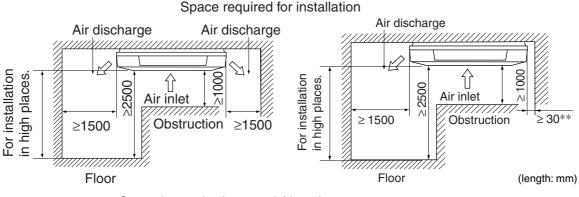

FXUQ125MAV1

10. Installation

10.1 Indoor Units

Installation Example

Service Space


Select an installation site where the following conditions are fulfilled and that meets your customer's approval.

- In the upper space (including the back of the ceiling) of the indoor unit where there is no possible dripping of water from the refrigerant pipe, drain pipe, water pipe, etc.
- Where optimum air distribution can be ensured.
- Where nothing blocks air passage.
- Where condensate can be properly drained.
- Where the ceiling is strong enough to bear the indoor unit weight.
- Where the false ceiling is not noticeably on an incline.
- Where sufficient clearance for maintenance and service can be ensured.
- Where there is no risk of flammable gas leakage.
- Where piping between indoor and outdoor units is possible within the allowable limit.
- (Refer to the installation manual for the outdoor and BEV units.)

[CAUTION]

Only use the included parts or parts which match the specifications when installing the unit.

• Install the indoor unit no less than 2.5 m above the floor. Where unavoidably lower, take what measures are necessary to keep hands out of the air outlet.

** Space is required to attach/detach corner covers.

Bolt Pitch

1. FOR 4-WAY AIR DISCHARGE

- 1. Relation of holes for indoor unit, suspension bolt position, piping and wiring. (Refer to Fig. 2) (Illustrations seen from ceiling)
 - * Dimensions in () for 100 and 125 models
 - *** Suspension bolt pitch
- 2. Make holes for suspension bolts, refrigerant and drain piping, and wiring. (Refer to Fig. 3)
 - Refer to the paper patten for the locations.

Π

Suspension bolt

Fia. 3

• Select the location for each of holes and open the holes in the ceiling.

Anchor

Ceiling slab

Long nut or turnbuckle

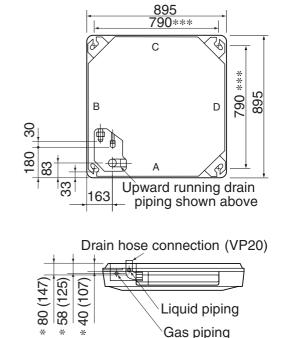


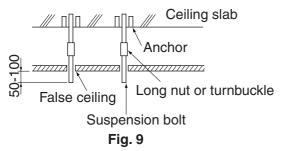
Fig. 2

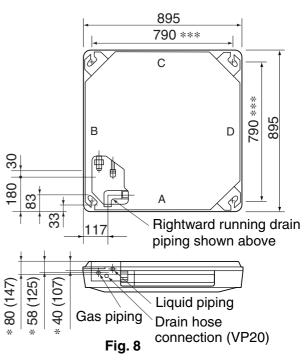
202

All the above parts are field supplied.

False ceiling

2. FOR 2-WAY OR 3-WAY AIR DISCHARGE

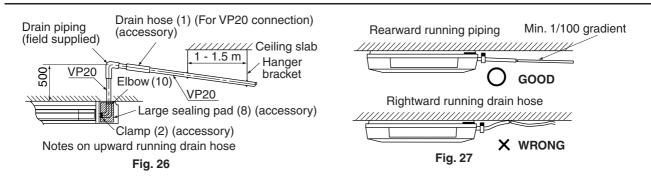

2-way and 3-way air discharge must be set from the remote controller. For details, see FIELD SETTING.


1. Relation of holes for indoor unit, suspension bolt position, piping and wiring. (Refer to Fig. 8)

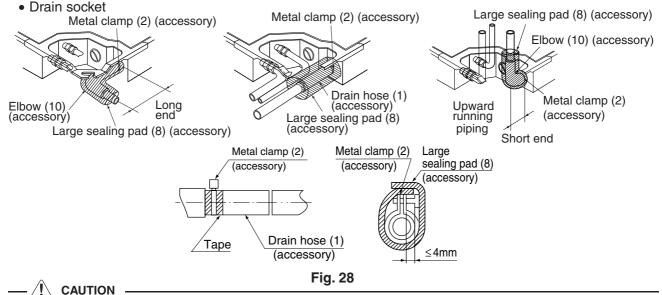
NOTE -

Illustrations seen from ceiling

- $\ast~$ Dimension in (~) for 100 and 125 models
- ***Suspension bolt pitch
- 2. Make holes for suspension bolts, refrigerant and drain piping, and wiring. (Refer to Fig. 9)
 - Refer to paper pattern for the locations.
 - Select the location for each of holes and open the holes in the ceiling.


Drain Piping Work

1. Rig drain piping (Refer to Fig. 26)

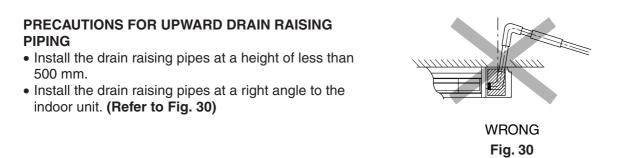

As for drain work, perform piping in such a manner that water can be drained properly. As for drain piping, the connection can be made from three different directions.

- Employ a pipe with either the same diameter or with the diameter larger (excluding the raising section) than that of the connecting pipe (PVC pipe, nominal diameter 20 mm, outside diameter 26 mm).
- Keep the drain pipe short and sloping downwards at a gradient of at least 1/100 to prevent air pockets from forming. (Refer to Fig. 27)

Water pooling in the drainage piping can cause the drain to clog.

- To keep the drain hose from sagging, space hanging wires every 1 to 1.5 m. (Refer to Fig. 26)
- Use only the included drain hose (1), (for rightward running drain hose) or elbow (10) (for upward running drain hose) and clamp (2).
- Fit the drain hose (1) or elbow (10) over the drain pipe up to the neck and fasten tight with the clamp (2).
- Insulate the clamp (2) and drain hose or elbow (10) with the included sealing pad (8). (Refer to Fig.28)
- Make sure that heat insulation work is executed on the following 2 spots to prevent any possible water
 - leakage due to dew condensation.
 - Insulate the drain hose inside the building.

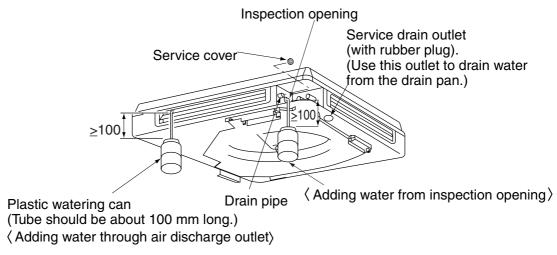
• Do not twist or bend the drain hose (1), so that excessive force is not applied to it, as this could cause leaks.


• If converging multiple drain piping, install according to the procedure shown below. (Refer to Fig. 29)

Select converging drain piping whose gauge is suitable for the operating capacity of the unit.

T-joint converging drain piping

Fig. 29



If the upward running drain hose leans at a slant, the float switch will malfunction and water will leak.

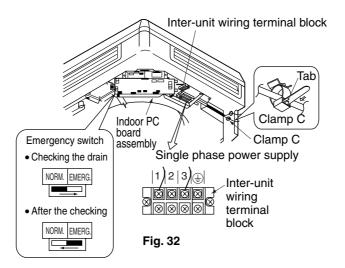
2. After piping work is finished, check if drainage flows smoothly.

• Open the water inlet lid, add approximately 1 liter of water slowly and check drainage flow. (Refer to Fig. 31)

Method of adding water

Fig. 31

[Caution]


Drain piping connections

• Do not connect the drain piping directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the indoor unit through the drain pipes and corrode the heat exchanger.

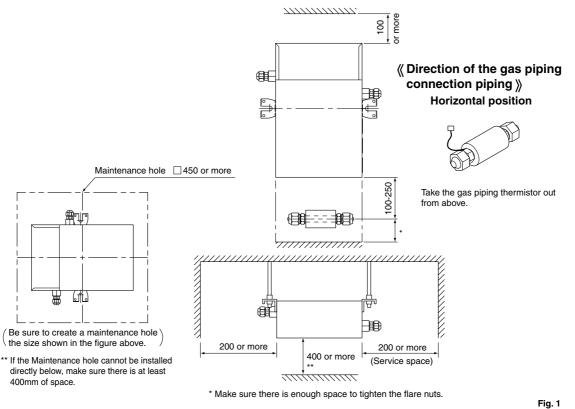
- Electrical wiring work should be done by a certified electrician.
- If someone who does not have the proper qualifications performs the work, perform the following after the test run is complete.
- Remove the control box lid and change the emergency switch above the PC board assembly of the indoor unit from "NORM." to "EMERG.". Connect the single-phase power supply (1, 3) and ground wire to the inter-unit wiring (50Hz 220-240V) terminal block and confirm drain operation. Be sure to change the switch before turning on the power. (Refer to Fig. 32)

- Clamp solidly to clamp C to tension is not added to the wiring connections.
- Be aware that the fan will turn during the operation.
- After confirming drainage, turn off the power and be sure to change the emergency switch back to "NORM.".

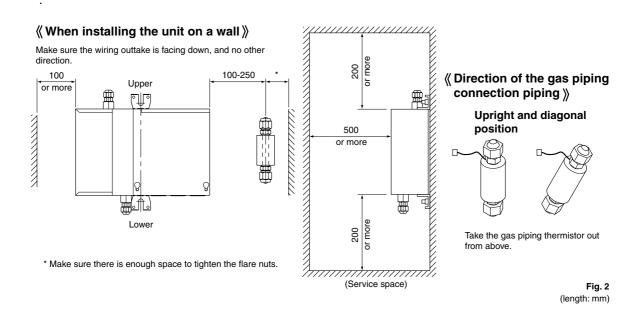
10.2 Connecting Units

Before Installation

- When moving the unit while removing it from the carton box, be sure to lift it by holding on to the two lifting lugs without exerting any pressure on other parts, especially, the refrigerant piping.
- Be sure to check the type of R-410A refrigerant to be used before installing the unit. (Using an incorrect refrigerant will prevent normal operation of the unit.)
- BEV unit is an electronic expansion valve unit for allowing the indoor unit to be connected to the system for the VRV system.
- BEV unit may only be connected to the models shown in the table below. Do not attempt connection with other models.

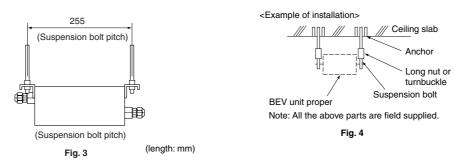

Indoor unit
Ceiling Suspended Cassette Type

- See the included installation manuals on the VRV outdoor unit and the ceiling suspended cassette type indoor unit for details.
- For the indoor unit connected to the BEV unit, cooling/heating cannot be switched over with the remote controller.
- When the cooling/heating free system is connected to the BS unit, a cooling/heating selection right is allowed.
- When the ceiling suspended cassette type indoor unit and BEV unit are used for all indoor units, a separate "Cool/Heat SELECTOR" is needed to enable the cooling/heating switchover.


Service Space.

$\langle\!\!\langle$ When hanging the unit from the ceiling $\rangle\!\!\rangle$

Install so that the control box lid is facing down.



Bolt Pitch

$\langle\!\!\langle$ When hanging the unit from the ceiling $\rangle\!\!\rangle$

(1) Check the relative locations of ceiling hole, unit, and hanging bolts.

- (2) Open the eyebolt holes or the holes for passing the piping and wiring out of the unit.
 - Set the locations for the above holes, open them up and then lay the piping (refrigerant) and wiring (including both power supply and transmission wiring) up to the piping and wiring connections in the unit.
 - It might be necessary to reinforce the ceiling frame to maintain the levelness and to prevent vibration.
 Consult an architect or carpenter for details.
- (3) Install the hanging bolts. (Use M8 hanging bolts.)
 - If it is pre-set, use hole-in anchors. Otherwise, use embedded inserts or embedded foundation bolts to make sure that the weight of the unit can be supported. Adjust the distance to the ceiling beforehand.

《 When installing the unit on a wall 》

(1) Check the relative locations of ceiling hole, unit, and hanging bolts.

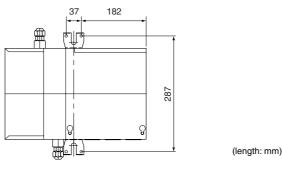


Fig. 5

• Use only accessories and parts which are of the designated specification when installing.

$\langle\!\!\langle$ When hanging the unit from the ceiling $\rangle\!\!\rangle$

- (1) Temporarily install the BEV unit.
 - Mount the hanging fittings to hanging bolts. Secure the hanging fittings on the top and the bottom with nuts (M8, field supplied) and washers (M8: Outside diameter size 24 to 28 mm) (field supplied).
- (2) Adjust the height of the main unit with the nut.
- (3) Check that the main unit is installed on the level.
- (4) Tighten the nut on both the top and the bottom to fix securely.

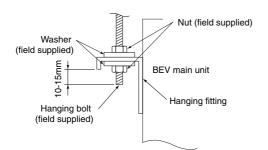
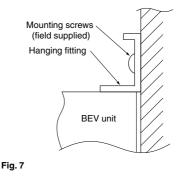



Fig. 6

《 When installing the unit on a wall 》

- (1) Mount the hanging fittings with the mounting screws (4 pieces).
- (2) Use M4 screws.

Refrigerant Piping work

 \langle This shows the piping method between the outdoor unit and the BEV unit and the indoor unit. Select the pipe size and refrigerant branch kit depending on how the piping will be laid. \rangle

< For refrigerant piping of outdoor units, see the installation manual attached to the outdoor unit.>
< Execute heat insulation work completely on both sides of the gas piping and the liquid piping. Oth-</pre>

erwise, a water leakage can result sometimes. \langle When using a heat pump, the temperature of the gas piping can reach up to approximately 120°C, so

use insulation which is sufficiently resistant. \rangle (Improve the insulation on the refrigerant piping depending on the installation environment.

If the insulation is not sufficient, condensation may form on the surface of the insulation. \rangle

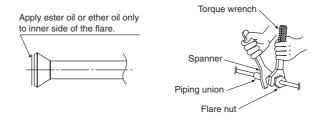

- -/!\ CAUTION
- Use a pipe cutter and flare suitable for the type of refrigerant.
- Apply ester oil or ether oil around the flare section before connecting.
- To prevent dust, moisuture or other foreign matter from infiltrating the tube, either pinch the end or cover it with tape.
- Do not allow anything other than the designated refrigerant to get mixed into the refrigerant circuit, such as air, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away.
- The outdoor unit is charged with refrigerant.
- For the refrigerant piping and branching, follow the "piping connection procedure".
- Be sure to use both a spanner and torque wrench together, as shown in the drawing, when connecting or disconnecting piping to/from the unit.
- Refer to the Table 1 for the dimensions of flare nut spaces.
- When connecting the flare nut, apply ether oil or ester oil only to inner side of the flare and initially tighten by hand 3 or 4 turns before tightening firmly.
- Refer to the Table 1 to determine the proper tightening torque.

Table 1

Pipe size	Tightening torque	Flare dimension A (mm)	Flare shape
φ9.5 (3/8")	32.7 – 39.9N⋅m (333 – 407 kgf⋅cm)	12.8 – 13.2	°Z (100 -
φ15.9 (5/8")	61.8 – 75.4N⋅m (630 – 770 kgf⋅cm)	19.3 – 19.7	

NOTE 🗐

The flare nuts used must be those included with the main body.

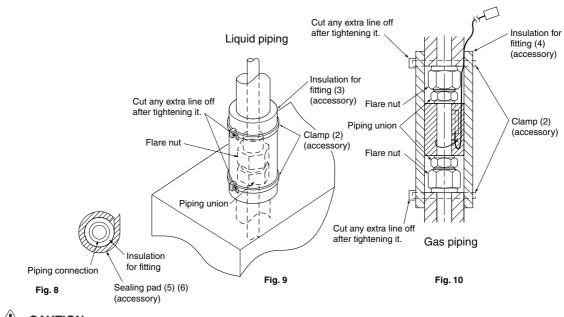
Over-tightening may damage the flare and cause a refrigerant leakage.

Not recommendable but in case of emergency.

You must use a torque wrench but if you are obliged to install the unit without a torque wrench, you may follow the installation method mentioned below.

When you keep on tightening the flare nut with a spanner, there is a point where the tightening torque suddenly increases. From that position, further tighten the flare nut the angle shown below:

Table 2

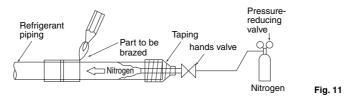

Pipe size	Further tightening angle	Recommended arm length of tool
φ 9.5 (3/8")	60 to 90 degrees	Approx. 200mm
φ15.9 (5/8")	30 to 60 degrees	Approx. 300mm

ED34-862

After the work is finished, make sure to check that there is no gas leak.

- Make absolutely sure to execute heat insulation works on the pipe-connecting section after checking gas leakage by thoroughly studying the following figure.
- Wrap the insulation for fitting (3) (4) around the insulation for the joints on the liquid piping side and the gas piping side. (Refer to Fig. 9, 10)
- When installing the unit onto the ceiling, make sure that the seam between the insulation for fitting (3) (4) faces up. (Fasten both ends with the clamps (2).) (Fig.9, 10 shows the case of installation on the wall.)
- Wrap the included sealing pad (5) (6) around the insulation for fitting (3) (4). (Refer to Fig. 8)

Be sure to insulate any field piping all the way to the piping connection inside the unit. Any exposed piping may cause condensation or burns if touched.

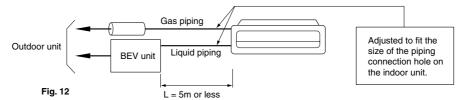


CAUTION TO BE TAKEN WHEN BRAZING REFRIGERANT PIPING

Do not use flux when brazing refrigerant piping. Therefore, use the phosphor copper brazing filter metal (BCuP) which does not require flux.

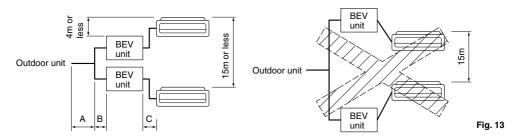
(Flux has extremely harmful infulence on refrigerant piping sysems. For instance, if the chlorine based flux is used, it will cause piping corrosion or, in particular, if the flux contains fluorine, it will damage the refrigerant oil.)

- Before brazing local refrigerant piping, nitrogen gas shall be blown through the piping to expel air from the piping. If your brazing is done without nitrogen gas blowing, a large amount of oxide film develops inside the piping, and could cause system malfunction.
- When brazing the refrigerant piping, only begin brazing after having carried out nitrogen substitution or while inserting nitrogen into the refrigerant piping. Once this is done, connect the indoor unit with a flared connection.
- Nitrogen should be set to 0.02 MPa (0.2 kg/cm²) with a pressure-reducing valve if brazing while inserting nitrogen into the piping.


Do not use anti-oxidants when brazing the piping joints. Residue can clog piping and break equipment.

Piping connection procedure

• Make sure the length of the refrigerant piping between the BEV unit and the indoor unit is no more than 5m and that the difference in height is at least 4m.

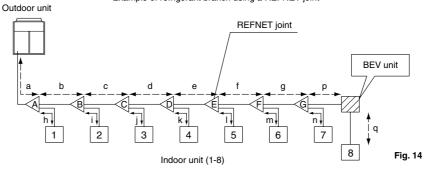

(1) Connection example for the indoor unit

• Only one indoor unit may be connected to each BEV unit.

(2) Height difference between indoor units

- Install the BEV unit in the 15m range of difference in height between the indoor units.
- Make sure the difference in height between the BEV unit and the indoor unit is no more than 4m.

(3) Allowable length after split (actual piping length)


B+C≤35m (length from the first branch piping to the indoor unit)

(4) Additional refrigerant amount

When measuring the amount of additional to refrigerant to fill, include the length of the liquid piping between the BEV unit and the indoor unit.

Additional filling amount = a+b+c+d+e+f+g+h+i+j+k+l+m+n+p+qRefer also to the installation manual included with the outdoor unit.

Example of refrigerant branch using a REFNET joint

Wiring Example and How to Set the Remote Controller

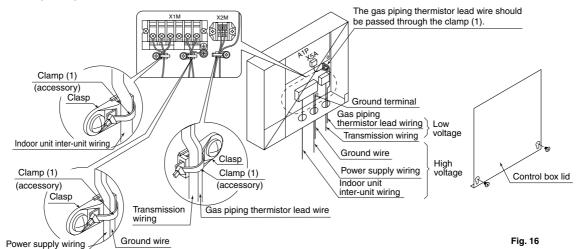
1 HOW TO CONNECT WIRINGS

- Connect the piping only after finishing the refrigerant piping work.
- Make sure all power supply is shut down to the unit first.
- As shown in the Fig. 16, loosen the two screws in the control box lid, remove it, and do the wiring work.
 Once all wiring is done, attach the control box lid and secure it with the screws.
- If you are using "4. DEF AULT SETTINGS," however, finish that and then attach the control box lid and secure it with the screws.

2 THE GAS PIPING THERMISTOR

- Connect to (X5A) on A1P.
- Bundle the gas piping thermistor lead wire and the branch wiring (transmission) using the included clamping material.
- Tension is not added to the gas pipe thermistor lead wire coming out of the unit.

• Power supply wiring • Ground wire


Connect the wiring to R (L) and S (N) on the power supply terminal block (X1M). Also, connect the ground wire to the ground terminal. Take the wiring and the ground wire into the unit through the wiring pass-through hole, and firmly secure them together using the included clamp (1).

Indoor unit inter-unit wiring

Connect the wires to 1, 2, and 3 on the power supply terminal block (X1M). Take the wires into the unit through the wiring pass-through hole, and firmly secure them using the included clamp (1).

• Transmission wiring

Connect the wires to F1 and F2 on the transmission terminal block (X2M). Take them into the unit through the wiring pass-through hole, and firmly secure the gas piping thermister lead wire and the transmission wiring using the included clamp (1).

[CAUTIONS]

• Do not under any circumstances connect the power supply wiring to the transmission terminal block (F1, F2), as this may cause damage to the entire system.

- When clamping wiring, use the included clamping material to prevent outside presure being exerted on the wiring connections and clamp firmly. When doing the wiring, make sure the wiring is neat and does not cause the control box lid to stick up, then close the cover firmly.
- When attaching the control box lid, make sure you do not pinch any wires.
- After all the wiring connections are done, fill in any gaps in the through holes with putty or insulation (procured locally) to prevent small animals and insects from entering the unit from outside. (If any do get in, they could cause short circuits in the control box.)
- Outside the machine, separate the weak wiring (gas piping thermistor lead wire, transmission wiring) and strong wiring (power supply wiring, inter-unit wiring, ground wire, and other power wiring) at least 50mm so that they do not pass through the same place together. Proximity may cause electrical interference, malfunctions, and breakage.

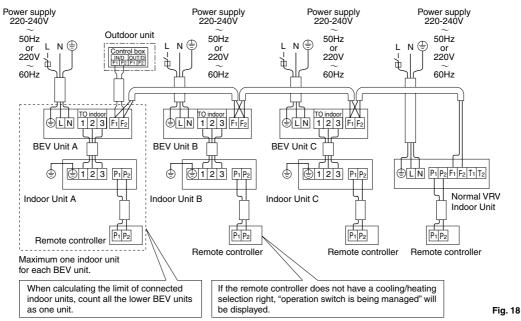
[PRECAUTIONS]

- 1. Use round crimp-style terminals for connecting wiring to the power supply terminal block.
 - If unavailable, observe the following points when wiring.
 - Do not connect wiring of different gauge to the same power supply terminal. (Looseness in the connection may cause overheating.)
 - Use the specified electric wiring. Connect the wiring securely to the terminal. Lock the wiring down without applying excessive force to the terminal. (Tightening torque: 131N·cm ±10 %)

2. Tightening torque for the terminal screws.

- Use the correct screwdriver for tightening the terminal screws. If the blade of screwdriver is too small, the head of the screw might be damaged, and the screw will not be properly tightened.
- If the terminal screws are tightened too hard, screws might be damaged.
- Refer to the table below for the tightening torque of the terminal screws.

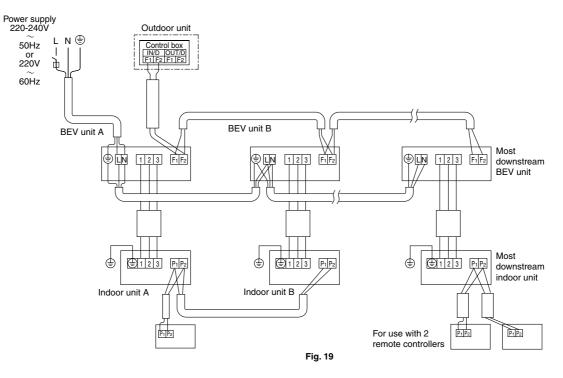

Terminal	Size	Tightening torque
Transmission terminal block (2P)	M3.5	0.79 – 0.97N⋅m
Power supply and inter-unit wiring terminal block (6P)	M4	1.18 – 1.44N⋅m
Ground terminal	M4	1.44 – 1.94N⋅m


- **3.** Do not connect wiring of different gauge to the same grounding terminal. Looseness in the connection may deteriorate protection.
- 4. Outside of the unit, keep the weak wiring (gas piping thermistor lead wire, transmission wiring) at least 50 mm away from strong wiring (power supply wiring, inter-unit wiring, ground wire, and other power wiring). The equipment may malfunction if subjected to electrical (external) noise.
- 5. For remote controller wiring, refer to the "INSTALLATION MANUAL OF REMOTE CONTROLLER" attached to the remote controller.
- 6. Never connect power supply wiring to the terminal block for remote controller wiring. A mistake of the sort could damage the entire system.
- 7. Use only specified wiring and tightly connect wiring to terminals. Be careful wiring do not place external stress on terminals. Keep wiring in neat order and so as not to obstruct other unit such as popping open the control box lid. Make sure the lid closes tight. Incomplete connections could result in overheating, and in worse case, electric shock or fire.

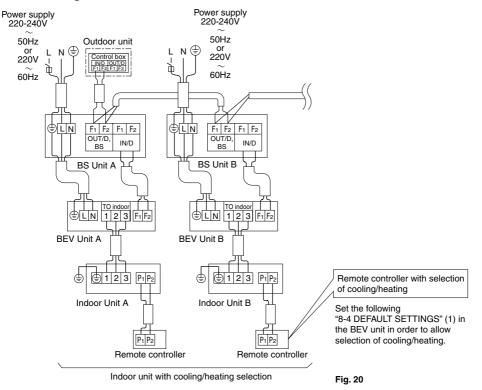
[WIRING EXAMPLE]

• Fit the power supply wiring of each unit with a switch and fuse as shown in the drawing.

COMPLETE SYSTEM EXAMPLE (3 systems)



1. When using 1 remote controller for 1 indoor unit. (Normal operation)


<Caution>

Group control is not possible between ceiling suspended cassette type units and normal VRV indoor units.

2. For group control or use with 2 remote controllers

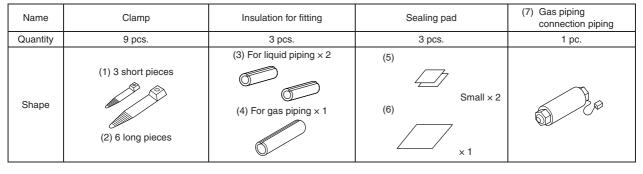
3. When including BS unit

4. DEFAULT SETTINGS

1. Once piping work is completed, conduct the following settings as needed.

 When connecting the BEV unit to the BS unit in the heating/cooling free system, turn the SS1 on the A1P to M (Main) for only one of the BEV units connected to the remote controller on which heating/cooling switching is made possible.
 (Refer to Fig. 21)

- (2) For BEV unit-only systems The Cool/Heat SELECTOR is needed. Befer to the installation manual included with
- Refer to the installation manual included with the Cool/Heat SELECTOR for details on how to set it. **2.** Once all piping work is done, screw the control box lid shut using the mounting screws.


11. Accessories

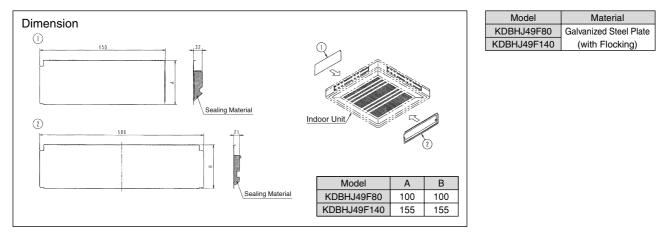
Standard Accessories (Indoor Unit)

Check the following accessories are included with the unit. 3) Washer for look-2) Metal Clamp 4) Clamp 5) Wahers fixing plate Name 1) Drain hose ing hanger Quantity 1 pc. 8 pcs. 6 pcs. 4 pcs. 1 pc. യ്യില \bigcirc Shape Insulation for 11) Paper pattern Name Sealing pad 10) Elbow 12) Blocking pad for installation fitting Quantity 1 each 2 pcs. 1 pc. 1 pc. 2 pcs. 6) For gas pipe Also used as packing 8) Large material \leq Shape 9) Small 7) For liquid pipe \leq 13) Retainer for 14) Retainer for 15) Center retainer Name for blocking pad blocking pad blocking pad Quantity 2 pcs. 2 pcs. 2 pcs. (Other) Operation manual Shape Installation manual

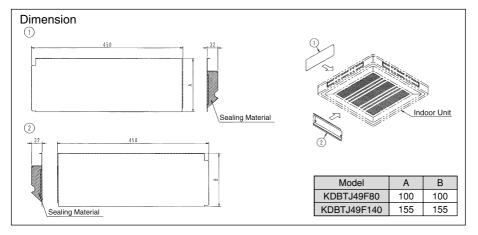
Standard Accessories (Connecting Unit)

Check if the following accessories are included with your unit.

Name	(8) Installation manual	(9) Nameplate
Quantity	1 pc.	1 pc.
Shape		

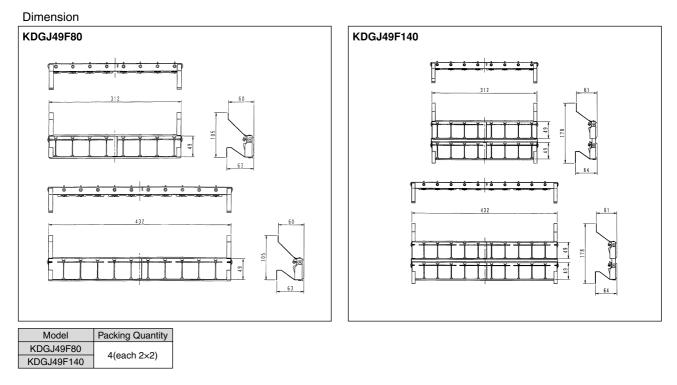

Optional Accessories (For Indoor Unit)

No.	Туре	FXUQ71MAV1	FXUQ100MAV1	FXUQ125MAV1
INO.	Item	FAUG/ IMAVI	FAUGTOUNAVI	FX0Q125MAV1
1	Sealing Member of Air Discharge Outlet	KDBHJ49F80	KDBHJ	49F140
2	Decoration Panel for Air Discharge	KDBTJ49F80	KDBTJ	49F140
3	Vertical Flap Kit	KDGJ49F80	KDGJ4	I9F140
4	Replacement Long Life Filter	KAFJ495F140		
5	L Connection Piping Kit		KHFP49M140	

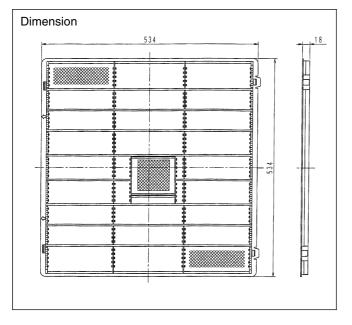

C: 3D045452A

Optional Accessories (For Controls) Refer to P.645

Sealing Member of Air Discharge Outlet – KDBHJ49F80 · 140



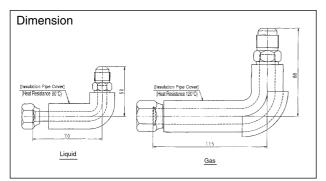
Decoration Panel for Air Discharge – KDBTJ49F80 · 140



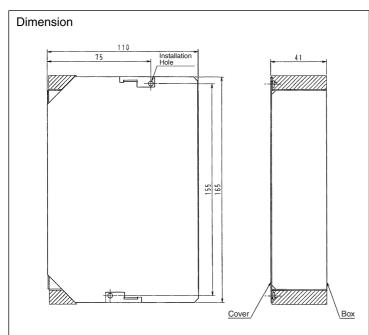
Model	Material
KDBTJ49F80	Galvanized Steel Plate
KDBTJ49F140	(with Flocking)

Vertical Flap Kit - KDGJ49F80 · 140

Replacement Long Life Filter – KAFJ495F140



Model Item	KAFJ495F140
Initial Pressure Loss (Pa)	Less Than 7
Final Pressure Loss (Pa)	Less Than 49
Average Efficiency (%)	50 (Gravity Method)
Life Time (h)	2,500 (Dust Particle Concentration at 0.15mg/m ³)
Filter Pass Air Flow Rate	18.5m³/min
Materials	Mildew Proof Resin Net
Number Required Per Model	1
Weight (kg)	0.4


Model

KHFP49M140

L Connection Piping Kit – KHFP49M140

Installation Box for Adaptor PC board – KRP1B97

Item
Adaptor for Wiring

Liquid Side

\$ 9.5

Gas Side

¢ 15.9

2

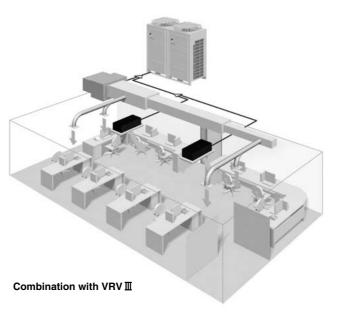
Part 3 Outdoor Air Processing Unit

FXMQ-MF		
Outdoor Air Processing	Unit	417

FXMQ-MF Outdoor Air Processing Unit

1.	Features	.418				
2.	Specifications	.420				
	Dimensions					
	3.1 Indoor Units					
	3.2 Dimensions with Option	.423				
4.	Piping Diagrams	.425				
5.	Wiring Diagrams	.426				
6.	Capacity Tables	.427				
7.	Operation Limit	.430				
	Electric Characteristics					
9.	Sound Levels	.433				
10	10.Fan Performances					
11	Installation	.436				
12	Accessories	.449				

1. Features


Outdoor-Air Processing Unit

Combine fresh air treatment and air conditioning, supplied from a single system.

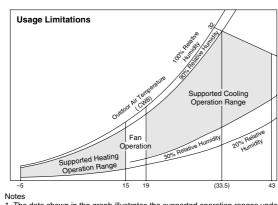
Fresh air treatment and air conditioning can be achieved with a single system by using heat pump technology—without the usual troublesome air supply and air discharge balance design. Fan coil units for air conditioning and an outdoor-air processing unit can be connected to the same refrigerant line. The results are enhanced design flexibility and a significant reduction in total system costs. 50 Hz only For outdoor units of 8 HP and above

Model Names FXMQ125MFV1, FXMQ200MFV1, FXMQ250MFV1

Air conditioning and outdoor air processing can be accomplished using a single system.

outdoor units.

• Outdoor-air processing units can be used without indoor units.


- Outdoor-air processing units can be used without indoor unit
 Connectable systems (VD)/ # and # systems
- Connectable outdoor units: VRV ${\rm I\!I}$ and ${\rm I\!I}$ systems.

- •The unit introduces outdoor air and adjusts the outdoor air temperature via fixed discharge temperature control, thereby reducing the air conditioning load.
- * The system can operate with outdoor-air temperatures ranging from -5 to 43°C. Heating performance is somewhat adversely affected when the outdoor-air temperature is 0°C or below.
- * When shipped from the factory, the thermostat is set at 18°C for cooling and 25°C for heating. The set temperature can be varied within the range of 13-25°C during cooling operation, and 18-30°C during heating operation, in the local setting mode using the wired remote controller. The temperature, however, is not displayed on the remote controller.
- * While in machine protection mode and depending on outdoor air conditions, discharge air temperature may not be at the set temperature.
- * The fan stops when operating in defrosting, oil returning and hot start operations. The fan also may stop due to mechanical protection control
- · Ceiling mounted duct units with three differing capacities are available. These can be connected to VRV series outdoor units to meet a variety of different requirements.

Airflow rate

FXMQ125MFV1	1,080 m³/h
FXMQ200MFV1	1,680 m³/h
FXMQ250MFV1	2,100 m³/h

- Optional equipment includes long-life filters.
- Compatible with outdoor temperatures from -5°C to 43°C.

- 1. The data shown in the graph illustrates the supported operation ranges under the following conditions Indoor and Outdoor Unit

 - Effective piping length: 7.5 m Height differential: 0 m
- 2. The discharge temperature can be set using the remote controller. However, the actual temperature may not match the temperature setting under some circumstances due to the outdoor-air processing load or mechanical protection
- 3. The system will not operate in fan mode when the outdoor air temperature is 5°C or below

- High-performance filters with dust collection efficiencies (JIS calorimetry) of 90% and 65% are also available as options.
- As with the VRVII system, a variety of control systems can be deployed, including remote control from distances of up to 500 m.
- * Group control is not possible between this unit and standard type indoor units. Connect remote controllers to each unit

- BRC1C62 Wired remote controller (option)
- The "self-diagnosis function" indicates the occurrence and nature of abnormalities in the system by displaying codes on the remote controller.
- A central control system compatible with the VRVII system can be installed.
- * It is not possible to change the discharge air temperature settings from the central control system.

as central control will not be possible.

* Do not associate this equipment into zones with standard indoor units,

DCS302CA61 Central remote controller (option)

• As with the VRVII system, the equipment employs the "super wiring system" so that the wiring linking indoor and outdoor units can also be utilised for central control.

Notes

- * Linked control of the product and the HRV is not supported.
- * This equipment is intended for the treatment of outdoor air only. It is not to be used for maintaining indoor air temperature. Install and use with standard indoor units. Be sure to position the air discharge openings of the product in positions where the airflow will not blow on people directly. When outdoor-air processing is in excess, the unit switches to thermo-off mode, and outdoor air flows into the room directly
- * For outdoor ducts, be sure to provide heat insulation to prevent condensation.
- * Group control of the product and the standard indoor units is not supported. A separate remote controller should be connected to each individual unit.
- * The system will not operate in fan mode when the outdoor air temperature is 5°C or below.
- * If the product is allowed to operate 24 hours a day, maintenance (part replacement, etc.) must be performed periodically.
- * Temperature setting and Power Proportional Distribution (PPD) are not possible even if the intelligent Touch Controller or the intelligent Manager III is installed.
- * The remote controller wired to the outdoor-air processing unit must not be set as the master remote controller. Otherwise, when set to "Auto," the operation mode will switch according to the outdoor air conditions, regardless of the indoor temperature.

2. Specifications

Model			FXMQ125MFV1	FXMQ200MFV1	FXMQ250MFV1		
★1 Cooling Capacity kW			12,000	19,300	24,100		
			47,800 76,400		95,500		
			14.0 22.4		28.0		
Casing			Galvanized Steel Plate Galvanized Steel Plate		Galvanized Steel Plate		
Dimensions: (H×W×D)	mm	470×744×1,100	470×1,380×1,100	470×1,380×1,100		
Coil (Cross Fin Coil)	Rows×Stages×Fin Pitch	mm	3×26×2.0 3×26×2.0		3×26×2.0		
	Face Area	m²	0.28	0.65	0.65		
	Model		D13/4G2DA1	D13/4G2DA1	D13/4G2DA1		
	Туре		Sirocco Fan	Sirocco Fan	Sirocco Fan		
	Motor Output × Number of Units	W	380×1	380×1	380×1		
Fan		m³/min	18	28	35		
	Air Flow Rate (H/L)	cfm	635	988	1,236		
	External Static Pressure ★4	Pa	185	225	205		
	Drive		Direct Drive	Direct Drive	Direct Drive		
Temperature Control			Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating	Microprocessor Thermostat for Cooling and Heating		
Sound Absorbing Thermal Insulation Material			Glass Fiber	Glass Fiber	Glass Fiber		
Air Filter			★2	★2	★2		
	Liquid Pipes		9.5mm (Flare Connection)	9.5mm (Flare Connection)	9.5mm (Flare Connection)		
Piping Connections	Gas Pipes		15.9mm (Flare Connection)	19.1mm (Brazing Connection)	22.2mm (Brazing Connection)		
	Drain Pipe (mm)		PS1B (female thread)	PS1B (female thread)	PS1B (female thread)		
Machine Weight (Mass) kg			86	123			
Sound Level (220V) ★3,★4 dBA			42 47		47		
Safety Device	S		Fuse Thermal Protector for Fan Motor	Fuse Thermal Protector for Fan Motor	Fuse Thermal Protector for Fan Motor		
Refrigerant Co	ontrol		Electronic Expansion Valve Electronic Expansion Valve Electron		Electronic Expansion Valve		
Standard Acce	essories		Operation Manual, Installation Manual, Sealing Pads, Screws, Clamps.	Operation Manual, Installation Manual, Sealing Pads, Connection Pipes, Screws, Clamps.	Operation Manual, Installation Manual, Sealing Pads, Connection Pipes, Screws, Clamps.		
Connectable (Outdoor Units ★5,★6		RXQ8~54PAY1	KQ8~54PAY1 RXQ8~54PAY1 RX			
Drawing No.		-	C : 3D046147A C : 3D046147A C : 3D046				

Notes:

★1. Specifications are based on the following conditions:

· Cooling: Outdoor temp. of 33°CDB, 28°CWB (68% RH). and discharge temp. of 18°CDB · Equivalent reference piping length: 7.5m (0m Horizontal)

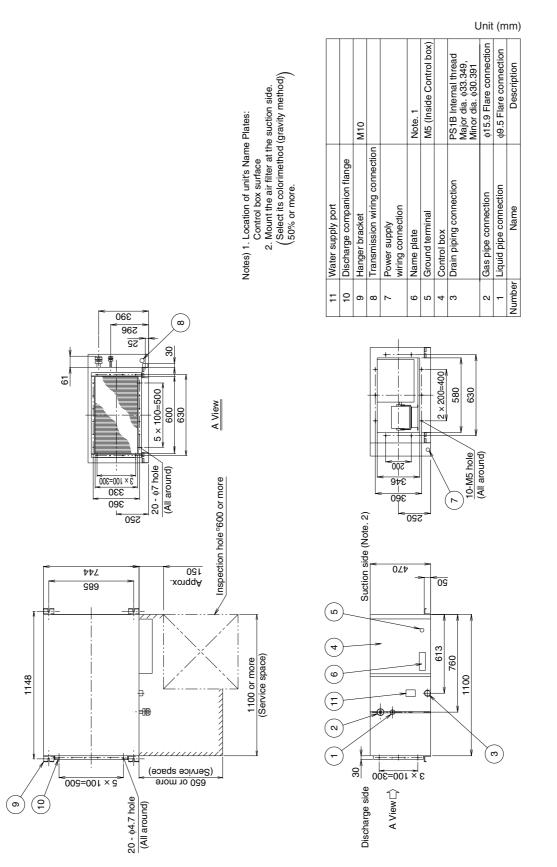
· At 220V

*2. Air intake filter is not supplied, so be sure to install the optional long-life filter or high-efficiency filter.

Please mount it in the duct system of the suction side. Select its colorimetric method (gravity method) 50% or more.

*3. Anechoic chamber conversion value, measured at a point 1.5m downward from the unit center.

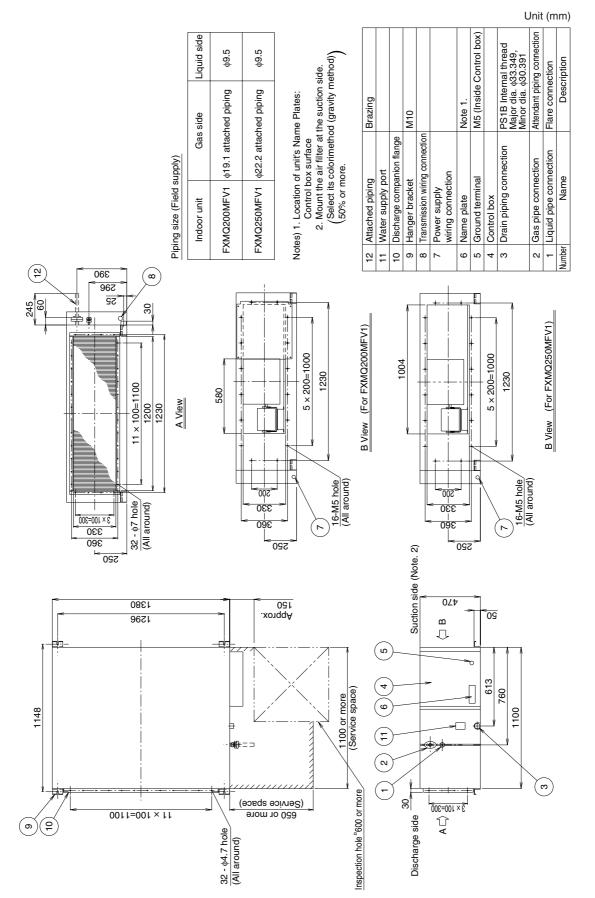
These values (measured at 220V) are normally somewhat higher during actual operation as a result of ambient conditions. *4. Values measured at 220 V.


*4. Values measured at 220 V.
*5. Within the range that the total capacity of indoor units is 50 to 100%, it is possible to connect to the outdoor unit.
*6. It is not possible to connect to the 5 HP outdoor unit. Not available for Heat Recovery type and VRV III-S series.
• This equipment cannot be incorporated into the remote group control of the VRV III system.

Conversion Formulae kcal/h=kW×860 Btu/h=kW×3412 cfm=m³/min×35.3

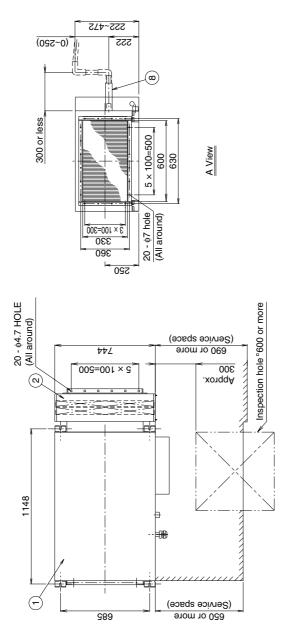
3. Dimensions

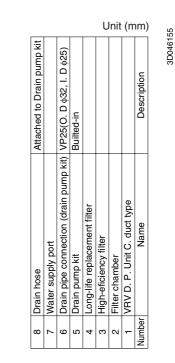
3.1 Indoor Units

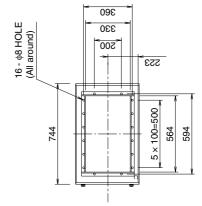

FXMQ125MFV1

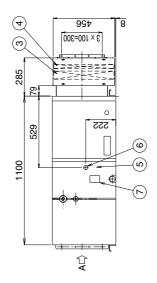
3D045129A

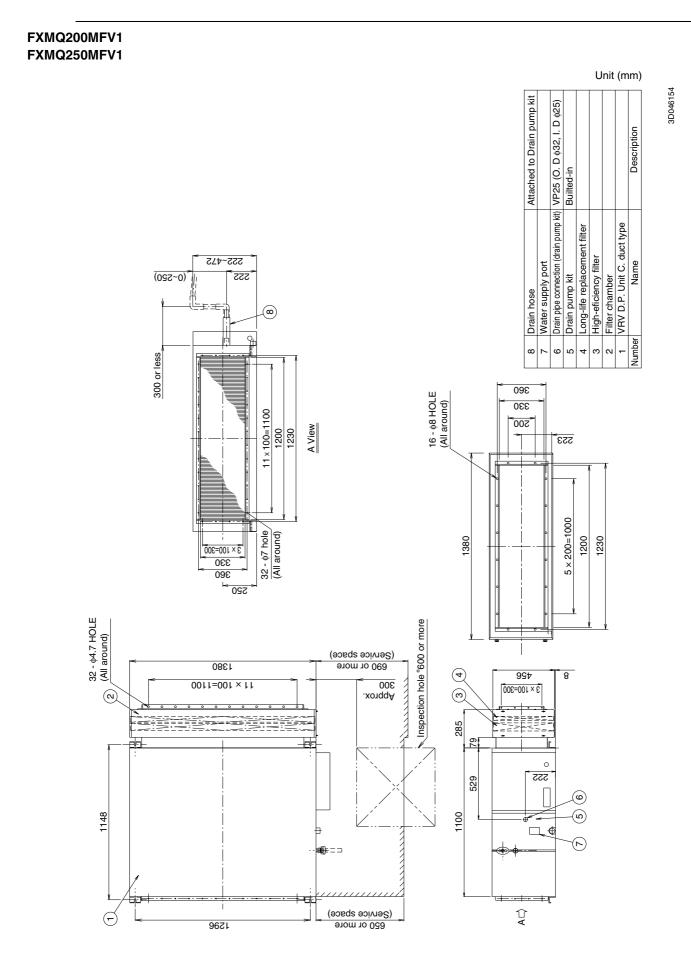
C: 3D045128A

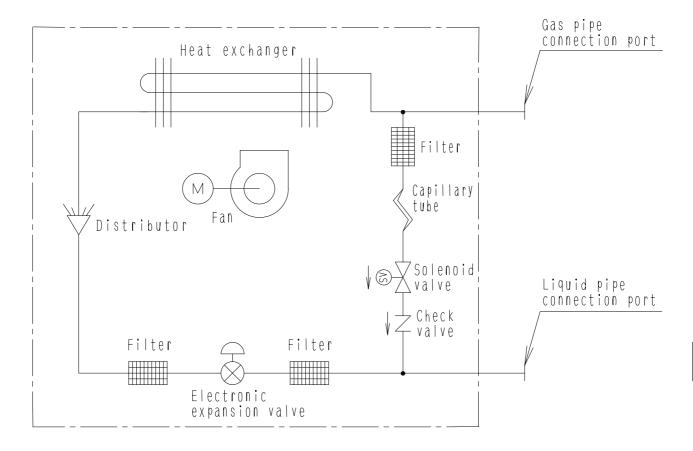

FXMQ200MFV1 FXMQ250MFV1

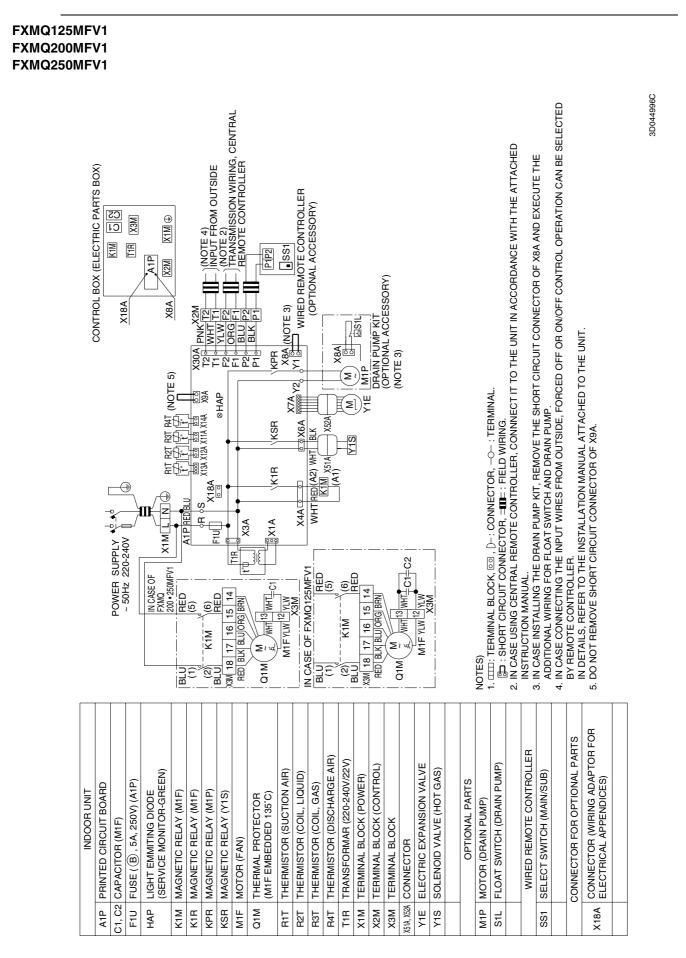



Dimensions


3.2 Dimensions with Option


FXMQ125MFV1




4. Piping Diagrams

13

4D018650B

5. Wiring Diagrams

6. Capacity Tables

FXMQ125MFV1

Cooling

Outdoor temperature	°C WB								
	15.0	17.0	20.0	23.0	26.0	28.0	30.0	32.0	
°C DB	Capacity								
	kW	kW	kW	kW	kW	kW	kW	kW	
20.0	3.6	3.8	-	-	-	-	-	-	
22.0	3.6	3.8	5.1	-	-	-	-	-	
25.0	3.6	3.8	5.1	6.8	-	-	-	-	
27.0	-	3.8	5.1	6.7	-	-	-	-	
29.0	-	-	5.1	6.7	11.0	-	-	-	
31.0	-	-	5.0	6.6	10.9	14.1	-	-	
33.0	-	-	5.0	6.5	10.8	14.0	16.4	-	
35.0	-	-	-	6.4	10.7	13.9	16.3	17.4	

Notes

1. The above capacities are based on the following conditions:

Air discharge temperature setting: 18°C for cooling operation (Factory setting).

Equivalent piping length: 7.5m

Level difference: 0m

2. The above capacities values are general average values which can be generated by each compressor operation level.

3. A value enclosed in _____ means rated capacity.

4D046308

3

FXMQ200MFV1

Cooling

Outdoor temperature				°C	WB			
	15.0	17.0	20.0	23.0	26.0	28.0	30.0	32.0
°C DB				Cap	acity			
	kW	kW	kW	kW	kW	kW	kW	kW
20.0	5.7	6.1	-	-	-	-	-	-
22.0	5.7	6.1	8.2	-	-	-	-	-
25.0	5.7	6.1	8.2	10.8	-	-	-	-
27.0	-	6.1	8.1	10.7	-	-	-	-
29.0	-	-	8.1	10.6	17.6	-	-	-
31.0	-	-	8.0	10.5	17.4	22.6	-	-
33.0	-	-	8.0	10.3	17.3	22.4	26.2	-
35.0	-	-	-	10.2	17.1	22.2	26.1	27.8

Notes

1. The above capacities are based on the following conditions:

Air discharge temperature setting: 18°C for cooling operation (Factory setting).

Equivalent piping length: 7.5m

Level difference: 0m

2. The above capacities values are general average values which can be generated by each compressor operation level.

3. A value enclosed in means rated capacity.

4D046309

FXMQ250MFV1

Cooling

Outdoor temperature				°C	WB			
	15.0	17.0	20.0	23.0	26.0	28.0	30.0	32.0
°C DB				Cap	acity			
	kW	kW	kW	kW	kW	kW	kW	kW
20.0	7.1	7.6	-	-	-	-	-	-
22.0	7.1	7.6	10.2	-	-	-	-	-
25.0	7.1	7.6	10.2	13.5	-	-	-	-
27.0	-	7.6	10.1	13.4	-	-	-	-
29.0	-	-	10.1	13.3	22.0	-	-	-
31.0	-	-	10.0	13.1	21.8	28.2	-	-
33.0	-	-	10.0	12.9	21.6	28.0	32.8	-
35.0	-	-	-	12.8	21.4	27.8	32.6	34.8

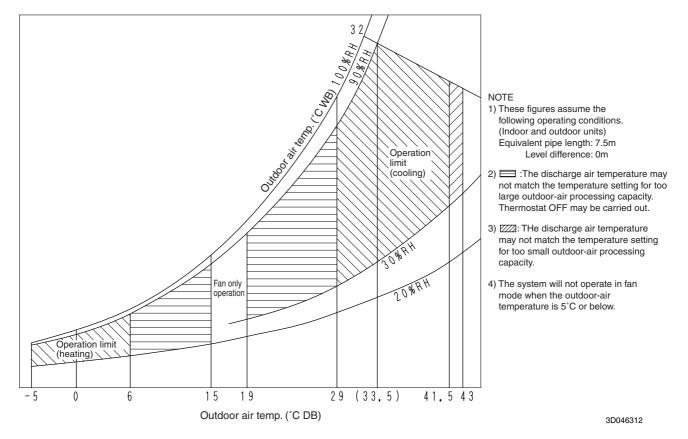
Notes

1. The above capacities are based on the following conditions:

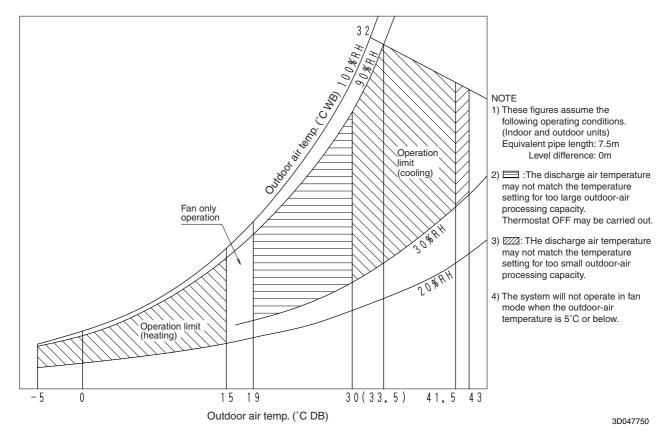
Air discharge temperature setting: 18°C for cooling operation (Factory setting).

Equivalent piping length: 7.5m

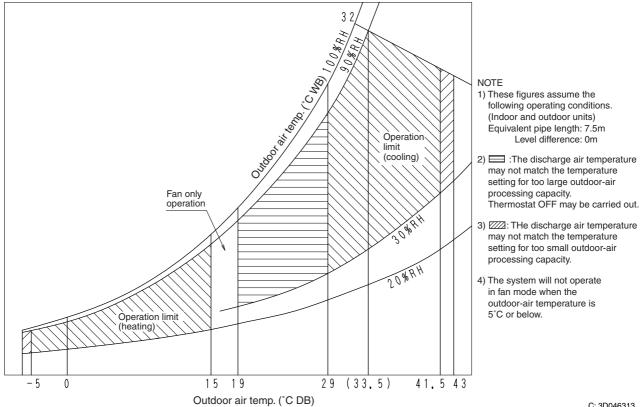
Level difference: 0m


2. The above capacities values are general average values which can be generated by each compressor operation level.

3. A value enclosed in _____ means rated capacity.


4D046310

7. Operation Limit


FXMQ125MFV1

FXMQ200MFV1

FXMQ250MFV1

C: 3D046313

8. Electric Characteristics

Units					Power	supply	IFM		Inpu	t(W)	
Model	Туре	Ηz	Volts	Voltage	range	MCA	MFA	ΚW	FLA	Cooling	Heating
FXMQ125MFV1				MAV	264	1.9	15	0.380	1.5	359	359
FXMQ200MFV1	V 1	50	220-240	MAX. Min.	264 198	3.3	15	0.380	2.6	548	548
FXMQ250MFV1				IVI I I .	100	3.8	15	0.380	3.0	638	638

Symbols:

MCA	:	Min. Circuit Amps (A)
MFA	:	Max. Fuse Amps (See note 5)
ΚW	:	Fan Motor Rated Output(KW)
FLA	:	Full Load Amps(A)
IFM	:	Indoor Fan Motor

Note:

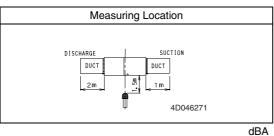
1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits,

- 2. Maximum allowable voltage unbalance between phases is 2%.
- 3. MCA/MFA

MCA = 1.25 X FLA MFA \leq 4 X FLA (Next lower standard fuse rating. Min. 15A)

- 4. Select wire size based on the MCA.
- 5. Instead of fuse, use Circuit Breaker.


4D046146A

9. Sound Levels

Model

FXMQ125MFV1

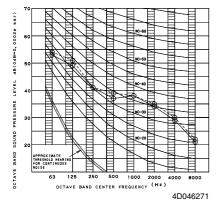
Overall

220V

42

Notes:

- 1. The operating conditions are assumed to be standard (JIS conditions)
- 2. These operating values were obtained in a dead room (conversion values).

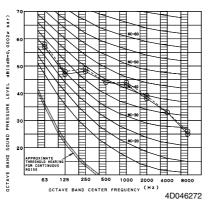

Sound level will vary depending on a range of factors such as the construction (acoustic absorption coefficient) of the particular room in which the equipments installed.

FXMQ200MFV1	47	48
FXMQ250MFV1	47	48

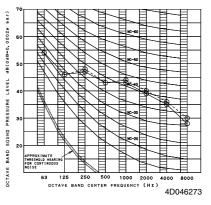
Octave Band Level

0---- 240V

FXMQ125MFV1

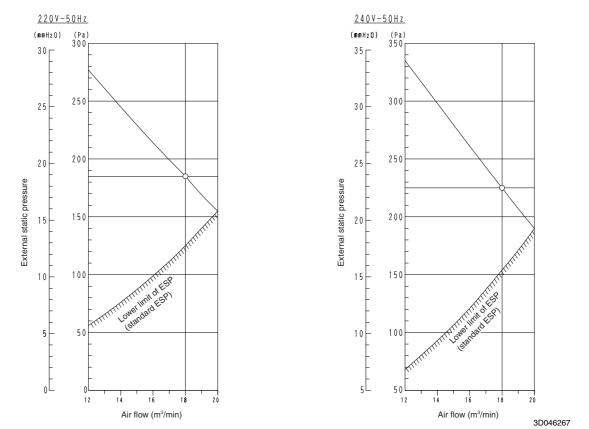


FXMQ200MFV1

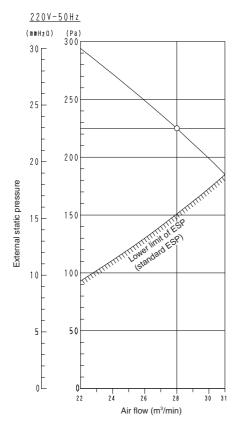

50Hz

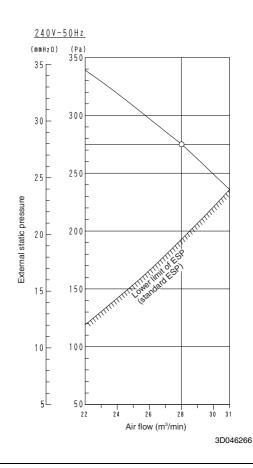
240V

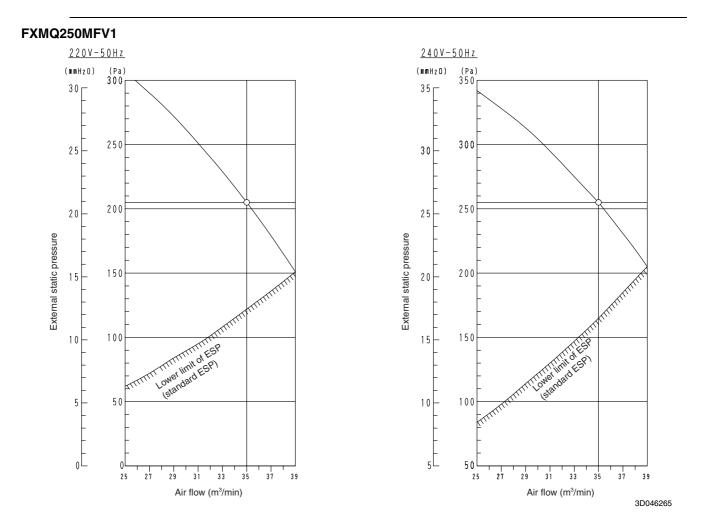
43

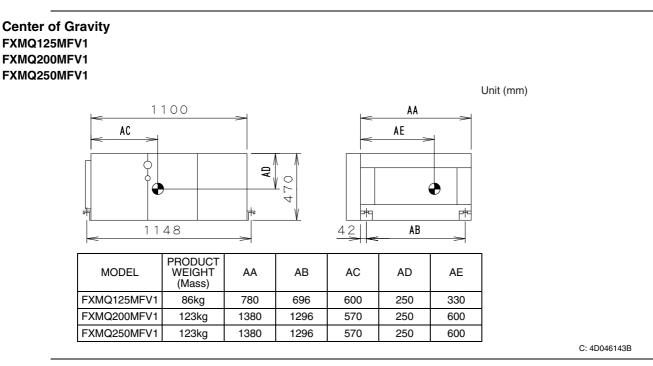


FXMQ250MFV1




10. Fan Performances


FXMQ125MFV1


FXMQ200MFV1

11.Installation

Service Space

Selecting Installation Site

When it may exceed 30°C and RH80% in the ceiling or fresh air is inducted into the ceiling, an additional insulation (Thickness 10mm or more of glass wool or polyethylene form) is required.

- 1. Select an installation site where the following conditions are fulfilled and that meets with your customer's approval.
- Where is resistible against weight of the unit.
- In the upper space (including the back of the ceiling) of the unit where there is no possible dripping of water from the refrigerant pipe, drain pipe, water pipe, etc.
- Where optimum air distribution can be ensured.
- Where nothing blocks the air passage.
- Where condensate can be properly drained.
- If supporting structural members are not strong enough to take the unit's weight, the unit could fall out of place and cause serious injury.
- Where the false ceiling is not noticeably on an incline.
- Where there is no risk of combustible gas leakage.
- Where sufficient clearance for maintenance and service can be ensured. (Refer to Fig. 1)
- Where the total piping length involving indoor unit and outdoor unit is below the allowable piping length. (See the installation manual included with the outdoor unit for "Refrigerant Piping Work")
- Locations where a maintenance hole can be installed. (Refer to Fig. 2)

Install the indoor and outdoor units, power supply wires and transmission wires at least 1 meter away from televisions or radios in order to prevent image interference or noise.
 (Depending on the radio waves, a distance of 1 meter may not be sufficient enough to eliminate the noise.)

FXMQ-MF

2. Use suspension bolts for installation. Check whether the ceiling is strong enough to support the weight of the unit or not. If there is a risk, reinforce the ceiling before installing the unit.

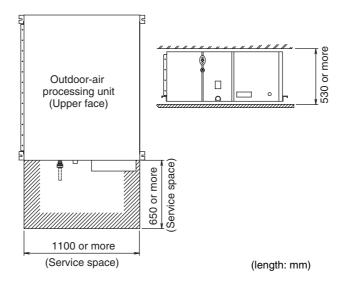
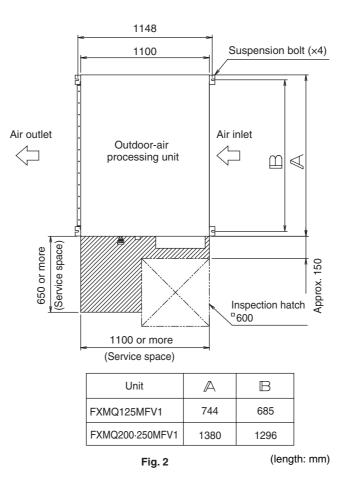
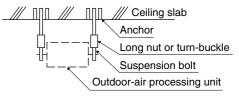



Fig. 1

Bolt Pitch

Preparations Before Installation

1. Relative positions of the unit and suspension bolt. (Refer to Fig. 2).



- 2. Install a canvas duct to the air outlet and air inlet so that vibration from the unit isn't transmitted to the duct or ceiling. You should also apply acoustic (insulation material) to the inside of the duct, and vibration insulation rubber to the suspension bolts.
- 3. Open the installation hole. (Pre-set ceilings)
 - Once the installation hole is opened in the ceiling where the unit is to be installed, pass refrigerant and drain pipe and the power supply, transmission, and remote controller wire to the unit's pipe and wire connection ports.
 - After opening the ceiling hole, it might be necessary to reinforce the ceiling frame to prevent shaking or to maintain the levelness of the ceiling.
 - Consult an architect or carpenter for details.

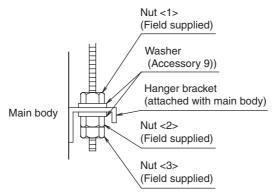
4. Install suspension bolts.

- (Use bolts of 10 mm diameter.)
- Install the unit where supporting structures are strong enough to bear the unit's weight. Use embedded inserts or anchor bolts with new buildings and hole-in-anchors with old buildings. Adjust the distance to the ceiling beforehand.

< Installation example >

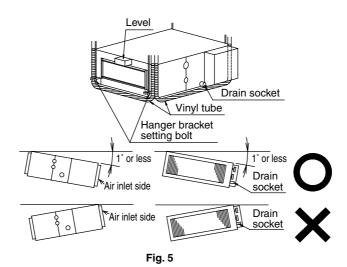
Note) All the above parts are field supplied.

Fig. 3

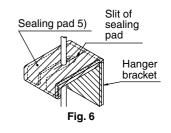

Installation

Unit Installation

Installing optional accessories before installing the unit is easier. See the installation manuals included with the optional accessories.


As for the parts to be used for installation work, be sure to use the provided accessories and specified parts designated by our company.

- 1. Temporarily install the unit.
- Mount the hanger brackets to suspension bolts. Secure the hanger brackets on the top and the bottom with nuts <1>~<3> (M10, field supplied) and washers (M10, accessory 9)).



- Adjust the height of the unit with the nut <2>. (Refer to Fig. 4)
- 3. Make sure the unit is level.
- Use a level or a vinyl tube filled with water to make sure that the unit is level and that the tilt (downward slope) to the drain socket and air inlet side is within 1°.
 (Refer to Fig. 5)

- Tighten both upper and lower nuts <1>, <3>.
 (Refer to Fig. 4)
- 5. Insulate the four hanger brackets with the sealing pad. (accessory 5) Insulate the hanger brackets so that the surface and edges of the hanger brackets cannot be seen. (Refer to Fig. 6)

$-/! \setminus$ Caution ——

Setting the unit at an angle opposite to the drain socket or air inlet side might cause leaks.

<For refrigerant piping between outdoor unit and this unit, see the installation manual attached to the outdoor unit. (Refer to Table 1)>

<Execute heat insulation work completely on both sides of the gas pipe and the liquid pipe. Otherwise, a water leakage can result sometimes.>

<When using a heat pump, the temperature of the gas pipe can reach up to approximately 120°C, so use insulation which is sufficiently resistant.>

<Improve the insulation on the refrigerant piping depending on the installation environment. If the insulation is not sufficient, condensate may form on the surface of the insulation.>

<Before refrigerant piping work, check which type of refrigerant is used. Proper operation is not possible if the types of refrigerant are not the same.>

- Use a pipe cutter and flare suitable for the type of refrigerant.
- Apply ester oil or ether oil around the flare portions before connecting. (Refer to Fig. 7)
- To prevent dust, moisture or other foreign matter from infiltrating the tube, either pinch the end or cover it with tape.
- Do not allow anything other than the designated refrigerant to get mixed into the refrigerant circuit, such as air, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away.
- The outdoor unit is charged with refrigerant.
- Be sure to use both a spanner and torque wrench together, as shown in the drawing, when connecting or disconnecting pipes to/from the unit. (Refer to Fig. 8)
- Refer to Table 2 for the dimensions of flare nut spaces.
- When connecting the flare nut, apply ether oil or ester oil only to inner side of the flare, rotate three or four times first, then screw in. (Refer to Fig. 7)
- Refer to Table 2 for tightening torque.

Table 1						
Unit to be connected	Gas pipe diameter	Liquid pipe diameter				
FXMQ125MFV1	15.9	¢9.5				
FXMQ200MFV1	19.1 Use attached pipe.	¢9.5				
FXMQ250MFV1	22.2 Use attached pipe.	φ 9 .5				

		Table 2	
Pipe size	Tightening torque	Flare dimen- sions A (mm)	Flare shape
φ 9.5 (3/8")	32.7 – 39.9N⋅m (333 – 407 kgf⋅cm)	12.8 – 13.2	0,2 ∓.06
φ 15.9 (5/8")	61.8 – 75.4N⋅m (630 – 770 kgf⋅cm)	19.3 – 19.7	

Note:

Use the flare nuts attached with the unit.

Over-tightening may damage the flare and cause a refrigerant leakage.

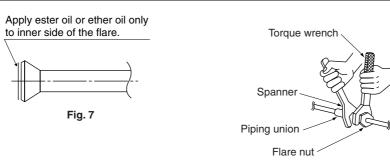


Fig. 8

ED34-862

Not recommendable but in case of emergency

You must use a torque wrench but if you are obliged to install the unit without a torque wrench, you may follow the installation method mentioned below.

After the work is finished, make sure to check that there is no gas leak.

When you keep on tightening the flare nut with a spanner,

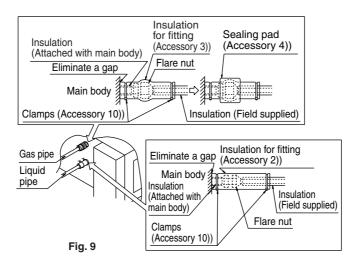
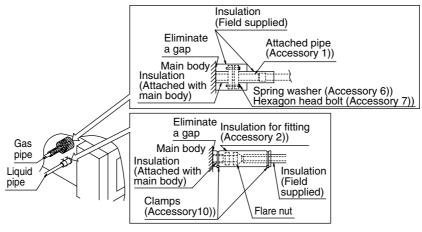

there is a point where the tightening torque suddenly increases. From that position, further tighten the flare nut the angle shown below:

Table 3							
Pipe size	Further tightening angle	Recommended arm length of tool					
9.5 (3/8")	60 to 90 degrees	Approx. 200mm					
15.9 (5/8")	30 to 60 degrees	Approx. 300mm					

After checking the pipe-connection for gas leakage, be sure to insulate the liquid and gas pipe, referring to Fig.9, 10 and the following points.


FXMQ125MFV1

- 1. Insulate the liquid and gas pipes using the insulation for fitting (Accessory 2), 3)) (Tighten both edges with clamping material.)
- 2. Make sure the insulation for fitting (Accessory 3)) on the gas pipe has its seams facing up.
- 3. For the gas pipe, wrap the sealing pad (Accessory 4)) around the insulation for fitting (Accessory 3)) (flare nut part).

FXMQ200 · 250MFV1

- 1. Insulate the liquid pipe using the insulation for fitting (Accessory 2)). (Tighten both edges with clamping material.)
- 2. Use the attached pipe (Accessory 1)) for connecting the gas pipes and make sure to insulate the gas pipes (using field supplied insulation) all the way to the base where they connect to the unit.
- The turning torque of the hexagon head bolts (Accessory 7)) to connect the attached pipe (Accessory 1)) to the unit is 21.5 – 28.9 N/m.

$-\underline{\mathbb{N}}$ CAUTION

Be sure to insulate any field pipe all the way to the pipe connection inside the unit. Any exposed pipe may cause condensate or burns if touched.

$-\underline{(!)}$ Caution —

CAUTION TO BE TAKEN WHEN BRAZING REFRIGERANT PIPING

Do not use flux when brazing refrigerant piping. Therefore, use the phosphor copper brazing filler metal (BCuP-2:JIS Z 3264/B-Cu93P-710/795: ISO 3677) which does not require flux.

(Flux has extremely harmful influence on refrigerant piping systems. For instance, if the chlorine based flux is used, it will cause pipe corrosion or, in particular, if the flux contains fluorine, it will damage the refrigerant oil.)

- Before brazing local refrigerant piping, nitrogen gas shall be blown through the piping to expel air from the piping. If your brazing is done without nitrogen gas blowing, a large amount of oxide film develops inside the piping, and could cause system malfunction.
- When brazing the refrigerant piping, only begin brazing after having carried out nitrogen substitution or while inserting nitrogen into the refrigerant piping. Once this is done, connect the unit with a flared or a flanged connection.
- Nitrogen should be set to 0.02 MPa (0.2 kg/cm²) with a pressure-reducing valve if brazing while inserting nitrogen into the piping.

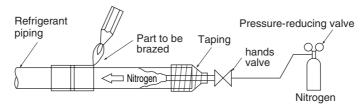
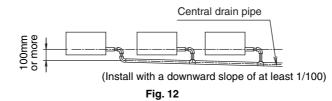
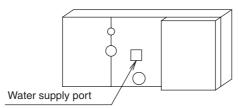


Fig. 11


Drain Piping Work

<<Rig the drain pipe as shown below and take measures against condensate. Improperly rigged piping could lead to leaks and eventually wet furniture and belongings.>>

- 1. Carry out the drain piping.
- The drain pipe should be short with a downward slope lower than 1/100 and should prevent air pockets from forming.
- The diameter of the pipe is the same as that of the connecting pipe (PS1B), and should be kept equal to or greater than that of the connecting pipe.


Note:

If converging multiple drain pipes, install according to the procedure shown below. (Select an appropriate central drain pipe thickness for the units they will be connected to.)

- 2. After piping work is finished, check drainage flow smoothly.
- Open the water supply port, add approximately 1 litter of water slowly into the drain pan and check drainage flow. (Refer to Fig. 13)

Pools of drainage can cause the drain pipes to clog.

Do not connect the drain pipe directly to sewage pipes that smell of ammonia. The ammonia in the sewage might enter the unit through the drain pipes and corrode the heat exchanger.

Electric Wiring Work

GENERAL INSTRUCTIONS

- All field supplied parts and materials and electric works must conform to local codes.
- Use copper wire only.
- For electric wiring work, refer to also "WIRING DIAGRAM" label attached to the electric parts box lid.
- For remote controller wiring details, refer to the installation manual attached to the remote controller.
- All wiring must be performed by an authorized electrician.
- This system consists of multiple indoor units. Mark each indoor unit as unit A, unit B..., and be sure the terminal board wiring to the outdoor unit is properly matched. If wiring and piping between the outdoor unit and the indoor unit are mismatched, the system may cause a malfunction.
- A circuit breaker capable of shutting down power supply to the entire system must be installed.
- Refer to the installation manual attached to the outdoor unit for the size of power supply wire connected to the outdoor unit, the capacity of the circuit breaker and switch, and wire instructions.
- Be sure to ground the unit.
- Do not connect the ground wire to gas and water pipes, lightning rods, or telephone ground wires.
 - Gas pipes : might cause explosions or fire if gas leaks.
 - Water pipes : no grounding effect if hard vinyl piping is used.
 - Telephone ground wires or lightning rods : might cause abnormally high electric potential in the ground during lightning.

ELECTRICAL CHARACTERISTICS

Units			Power supply		Fan motor		
Model	Hz	Volts	Voltage range	MCA	MFA	KW	FLA
FXMQ125MFV1				1.9	15	0.380	1.5
FXMQ200MFV1	50	220 - 240	Max. 264 Min. 198	3.3	15	0.380	2.6
FXMQ250MFV1			Wiin. 100	3.8	15	0.380	3.0
MCA: Min. Circuit Amps (A); MFA: Max. Fuse Amps (A)							

KW: Fan Motor Rated Output (kW);

Full Load Amps (A)

FLA:

SPECIFICATIONS FOR FIELD SUPPLIED FUSES AND WIRE

Model	F	Power supply wiring	Transmission wiring		
	Field fuses	Wire	Size	Wire	Size
FXMQ125MFV1					
FXMQ200MFV1	15A	H05VV-U3G	Size must comply with local codes.	Sheathed wire (2 wire)	0.75 - 1.25 mm ²
FXMQ250MFV1				(= :	

NOTES

- 1. Select the particular size of electrical wire for power supply wire in accordance with the standards of the given nation and region.
- 2. Allowable length of transmission wire between indoor/out-door units and between the indoor unit and the remote con-troller is as follows.
 - (1) Outdoor unit Indoor unit:
 - Max. 1000 m (Total wiring length: 2000 m)
 - (2) Indoor unit Remote controller:
 - Max. 500 m
 - (3) Max. branches No. of branches :16
- 3. Insulated thickness: 1mm or more
- 4. Up to 16 branches are possible for unit-to unit cabling. No branch is allowed after first branch. (Refer to Fig. 15)

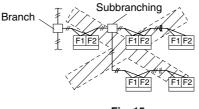
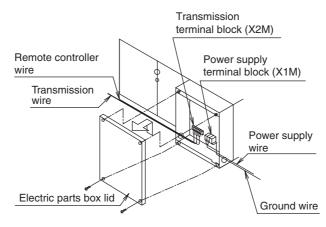
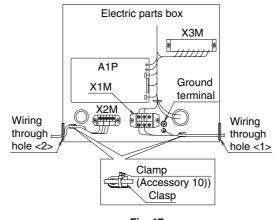



Fig. 15

Wiring Example And How To Set The Remote Controller

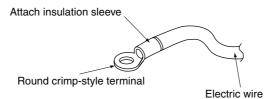
HOW TO CONNECT WIRINGS (Remove the electric parts box lid and wire as shown in the figure below.)



Power supply wire, Ground wire (Refer to Fig. 17)

Connect the wire to L and N on the power supply terminal block (X1M). Also, connect the ground wire to the ground terminal. Take the power supply wire and the ground wire into the unit through the wiring through hole <1>, and firmly secure them together using the clamp (Accessory 10)).

Transmission wire, Remote controller wire (Refer to Fig. 17) Connect the transmission wire to F1 and F2 on the transmission terminal block (X2M). Connect the remote controller wire to P1 and P2 on the transmission terminal block (X2M). Take them into the unit through the wiring through hole <2>, and firmly secure the wires using the clamp (Accessory 10)).



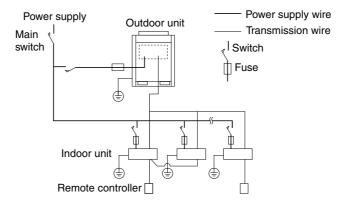
- Wire the electric parts box so that the wiring is at least 10 mm above the bottom of the electric parts box.
- Be sure to attach the sealing material or putty (field supplied) to the wiring through holes to prevent the infiltration of water as well as any insects and other small creatures from outside. Other-wise a short-circuit may occur inside the electric parts box.
- When clamping the wires, be sure no pressure is applied to the wire connections by using the included clamping material to make appropriate clamps. Also, when wiring, make sure the lid on the electric parts box fits snugly by arranging the wires neatly and attaching the electric parts box lid firmly. When attaching the electric parts box lid, make sure no wires get caught in the edges. Pass wire through the wiring through holes to prevent damage to them.
- Make sure the remote controller wire, the transmission wire and power supply wire, ground wire do not pass through the same locations outside of the unit, separating them by at least 50mm, otherwise electrical noise (external static) could cause mistaken operation or breakage.

PRECAUTIONS

- 1. Use round crimp-style terminals for connecting wires to the power supply terminal block. If unavailable, observe the following points when wiring.
- Do not connect wires of different gauge to the same power supply terminal. (Looseness in the connection may cause overheating.)
- Use the specified electric wire. Connect the wire securely to the terminal. Lock the wire down without applying excessive force to the terminal.

- 2. Tightening torque for the terminal screws.
- Use the correct screwdriver for tightening the terminal screws. If the blade of screwdriver is too small, the head of the screw might be damaged, and the screw will not be properly tightened.
- If the terminal screws are tightened too hard, screws might be damaged.

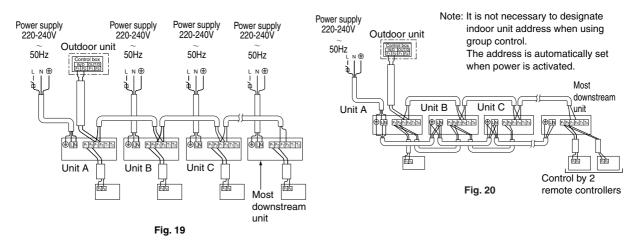
■ Refer to the table below for the tightening torque of the terminal screws.


Terminal	Size	Tightening torque
Transmission terminal block (X2M)	M3.5	0.79 – 0.97 N⋅m
Power supply terminal block (X1M)	M4	1.18 – 1.44 N⋅m
Ground terminal	M5	3.02 – 4.08 N⋅m

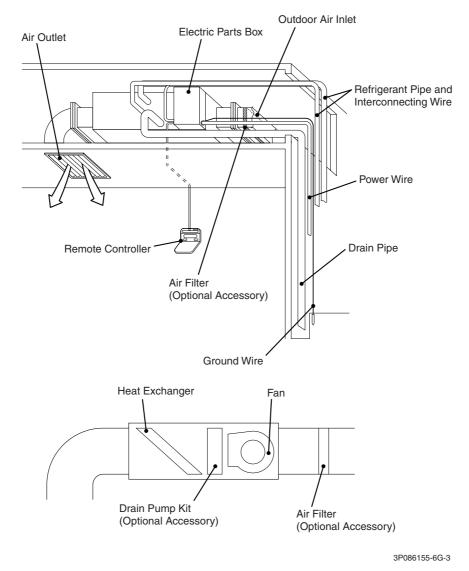
- 3. Do not connect wires of different gauge to the same ground terminal. Looseness in the connection may deteriorate protection.
- 4. Outside of the unit, keep transmission wire and remote controller wire at least 50 mm away from power supply wire and ground wire. The unit may malfunction if subjected to electrical noise (external static).
- 5. For remote controller wiring, refer to the "INSTALLATION MANUAL OF REMOTE CONTROLLER" attached to the remote controller.
- 6. Never connect power supply wire to the transmission terminal block (X2M). A mistake of the sort could damage the entire system.
- 7. Use only specified wire and tightly connect wires to terminals. Be careful wires do not place external stress on terminals. Keep wiring in neat order and so as not to obstruct other equipment such as the electric parts box lid. Make sure the lid closes tight. Incomplete connections could result in overheating, and in worse case, electric shock or fire.

WIRING EXAMPLE

Fit the power supply wiring of each unit with a switch and fuse as shown in the drawing.


COMPLETE SYSTEM EXAMPLE (3 SYSTEMS)

1. When using 1 remote controller for 1 indoor unit. (Normal operation)


2. For group control or control by 2 remote controllers

[PRECAUTIONS]

1. A single switch can be used to supply power to units on the same system. However, branch switches and branch circuit breakers must be selected carefully.

Name of Each Part

Operation Range

Use the system in the following temperature and humidity ranges for safe and effective operation.

TEMPERATURE HUMIDITY DB 19 to 43 (Notes) 30% to 90% WB 32 or below Long time operation in a humidity over 90% may cause condensation on the unit and dripping.	OUTDOOR TEMPERATURE					
Long time operation in a humidity over 90% may cause condensation on the unit and	TEMPERATURE HUMIDITY					
	DB	19 to 43 (Notes)				
- FF 3	WB	32 or below	Long time operation in a humidity over 90% may cause condensation on the unit and dripping.			

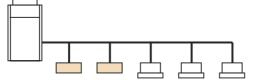
DB: Dry Bulb Temperature

WB: Wet Bulb Temperature

Notes:

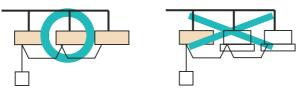
- The FAN OPERATION mode is set automatically for DB temperatures of 19°C and below.
- Do not use the COOLING OPERATION or FAN OPERATION modes when outdoor temperature is 5°C or lower. The unit will stop running to protect itself against cold damage. In such case, set the AUTOMATIC OPERATION or HEATING OPERATION mode.

[°C]

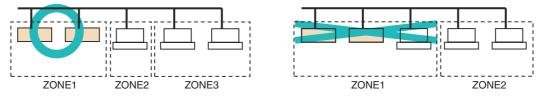

If the temperature or the humidity is beyond these conditions, safety devices may work and the air conditioner may not operate.

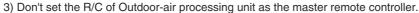
Restrictions in case of mixture connection with standard indoor units

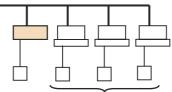
Outdoor-air processing unit _____ Standard indoor unit


1. Restrictions of the refrigerant piping system

- The total capacity of standard indoor units + Outdoor-air processing units should be 50-100% of Outdoor unit capacity. (In case of using only outdoor-air processing units, it is same.)
- 2) The capacity of outdoor-air processing units should be less than 30% of the outdoor unit capacity.




2. Restrictions of the control system


 In case of wiring is mixed with standard indoor units, group control by remote controller is not available, because the setting temperature are different.

2) When using the central remote controller, mixture of indoor units & Outdoor-air Processing units in the same zone is not available, because the setting temperature are different.

Set one of these remote controllers as the master remote controller.

12. Accessories

Standard Accessories

Name	Attached pipe	Insulation for fitting	Sealing pad	Sealing pad	Others
Quantity	1	1 each	1	4	Otters
Shape	1) (Only FXMQ200 - 250MFV1)	 2) for liquid pipe Inside diameter \$25.4 3) for gas pipe Inside diameter \$31.8 (Only FXMQ125MFV1) 	4) (Only FXMQ125MFV1)	5)	 6) Spring washer (M10) (2 pieces only for FXMQ200 250MFV1) 7) Hexagon head bolt (M10x40 (2 pieces only for FXMQ200 250MFV1) 8) Screws for flange connection (M5) (16 pieces for FXMQ125MFV1, 28 pieces for FXMQ200 250MFV1) 9) Washers (8 pieces) 10)Clamps (6 pieces) 11)Installation manual 12)Operation manual

Optional Accessories (For Unit)

No.	Item	Туре	FXMQ125MFV1	FXMQ200MFV1	FXMQ250MFV1	
1	Drain pump kit		KDU30L250VE			
0	blink officiency filter		KAFJ372L140	KAFJ372L280		
2	High efficiency filter	90%	KAFJ373L140	KAFJ3	KAFJ373L280	
3	Filter chamber ★1		KDJ3705L140	KDJ3705L280		
4	Long life replacement filter		KAFJ371L140	KAFJ371L280		
•	•	•		•	3D046270	

Notes:

- *1.Filter chamber has a suction-type flange. (Main unit does not have.)
 Dimensions and weight of the equipment may vary depending on the options used.
 Some options may not be usable due to the equipment installation conditions, so please confirm prior to ordering.
 Some options may not be used in combination.
 Operating sound may increase somewhat depending on the options used.

Optional Accessories (For Operation Controls)

No.	Type	FXMQ-MF
1	Wired remote controller	BRC1C62
2	Central remote controller	DCS302CA61
3	Unified ON/OFF controller	DCS301BA61
4	Schedule timer	DST301BA61
5	Wiring adaptor for electrical appendices (1)	KRP2A61
6	Wiring adaptor for electrical appendices (2)	KRP4AA51
7	Adaptor for wiring	KRP1B61