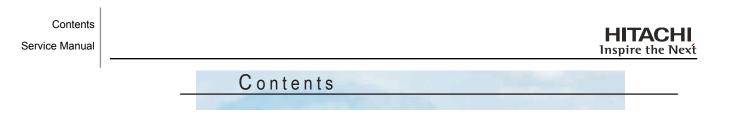
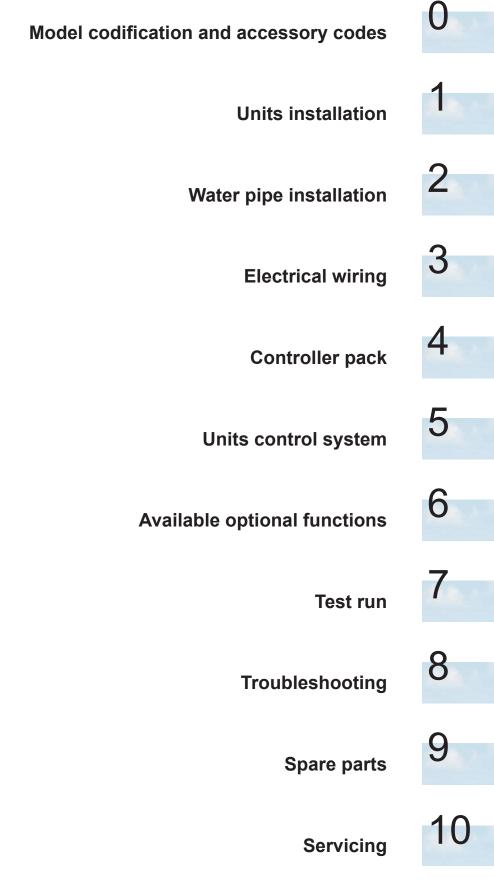


YUTAKI SERIES

Service manual


Air to water heat pump


- RHUE3AVHN
- RHUE4AVHN
- RHUE5AVHN
- RHUE5AHN

Specifications in this manual are subject to change without notice in order that HITACHI may bring the latest innovations to their customers.

Whilst every effort is made to ensure that all specifications are correct, printing errors are beyond Hitachi's control; Hitachi cannot be held responsible for these errors.

GENERAL INDEX

0.	Model codification and accessory codes	12
1.	Units installation	14
1.1.	RHUE(3~5)A(V)HN	16
1.1. 1.1. 1.1. 1.1. 1.1.	 Center of gravity Installation space (Initial check) Place provision 	17 17 18
2.	Water pipe installation	26
2.1	General notes	27
2.2.	Piping work connection considerations	28
2.2.		
2.2.		
2.3.	Water control	
2.4.	Water check valve	
2.5.	Pump kit pipe installation (accessory)	33
	1. Water pump kit (Hitachi supplied) 2. Pump kit assembly	
	3. Installation	
2.6. V	Vater electric heater installation (accessory)	36
	1. Three-stage water heater assembly 2. Water electric heater (Hitachi supplied)	
2.7. E	Drain piping	39
3.	Electrical wiring	40
3.1.	General check	41
3.2.	Electrical wiring connection	42
3.2. 3.2.		
3.3.	Setting the DIP switches	44
3.4.	LED indication	48
3.5.	Pump electrical installation	49
3.5. 3.5.		

3.5.3.	Troubleshooting	51
3.6. He	eater electric installation	51
3.7. El	ectrical wiring between Yutaki and System Controller	53
3.8. El	ectrical wiring diagrams	53
3.8.1.	Electrical wiring diagram for models RHUE(3~5)AVHN	54
3.8.2.	Electrical wiring diagram for RHUE5AHN	
4. C	ontroller pack	56
4.1. Sy	/stem description and configurations	59
4.1.1.	Description	
4.1.2.	System overview	
4.1.3.	Contents of the controller pack	
4.1.4.	Quick-start installation steps	
4.2. Sy	/stem controller	61
4.2.1.	Software version	61
4.2.2.	System controller - overview	
4.2.3.	Operation & user interface	
4.2.4.	Abbreviations & terminology	
4.2.5.	System component connections	
4.2.5.		
4.2.5.		
4.2.5.		
4.2.5.	4. Mixing valve	66
4.2.5.	5. Secondary pump	66
4.2.5.	6. Domestic hot water (DHW)	67
4.2.5.	7. RF receiver box	67
4.2.5.	8. DHW electric heater	67
4.2.5.	9. DHW time clock	67
4.2.5.	10. Tariff-switching device	68
4.2.5.	11. Temperature sensors	68
4.2.6.	User interface	69
4.2.6.	1. Display	69
4.2.6.	2. Controls	69
4.2.7.	Installation configuration settings	70
4.2.7.		
4.2.7.		
4.2.8.	System testing	
4.2.8.		
4.2.8.		
4.2.8.		
4.2.8.		
4.2.9.	Troubleshooting	
4.2.9.		
4.2.9.	2. Reset to factory default condition	75

4.3.	Applications	76
4.3.	1. Application configurations	
4.3.		
4.3.	· · · ·	
4.3.4		
4.3.		
4.3.		
	· · · · · · · · · · · · · · · · · · ·	
4.3.	7. Bi-Valent system - serial operation 'conf 5'	82
4.4.	Supply setpoint calculation	83
4.5.	Heating control functions	84
4.5.		
	2 Heating characteristic curve (OTC control)	
	5.2.1. Room setpoint parallel shift	
4.	5.2.2. Room temperature compensation	
4.5.3	3. Heating circuit minimum/maximum temperature limits	
4.5.4	4. Heating circuit (secondary) pump	90
4.5.	5. Automatic no-load function	
4.5.	6. Floor screed drying function	
4.5.	7. System frost protection	
4.5.	• •	
4.6.	DHW control functions	92
4.6.	1. DHW Storage Tank Loading	
4.6.	2. DHW Control	
4.6.3	3. Maximum DHW Loading Time	
4.6.4		
4.6.		
4.6.0		
4.6.		
4.7.	Heatpump control functions	97
4.7.	1. Heatpump Control	97
4.7.3		
4.7.3		
4.7.4		
4.7.		
4.7.		
4.8.	Boiler control functions	101
4.8.	1. Boiler Control	101
4.8. 4.8.		
4.8.3		
4.8.4		
4.8.	5. Maximum Outdoor Temperature for Boiler Operation	
4.9.	Electric heater control functions	104
4.9.		
4.9.		
4.9.3		
4.9.4	4. Electric Heater Return High Limit Check	107

4.9.5.	Maximum Outdoor Temperature for Electrical Heater Operation	108
4.10. Mi	xing valve control functions	108
4 4 0 4		100
	Mixing Valve Control	
	Mixing / Bypass Valve Control	
4.10.3.	Mixed Heating Circuit Maximum Temperature Limit Protection	109
4.11. Ge	eneral funcitons	109
4.11.1.	System Frost Protection	
	Automatic Summer Switch-Off	
	Pump and Valve Seizure Protection	
	Screed function (drying for new floors)	
4.12. Pa	irameter tables	111
4 12 1	Installer Parameters	111
	Engineering Parameters	
4.13. Co	proversion table: heat pump supply temperature to ma	114
4.14. Se	ensor resistance tables	115
4 15 To	chnical data	116
4.15. 16		
	System Controller (XEK23232 A)	
	Water Temperature Sensor (XEK35524 A)	
4.15.3.	Outdoor Temperature Sensor (XEK35438 A)	116
4.16. Sy	stem MMI Pack (Room unit and RF receiver)	117
4.16.1.	Room Unit installation guide	117
4.16.1. 4.16.1	Room Unit installation guide	117 117
4.16.1. 4.16.1 4.16.1	Room Unit installation guide .1. Description .2. Installation information	
4.16.1. 4.16.1 4.16.1 4.16.1	Room Unit installation guide .1. Description .2. Installation information .3. Installing the System MMI Pack	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.1	Room Unit installation guide .1. Description .2. Installation information	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.1 4.16.2	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2 4.16.2 4.16.2 4.16.2 4.16.2	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss	117 117 117 118 118 118 119 119 120 120 121
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3. 4.16.4.	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode	117 117 117 118 118 118 119 119 120 120 120 121
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.3 4.16.3. 4.16.4. 4.16.4	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode	
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3 4.16.4. 4.16.4	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode 2. Fail-Safe mode setup	117 117 117 117 118 118 119 120 120 120 121 121 121 122 122
4.16.1. 4.16.1 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3 4.16.4 4.16.4 4.16.4	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode 2. Fail-Safe mode setup 3. Using the Room Unit for specific applications	117 117 117 118 118 119 119 120 120 120 121 121 121 122 122
4.16.1. 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3 4.16.4 4.16.4 4.16.4 4.16.4 4.16.4	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode. 2. Fail-Safe mode setup 3. Using the Room Unit for specific applications 4. Using the special features of the Room Unit	117 117 117 118 118 118 119 119 120 120 120 120 121 121 121 122 122 122
4.16.1. 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3 4.16.4 4.16.4 4.16.4 4.16.4 4.16.4 4.16.5	Room Unit installation guide	117 117 117 118 118 119 119 120 120 121 121 121 122 122 122 122 123 123
4.16.1. 4.16.1 4.16.1 4.16.2. 4.16.2 4.16.2 4.16.2 4.16.2 4.16.3 4.16.4 4.16.4 4.16.4 4.16.4 4.16.5 4.16.5	Room Unit installation guide	117 117 117 118 118 118 119 119 120 120 120 120 121 121 121 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2.\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\end{array}$	Room Unit installation guide	117 117 117 118 118 118 119 119 120 120 120 121 121 121 121 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.6\end{array}$	Room Unit installation guide	117 117 117 118 118 119 119 120 120 120 120 121 121 121 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.6\\ 4.16.7.\end{array}$	Room Unit installation guide	117 117 117 118 118 119 119 120 120 120 120 120 121 122 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2.\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.6\\ 4.16.7\\ 4.16.7\\ 4.16.7\\ 4.16.7\end{array}$	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode 2. Fail-Safe mode setup 3. Using the Room Unit for specific applications 4. Using the special features of the Room Unit Installer parameters table 1. Category 1 - Room Unit settings 2. Category 2 - System settings Binding / Rebinding procedure Technical data 1. Specifications 2. Standards, approvals and function definition	117 117 118 118 118 119 119 120 120 120 120 121 122 122 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2.\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.6\\ 4.16.7\\ 4.16.7\\ 4.16.7\\ 4.16.7\end{array}$	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode 2. Fail-Safe mode setup 3. Using the Room Unit for specific applications 4. Using the special features of the Room Unit Installer parameters table 1. Category 1 - Room Unit settings 2. Category 2 - System settings Binding / Rebinding procedure Technical data 1. Specifications	117 117 118 118 118 119 119 120 120 120 120 121 122 122 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2.\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.7\\ 4.16.7\\ 4.16.7\\ 4.16.8\\ 4.16.8\\ 4.16.8\end{array}$	Room Unit installation guide	117 117 118 118 118 119 119 120 120 120 120 121 121 121 122 122 122
$\begin{array}{r} 4.16.1.\\ 4.16.1\\ 4.16.1\\ 4.16.1\\ 4.16.2.\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.2\\ 4.16.3\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.4\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.5\\ 4.16.7\\ 4.16.7\\ 4.16.7\\ 4.16.8\\ 4.16.$	Room Unit installation guide 1. Description 2. Installation information 3. Installing the System MMI Pack 4. Installing the RF Receiver Installing the Room Unit 1. Power up 2. RF Communication check (test mode) 3. Locating the Room Unit Communication check (test mode) 3. Locating the Room Unit Communication loss Installer mode 1. Entering installer mode. 2. Fail-Safe mode setup 3. Using the Room Unit for specific applications 4. Using the special features of the Room Unit. Installer parameters table. 1. Category 1 - Room Unit settings 2. Category 2 - System settings Binding / Rebinding procedure Technical data 1. Specifications 2. Standards, approvals and function definition Room Unit user guide	117 117 117 118 118 119 119 120 120 120 120 121 121 122 122 122 122

	4.16.8.4. Troubleshooting System MMI Pack4.16.8.5. Diagnostic mode4.16.8.6. FAQ's	132
4.17	7. Sensor pack	133
	17.1. Water Temperature Sensor17.2. Outside Temperature Sensor	
5.	Units control system	136
5.1.	Device control system	137
5.2.	Yutaki unit PCB	138
5.3.	Safety and control device setting	139
6.	Available optional functions	140
6.1.	Freeze protection	141
6.2.	Restart after power failure	141
7.	Test run	142
7.1.	Checking procedure before the test run	143
7.	1.1. Check before start up	144
7.2.	Test run procedure for Yutaki	145
8.	Troubleshooting	146
8.1.	Unit and System controller - Power Supply failure	147
8.	1.1. Abnormal operation of the devices	149
8.2.	Initial troubleshooting	155
	2.1. Troubleshooting by alarm code2.2. Incidents of operation	
8.3.	Failure diagnosis method	197
8.4.	Checking procedure for main parts	199
8.4 8.4	 4.1. RHUE(3~5)AVHN. Procedure for checking the DIP-IPM. 4.2. RHUE5AHN. Procedure for checking the ISPM. 4.3. Checking capacitors CB1 & CB2. 4.4. Fault diagnosis of DC fan motor. 	201 203
9.	Spare parts	206
9.1.	RHUE(3~5)AVHN	207
9.2.	RHUE5AHN	208
9.3.	RHUE(3~5)A(V)HN	209

10.	Servicing	210
10.1.	RHUE(3~5)A(V)HN	212
10.1	1. Removing service cover	212
	2. Removing air outlet grille	
10.1	3. Removing upper cover	213
10.1	4. Removing the lower part of service panel and rear panel	213
	5. Removing Yutaki fan motor	
	7. Removing the compressor	
	6. Mounting Yutaki fan motor	
	8. Removing high pressure switch	
	9. Opening electrical box (P-mounting plate)	
	10. Removing the coils for the reversing and solenoid valves	
	11. Removing electronic expansion valve coils	
	12. Removing pressure switches	
	13. Removing reversing valve	
	14. Removing expansion valve	
10.1	15. Removing solenoid valve	224
10.1	16. Removing electrical components	225
10.1	17. Removing inverter components	226
10.1	18. Removing the ISPM	227
10.1	19. Removing the DIP-IPM	228
10.1	20. Removing the electrical-noise filter	229
10.1	21. Removing other electrical components	230

0. MODEL CODIFICATION AND ACCESSORY CODES

• Unit code list

List of air to water units and accessories available in this service manual.

YUTAKI RHUE UNITS

AVHN UNITS		AHN UNITS	
Unit	Code	Unit	Code
RHUE3AVHN	9E311100		
RHUE4AVHN	9E411100		
RHUE5AVHN	9E511100	RHUE5AHN	9E531100
₩ 1 [,]	~	18 🗰	N~

Meaning of model codification:	RHUE	5	Α	V	Н	Ν
Unit type (made in Europe)						
Compressor power (HP) 3/4/5						
Air-to-water unit						
Single phase						
Heating only						
R410A Refrigerant						

Name	Description	Code	Figure
STE1	Water temperature sensor	9E500004	
RMPID1	Extension controller	9E500005	HENCH I I I I I I I I I I I I I I I I I I I
CCW11	Pump kit 1	9E500001	
CCW21	Pump kit 2	9E500002	
EH61	Heater 6 kW	EH61	
BDHM1	Hydraulic separator	BDHM1	
VID3V1	3-way valve	VID3V1	
CDH2Z1	Disconnection vessel	CDH2Z1	
ASMSH1	Aquastat	ASMSH1	

This chapter provides information concerning the installation of Yutaki units.

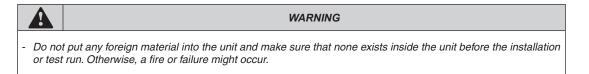
CONTENTS

1.1. RH	HUE(3~5)A(V)HN	16
1.1.1.	Transportation	
1.1.2.	Center of gravity	17
1.1.3.	Installation space (Initial check)	17
1.1.4.	Place provision	
1.1.5.	Installation of wind guard and snow protection hood.	21

WARNING

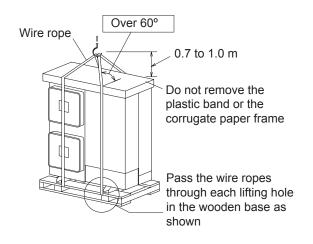
- For easy operation and maintenance, install the Yutaki unit with sufficient clearance around it as shown in the next pages.
- Install the unit where good ventilation is available.
- Do not install the unit where exists a high level of oil mist, salty air or sulphurous atmosphere.
- Install the unit as far as possible (being at least 3 meters) from electromagnetic wave radiator, such as medical equipment.
- When installing more than one unit together, keep clearance of more than 50 mm between units and avoid obstacles that could hamper air intake.
- Install the unit in the shade or not exposed to direct sunshine or direct radiation from high temperature heat source.
- Do not install the unit in a place where a seasonal wind might directly blow into the outdoor fan.
- Use of inflammable agent may cause explosion or fire. For cleaning operation, use non-inflammable and nontoxic cleaning liquid.
- Work with sufficient ventilation, for working in an enclosed space could cause oxygen deficiency. Toxic gas may be produced when cleaning agent is heated to high temperature by, e.g., being exposed to fire.
- Cleaning liquid shall be collected after cleaning operation.
- In order to avoid electric shock or fire, pay attention not to clamp cables when attaching the service cover.

T


CAUTION

- Make sure that the foundation is flat, levelled and strong enough.
- Install the unit in a restricted area not accessible by the general public.
- Aluminium fins have very sharp edges. Pay attention to the fins in order to avoid injury.
- This appliance is not intended to be used by people (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision and instruction concerning the use of the appliance by a person responsible for their safety.
- Before obtaining access to terminals or performing any maintenance operation, turn OFF all power switches and disconnect all supply circuits.
- Children must be supervised to ensure that they do not play with the electrical appliances.
- This unit contains condensers that might remain charged once the unit is switched off. Wait at least five minutes after the stop of the unit before to start any cleaning or maintenance operation allowing the discharge of the condensers.

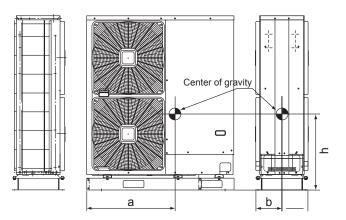
Contents


1.1. RHUE(3~5)A(V)HN

1.1.1. Transportation

Hanging method

When hanging the unit, ensure its balance and lift it up smoothly and safely. Do not remove any packing materials until the unit is positioned and hang the unit under packing condition with two ropes, as shown in the figure below.

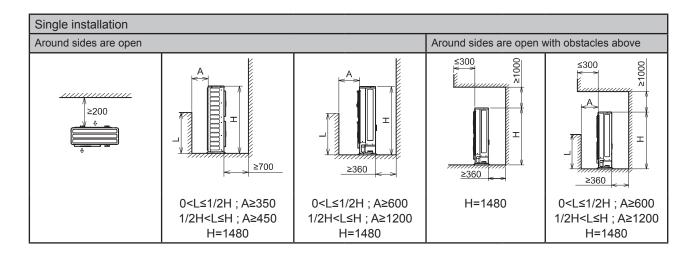

A

CAUTION

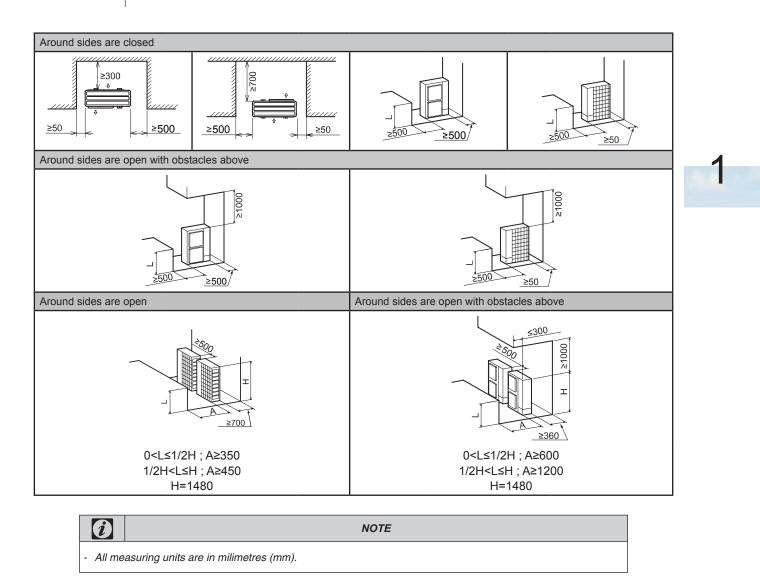
- Lift the unit with 2 wire ropes and without removing its factory packaging.
- Make sure that the unit is lifted smoothly and does not lean.
- Do not attach lifting equipment to the plastic band or the corrugated paper frame, since the ropes might slip or break the materials.
- Make sure that the exterior of the unit is adequately protected with cloth or paper.

1.1.2. Center of gravity

When the unit is lifted manually (using the handles), pay attention to the following: do not remove the wooden base from the unit to prevent its overturning. Pay attention to the center of gravity shown in the below figure.

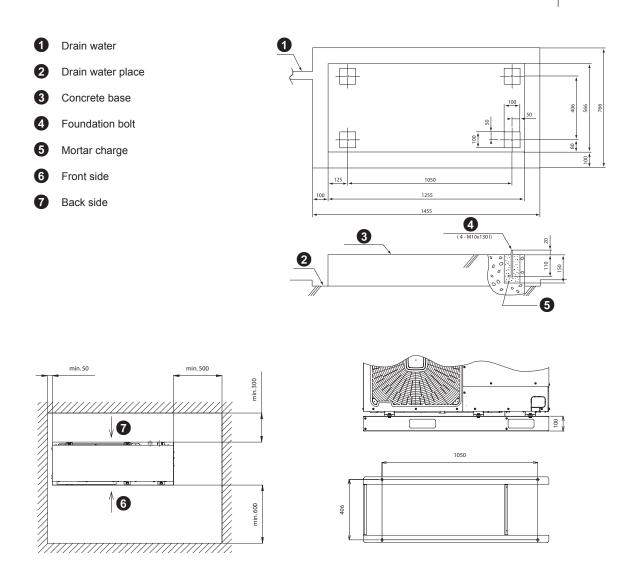

Unit model	Operation weight	Center	of gravity (mm)	position
	(kg)	а	b	h
RHUE3AVHN	152	705	223	645
RHUE4AVHN	152	705	223	645
RHUE5AVHN	157	695	228	660
RHUE5AHN	162	695	228	660

Ì


NOTE

- It is recommended that at least two people participate when lifting is done manually.

1.1.3. Installation space (Initial check)


Service Manual

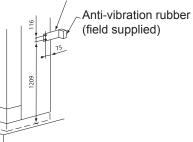
1.1.4. Place provision

Concrete foundation

Foundation shall be on a levelled surface and it is recommended to be 100-300 mm higher than ground level. Use M10 anchor bolts to fix the unit to the foundation. (Foundation bolts, nuts and washers are not included, and must be field supplied). Drain water might turn into ice on cold weather areas. Therefore, when installing the unit on a roof or a veranda, avoid to drain on a public area, since it may become slippery.

- The foundation drawing shown above is an example.

The unit is low-vibration model, but consider the use of some floor reinforcement or anti-vibration mat/rubber when vibration may occur due to weakness of attached surface. The foundation shall be unified with the floor slab. If not, calculate the vibration proof of the installation of the unit with the foundation in order to ensure strength against a fall or in case that the unit has to be moved. Drain water and rainwater are discharged from the bottom of the unit when in operation as well as when stopped.


Choose a location with good drainage or place a water drain as in the drawing. Make the foundation flat and waterproof, as a water pool may appear in case of, for instance, rain. This is a low-profile product with a shallow depth. It may also be able to fix on the wall as shown below when fixing only with the foundation bolt does not seem sufficiently stable depending on the conditions of the installation. (Metal fittings must be field supplied).

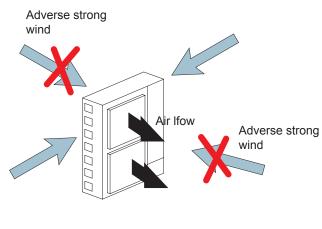
• Fix unit to the wall

4

- Fix the unit onto the wall as indicated in the figure. (Stay field supplied).
- 2. The foundation shall be strong enough to avoid any deformation and vibration.
- In order to prevent vibration transfer to the building, place rubber material between the stay and the wall.

Both sides can be fixed to the wall. (Metal fittings are field supplied)

 Installation must ensure that the unit will not incline, vibrate, make noise or fall down by a blast of wind or in an earthquake. Calculate quake-resistance strength to ensure that installation is strong enough against falling. Fix the unit with wires (field supplied) when installing in a location without walls or windbreak and likely exposed to a blast of wind.


CAUTION

- Apply vibration-proof material where necessary.

Installing location where the unit will be exposed to strong wind

Follow the instructions below to install on a rooftop or a location without surrounding buildings, where strong wind is expected against the unit.

- Choose a location where the outlet or inlet side of the product will not be exposed to strong wind.
- When the outlet is exposed to strong wind: Direct strong wind against the outlet might cause lack of air flow and adversely affect to normal function.

CAUTION Excessive strong wind against the unit outlet may cause inverse rotation and damage the fan motor.

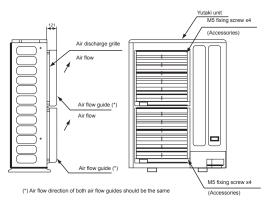
1.1.5. Installation of wind guard and snow protection hood.

• Air flow guide, wind guard and snow protection hood

Optional parts		HP	Model		
	Air flow guide			AG-335A X 2	
	Wind guard			WSP-335A X 2	
	Stainless	Air outlet]	ASG-NP335F X 2	
	plate (SUS304)	Air inlet of rear side	(3~5)	ASG-NP335B	
		Air inlet of side face		ASG-NP335L	
		Air outlet		ASG-NP335FS X 2	
Snow		Air inlet of rear side		ASG-335BS	
protection hood	Zinc plate	Air inlet of side face		ASG-NP335LS	

• Air flow guide

Specifications

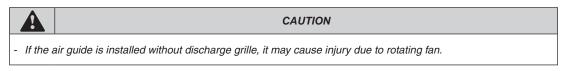

Model	AG-335A				620		
Quantity	2 per unit				560 View fro	om A	
Air discharge direction	Upward (downward), left & right				Mounting dimension	*	
Material	Weather proof polypropylene resin		ĪŦ			₹	
Color	Gray						
Weight	1.9 kg	1					
Accessories	Fixing screw x 4 [M5 (SUS) x 20] Installation manual	620	560	dimension	Air flow guide		
Installation restriction	"Wind Guard" or "Snow protection hood" is not available to install with air flow guide. ("Guard net" is available to be installed together.)	<u>1</u>		Mounting		≞	

Attaching example of air flow guide:

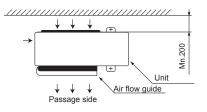
- Attach the air flow guide to the air discharge grille with four (4) screws (supplied).
- The fixing holes are located at 4 positions on the grille. (Screw tightening torque 2.4~3.1N.m)
- Do not remove the air discharge grille for air flow guide installation.

A	CAUTION
- If the a	air guide is installed without discharge grille, it may cause injury due to rotating fan.

Two windbreak covers installation


· Wind guard

Specifications


Model **WSP-335A** Quantity 2 per unit Galvanized sheet metal + baked Material painting Gray (1.oY8.5/0.5) 628 Color 520 275 Weight 5.5 kg (Mounting dimension) 4 x ¢ 7 225 Air flow Fixing screw x 4 [M5 (SUS) x 20] Accessories Installation manual (Mounting dimension) Air flov Air flow 360 66 \triangleleft "Guard net", "Air flow guide" or "Snow protection hood" is not Installation restriction available to install with Wind guard ∏ Air flow

Attaching example of air wind guard:

- Attach the air flow guide to the air discharge grille with four (4) screws (supplied).
- The fixing holes are located at 4 positions on the grille. (Screw tightening torque 2.4~3.1 N.m)
- Do not remove the air discharge grille for air flow guide installation.

- In case of right and left sides air discharge, enough space for air discharge is required.
- The downward air discharge is also available. In such case, install the base under the unit to secure enough space for air discharge.
- In case of serial units installation, air discharge direction should be upwards.

Mn.200

Unit

Service space Both sides of the unit should be open.

No obstacles should be placed in the air

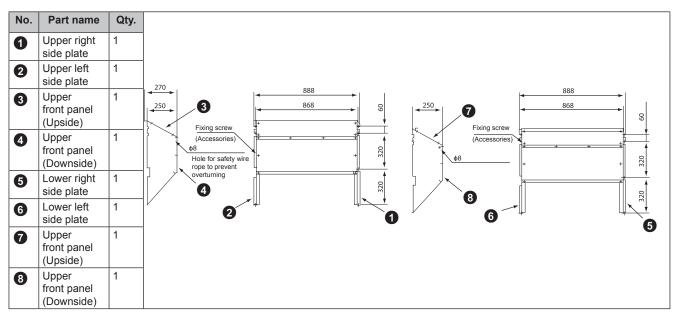
Wind guard

_____ ¥ ↓ Æ

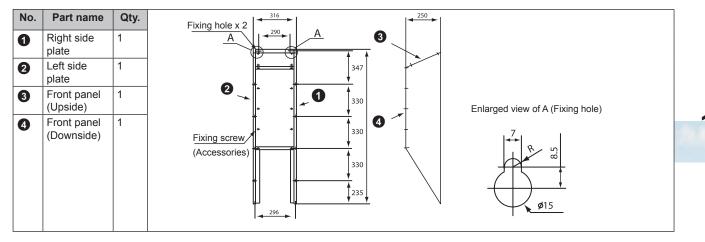
_

discharge side.

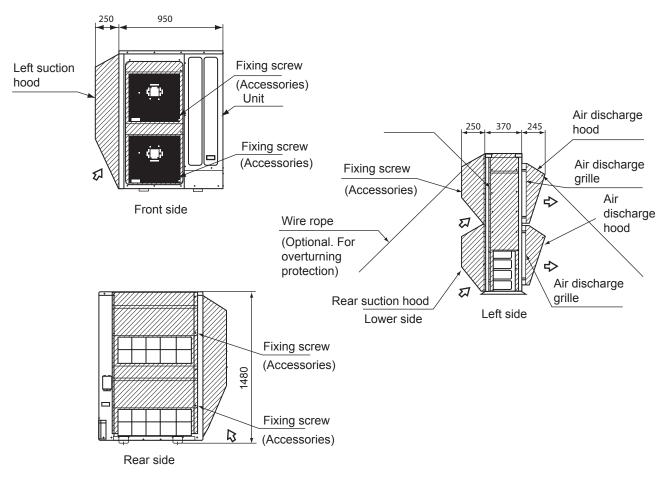
Yutaki unit 275 Air discharge grille M5 fixing screw x4 (Accessories) Wind guard Wind guard Air discharge grille


Two windguard covers installation

Snow protection hood •


Air discharge hood

No. Part name Qty. 3 4240 590 Right side 1 0 plate 4 Left side 1 0 + + plate Front panel 1 3 Fixing screw **ø** 8 4 4 Stay (Accessories) 500 623 Hole for safety wire rope to prevent 4 x φ 7 overturning 0 500 0


Rear suction hood

Left suction hood

Attaching example of snow protection hood

Specifications of snow protection hood

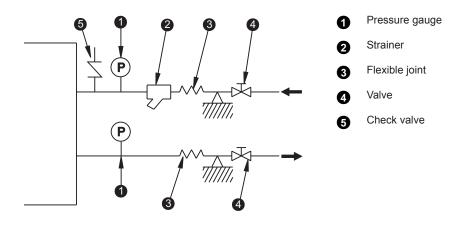
Product na	ame	Air discha	arge hood	Rear suc	tion hood	Left suctio	n hood
Model		ASG-NP335F	ASG-NP335FS	ASG-NP335B	ASG-NP335BS	ASG-NP335L	ASG- NP335LS
Quantity		2 per unit			1 per unit		
Materia	Material		Stainless (SUS304)	Bonderized steel sheet Iron	Stainless (SUS304)	Bonderized steel sheet Iron	Stainless (SUS304)
Color	Color		-	Gray (1.0Y8.5/0.5 or approximation)		Gray (1.0Y8.5/0.5 or approximation)	-
Weight		3	3 kg 14 kg			8 kg	
Assembli	ng	Knockingdown parts (assembled at field)					
Components	Hood	For air discharge part x 1		For rear side air intake x 1 (Upper side x 1, lower side x 1)		For left side air intake x 1	
	Fixing screw	8 (M5x12 tapping screw)		10 (M5x14 tapping screw)		8 (M5x12 tapping screw)	
	Fixing screw (SUS)	6 (M5x12 tapping screw)	6 (M5x14)	24 (M5x12 tapping screw)	24 (M5x14)	14 (M5x12 tapping screw)	14 (M5x14)
		Installation manual					
Installation restriction		Installation with "Guard net", "Wind guard" or "Air flow guide" is not available					le
Safety wire ro overturning pre (optional pa	vention			ASG-SV	V20A		

2. WATER PIPE INSTALLATION

This chapter provides information about the procedures to perform water piping work connections for Yutaki units.

CONTENTS

2.1	General notes	27
2.2.	Piping work connection considerations	28
2.2 2.2	 Minimum water volume description Correction factor due to use of glycol 	
2.3.	Water control	31
2.4.	Water check valve	32
2.5.	Pump kit pipe installation (accessory)	33
2.5	1. Water pump kit (Hitachi supplied) 2. Pump kit assembly 3. Installation	35
2.6. \	Nater electric heater installation (accessory)	36
	1. Three-stage water heater assembly 2. Water electric heater (Hitachi supplied)	
2.7. [Drain piping	39

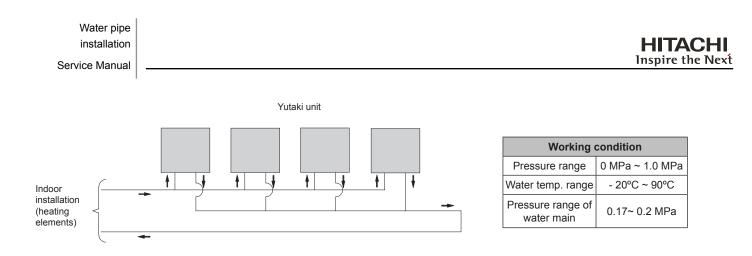

2.1 GENERAL NOTES

- 1. Connect all pipes as close as possible to the unit, so that disconnection can be easily performed when required.
- 2. It is recommended to use flexible joints for the piping of water inlet and outlet, so vibration will not be transmited.
- 3. Whenever possible, sluice valves should be installed for water piping, in order to minimise flow resistance and to maintain sufficient water flow.
- 4. Proper leak inspection should be performed to check for leaking parts inside and outside the system, by completely opening the hot water inlet and outlet valves to the water condenser. Additionally, install equip valves to the inlet and outlet piping.
- 5. This unit is equipped with an air purge at the highest position of the water system. If this position is not the highest one within the whole water installation, equip another air purge.

Also, equip a drain cock on the outlet piping. The cock handle should be removed so that the cock can not be opened under normal circumstances. If this cock is opened during operation, trouble will occur due to water blow-off.

- 6. When necessary, put insulation on the pipes in order to avoid heat losses.
- 7. Under the condition where the ambient temperature is low in winter, there is a case where equipment and piping will become damaged during long shutdown periods, because the water in the pump or piping will be frozen. To prevent freezing of the water, it is effective to remove the water of the installation or keep the unit powered ON, since it equipes an electric heater to avoid freezing on the water circuit.

Additionally, in a case where measures such as water draining are difficult, use an antifreeze mixture of ethylene glycol type or propylene glycol type.


CAUTION

This product is equipped with plate heat exchanger type. In the heat exchanger, water flows through a narrow space between the plates. Therefore, there is a possibility that freezing may occur if foreign particles or dust are clogged. In order to avoid this clogging, mesh water strainer shall be installed in the water inlet pipe and as close as possible to the plate heat exchanger. In case of punching metal type strainer, mesh hole size shall be Ø 1.5mm or less. Never use the salt type antifreeze mixture, since it possesses strong corrosion characteristics, and water equipment might be damaged.

CAUTION

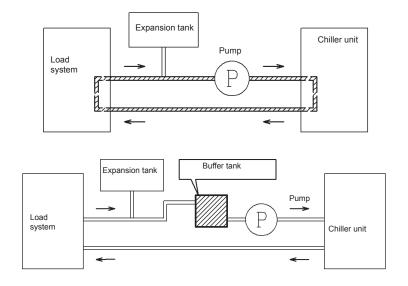
 When connecting several units to a common pipe, its design should ensure that the water flow on each unit is the same (see below figure). Imbalance of water distribution may cause a serious damage like water freezing in the plate heat exchanger.

2.2. PIPING WORK CONNECTION CONSIDERATIONS

2.2.1. Minimum water volume description

Necessity of water in system and summary of its calculation

The following problems may occur when the quantity of water in the forced circulation system⁽¹⁾ on water side is insufficient.


- 1. Compressor in operation repeats numerous "start/stop" when light-loaded, which may result in shorter life or failure.
- 2. Low temperature in water circulation during defrost operation, which may cause an alarm (freeze protection) at the stop of the unit.

i	NOTE
- ⁽¹⁾ The	e shaded part of the pipe system below. (Excluding the expansion tank (cistern))

Calculate and ensure that the water volume in the system is equal or greater than the larger value obtained from:

- Protective water volume for product
- Minimum water volume for temperature drop during defrost operation

When the minimum water volume can not be ensured, use a Buffer tank to compensate the shortage (<0) of water (2). See figure below.

i	NOTE
- ⁽²⁾ Sho	rtage = Minimum water volume – Water volume in circulation system

The following part shows how to calculate the minimum water volume in the system for product protection and temperature drop during defrost operation.

• Protective water volume for product

HITACHI Inspire the Next

Ensure that the water volume is equal or greater than those shown below, in order to reduce ON/OFF frequency of the unit at no load or extreme light load. When water volume is less than the volume indicated (minimum water volume), compressor operation frequently stops at light load, which may result in shorter life or failure.

ON/OFF Model Temp. differential	RHUE3AVHN	RHUE4AVHN	RHUE5AVHN RHUE5AHN
4°C	28	38	46
3°C	36	48	58
2°C	50	65	80
1°C	80	107	130
			(Units are in Itrs.)

i

NOTE

The factory default ON/OFF temperature differential is "4 °C". Note that the minimum water volume varies for different setting for each purpose as shown in the table above.

• Minimum required water volume during defrosting

The following formula is used to make the calculation:

$$V = \frac{Q_{DEF}}{\Delta T \times 4168.8} ; Q_{DEF} = Q_{I} + Q_{Y}$$

Where:

v = Required water volume (m3)

The minimum volume of water needed in the installation to cover the heat loss caused by a reduction in the delivery water temperature during defrosting.

ΔT= Permissible water temperature drop (°C)

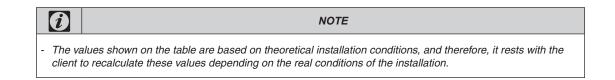
Drop in the delivery water temperature that the client is willing to allow in the installation.

Q_{DEF} = Heat loss during defrosting (kJ)

Heat loss caused in the system by reducing the delivery water temperature, which may affect the user's comfort level of warmth. This value is 10% of the sum of the two following items:

Q₁ = Heat demand from the installation (kJ)

While defrosting is taking place, the unit is not providing the heat required to cover the heat demand from the installation. This value can be obtained in 2 ways:


- 1. By using the value of the energy demand from the installation, if known.
- If this value is not known, it can be estimated by using the heating capacity of the unit at an air temperature of 0°C WB and a delivery water temperature at, for example, 45°C.
- Q_{y} = Cooling load on the YUTAKI unit (kJ)

In addition to not providing the heat required to cover the heat demanded by the installation during defrosting, the unit is also producing cold. It can be estimated that this value is approximately 85% of the heating capacity on the unit under standard conditions (air temperature: 6/7°C (WB/DB) and input/output temperature of the water: 40 / 45 °C)

Ø	NOTE
- The 10	0% applied to QEDF is due to the fact that the maximum time for defrosting is 6 minutes per hour.

The following table shows the minimum water volume needed in each YUTAKI unit in case of a permitted drop in temperature of 10°C.

Model Permissible temp. drop differential	RHUE3AVHN	RHUE4AVHN	RHUE5AVHN RHUE5AHN
10°C	106	138	171
			(Units are in Itrs.)

Heat taken by load (kJ)

Heat taken by Load is equivalent to 10% of the estimated heat load (kW).(Heat for six minutes which is the longest defrosting time).

The estimated heat load varies for different use conditions and purposes of Chiller Unit. Use the value of normal actual load when it is identified. The estimated heat load in the specifications is "equivalent to heat capacity at outdoor air 0 °CWB and heated water outlet temperature 45 °C".

• Heat taken by chiller unit (kJ)

Heat taken by Yutaki is 8.5% of the heat capacity at JIS Standard conditions. (Heat for six minutes which is the longest defrosting time).

• Permissible temperature drop (°C)

Permissible temperature drop shows the permissible differential of temperature drop at Yutaki inlet from before defrosting.

E.g.) When up to Inlet/Outlet before defrosting = 40/45 °C --> Inlet/Outlet at defrosting End 15/10 °C is permissible, the permissible temperature drop is 40 °C - 15 °C = 25 °C.

Note that it is not the permissible temperature drop of water delivered to the load. Permissible temperature drop in the specifications is "10 $^{\circ}$ C".

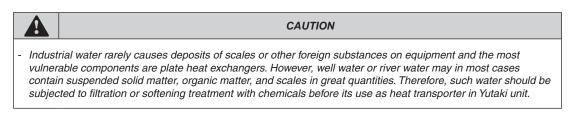
Model Permissible temp. drop differential	RHUE3AVHN	RHUE4AVHN	RHUE5AVHN RHUE5AHN
10°C	106	138	171
			(Units are in Itrs.)

Ø

NOTE

- As the value shown includes assumed conditions, greater or less water volume may be required depending on the use of the unit. In such a case, recalculate with the "estimated heat load", "installation conditions" and "permissible temperature drop" corresponding to the actual use conditions.

2.2.2. Correction factor due to use of glycol


When the ambient temperature is low in winter, it is possible that the unit will be damaged by freezing water in the pipes and in the circulating pump during the shutdown periods.

In order to prevent this, it is useful to empty the water from the installation or to maintain the supply to the installation, as an electric cord can prevent the water from freezing in the circuit.

Additionally, in cases where water drainage is difficult, an antifreeze mixture of ethylene glycol or propylene should be used (Between 10 % and 40 %).

The performance of the unit when working with glycol may decrease in proportion to the percentage of glycol used, as the density of glycol is higher than that of water. (For more information, see TCGB0044)

2.3. WATER CONTROL

The following table shows the reference values fo the most important parameters concerning the quality of the water:

Water pipe installation

Service Manual

	Water S	ystem	-	Tendency
Item	Circulating Water (20 C Less than)	Supply Water	Corrosion	Deposits of scales
Standard quality pH (25 °C)	6.8 ~ 8.0	6.8 ~ 8.0	٩	٩
Electrical conductivity (mS/m) (25°C) {μS/cm} (25 °C) (2)	Less than 40 Less than 400	Less than 30 Less than 300	٩	٩
Chlorine Ion (mg CI ^{-/I})	Less than 50	Less than 50	٩	
Sulphur acid Ion (mg SO42 ^{-/} I)	Less than 50	Less than 50	٩	
The amount of acid consumption (pH 4.8) (mg CaCO3/I)	Less than 50	Less than 50		٥
Total hardness (mg CaCO3 /I)	Less than 70	Less than 70		٩
Calcium hardness (mg CaCO3 /I)	Less than 50	Less than 50		٩
Silica L (mg SIO2 /I)	Less than 30	Less than 30		٩
Reference quality total iron (mg Fe/I)	Less than 1.0	Less than 0.3	٩	٥
Total copper (mg Cu/I)	Less than 1.0	Less than 0.1	٩	
Sulphur ion (mg S2 ^{-/} I)	It shall not be	e detected.	٩	
Ammonium ion (mg NH4+/I)	Less than 1.0	Less than 0.1	٥	
Remaining chlorine (mg Cl/l)	Less than 0.3	Less than 0.3	٥	
Floating carbonic acid (mg CO2/I)	Less than 4.0	Less than 4.0	٩	
Index of stability	6.8 ~ 8.0	-	٥	٩

Ø

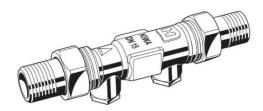
NOTE

- The mark "" in the table means the factor concerned with the tendency of corrosion or deposits of scales.

- The value showed in "{}" are for reference only according to the former unit.

WARNING

- Should the well water not fulfil the above limits, the use of industrial water or other water sources should be considered


2.4. WATER CHECK VALVE

Attached to the unit there is a water check valve (non return valve). This component is a safety device to protect the system against back pressure, back flow and back syphonage of non-potable water into service pipe, plants and equipments.

This valve shall be installed at site.

Main Characteristics:

- Maximum working pressure: 16bar
- Maximum working temperature: 70°C (short term 90°C)
- Threaded connection R1/2"
- Available test and drain plugs 1/4"
- Length: 137mm
- Kvs value: 6
- Weight: 0.24kg

Installation guidelines:

- 1. Note flow direction (indicated by arrow) when installing the check valve.
- 2. In a drinking water supply the check valves are fitted immediately after water meter. This position ensures optimum protection for the drinking water supply.
- 3. Install in horizontal pipework with test plugs directed downwards. This position ensures optimum protection efficiency and is the best for testing the valve.
- 4. Shutt off valves should be fitted on each side of the check valve for easier and faster valve testing.
- 5. The installation location should be protected against frost and be easily accessible.

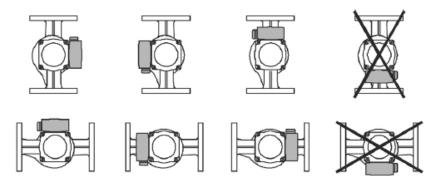
2.5. PUMP KIT PIPE INSTALLATION (ACCESSORY)

Main Characteristics:

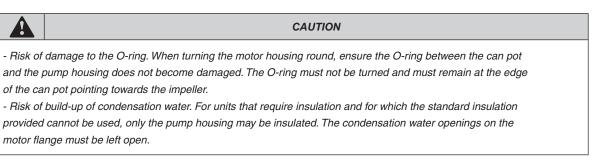
- Working range: Observe pump rating plate data.
- Maximum working temperature: +130°C (short term (2h) +140°C)
- Minimum working temperature: -20°C
- Medium flow: Water and water glycol mixture of a ratio of up to 1:1
- Minimum inlet pressure at the pump suction side in order to prevent cavitation noises at an ambient temperature of +40°C and a water temperature of Tmax:

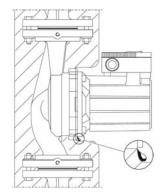
T _{max}	Rp 3/4	Rp1	Rp 1/4	Rp 32/40	DN 50	DN 65	DN 80	DN10
+50°C	0.05 bar				0.3 bar			
+95°C	0.5 bar				1.0 bar			
+110°C	1.1 bar				1.6 bar			
+130°C	2.4 bar				2.9 bar			

2.5.1. Water pump kit (Hitachi supplied)


Components supplied:

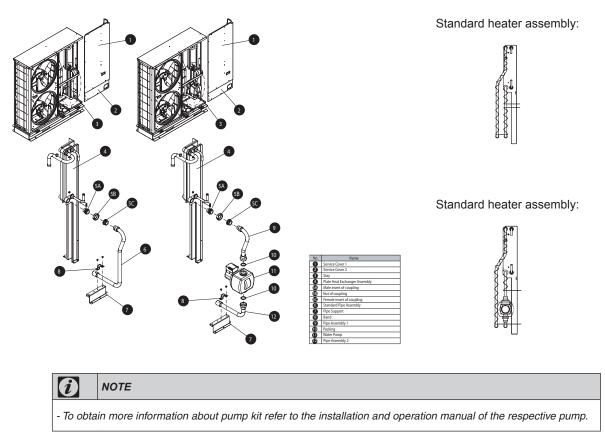
- Complete pump.
- Two-part heat insulation (for single pump only).
- 2 seals (for threaded connections only).


Installation guidelines:


- The pump must be installed in a dry, well-ventilated and frost-free place.
- Before installing the pump, remove the two halves of the heat insulation shell.
- Installation should only take place once all welding and soldering work has been completed and the pipe network has been rinsed. Dirt can have an adverse effect on the functioning of the pump.
- The pump mus be installed in an easily accessible place to facilitate inspection and replacement.

- It is recommend that shut-off devices be installed in front of and behind the pump. This will avoid the draining and refilling of the entire system in case the pump needs to be replaced.
- Assemble the pump such that water cannot drip into the pump motor or terminal box.
- Carry out stress-free installation with the pump motor shaft in horizontal plane (see installation position in the next figure).

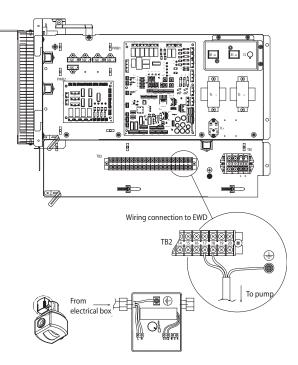
- The flow direction of the pump must correspond to the directional arrow on the pump housing.
- The motor terminal box must not point downwards (see admissible installation position in previous figure). It may be necessary to turn the motor housing round after loosening the hexagon socket screws.


Lateral view of a generic pump

CAUTION

- Assembly and installation should only be carried out by qualified personnel.
- The pumps range must not be used for drinking water or foodstuffs.

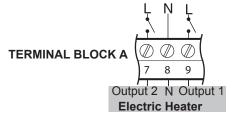
2.5.2. Pump kit assembly


2.5.3. Installation

1.Prepare the pump assembly.

- Connect the pipe assembly 1 (item 9) with the pump, placing a packing (item 10) between them carefully.
- Connect the pipe assembly 2 (item 12) with the pump, placing a packing (item 10) between them carefully.
- 2. Prepare the Yutaki for the pump installation.
 - Remove Service Cover 1 (item 1), Service Cover 2 (item 2) and horizontal stay (item 3) in order to make easier the change of piping.
 - Unscrew the nut of Rotalock coupling (item 5B) in order to disassemble the standard pipe assembly (item 6) from the unit.
 - Remove the fixing band (item 8) from the pipe support (item 7). Now it is possible to remove the standard pipe assembly.
 - Unscrew the female insert of Rotalock coupling (item 5C) from the pipe assembly (item 6). Remove rests of teflon tape on internal thread of item 5C.
- 3. Pump assembly installation on the unit.
 - 1. Add enough teflon tape to the screw of pump assembly. Connect the female insert of Rotalock coupling (item 5C) with the pump assembly.
 - 2. Place the pump assembly inside the unit and fix it to the pipe support (item 7) with the fixing band (item 8).
 - 3. Connect the pump assembly to the plate heat exchanger assembly (item 4) with the nut of Rotalock coupling (item 5B).
 - 4. Add the Water Heater (item 13) an put the insulations on the inlet water pipe (except for the pump section) as shown in Heater Assembly detail.

Service Manual

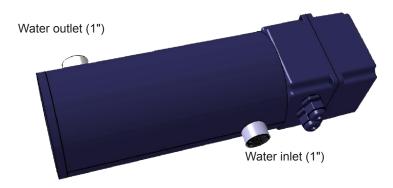


5. Assemble the horizontal stay (item 3), Service Cover 2 (item 2) and Service Cover 1 (item 1) to finish the installation.

2.6. WATER ELECTRIC HEATER INSTALLATION (ACCESSORY)

2.6.1. Three-stage water heater assembly

In a mono-energetic system (CONF 2), the electric heater is used if required to increase the supply water temperature.



- Follow installation guide attached to water electric heater.

- Ensure that maximum pressure of water circuit is inside water heater range. If necessary, install some high pressure switch to protect the heater.

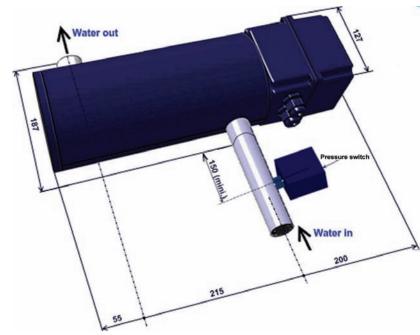
- Ensure that water heater includes protection against:
 - No water flow.
 - Water leakage or no water inside water circuit.
 - Other possible abnormal performance.

2.6.2. Water electric heater (Hitachi supplied)

General data:

Concept	Range	
Electric power supply	1~ 230 V 50 Hz or 3N~ 400 V 50 Hz (See wiring connection diagram)	
Electric power input	6 kW	
Regulation	3 steps, 2/ 4/ 6 kW	
Dimensions	475 mm x 186 mm x 145 mm	
Weight	3.920 kg	
Standards	EN60335-1; EN60335-2-40	

Working range:

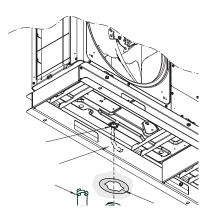

Concept	Range		
Concept	Min.	Max.	
Water flow	0.4 m3/h	4 m3/h	
Water temperature	+20°C	+65°C	
Water pressure	1 bar	7 bar	

Supplied components:

- Water Electric Heater
- Low water pressure switch:
 - 1 bar set (Max. pressure 7 bar)
 - Auxiliar Contact N.O. (16 A, 250 V)
- Water Electric Heater Manual

Water pipe installation Service Manual

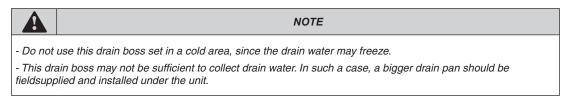
Installation


The heater will be installed horizontally with inlet piping water down and outlet piping water up to purge the air naturally inside the heater.

- Circulation heater will be fixed with inlet and outlet piping.
- The free space for the installation of the heater should be at least 650 mm x 200 mm x 200 mm.
- Forced ventilation of the area is not necessary, simply avoid the containment of this area to protect against a possible rise in temperature.
- Ensure that there are no flammable substances less than 500 mm near to the heater.
- Ensure that a bleed-tap is automatically installed on the hydraulic.
- Provide easy access for electrical connections and easy disassembly of the heater for servicing.
- The water heater connection is made with threaded fittings size 1"male; ensure to seal inlet and outlet connections and a good anchor to the wall or floor supports.
- These supports must be within 100 mm maximum from heater inlet & outlet.
- Ensure that the hydraulic system has a device allowing to reduce water pressure under 7 bar.
- Check there aren't water leakages in connections before switching the heater.
- Check that the hydraulic connections are tight.
- Check that the water flow is constant and that the purge of the circuit is correct.
- Check that the protections and electrical connections are correct regarding at the electrical diagramm.
- Install low water pressure switch according to water heater instructions.
- Install water thermistor sensor (TSVP) as near as possible to the heater water outlet.

2.7. DRAIN PIPING

• Drain discharging boss


When the base of the Yutaki is temporarily used as a drain receiver, the drain boss should be connected to the drain pipe. See the below figure for further details.

Model	Applicable Model
DBS-26	RHUE(3-5)A(V)HN

Connection procedure

- 1. Insert the rubber cap into the drain boss up to the extruded portions.
- 2. Insert the boss into the unit base and turn approximately 40 degree counterclockwise.
- 3. The outer diameter section of the drain boss is 32 mm.
- 4. A drain pipe should be field-supplied.

39

This chapter describes the procedures to carry out the electrical wiring connections for the Yutaki and its control system.

CONTENTS

3.1.	Ge	eneral check41
3.2.	Ele	ectrical wiring connection
3.2 3.2		Field minimum wire sizes for the power source 43 Main switches and fuses 43
3.3.	Se	tting the DIP switches
3.4.	LE	D indication
3.5.	Pu	mp electrical installation
3.5		Electrical connection
3.5 3.5		Operation 50 Troubleshooting 51
3.6.	He	ater electric installation
3.7.	Ele	ectrical wiring between Yutaki and System Controller53
3.8.	Ele	ectrical wiring diagrams53
3.8 3.8		Electrical wiring diagram for models RHUE(3~5)AVHN

3.1. GENERAL CHECK

DANGER

- Before installing the electrical wiring or before performing a periodical check, turn OFF the main switch of the Yutaki unit.
- Make sure that all the power sources are switched OFF.
- Check that the Yutaki fans have stopped before electrical wiring work or periodical check is performed.
- To prevent the wires from being damaged, avoid to place them touching the pipes, the plate or cutting edges as well as the electrical components inside the unit.
- Tightly secure the wires with the cord clamp inside the unit.
- Check that the screws for terminal block are tightened.
- Check that the earth wire is securely connected, tagged and locked in accordance with national and local codes.

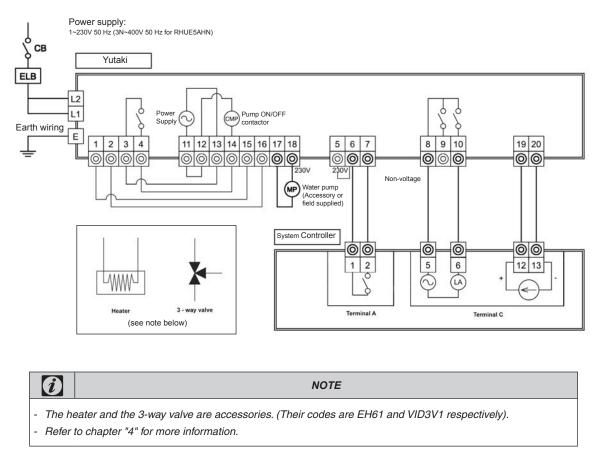
CAUTION

- Protect the wires, drain pipe and electrical parts from rats or other small animals. Otherwise, unprotected parts may be damaged.
- Wrap the accessory packing around the wires, and plug the wiring connection hole with the seal material to protect the product from any condensed water and insects.
- When using conduit, lead the wires through the knockout hole on the side cover.
- Secure the cable of the remote control switch with the cord clamp inside the electrical box.
- Electrical wiring must comply with national and local codes. Contact your local authority in regards to standards, rules and regulations.
- Connect a fuse of specified capacity.

Make sure that the field-supplied electrical components (main power switches, circuit breakers, wires, connectors and wire terminals) have been properly selected according to the electrical data indicated. Make sure that they comply with national and regional electrical codes.

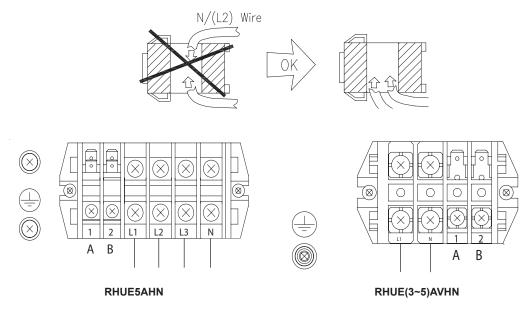
Following the Council Directive 2004/108/EC(89/336/EEC), relating to electromagnetic compatibility, next table indicates the maximum permissible system impedance Zmax at the interface point of the user's supply, in accordance with EN61000-3-11.

MODEL	Zmax (Ω)
RHUE3AVHN	0,41
RHUE4AVHN	0,41
RHUE5AVHN	0,29
RHUE5AHN	-


Harmonics situation of each model regarding IEC 61000-3-2 and IEC 61000-3-12 is as follows:

MODELS SITUATION REGARDING IEC 61000-3-2 AND IEC 61000-3-12 Ssc "xx"	MODELS	Ssc "xx" (KVA)
Equipment complying with IEC 61000-3-2 (Professional use)	RHUE5AHN	-
Equipment complying with IEC 61000-3-12	RHUE3AVHN RHUE4AVHN RHUE5AVHN	-

Check that the power supply voltage is within +/-10% of the rated voltage. And that power supply has an impedance low enough to warranty not reduce the starting voltage more than 85% of the rated voltage.


41

3.2. ELECTRICAL WIRING CONNECTION

The correct electrical wiring connection for the unit is shown below.

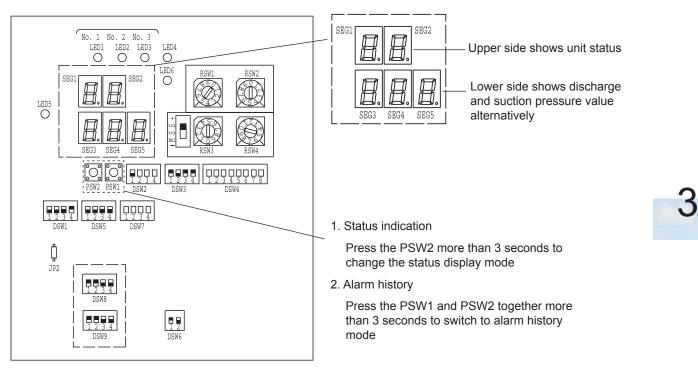
 Connect the three-phase power supply source wires L1, L2, L3 and N (for 400V 50Hz) to the terminal board in case of RHUE-5AHN unit, and L1 and N in case of RHUE(3~5)AVHN units. Connect the ground wire to the plate in the electrical box.

DANGER
- Allways connect ground wires to the respective terminals or plates to avoid electrical hazard.

3.2.1. Field minimum wire sizes for the power source

			Power source cable size	Signal cable size	
Model	Power source	Max. current (A)	EN60 335-1 ①	EN60 335-1 0	
RHUE3AVHN		18	4.0 mm ²		
RHUE4AVHN	1~ 230V 50Hz	18	4.0 mm ²	0.75 mm ²	
RHUE5AVHN		26	6.0 mm ²	0.75 mm²	
RHUE5AHN	3N~ 400V 50Hz	11	2.5 mm ²		

3.2.2. Main switches and fuses


Select the main switches (current breaker) according to the next table:

Model	Power source	CB (Circuit Break) (A)	ELB (Earth Leakage Breaker) (no. poles/A/ma)
RHUE3AVHN		32	
RHUE4AVHN	1~ 230V 50Hz	32	2/40/30
RHUE5AVHN		32	
RHUE5AHN	3N~ 400V 50Hz	20	4/40/30

3.3. SETTING THE DIP SWITCHES

Number and position of DIP switches

The PCB of the Yutaki unit contains 9 DIP switches. DIP switches location on the PCB:

	NOTE	
- The mark	"■" indicates the position of dips switches.	
- No mark "∎" or "not available" indicates pin position is not affecting.		
- The figures show the settings before shipment or after selection.		
- "Not used	" means that the pin must not be changed. A malfunction might happen if changed.	

WARNING

Before setting dips switches, first turn the power source off. Otherwise, the changes will not be taken into account.

• DIP switch factory set for all units:

DSW	RHUE3AVHN	RHUE4AVHN	RHUE5AVHN	RHUE5AHN
DSW1	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW2	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW3	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW4	ON	ON	ON	ON
	12345678	12345678	12345678	12345678
DSW5	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW6	ON	ON	ON	ON
	1 2	12	12	12
DSW7	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW8	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW9	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4

Rotary switches

• DSW1: optional functions

Function	Set PINs
Factory setting	ON 1 2 3 4
PCB self checking	ON 1 2 3 4
Pump / High cut test	ON 1 2 3 4
Optional functions setting mode	ON 1 2 3 4
Compressor enable	ON 1 2 3 4

• DSW2: unit control configuration / unit HP

Function		Set PINs	Function	Set PINs
Remote ON/OFF signal	Pulse signal commissioning	ON 1 2 3 4	3HP unit	ON 1 2 3 4
	Level signal (System controller)	ON 1 2 3 4	4HP unit	ON 1234
PHEX flow direction	(Not used)	ON 1 2 3 4	5 HP unit	ON 1 2 3 4
PHEX now direction	Counter flow (Yutaki)	ON 1 2 3 4	Not used	ON 1 2 3 4

• DSW3: unit control configuration

Function	Set PINs
Yutaki unit	ON 1 2 3 4
Available low ambient for cooling mode (Not available)	ON 1 2 3 4
Heating only (Not used)	ON 1 2 3 4
Set temp by rotary switch (Commissioning)	ON 1 2 3 4
Set temp by system controller (4 to 20 mA)	ON 1 2 3 4

• DSW4: unit model confgurations

Function	Set PINs
(Not used)	ON 1 2 3 4 5 6 7 8
(Not used)	ON 1 2 3 4 5 6 7 8
Heat pump	ON 12345678
Yutaki heat pump	ON 1 2 3 4 5 6 7 8
(Not used)	ON 12345678

Function	Set PINs
(Not used)	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Not used)	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R410A	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CO ₂ (Not used)	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Power save (Max Hz=Nominal)	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Not available)	ON 000 12345678
230 V	ON 000000000000000000000000000000000000
400 V	ON 000000000000000000000000000000000000

• DSW5: H-LINK available / settings

Function	Set PINs
Not used	ON 1 2 3 4
Not used	ON 1 2 3 4

• DSW6: end resistance / fuse recovery

Function	Set PINs
Not used	ON 12
Not used	ON 12

• DSW7: unit control configuration

Function	Set PINs
Three phase	ON 1 2 3 4
Single phase	ON 1234
Not used	ON 1 2 3 4
Inverter compresor	ON 1 2 3 4
Cancel zero-reset expansion valve	ON 1 2 3 4
Liquid injection enable	ON 1 2 3 4

• DSW8 (Pd) / DSW9 (Ps): setting Pd / Ps pressure sensor type

Function	Set PINs
Not used	ON 1 2 3 4
Pressure sensor R410A	ON 1 2 3 4

• Jumper lead setting (JP2): Automatic restart after power failure

Keep the same status as before. Setting before shipment:

JP2 1

0 = Open; 1 = Short circuit

The function selection using the jumper lead setting is shown in the table below.

Setting	Function	Details
0	Enable	If this function is 'Enable', in case of power failure the unit will restart
1	Disable	automatically once the power is recovered

3.4. LED INDICATION

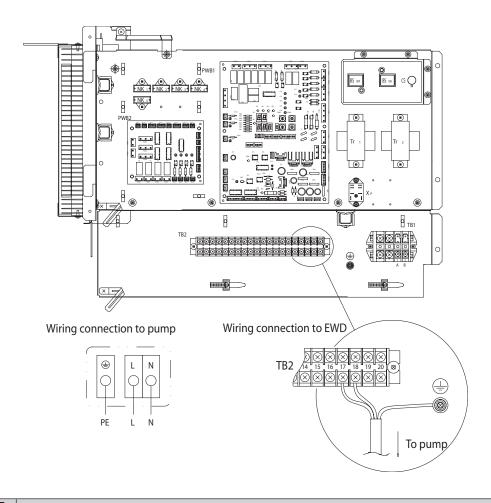
LED1, LED2 and LED3: Power supply indication

Status	LED1	LED2	LED3
Power supply ON	ON	OFF	OFF
Power supply OFF	OFF	OFF	OFF
	Not available for Yutaki		le for Yutaki

LED4: Operation status indication

Status	LED4
Unit stopped	OFF
Unit running	ON
Alarm	OFF

• LED5: Alarm indication


Status	LED5
Normal	OFF
Alarm	ON

LED6: Setting mode indication

Status	LED6
Setting mode disable	OFF
Setting mode enable (DSW1#3: ON)	ON

3.5. PUMP ELECTRICAL INSTALLATION

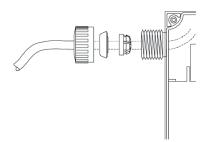
Yutaki is controlling the pump by itself. The pump kits CCW11 or CCW21 must be always connected according to the wiring below:

i

NOTE

- The generic pump must be connected to terminals 17 and 18 in the terminal board (TB2).
- Terminals 17 and 18 were designed for 230V/3A. Take it into account when installing the pump. An external relay might be necessary. Do not install a pump with more than 3A consumption.
- Earth screw terminal is used for both pump and power supply wiring connection.
- Install a pump accordingly to the necessary supply water delivery.
- Hitachi recomends the use of accessory pump kits CCW11 or CCW21.

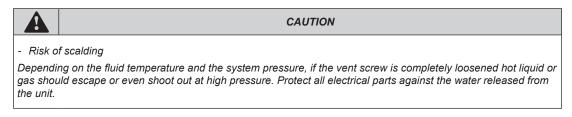
Hitachi pump kit accessory name	Code	Figure
CCW11	9E500001	
CCW21	9E500002	


Follow the procedure described in chapter "2" to assemble the pump kit. Remove the front cover according to the procedures described in chapter "9".

A	CAUTION
- The pumps must not be used for drinking water or food stuffs.	

3.5.1. Electrical connection

4	DANGER
- Due to	the presence of a hazardous contact voltage (capacitors).


The supply cable must be laid in such a way that it never touches the pipework and/or the pump and motor casing. To guarantee protection against dripping water and to ensure strain relief of the cable, use a cable gland (PG 13.5), a connecting cable with an external diameter of 10-12 mm must be used and assembled as shown in the next figure.

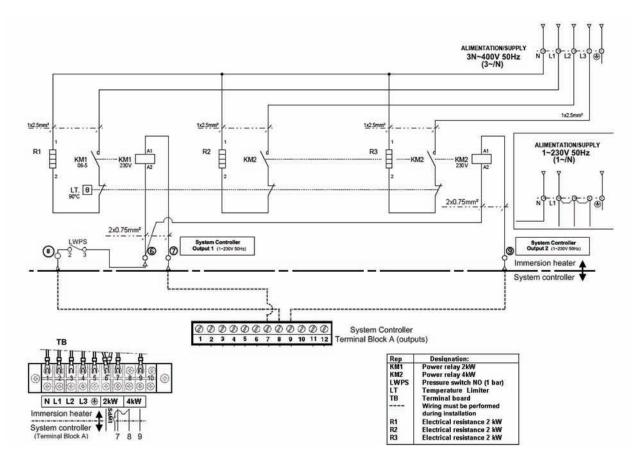
3.5.2. Operation

The system must be filled and vented properly. The pump rotor chamber will vent automatically after a short running period. Brief dry running will not damage the pump. The pumps wich are equipped with vent screws can be ventilated as follows if necessary:

- 1. Switch off the pump.
- 2. Close the shut-off valve on the discharge side.

3.5.3. Troubleshooting

Problem	Cause	Remedy		
	Electrical fuse faulty / has switched off	Change fuse/switch on electrical connection. Should the fuse blow several times in a row: Check the pump for electrical faults Check the pump mains cable and electrical connection		
	Residual current operated circuit-braker has triggered	Switch residual current operated circuit-breaker back on Should the circuit-breaker trip several times in a row: Check the pump for electrical faults Check the pump mains cable and electrical connection		
Motor is switched	Undervoltage	Check the voltage at the pump (observe rating plate data)		
on but falls to run	Winding damage	Call customer services		
	Faulty terminal box	Call customer services		
	Faulty capacitor (with 1~ only). Terminal box type 1/2/3/6/7	Replace the capacitor		
	Speed selection connector not installed Terminal box type 3/4/5	Fit speed selection connector		
	Bridge not or incorrectly assembled Terminal box type 6/7 for 1~3- operation: green LED on	Correctly assemble bridge, see connection diagrams		


Model	Protection type (Cut-out)	Connection terminals				
TOP-S 25/7	Auto reset		1~ 230 V, 50 Hz			
TOP-S 25/10	Manual reset		1~ 230 V, 30 HZ			

3.6. HEATER ELECTRIC INSTALLATION

- Install the unit in a restricted area not accessible by the general public.
- Follow local codes and regulations when selecting field wires, circuit breakers and earth Leakage breakers. (See Heater manual).

Customer connection:

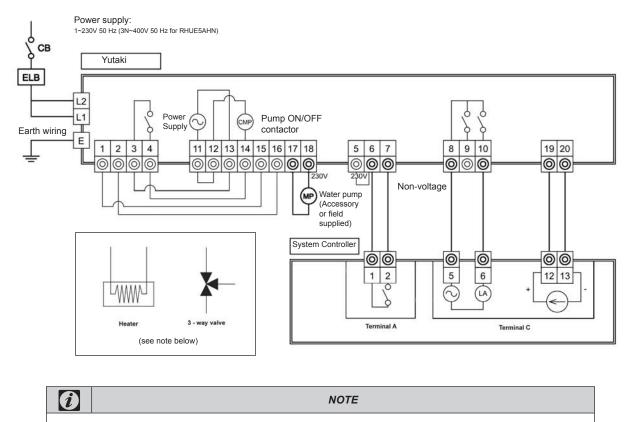
Operation:

The heater operation is controlled by the System Control. The heating needings are calculated and regulated by the heat pump controler by using 3 steps:

Regulation step	R1 - electric resistance 1	R2 - electric resistance 2	R3 - electric resistance 3	Total power		
Step 0:	OFF	OFF	OFF	0 kW		
Step 1:	ON	OFF	OFF	2 kW		
Step 2:	OFF	ON	ON	4 kW		
Step 3:	ON	ON	ON	6 kW		

Troubleshooting

Before checking ensure to disconnect any electrical power supply to the heater. In case of non-functioning heater, the following items should be checked:


- Signals to the heat pump are correctly connected.
- Fuse protection of heater are in good condition.

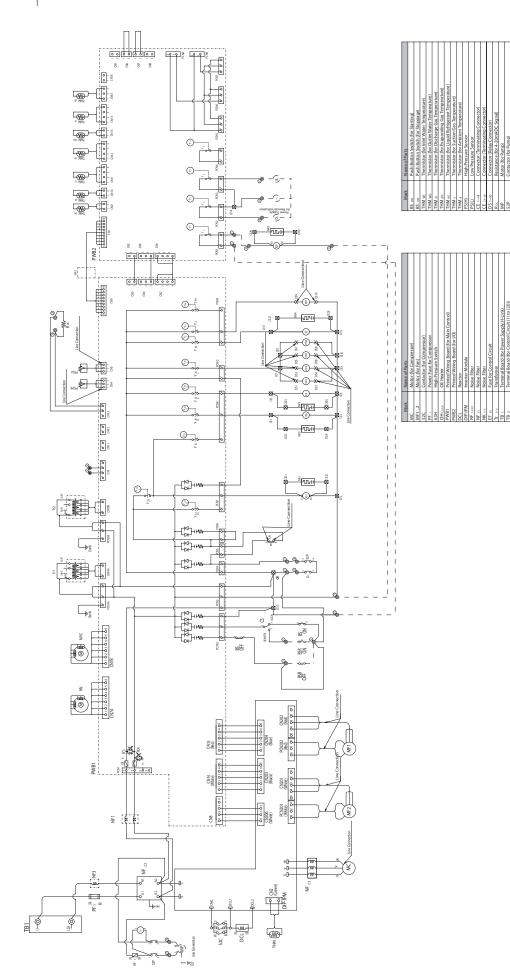
- Water flow is assured permanently
- There is a minimum water pressure of 1 bar and LPSW has not cut out the circuit
- Thermostat button and ensure that it has not cut out by exceding temperature

Press firmly on the safety manual reset button located between the 2 relays electrical power to rearm the safety cut out (It may occur that safety cut out is triggered due to a stoppage of water flow).

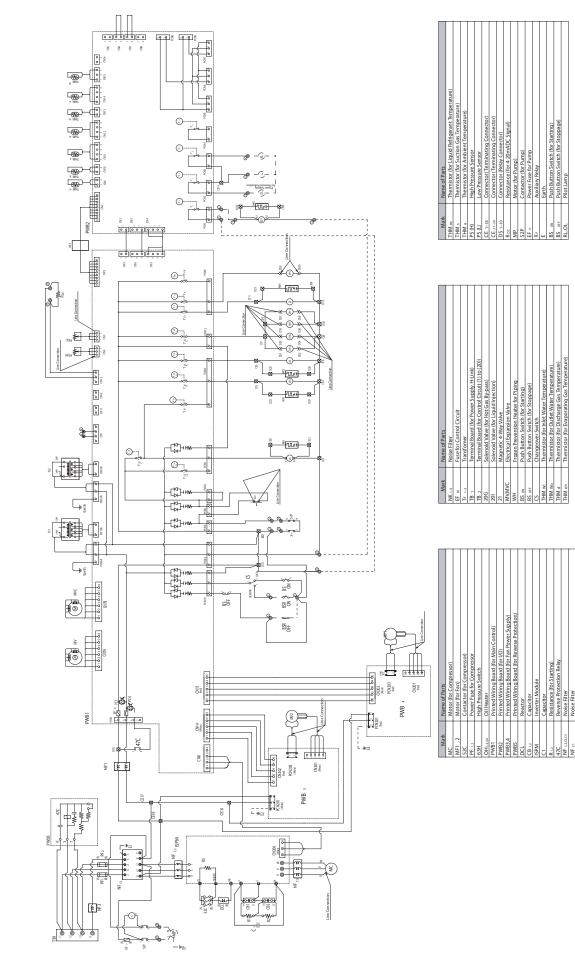
In case of non-function, remove circulation heater.

3.7. ELECTRICAL WIRING BETWEEN YUTAKI AND SYSTEM CONTROLLER

- For details of connection between Yutaki and system controller, refer to chapter "4".
- The heater and the 3-way valve are accessories. (Their codes are EH61 and VID3V1 respectively).
- Refer to chapter "4" for more information.


3.8. ELECTRICAL WIRING DIAGRAMS

This sub-chapter shows the electrical wiring diagram for each unit of the Yutaki series.


Unit model	Page number
RHUE(3~5)AVHN	54
RHUE5AHN	55

SMGB0044 rev.0 - 10/2008

Electrical wiring between Yutaki and System Controller

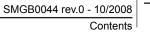
54

3.8.2. Electrical wiring diagram for RHUE5AHN

This chapter presents the control system flowcharts for the Yutaki series.

CONTENTS

4.1.	Sy	stem description and configurations	59
4.1	.1.	Description	
4.1	.2.	System overview	
4.1	.3.	Contents of the controller pack	60
4.1	.4.	Quick-start installation steps	60
4.2.	Sy	stem controller	61
4.2	.1.	Software version	
4.2	.2.	System controller - overview	61
4.2	.3.	Operation & user interface	62
4.2	.4.	Abbreviations & terminology	62
4.2	.5.	System component connections	65
4	.2.5.1	. Heat pump	65
4	.2.5.2	Electric heater	65
4	.2.5.3	. Boiler	
4	.2.5.4	. Mixing valve	
4	.2.5.5	. Secondary pump	
4	.2.5.6	. Domestic hot water (DHW)	67
4	.2.5.7	. RF receiver box	67
4	.2.5.8	DHW electric heater	67
4	.2.5.9	DHW time clock	
4	.2.5.1	0. Tariff-switching device	
4	.2.5.1	1. Temperature sensors	
4.2	.6.	User interface	69
4	.2.6.1	. Display	69
4	.2.6.2	Controls	
4.2	.7.	Installation configuration settings	70
4	.2.7.1	Reviewing and setting the installer parameters	70
4	.2.7.2	Installer parameter list	71
4.2	.8.	System testing	72
4	.2.8.1	System start-up	72
4	.2.8.2	System test	
4	.2.8.3	. Reviewing the operational data	73
4	.2.8.4	Manually overriding the outputs	74
4.2	.9.	Troubleshooting	75
4	.2.9.1	Fault codes and diagnostics	75
4	.2.9.2		
4.3.	Ap	plications	76
4.3	.1.	Application configurations	
4.3	.2.	Principle of Bi-Valent or Mono-Energetic Operation	
4.3	.3.	Mono-valent systems 'conf 1'	78
4.3	.4.	Mono-energetic systems 'conf 2'	
4.3	.5.	Bi-Valent parallel systems - direct 'conf 3'	80
4.3	.6.	Bi-Valent system - parallel operation - mixing loop 'conf 4'	81
4.3	7	Bi-Valent system - serial operation 'conf 5'	


SMGB0044 rev.0 - 10/2008 Contents

4.4.	Supply setpoint calculation	83
4.5.	Heating control functions	84
4.5.	1. Heating circuit - general	84
4.5.	2 Heating characteristic curve (OTC control)	
	5.2.1. Room setpoint parallel shift	
	5.2.2. Room temperature compensation	
4.5.		
4.5.	-	
4.5.		
4.5.		
4.5.		
4.5.		
4.6.	DHW control functions	92
4.6.	1. DHW Storage Tank Loading	
4.6.	2. DHW Control	
4.6.	3. Maximum DHW Loading Time	94
4.6.	C C C C C C C C C C C C C C C C C C C	
4.6.	5. Using the Boiler for DHW loading	
4.6.		
4.6.		
4.7.	Heatpump control functions	97
4.7.		
4.7.		
4.7.		
4.7.		
4.7.	· · · · · · · · · · · · · · · · · · ·	
4.7.	6 Tariff Switch (Heat Pump blocking) Input	100
4.8.	Boiler control functions	101
4.8.		
4.8.	2. Supply-Return Difference Check	
4.8.		
4.8.	4. Boiler Waiting Time	
4.8.	5. Maximum Outdoor Temperature for Boiler Operation	104
4.9.	Electric heater control functions	104
4.9.	1. Electric Heater Control	
4.9.		
4.9.		
4.9.	•	
4.9.		
4.10.	Mixing valve control functions	108
A 10	0.1. Mixing Valve Control	100
	0.2. Mixing Valve Control	
	0.3. Mixed Heating Circuit Maximum Temperature Limit Protection	
4.10		

57

4.11. General funcitons	
4 11 1 System Frost Protection	
	1
•	ors)
4.11.4. Ociced function (arying for new not	
4.12. Parameter tables	111
4.12.1. Installer Parameters	
4.12.2. Engineering Parameters	
4.13. Conversion table: heat pump suppl	y temperature to ma 114
4.14. Sensor resistance tables	
4.15. Technical data	
	524 A)
4.15.3. Outdoor Temperature Sensor (XEK	35438 A) 116
4.16. System MMI Pack (Room unit and	RF receiver)117
4.16.1. Room Unit installation guide	
0	
·	
•	
	e)
-	
•	lications
	122 om Unit
-	
	efinition
-	
0 0	
0	
4.16.8.6. FAQ's	
4.17. Sensor pack	
4 17 1 Water Temperature Sensor	
-	

4.1. SYSTEM DESCRIPTION AND CONFIGURATIONS

4.1.1. Description

The System Controller is a configurable outdoor-temperature-compensated heating controller.

The System Controller is a part of the Heat Pump Controller Pack and is linked to the other components of the hydronic control system, such as the wireless Room Unit, RF Receiver, Water Temperature Sensor and Outside Sensor.

The Room Unit is connected to the System Controller via radio signals, enabling simpler installation and offering the end user a choice of how the system operates.

The System Controller operates the heat pump, electric heater or boiler, valves and pumps to ensure optimal operation of the heating system.

The System Controller has an LCD display with a simple menu structure operated by five buttons, so that it can easily be configured to many different applications with specific installation settings.

	\boldsymbol{i}	NOTE
-		performing any work with this product (installation, mounting, start-up), all instructions given by the acturer and in particular the safety instructions provided in the installation instructions must be followed.
-	The S	stem Controller may only be installed and mounted by authorised and suitably trained personnel.
-	lf the ι invalid	init is modified in any way, except by the manufacturer, all warranties concerning operation and safety are ated.

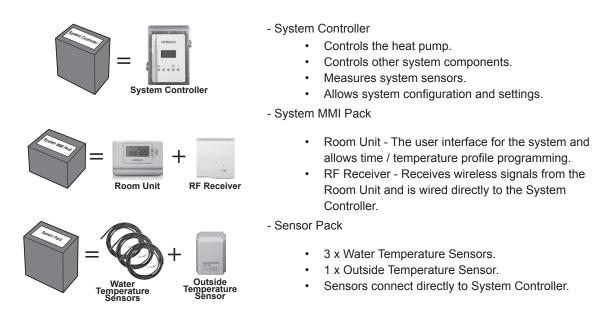
- Make sure that local standards and regulations are respected at all times.

- Use only accessory equipment that comes from or has been approved by Honeywell.

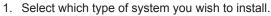
CAUTION

Disconnect the mains power supply before you start to install the System Controller. Do not reconnect the power supply until you have completed all installation work.

Before the controller is dismantled, disconnect the main power supply.


4.1.2. System overview

The System Controller is designed for controlling the heat pump in a mono-valent, mono-energetic or bi-valent heating system. It provides efficient control and reduces energy use while maintaining comfort in the building.


- Modulating control of heat pump.
- · Control of an Auxiliary heat source (electric heater or boiler).
- · Outside temperature compensated (OTC) control.
- Control of heating circuit pumps/valves and, optionally, domestic hot water storage.
- System frost protection.

The functionality of the System Controller depends on the installed components and the selected configuration. The System Controller is designed in a way that it can be configured and upgraded to meet many application requirements.

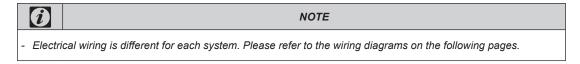
4.1.3. Contents of the controller pack

4.1.4. Quick-start installation steps

- 2. Determine where the various system components should be installed.
- 3. Mount the system components- for System Controller and Sensors. For room Unit and RF Receiver : see installation instructions in the System MMI Pack.
- 4. Connect the Sensors, RF Receiver, heat pump and other system components to the System Controller according to your selected system configuration.
- 5. Change installer parameters on the System Controller according to your selected system configuration.
- 6. Review settings and time/temperature profile on the Room Unit (see installation instructions in the System MMI Pack).
- 7. Test the system.
- 8. Show end-user how to operate the Room Unit.
- 9. Leave literature pack with the end-user.

The System Controller can be used for several different hydraulic system configurations. The hydraulic configuration is selected by an installer parameter (CONF). Each of the system configurations is described in more detail on the following pages.

Hydraulic Configuration	Description	Heat Pump	Electric Heater	Boiler	DHW	Direct circuit	Mixing circuit
CONF 1	Mono-Valent System Heat Pump only Direct circuit	х			(X)	х	
CONF 2	Mono-Energetic System Heat Pump and Electric Heater Direct circuit	х	х		(X)	х	
CONF 3	Bi-Valent Parallel System Heat Pump and Boiler Direct circuit	х		х	(X)	х	
CONF 4	Bi-Valent Parallel System Heat Pump and Boiler Mixing circuit	х		х			х
CONF 5	Bi-Valent Series System Heat Pump and Boiler Mixing by-pass circuit	х		х	(X)		х


DHW Storage

The System Controller can also be used in a system which has a DHW storage tank, with either a diverting valve or pump. If the system has a separate DHW pump, then a hydraulic separator or buffer tank has to be used to ensure proper hydraulic balancing of the system.

The DHW system type is selected by an installer parameter (P1).

Secondaryump

When a hydraulic separator or buffer tank is used in CONF 1 & 2, the system requires a secondary pump to be controlled. In this case it is necessary to set installer parameter P2 to 1.

4.2. SYSTEM CONTROLLER

4.2.1. Software version

This documentation refers to the functionality of software version v7 of the System Controller. The software version is shown on the display for 2 seconds during the power-up sequence. The software and hardware version numbers are also printed on the label inside the unit, attached to the mains transformer.

LCD display Software version shown at power-up

System Controller		
08 39	H01/V07	

Label Production date (year:08, week:39) Hardware version H01 Software version V07

4.2.2. System controller - overview

The System Controller is designed for controlling the heat pump in a mono-valent, mono-energetic or bivalent heating system. It provides efficient control and reduces energy use while maintaining comfort in the building.

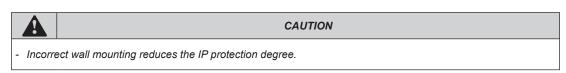
- Modulating Control of Heat Pump
- · Control of an Auxiliary Heat Source (electric heater or boiler)
- Outside Temperature Compensated (OTC) Control
- Control of Heating Circuit pumps/valves and, optionally, domestic hot water storage.
- System Frost Protection

The functionality of the System Controller depends on the installed components and the selected configuration. The System Controller is designed in a way that it can be configured and upgraded to meet many application requirements.

4.2.3. Operation & user interface

Please refer to the System Controller Installation Guide for details on the user interface of the system controller, and how to operate the device.

4.2.4. Abbreviations & terminology

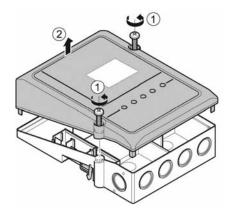

Mono-Valent	One heating source (electric heat pump)	TSUP	Supply water temperature
Mono- Energeti	COne energy source (electric heat pump and electric heater)	TRET	Return water temperature
Bi-Valent	Two heating sources (electric heat pump and gas/oil boiler)	TDHW	Dhw temperature
OTC	Outside temperature compensated control	TEXT	Outside (external) air temperature
DHW	Domestic hot water	TMIX	Mixed water temperature
Zone 1	The main heating loop controlled by the system controller.	TR1	Room temperature
Zone 2	The extension mixed heating loop controlled by the extension controller.	ו V	Mixing valve position
		FAUL	Fault status
		SSUP	Overall system supply setpoint

- **S1** Zone 1 supply setpoint
- SR1 Zone 1 room temperature setpoint
- S2 Zone 2 supply setpoint
- DSETDhw setpointSDHWDhw supply setpoint

Installing the System Controller

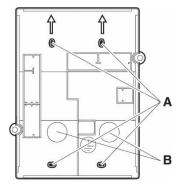
Mounting

The system controller is designed to be mounted either directly onto the wall or on a DIN-rail.


• Fitting or removing the front cover

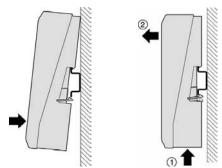
To remove the front cover from the mounting base

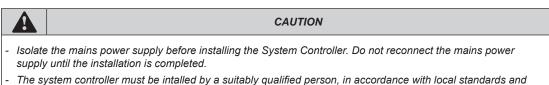
- 1. Unscrew the two retaining screws 1.
- 2. Pull the front cover off the mounting base (2).


To fit the front cover onto the mounting base:

- 1. Line up the mounting base and front cover.
- 2. Push the front cover firmly onto the mounting base.
- 3. Secure the front cover using the two retaining screws.

Wall Mounting


- Four 4.0 mm holes for installation are located on the System Controller mounting base for wall mounting.
- Before wall mounting, remove the four break-outs (A).


- For wire entry, remove the appropriate break-outs in the mounting box.
- Use screws (max diameter 4mm) and wall plugs suitable for the wall material (not included).

Mounting on a DIN rail

- The system controller can easily be clicked on to a DIN-rail via the locating clips on both sides of the mounting base.
- 1. Hold the controller at an angle, and hook onto the top of the DIN-rail.
- 2. Push the controller straight and against the DIN-rail.
- 3. The locating clips will snap on the bottom of the DIN-rail.
- 4. For removal, bend the clips ① and pull the controller off the DIN-rail ②.

Electrical wiring

 The system controller must be intalled by a suitably qualified person, in accordance with local standards and guidelines.

63

The mounting base has two options for wiring: wall or surface-wiring, with wires from the rear or wiring from the bottom or sides. For safety reasons, the power source wiring and signal wires are separated and in different compartments of the mounting base

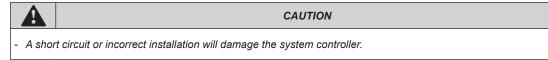
- On the left side the signal wiring is laid out.
- On the right side, the power source and earth wiring are situated (power and output relay contacts).

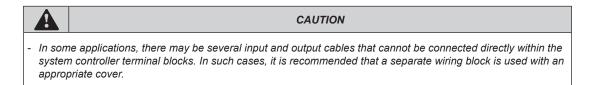

· Wiring holes for wall or surface-wiring

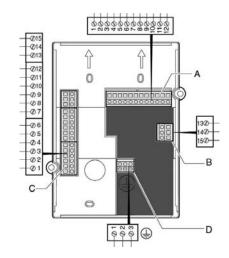
When wiring through the back of the mounting base remove the breakout ports from the wiring holes at the rear base.

• Wiring holes for bottom or side-wiring

When wiring through the bottom or side of the mounting base, insulated cables must be used. Use appropriate cable glands (not include with the System Controller).


To install the cable glands, remove the breakout ports from the wiring holes at the required location in the base.


Wiring connections


	CAUTION
	e electronic components within the W6560C are susceptible to damage caused by static electricity. perefore, appropriate measures must be taken when handling the device:
	Do not touch internal components.
-	Touch an earthed piece of metal to discharge static electricity from your body.

The terminal blocks

The terminal blocks (A, B and C) have the same terminals and are suitable for wires from 0.3 to 1.6mm2. The earth connector block D is suitable for wires from 0.3 to 2.7mm2.

Main power supply – Terminal block B

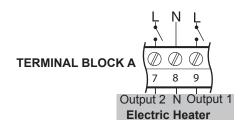
The main power connection (230VAC) is wired to connector block B, terminals 13 and 15.

N -	_	13	\bigcirc
N -		14	\bigcirc
L-		15	\bigcirc

• Earth terminals – Terminal block D

The earth wires coming from the power source wiring and the pump, mixing valve, heat pump and boiler, can be combined and connected to connector block D. All three terminals are internally connected.

4.2.5. System component connections

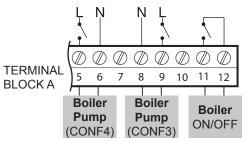

◆ 4.2.5.1. Heat pump

The System Controller controls the heat pump outlet water temperature by a 4-20mA signal. When there is no demand for the heat pump to be on, the System Controller directly switches the heat pump off. The heat pump can signal to the System Controller when it has a fault so that a fault code can be displayed and appropriate action taken.

	NOTE
- The 4-20mA signal wire has polarity.	

◆4.2.5.2. Electric heater

In a mono-energetic system (CONF 2), the electric heater is used if required to increase the supply water temperature. P19 Waiting time for boiler/electric heater

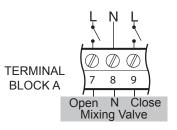


◆4.2.5.3. Boiler

♦ 4.2.5.4.

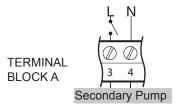
In a Bi-Valent System (CONF 3,4,5), the boiler is used when the heat pump cannot achieve the desired supply temperature on its own. Set the minimum on and off times (P17 and P18), according to boiler type, to prevent inefficient short-cycling.

- P17 Boiler Minimum ON Time
- P18 Boiler Minimum OFF Time
- P19 Waiting time for boiler/electric heater



In a mixing system (CONF 4,5), the mixing valve is controlled to maintain the required supply temperature. Set the parameter (P9) according to the running time of the actuator used.

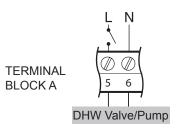
P9 Actuator Run Time for Mixing Valve



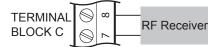
♦ 4.2.5.5. Secondary pump

The secondary pump is the circulating pump for the main heating loop. In mono-valent and mono-energetic systems (CONF 1, 2), a secondary pump is only required if a hydraulic separator or buffer tank is used and in this case it is necessary to set the parameter (P2) to 1. Before the heating is switched off, the pump continues to run for a short time - pump overrun time (P3) – to distribute the energy through the system.

P2 Secondary Pump Selection (CONF 1,2)

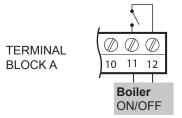

P3 Pump Overrun Time

◆ 4.2.5.6. Domestic hot water (DHW)


The System Controller can use the heat pump and boiler (bi-valent systems) to maintain the DHW storage tank at the DHW setpoint (P10).

- P10 DHW setpoint
- P11 DHW control differential
- P12 DHW supply offset

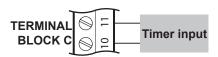
♦ 4.2.5.7. RF receiver box


The RF Receiver is connected to the polarity-free terminals 7 and 8. The Room Unit and RF Receiver are already configured to communicate with each other. If the Room Unit or RF Receiver is replaced, it is necessary to use the RF Binding procedure (see 9.2)

♦ 4.2.5.8. DHW electric heater

(CONF 1 and 2 only)

If the DHW storage tank contains a thermostatic electric heater, the System Controller can enable it if the heat pump cannot achieve the required DHW temperature by itself. The controller waits 10 minutes after DHW storage heating is required before enabling this output.


♦ 4.2.5.9. DHW time clock

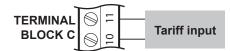
It is possible to connect an external time clock to the System Controller to provide time-of-day switching of the DHW storage. The input can be configured so that heating of the DHW storage tank is blocked (disabled) on either an open circuit or closed circuit condition.

P24 Configuration of Tariff/Timer Input

Note that the Tariff/Timer input (terminals 10 & 11) can be used for DHW Time Switching OR Tariff-Switching, not both.

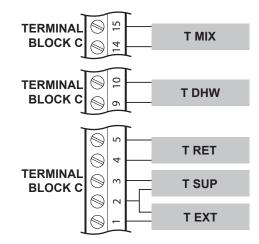
P24	Open Circuit on terminals 10/11	Closed Circuit on terminals 10/11			
0	Tariff/Timer Input is ignored				
1	Tariff/Timer input is used for Heat Pump blocking				
2	Tariff/Timer input is used for Heat Pump blocking				
3	DHW is blocked	DHW is enabled			
4	DHW is enabled	DHW is blocked			

♦ 4.2.5.10. Tariff-switching device


If a tariff-switching device (load shedding management) is provided by the electricity utility, it can be used to prevent the heat pump switching on, and the System Controller will use the boiler instead to satisfy the heating requirements (bi-valent systems only). The input can be configured so that the heat pump is blocked (disabled) on either an open circuit or closed circuit condition.

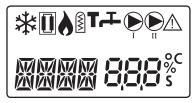
P24 Configuration of Tariff/Timer Input

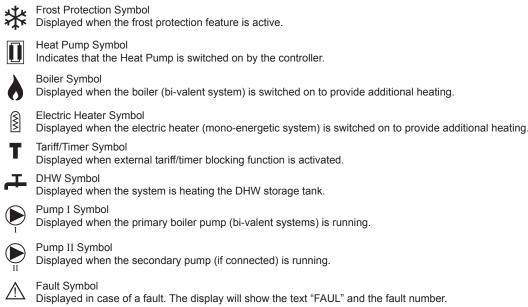
Note that the Tariff/Timer input (terminals 10 & 11) can be used for DHW Time Switching OR Tariff-Switching, not both.


P24	Open Circuit on terminals 10/11	Closed Circuit on terminals 10/11		
0	Tariff/Timer Input is ignored			
1	Heat Pump is enabled Heat Pump is blocked			
2	Heat Pump is blocked	Heat Pump is enabled		
3	Tariff/Timer input is used for DHW time clock			
4	Tariff/Timer input is used for DHW time clock			

♦ 4.2.5.11. Temperature sensors

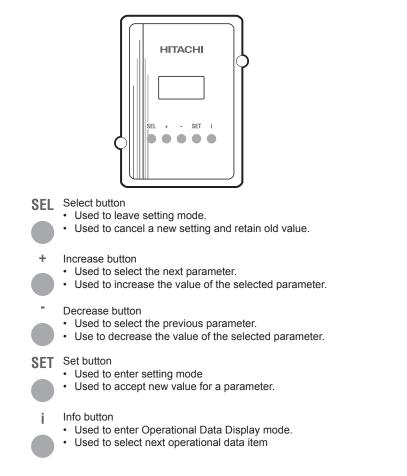
All sensors used are of type NTC 20K (at 25°C).


- The outdoor sensor (T EXT) is used for OTC control, frost protection, summer switch-off, and bi-valent system management.
- The DHW sensor (T DHW) is used for control of the domestic hot water storage tant.
- The supply sensor (T SUP) is used to control the water temperature from the heat sources. Please see hydraulic diagrams for sensor positioning.
- The mixed supply sensor (T MIX) is used in systems with a mixing valve (CONF 4 & 5 only) and should be positioned after the mixing valve and the circulation pump.
- The return water sensor (T RET) is used for heat pump return temperature protection and should be positioned on the return pipe to the heat pump.



4.2.6. User interface

◆ 4.2.6.1. Display


The display of the System Controller is simple to understand and has extra segments to indicate the operating mode, failures and status.

♦ 4.2.6.2. Controls

The System Controller has a simple five buttons interface with an user friendly display.

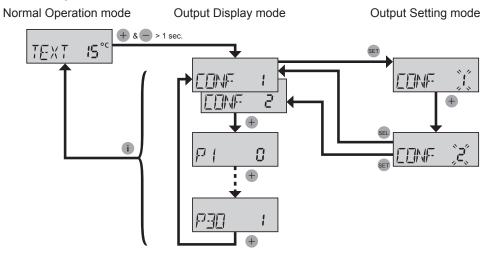
Pressing particular combinations of these buttons will allow display or alteration of the various operating parameters.

4.2.7. Installation configuration settings

The configuration of the System Controller is performed using the 5 buttons on the front cover. Via these buttons, a simple menu structure can be accessed to adjust all the controller parameters.

All menus use the 4 characters in the left of the display to show an abbreviated name, and the three digits in the right for the value. Units are shown in the far right of the display next to the value.

If no button is pressed for 10 minutes, the display will return to the default menu, or the relevant fault code.


♦ 4.2.7.1. Reviewing and setting the installer parameters

The System Controller is delivered with a set of pre-programmed parameters to allow a quick start-up procedure. The factory default settings are shown in the table on the next page. Should it be necessary to adjust any of these parameter settings, please refer to the table and follow the instructions below.

To enter Parameter Display mode from the Normal Operation mode, press \oplus and \bigcirc buttons together for at least one second. The display will show "CONF" to indicate that the System Controller is in Parameter Display mode, and shows the first parameter CONF (Hydraulic Configuration) and its current setting.

- 1. Use the + and buttons to move up or down the parameter list according to the table.
- 2. To change a parameter setting, use the 🗊 button to enter Parameter Setting mode. The value of the parameter will flash to show that it can now be changed. Use the + and buttons to change the value to the desired setting.

- 3. To store the parameter setting, press the set button. The flashing will stop to show the value has been saved. Instead, to cancel the change, and retain the previously stored value, press the set button.
- 4. Continue to change the parameters as required. When finished, or at any time, pressing the (i) button will return the display to Normal Operation mode.

◆ 4.2.7.2. Installer parameter list

ID	Parameter	CONF	Description	Min	Мах	Step	Default	Setting
CONF	System configuration	12345	Set according to the type of hydraulic configuration installed	1	5	1	2	
P1	DHW configuration	123-5	Set to 0=No DHW, 1=DHW valve, 2=DHW pump		2	1	0	
P2	Secondary pump	12	Set to 1 if a buffer/hydraulic separator and a secondary pump is used (CONF 1 or CONF 2 only)	0	1	1	0	
P3	Pump overrun time	12345	Sets how long the pumps run after the heating is switched off.	1	10	1	2 min.	
P4	OTC heating curve gradient	12345	Sets the heating curve for OTC control function	0.2	5	0.1	0.6	
P5	Minimum supply temperature	12345	Sets the minimum supply water temperature for the heating	5	40	1	10°C	
P6	Zone 1: maximum supply temperature	12345	Sets the maximum supply water temperature for the heating (zone 1)	20	55/ 65/ 90*	1	50°C	
P7	Room compensation factor	12345	Sets the room temperature influence for the OTC control function	0	5	0.5	2	
P9	Actuator run time / mixing valve control	45	Set to the running time of the actuator (see actuator manufacturer's instructions)	30	600	10	120 s	
P10	"DHW setpoint (not available if p1=0)"	123-5	Setpoint for the DHW control function	45	65	1	60°C	
P11	"DHW differential (not available if p1=0)"	123-5	DHW control differential	1	10	1	5 K	
P12	"DHW supply offset (not available if p1=0)"	123-5	Influences how quickly the hot water tank is heated	1	30	1	10 K	
P15	Maximum outdoor temperature for boiler/ electric operation.	-2345	Boiler / Electric heater will be disabled above this temperature (Heat Pump works on its own). OFF means the boiler/electric heater is always enabled.	-20	20, then OFF	1	5°C	
P17	Boiler minimum on time	345	Sets the minimum ON time of the boiler to reduce inefficient short-cycling	1	30	1	2 min	
P18	Boiler minimum off time	345	Sets the minimum OFF time of the boiler to reduce inefficient short-cycling	1	30	1	5 min.	
P19	Waiting time for boiler/ electric heater	-2345	Sets the minimum time the controller will wait (after the heat pump is switched on) before using the boiler or electric heater	1	90	1	30 min.	

Controller pack

Service Manual

ID	Parameter	CONF	Description	Min	Max	Step	Default	Setting
P21	Minimum supply setpoint during frost protection	12345	Sets the minimum supply water temperature when the frost protection function is active	10	35	1	20 °C	
P22	Frost protection activation temperature	12345	iets the outdoor temperature below which the frost protection function will activate.		5	1	3°C	
P23	Zone2: maximum supply temperature	12345	Sets the maximum supply water temperature for the heating (zone 2 extension)		55/ 65/ 90*	1	50°C	
P24	Configuration of tariff/ timer input	12345	The sets the meaning of the digital input "Tariff/Timer"		4	1	0	
P25	Start screed-drying function	12345	Set to 1 to start immediately the underfloor screed-drying function		1	1	0	
P26	Summer switch-off temperature	12345	Sets the daily average outdoor temperature above which the heating will be switched off	10	25, then OFF	1	20°C	
P27	"Maximum allowed dhw loading time (not available if p1=0)"	123-5	Sets the maximum time allowed for DHW loading. After this time, if the DHW setpoint is not achieved, the controller will nevertheless return to heating	1	12	1	2 hr	
P30	No-load function enable	12345	Disables the heating in Zone 1 if the OTC calculated supply setpoint falls below the room temperature (or room setpoint, if no room temp)	0	1	1	1	

$\boldsymbol{\partial}$

NOTE

- Operational data shown depends on the system configuration (CONF) setting.

- Zone 1 is the heating loop controlled by the System Controller.

- Zone 2 is the heating loop controlled by the Extension Controller.

* Maximum supply temperature limit depends on configuration

CONF 1:	limit = 55°C
CONF 2:	limit = 65°C
CONF 3,4,5:	limit = 55°C

4.2.8. System testing

◆4.2.8.1. System start-up

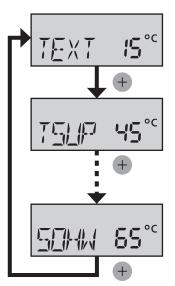
After the installation of sensors and outputs, the System Controller can be started for the first time.

Switch on the mains power supply.

The controller will be initialised with the default configuration stored in the internal memory.

A test procedure is performed to check the validity of the data in the internal memory, and the various inputs are tested. All sensors and communications devices are automatically detected. All faults and warnings are automatically reset and the software version is displayed for reference.

♦ 4.2.8.2. System test


Once the system has been installed, it is recommended that the following tests are carried out:

- 1. Check that you have selected the correct configuration, and that the necessary installation parameters have been set.
- 2. Check the wiring of the inputs and outputs. Use the procedure in 7.3 to view the temperature sensor values. It is possible to manually override the outputs to test the system operation.
- 3. Check that the Room Unit is communicating with the RF Receiver. To do this, change the temperature setpoint on the Room Unit to the maximum or minimum value and check that the heat pump reacts appropriately.

♦ 4.2.8.3. Reviewing the operational data

The table below shows the values that are available to be viewed during Normal Operation mode. These can be shown by pressing the (i) button

	Abbr.	Operational Data	Units	CONF
	TEXT	Outdoor temperature	°C	12345
res	TSUP	Supply water temperature	°C	12345
isor ratu	TMIX	Zone1: Mixed supply temperature	°C	45
Sensor Temperatures	TRET	Return temperature	°C	12345
Ten	TDHW	DHW temperature	°C	123-5
	TR1	Room temperature	°C	12345
	V Mixing valve position		-	45
	FAUL	Fault status	-	12345
	SSUP	Overall system supply setpoint	°C	12345
r s	S1	Zone1: supply setpoint	°C	12345
Controller Setpoints	SR1	Zone1: room setpoint	°C	12345
etp	S2	Zone2: supply setpoint	°C	12345
00	DSET	DHW setpoint	°C	123-5
	SDHW	DHW supply setpoint	°C	123-5

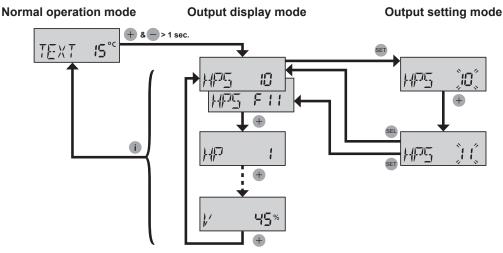
Normal Operation mode

Inspire the Next

i	NOTE	
- Opera	tional data shown depends on the system configuration (CONF) setting.	
- Zone :	- Zone 1 is the heating loop controlled by the System Controller.	
- Zone 2	2 is the heating loop controlled by the Extension Controller.	

♦ 4.2.8.4. Manually overriding the outputs

This feature allows the status of the outputs to be changed in order to test the electrical connections.


To enter Output Display mode from Normal Operating mode, press the sea and set buttons together for at least one second. The display will show "HPS" to indicate that the controller is in Output Display mode and shows the first output "HPS" and its current status.

- 1. Use the + and buttons to move up or down the output list according to the table.
- 2. To change an output, use the set button to enter Output Setting mode. The value of the output will flash to show that it can now be changed. To change the output value, use the + and buttons.
- 3. To save the output setting, press the 🗊 button. The flashing will stop to show the value has been saved, and the letter F (Fixed) will appear to show that the output is being overridden. Note that the value must be saved before it takes effect. Instead, to cancel the change, and retain the previously stored value, press the 📾 button.

To cancel the manual override of an output, enter the Output Setting mode and then press + and - together for one second. The "F" disappears from the display to show that the output is no longer overridden.

At any time, pressing the (i) button will return the display to normal operation mode.

Please refer to the electrical wiring connections to identify which relays should be connected to which output for a particular system configuration.

ID	Output	Min	Max	CONF
HPS	Heat pump setting (mA)	2	20	12345
HP	Heat pump remote on/off	0	1	12345
PO2	Secondary pump (not displayed if P2=0)	0	1	12345
DHWV	DHW valve/pump (not shown if P1=0)	0	1	123-5
EHS1	Electric heater output 1	0	1	-2
EHS2	Electric heater output 2	0	1	-2

ID	Output		Max	CONF
DHWE	DHW electric heater enable (not shown if P1=0)	0	1	12
PO1	Boiler pump	0	1	34
BLR	Boiler on/off	0	1	345
V	Mixing valve position (%)	0	99	45

i

NOTE

- Operational data shown depends on the system configuration (CONF) setting.

4.2.9. Troubleshooting

♦ 4.2.9.1. Fault codes and diagnostics

Fault codes are displayed in the default display as "FAUL 1" to "FAUL 13". The table below describes the meaning of the fault code, the behaviour of the system during that fault condition and suggested remedial action to solve the problem.

Code	Fault Description	System Behaviour	Remedy
FAUL 0	No fault detected	System operates normally	
FAUL 1	No supply water temperature sensor (TSUP) or sensor failure.	Heat Pump and Boiler (or Electric Heater) will be disabled.	Check sensor operation and sensor wiring.
FAUL 2	No return water temperature sensor (TRET) or sensor failure.	The system will continue to operate, but the heat pump may operate even when the return temperature is too high.	Check sensor operation and sensor wiring.
FAUL 3	No mixed water temperature sensor (TMIX) or sensor failure.	The mixing valve will close and no heating will be available.	Check sensor operation and sensor wiring.
FAUL 4	No DHW temperature sensor (TDHW) or sensor failure.	There will be no DHW tank heating available.	Check sensor operation and sensor wiring.
FAUL 5	No outdoor temperature sensor (TEXT) or sensor failure.	The system will continue to operate, but with a fixed outdoor temperature of 10°C.	Check sensor operation and sensor wiring.
FAUL 6	Loss of communications with RF receiver.	System will continue to operate, but no room influence is possible, and control will not follow the thermostat time programme.	Check wiring to RF Receiver. Please refer to the RF Receiver installation guide.
FAUL 7	Loss of connection to the heat pump control signal.	The heat pump and electric heater will be disabled.	Check control wiring to heat pump.
FAUL 8	Water temperature goes above maximum (mixing system only).	The mixing valve will close to prevent overheating of underfloor system.	If problem persists, check system sensors and valve operation.
FAUL 9	Fault notified by the heat pump.	Heat Pump and Electric Heater will be disabled.	Refer to the heat pump installation guide. To allow the electric heater or boiler to continue operating (manual release), press the + and SEL buttons simultaneously.
FAUL 10	Failure of the binding between RF receiver and thermostat	System will continue to operate, but no room influence is possible, and control will not follow the thermostat time programme.	Check wiring to RF Receiver. Please refer to the RF Receiver installation guide.
FAUL 11	Incorrect device connected to RF receiver terminals.	System will continue to operate, but no room influence is possible, and control will not follow the thermostat time programme.	Check wiring to RF Receiver. Please refer to the RF Receiver installation guide.
FAUL 12	Failure of the RF receiver to receive messages from the thermostat.	System will continue to operate, but no room influence is possible, and control will not follow the thermostat time programme.	Check wiring to RF Receiver. Please refer to the RF Receiver installation guide.
FAUL 13	The chosen extension is not allowed in this configuration.	The system will continue to operate normally without the extension.	Select a configuration where the extension is allowed.

◆ 4.2.9.2. Reset to factory default condition

Should it be necessary to reset the controller to the factory default condition, press the + and - buttons together during the power-on cycle. Remember to re-select the desired hydraulic configuration and set the necessary installation parameters.

4.3. APPLICATIONS

4.3.1. Application configurations

The System Controller can be used for several different hydraulic system configurations, including monovalent systems, mono-energetic systems with auxiliary electric heater, and bi-valent systems with gas/oil boiler. The hydraulic system configuration should be selected by setting the parameter CONF.

Hydraulic configuration	Description	Heat pump	Electric heater	Boiler	DHW	Direct circuit	Mixing circuit
CONF 1	Mono-valent system heat pump only direct circuit	х			(X)	х	
CONF 2	Mono-energetic system heat pump and electric heater direct circuit	х	х		(X)	х	
CONF 3	Bi-valent parallel system heat pump and boiler direct circuit	х		х	(X)	x	
CONF 4	Bi-valent parallel system heat pump and boiler mixing circuit	х		х			х
CONF 5	Bi-valent series system heat pump and boiler mixing by-pass circuit	х		х	(X)		х

DHW Storage

The System Controller can be used in a system which has a DHW storage tank, with either a diverting valve or pump. If the system has a separate DHW pump, then a hydraulic separator or buffer tank has to be used to ensure proper hydraulic balancing of the system.

The DHW system type is selected by an installer parameter (P1)

• Buffer Tank or Hydraulic Separator

When a hydraulic separator or buffer tank is used in CONF 1 & 2, the system will contain a secondary pump on the distribution side of the separator/buffer. In this case it is necessary to set installer parameter P2 to 1.

In bi-valent systems (CONF 3,4,5) a hydraulic separator or buffer tank is always needed.

4.3.2. Principle of Bi-Valent or Mono-Energetic Operation

• Function

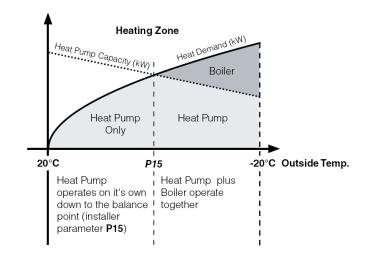
Bi-valent and mono-energetic systems use an auxiliary heat source (boiler or electric heater respectively) in addition to the heat pump.

At higher outdoor temperatures, the heat pump can provide all the heating requirements of the system, and it is not necessary to switch on the auxiliary heat source. However at lower outdoor temperatures, the electric heater or boiler is used to provide the increased heating demand. The changeover point for bivalent or mono-energetic operation is called the balance point. A +/-0.5K control differential is applied to the switching between the operating modes.

Outdoor temperature (TEXT) > Balance Point (BP)+0.5K, the boiler or electric heater is not used.

(Exception is that the boiler can be used for DHW loading.)

Outdoor temperature (TEXT) < Balance point (BP)-0.5K, the system controller determines whether to switch on the boiler or electric heater depending on the heating requirements. Refer to the sections on Boiler Control and Electric Heater Control for more details.


• Installer Parameters

(i)

P15 Maximum Outdoor Temperature for Boiler/Electric Heater Operation = Balance Point (BP) (default 0°C)

Parameter P15 can be set to OFF, in which case the boiler or electric heater is allowed to operate at all outdoor temperatures.

NOTE

• Configartion specific

CONF 2 Mono-Energetic Systems

The electric heater is used to "top-up" the energy required for the system. The System Controller tries to ensure that the heat pump is always running when the electric heater is used, but there may be some circumstances where the electric heater is providing all the energy for the heating system.

CONF 3,5 Bi-Valent Parallel Systems

The normal operation in these systems is that when the heat pump cannot meet the heating load, the boiler will take over the full energy requirements of the system (alternative operation).

4.3.3. Mono-valent systems 'conf 1'

• Summary

In mono-valent systems, the heat pump is the sole provider of heating energy to the system. The Heat Pump is sized to provide 100% of the heating requirements on the coldest day of the year. It is recommended for low-energy houses and for moderate climates without severe winters. Used in new builds or in boiler-replacement applications.

This configuration is suitable for low-temperature radiators and underfloor heating systems.

• Important parameter settings

CONF = 1

P1 = 0,1,2 according to DHW system type.

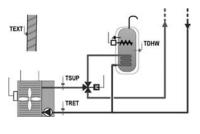
P2 = 0,1 according to whether a buffer tank/hydraulic separator and secondary pump is installed.

P4 = heating curve according to building and system characteristics.

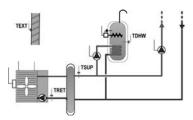
It is also recommended to review all parameter settings, and make modifications as required by the installation.

In order to achieve higher DHW temperatures, the system can operate with an auxiliary DHW electric heater.

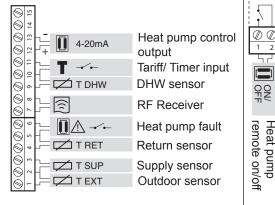
• Example


Mono-Valent System with DHW. DHW controlled by diverting valve Auxiliary DHW electric heater.

CONF=1Mono-valent systemP1=1DHW valveP2=0no secondary pump


Mono-Valent System with DHW. Hydraulic separator or buffer tank. Secondary pump for heating system. DHW controlled by separate pump. Auxiliary DHW electric heater.

CONF=1Mono-valent systemP1=2DHW pumpP2=1Secondary pump


Terminal block C (inputs)

Terminal block B (Power Supply)

N Ň $\bigcirc \bigcirc \oslash \oslash \oslash \oslash \oslash$ (n)(T) Æ. \square (n) \bigcirc 8 9 10 11 12 ித் enable DHW Heater DHW dund Secondary Valve/Pump

Terminal block A (outputs)

4.3.4. Mono-energetic systems 'conf 2'

• Summary

In mono-energetic systems, the heat pump is supplemented by a 3-stage electric heater to provide additional heating energy to the system. The Heat Pump is sized to provide around 60% of the heating requirements on the coldest day of the year, and will typically provide 90-95% of the heating requirements over the whole heating season. An electric auxiliary heater is used to provide the additional heating required on cold days. Used in new builds or in boiler-replacement applications.

• Important parameter settings

CONF = 2

P1 = 0,1,2 according to DHW system type. P2 = 0,1 according to whether a huffer tank/hydraulic senar:

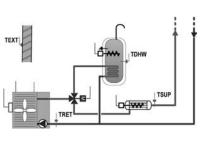
P2 = 0,1 according to whether a buffer tank/hydraulic separator and secondary pump is installed.

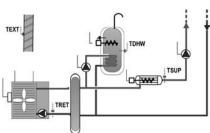
P4 = heating curve according to building and system characteristics.

P33 = 5K (electric heater return high limit offset)

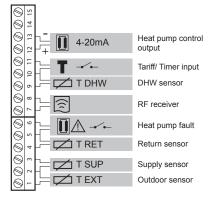
The Electric Heater Return High Limit is an important check to help ensure that the heat pump operates as much as possible even when higher supply temperatures are required, thus emphasising energy economy operation. To enable this feature parameter P33 (return temperature limit offset) should be set to a value of 5K. Refer to the section on Electric Heater Control for more information. It is also recommended to review all parameter settings, and make modifications as required by the installation.

In order to achieve higher DHW temperatures, the system can operate with an auxiliary DHW electric heater.

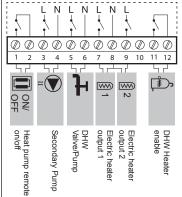

• Example


Mono-Energetic System with DHW. DHW controlled by diverting valve Auxiliary DHW electric heater.

CONF=2	Mono-energetic system
P1=1	DHW valve
P2=0	no secondary pump


Mono-Energetic System with DHW. Hydraulic separator or buffer tank. Secondary pump for heating system. DHW controlled by separate pump. Auxiliary DHW electric heater.

CONF=1	Mono-energetic system
P1=2	DHW pump
P2=1	Secondary pump



Terminal block A (outputs)

Terminal block B (Power Supply)

SMGB0044 rev.0 - 10/2008

4.3.5. Bi-Valent parallel systems - direct 'conf 3'

• Summary

This is a bivalent system where the boiler is configured in parallel with the heat pump. A hydraulic separator or buffer tank has to be used to ensure proper hydraulic balancing. This system is recommended for retrofit (upgrade) applications where an existing gas/oil boiler will be retained to provide the full heating requirements on the coldest days of the year

• Important parameter settings

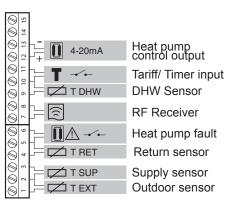
CONF = 3

P1 = 0,1,2 according to DHW system type.

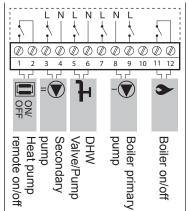
P4 = heating curve according to building and system characteristics.

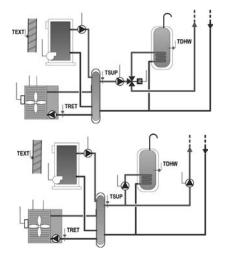
It is also recommended to review all parameter settings, and make modifications as required by the installation.

• Example


Bi-Valent System with DHW. DHW controlled by diverting valve Hydraulic separator or buffer tank.

CONF=3 Bi-valent Parallel system P1=1 DHW valve


Bi-Valent System with DHW. Hydraulic separator or buffer tank. DHW controlled by separate pump.


CONF=3 Bi-Valent Parallel system P1=2 DHW pump

Terminal block A (outputs)

Terminal block B (Power Supply)

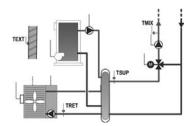
4.3.6. Bi-Valent system - parallel operation - mixing loop 'conf 4'

Summary

This is a bivalent system where the boiler is configured in parallel with the heat pump. A hydraulic separator or buffer tank has to be used to ensure proper hydraulic balancing. This system is recommended for retrofit (upgrade) applications where an existing gas/oil boiler will be retained to provide the full heating requirements on the coldest days of the year.

• Important parameter settings

CONF = 4


P4 = heating curve according to building and system characteristics. DHW tank control is not possible with this system.

It is also recommended to review all parameter settings, and make modifications as required by the installation.

• Example

Bi-Valent System with DHW & mixed heating loop. Hydraulic separator or buffer tank.

CONF=4 Bi-valent Parallel system

Terminal block C (inputs)

Terminal block A (outputs)

A

Ň Mixed supply ⊐́тміх sensor \square \square (n) \mathcal{D} (M) Heat pump control 10 4-20mA \bigcirc output \bigcirc Tariff/ Timer input ON TO 0 0 **RF** Receiver 2 Heat pump remote on/off Boiler primary pump Mixing valve open Mixing valve close Secondary pump Boiler on/of Heat pump fault \wedge ------Return sensor 🗹 T RET Ō \bigcirc 🔀 T SUP Supply sensor 🗹 Т ЕХТ Outdoor sensor

Terminal block B (Power Supply)

4.3.7. Bi-Valent system - serial operation 'conf 5'

• Summary

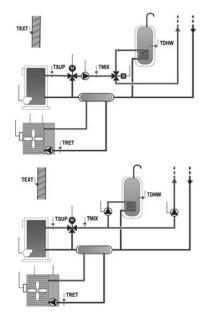
This is a bivalent system where the boiler is configured in series with the heat pump. A hydraulic separator or buffer tank has to be used to ensure proper hydraulic balancing. This system is also used for retrofit (upgrade) applications, but operates like the mono-energetic system using the gas/oil boiler, similarly to the electric heater, in series with the heat-pump. The boiler only needs to provide the additional peak load capacity

• Important parameter settings

- CONF = 5
- P1 = 0,1,2 according to DHW system type.

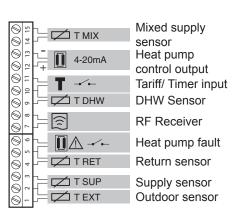
P4 = heating curve according to building and system characteristics.

It is also recommended to review all parameter settings, and make modifications as required by the installation.

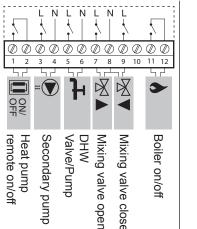

• Example

Bi-Valent System with DHW. Serial operation with bypass/mixing valve. DHW controlled by diverting valve Hydraulic separator or buffer tank.

CONF=5 Bi-valent Parallel system P1=1 DHW valve


Bi-Valent System with DHW. Serial operation with bypass/mixing valve. DHW controlled by separate pump. Hydraulic separator or buffer tank.

CONF=5 Bi-Valent Parallel system P1=2 DHW pump



Terminal block A (outputs)

Terminal block B (Power Supply)

4.4. SUPPLY SETPOINT CALCULATION

Calculation

The System Controller uses the "zone of greatest demand" strategy for calculating the supply water temperature required from the Heat Pump (and/or 3-stage electric heater or boiler).

The system controller recognises three "zones":

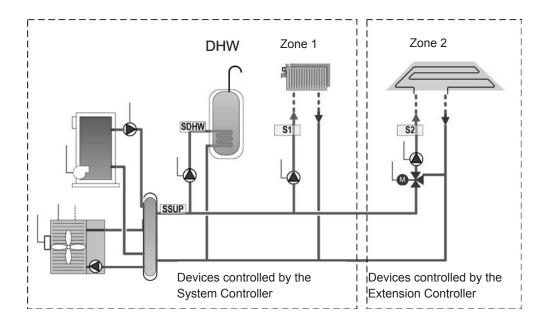
Zone 1:	The normal heating loop controlled directly by the System Controller (direct or mixed depending on the
	system configuration).

The mixed heating loop controlled by the Extension Controller. Zone 2:

The DHW storage tank loading loop. DHW zone:

Each zone can generate a demand to the heat pump (and/or boiler/electric heater) for a particular supply water temperature S1:

- The supply setpoint water temperature required by the "zone 1" heating loop.
- S2: The supply setpoint water temperature required by the "zone 2" heating loop.
- SDHW: The supply setpoint water temperature required by the DHW loop.


The actual supply setpoint used at any time is the maximum of the three zone supply setpoints.

SSUP = maximum (S1, S2, SDHW)

It is the objective of the system controller to manage the Heat Pump, 3-stage electric heater and boiler appropriately to control the supply water temperature (TSUP) to this setpoint (SSUP).

• Illustration

The diagram below shows the three possible "zones" and illustrates the required water temperatures (S1, S2, SDHW) for each zone, and the resulting overall supply setpoint (SSUP).

• Example

Heating zone 1 requires 50°C (calculated from OTC heating curve) Heating zone 2 requires 35°C (calculated by extension controller) DHW loading not required

S1 = 50°C, S2 = 35°C, SDHW = 0°C

Therefore SSUP = maximum of (50°C, 35°C, 0°C) = 50°C

Note that the extension controller will then control the mixing circuit to achieve comfort conditions in zone 2.

• Binding RF components together

The Room Unit and RF receiver included in the system pack are already factory configured to work together. If either of these units have to be replaced, please follow the instructions below for the method of binding RF components together.

To enter the RF Binding procedure, press and hold the button on the RF Receiver for 5 seconds. The red LED will begin to flash.

When binding the RF Receiver to the Room Unit, the System Controller display will show a flashing "ZONE 1", meaning that the system will bind to the first heating zone by default. Zone 1 is the zone controlled directly by the System Controller.

To bind Zone 2 (the extension system), press the + button on the System Controller. "ZONE 2" will be displayed, and the RF system will be bound to that zone. The bound zone can be changed by following the re-binding procedure on the RF Receiver/Room Unit and adjusting the zone selected on the System Controller display.

4.5. HEATING CONTROL FUNCTIONS

4.5.1. Heating circuit - general

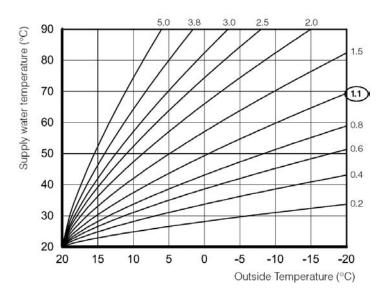
• Function

The heating circuit is usually always enabled which means the controller will always try to provide the Correct water temperature to maintain the desired comfort conditions based on the heating characteristic curve as described below.

However, the heating circuit is disabled when:

- DHW storage tank loading is required.
- · Or the summer switch-off condition is active
- Orthe no-load condition is active

4.5.2 Heating characteristic curve (OTC control)

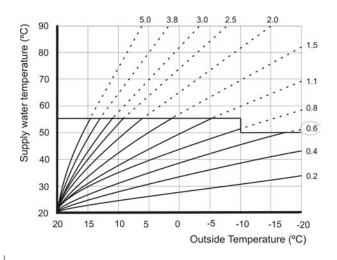

• Function

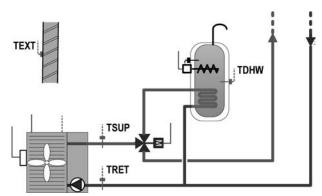
The system controller is an outside temperature compensated (OTC) control system that uses the outside temperature, the room temperature setpoint, and optionally the room temperature, to calculate the correct supply water temperature for the system in order to maintain comfort conditions. A prerequisite for constant room comfort conditions is the correct setting of the heating characteristic curve as well as the correct design of the heating system by the heating installer according to heat demand calculations.

The heating curve should be selected according to the local climatic conditions, building structure and type of heating distribution system. The gradient of the heating curve describes the relation between the change in the supply temperature and the change in outside temperature. In the case of large heating surfaces (and therefore low supply temperatures) like floor heating systems the heating characteristic curve is less steep compared to smaller heating surfaces (eg radiators). Typically a well-insulated, modern building with underfloor heating would use a heating curve value of 0.4-0.6 And one with radiator heating a value of around 1.6.

- Parameter settings
- P4 OTC heating curve gradient (default value 1.1)
- P7 Room Compensation Factor
- P6 Maximum Supply Setpoint

The graph shows the supply water temperature setpoint, when the room setpoint=20°c and no room compensation is applied. The heating curve can be limited by the maximum supply setpoint parameter (P6) to prevent for example high temperatures going to the floor heating system.

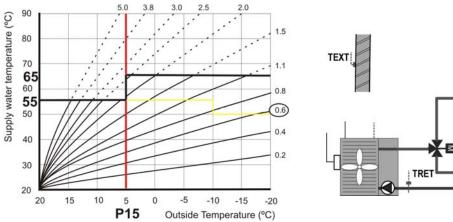


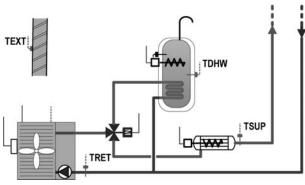

• Example

P4 = 1.1 TEXT (outside temperature) = 0°C SR1 (room setpoint) = 20°C => From graph, s1 (supply setpoint) = 49°C

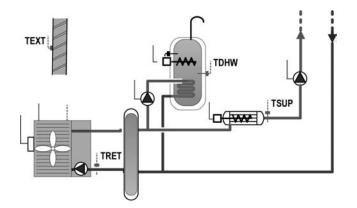
MONO-VALENT

Maximum temperature is fixed by Yutaki working range. Over that value, the supply water temperature cannot be achieved. The installation should be designed considering this range.




	SMGB0044 rev.0 - 10/2008
ļ	Heating control functions

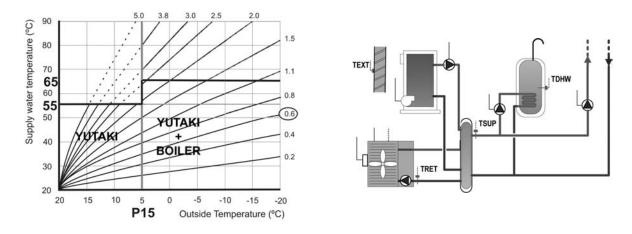
MONO-ENERGETIC


- P15: Max outdoor temp for boiler/E. heater operation.
- Maximum temperature is fixed by Yutaki working range between 20°C and the value P15.
- From P15 to -20 maximum temperature is increased to 65°C.
- P6 adjust the total maximum temperature (from 65°C to 20°C).
- Over that value, the supply water temperature cannot be achieved.
- The installation should be designed considering this range.

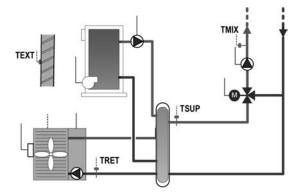
Offset factor:

- Factor to compensate the difference between T SUP (Temperature read after heater) and discharge temperature reach by Yutaki (Cannot be read by system controller).
- This factor avoid the activation of the electric heater when Yutaki can really reach the requested water temperature.

- Default value offset = 2
- Variable from 2 to 5


```
· Yutaki OFF factor:
```

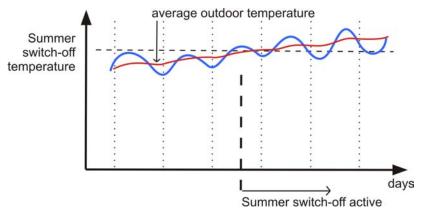
- System control will not activate the heater if Yutaki unit is in or near Thermo Off.
- Fixed in factory (Cannot be changed).


- Economy system factor:
 - When heater is ON and return temperature is over 52°C, Yutaki unit is automatically Thermo OFF (Protection).
 - In that cases, only the heater is working, so the power supply cost will be highly increased.
 - Economy system operates to reduce the cost, so if return temperature (TR) > Max range -5 (55-5=50 or 50-5=45), the heater is not activated.

• BI-VALENT

At higher outdoor temperatures, the heat pump can provide all the heating requirements of the system, and it is not necessary to use the auxiliary heating (boiler or electric heater). However, at lower outside temperatures, it becomes necessary to allow the electric heater or boiler to provide the increased heating demand.

- The boiler is only used when the heat pump cannot achieve the desired supply temperature.
- The controller waits some time (waiting time for boiler/electric heater) before switching on the boiler.
- The function is based on P+I control of supply temperature.
- To prevent short-cycling, the boiler stays ON for at least the minimum on time, and stays OFF for at least the minimum off time settings.
- Boiler pump is ON whenever boiler is ON, and includes a pump overrun feature.



- The upper limit operation of the heat pump to satisfy the heating demand:
 - The maximum outlet temperature of the Heat pump is 55°C down to -10°C outside temperature/ 50° from -10°C~-20°C.

- At higher outside temperatures it doesn't make sense to keep heating the building. The System Controller will switch the heating off when the average daily outdoor temperature (averaged over 24hrs) rises above the parameter P26.

To disable this feature set the parameter to OFF.

- P26 Summer Switch-Off temperature.
- The switch-off is reversed when the average outside temperature drops below the set value by more than 1 K.
- The average outside temperature is calculated over a 24hr period.

Parameter setting		Range	Units	Default
P26	Summer switch-off temperature	1520, Off	°C	16

♦ 4.5.2.1. Room setpoint parallel shift

• Function

At different times of the day, according to the time programme in the room unit, the room temperature setpoint will cause a parallel shift of the heating curve. The change in supply setpoint due to the room setpoint is dependent on the actual value of the outside temperature and the selected heating curve.

• Example

P4 = 1.1 Text (outside temperature) = 0°c Sr1 (room setpoint) = 18°c => S1 (supply setpoint) = 45°c In this case, for a 2k change in room setpoint, the supply setpoint is changed by 4 k.

NOTE

The room setpoint value is sent from the room unit to the system controller by a wireless signal. There can be a short delay in response between a room setpoint change and the system controller changing the supply setpoint.

♦ 4.5.2.2. Room temperature compensation

• Function

If room compensation is enabled, the calculated otc supply setpoint is adjusted based on the difference between room temperature and room setpoint in order to reduce the room error. The amount of room influence can be adjusted by the room temperature compensation factor setting.

• Parameter setting

P27 Room compensation factor (default value 2)

To increase or decrease the amount of room compensation, adjust the room compensation factor. A higher value will give more priority to the room temperature error, and a lower value will mean the controller follows more closely the selected heating curve.

• Example P7 = 2 Sr1 (room setpoint) = 20 Tr1 (room temperature) = 23 => S1 (supply setpoint) reduced by 2 * (23 –20) = 6k

• Enable / Disable

To disable room compensation completely, set p7=0. It is also recommended to change the setting 8:su=1 on the room unit. This will prevent the room temperature being transmitted to the system controller and the room temperature will not be displayed to the end-user on the room unit. Please refer to the system

Mmi pack installation and operation manual for further details.

 NOTE

 - Room compensation should not be used when the room unit is located in a position unrepresentative of the desired temperature in the living spaces, for example in a warm cupboard.

The room setpoint and room temperature values are sent from the room unit to the system controller by a wireless signal. There can be a short delay in response between a room setpoint or temperature change and the system controller changing the supply setpoint.

4.5.3. Heating circuit minimum/maximum temperature limits

• Function

the calculated supply water temperature setpoint is limited between the minimum supply temperature and the maximum supply temperature settings. The maximum temperature limit can be used for example to prevent high temperatures going to floor heating systems. The minimum temperature limit can be used when it is desired to keep a minimum level of heating in the heating circuit.

• Parameter setting

P5 minimum supply temperature (default 15°c) P6 maximum supply temperature (default 55°c)

• Configuration specific

CONF 1:	P6 can be set up to a máximum valué of 55°C
---------	---

CONF 2: P6 can be set up to a máximum valué of 65°C

CONF 3,4,5: P6 can be set up to a máximum valué of 90°C

4.5.4. Heating circuit (secondary) pump

• Function

When the heating circuit is enabled, the secondary pump will be switched on. When the heating circuit is disabled, the secondary pump is switched off after a pump overrun time.

If the screed function is activated or system frost protection is active, the secondary pump continues to run.

If the system uses a dhw diverting valve and dhw storage tank loading is active, then the secondary pump continues to run, since it is also used for the dhw loading.

• Parameter Settings

P2 secondary pump selection (default 0 –no secondary pump) P3 pump overrun time (default 2 min)

• Configuration specific

CONF 1,2: If a buffer tank or hydraulic separator is used between the heat pump and the heating circuit, it is necessary to set parameter p2=1 to enable control of the secondary pump.

CONF 3,4,5: Secondary pump control is always enabled.

CONF 4,5: If the mixed circuit maximum temperature limit is active, then the secondary pump is switched off.

4.5.5. Automatic no-load function

• Function

When the calculated supply temperature setpoint (from otc heating curve + room setpoint shift + room

Compensation shift) is less than the room temperature, then the heating circuit can be switched off to save energy. A switching differential of +/- 1k is applied.

Algorithm

OTC supply setpoint < room temperature (TR1) –1K => no-load condition is active

OTC supply setpoint > room temperature (TR1) + 1K => no-load condition is not active.

When the no-load condition is active, the heating circuit is switched off.

• Parameter settings

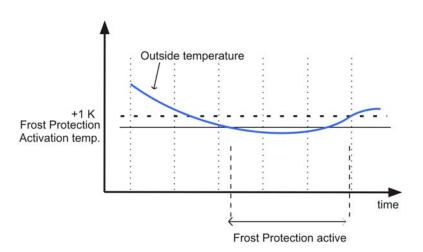
P30 No-load function enable/disable (default 1)

- = 0 Disabled
- =1 Enabled

4.5.6. Floor screed drying function

This function can be used exclusively to assist the drying of newly-laid screed on floor heating systems. The function is activated by setting parameter (P25) to 1. When the screed function is complete, the control returns to normal operation. The screed function can be deactivated at any time by setting the parameter (P25) to 0. Screed function according to EN 1264 part 1

- Constant heating at 25°C for 3 days.
- Heating set at maximum supply temperature for 4 days (limited to 55°C).


4.5.7. System frost protection

The System Controller has a frost protection function to help prevent the heating system pipe-work freezing. When the actual outside temperature falls below the parameter (P22), the supply water temperature will be maintained at least at the parameter value (P21). Note that:

- P21 Minimum supply temperature while frost protection is active.
- P22 Frost protection outside temperature activation temperature.

When the outdoor temperature falls below the frost protection activation temperature, the supply temperature is set to at least the frost protection minimum supply set point.

Frost protection finishes when the outdoor temperature rises above the frost protection activation temperature + 1 K.

	Parameter setting	Range	Units	Default
P21	Frost protection minimum supply set point	15 to 30	°C	20
P22	Frost protection activation temperature	-20 to 5, off	°C	3

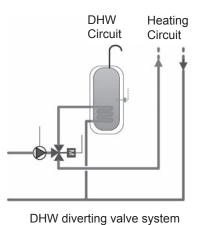
4.5.8. Anti-seize protection for pumps and valves

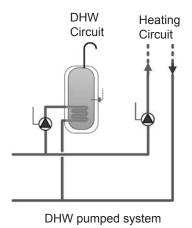
This function helps to prevent pumps and valves seizing due to corrosion or sticking.

Only one component is exercised at a time. Every 24hrs, the controller checks to see if pumps and valves have been used and performs the following actions:

- Unused pumps are run.
- Unused mixing valve is opened fully then closed.
- Unused diverting valve is opened for 10 seconds.

4.6. DHW CONTROL FUNCTIONS


4.6.1. DHW Storage Tank Loading


• Configuration Specific

The DHW control function is available for configurations CONF1,2,3, and 5.

Enable/ Disable

To enable DHW control, parameter P1 should be set according to whether the system uses a diverting valve or separate pump for the DHW circuit.

• Function

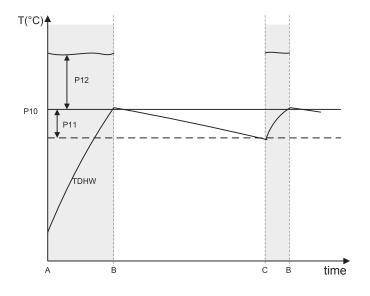
The DHW function has priority over the Heating Circuit, which means that when the DHW storage tank is being loaded, the heating circuit will be switched off.

The DHW function will be blocked (temporarily disabled) when the Tariff/Timer input is configured for DHW and the input is open circuit (or alternatively short circuit as defined by parameter — see DHW Tme Program").

• Parameter Settings

P1 System DHW Choice (default 0)

- P1=0 No DHW function
- P1=1 System with DHW diverting valve
- P1=2 System with DHW pump


4.6.2. DHW Control

• Function

When DHW control is enabled, the system controller heats the DHW tank temperature to the DHW setpoint (P10). When the DHW temperature drops below the DHW setpoint minus the DHW differential (P11), this function switches on the DHW Pump or opens the DHW valve, and sets a supply setpoint equal to DHW setpoint + DHW supply offset (P12). The DHW loading is complete when the DHW temperature rises above the DHW setpoint.

Supply Setpoint for DHW loading = DHW setpoint + DHW Supply Offset (P12) DSET = DHW setpoint (P10) SDHW = Supply Setpoint for DHW loading. TDHW = DHW tank temperatura

• Diagram

• Parameter Settings

P10 DHW setpoint (default 45°C)P11 DHW differential (default 5K)P12 DHW supply offset (default 10K)

• Configuration Specific

- CONF 1,2: Heat Pump heats the DHW storage tank directly. If the storage tank also has an internal DHW electric heater this can also be used if necessary.
- CONF 2: The 3-stage electric heater cannot be used for DHW loading. When DHW loading starts, the 3-stage electric heater is switched off.
- CONF 3,5: If the Heat Pump is not able to reach the DHW supply setpoint by itself, the boiler may also be used to raise the temperature of the DHW tank (see "Using the Boile r fo r DHW loading").

Parameter Notes

P10:	DHW setpoint
CONF 1,2:	If there is no internal DHW electric heater, setting the DHW setpoint higher than 45°C may result in very
	long DHW loading times, and the desired temperature may not be reached. This is because the maximum
	outlet temperature from the Heat Pump is normally 55°C, and at low outdoor temperatures 50°C.
CONF 3,5:	The DHW setpoint may be set higher since the boiler will also be used to heat the DHW storage tank.

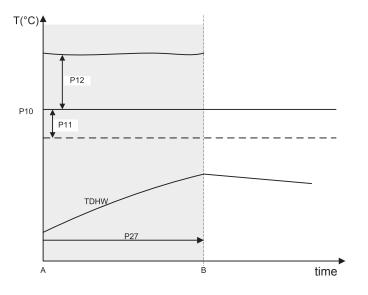
93	SMGB0044 rev.0 - 10/2008
	DHW control functions

DHW contro

I

P11: DHW differential

A small DHW differential will increase the frequency of the DHW loading periods while making them shorter. A large DHW differential will reduce the frequency of the DHW loading periods, while making each period longer, and will cause larger swings in DHW temperatures.


P12:	DHW supply offset
CONF 1,2:	setting a value higher than 10K will not affect the DHW loading period since the maximum outlet
	temperature from the Heat Pump is 55°C.
CONF 3,5:	setting a value higher than 10K will allow faster DHW loading times since the boiler can be used.

4.6.3. Maximum DHW Loading Time

• Function

In case there is a continuous high demand for DHW over a very long period, or the DHW setpoint is set too high, the Heat Pump may not be able to reach the desired temperature. In this case, to ensure that heat is provided in the living space (heating circuit), the DHW loading is stopped after a preset time (parameter P27) and the system controller returns to satisfy the demand from the heating circuit.

• Diagram

• Parameter Setting

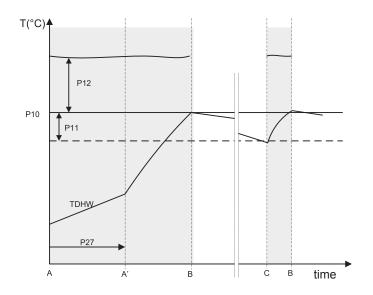
P27 Maximum allowed DHW loading time (default 1.5hr)

i	NOTE
	he DHW loading has stopped, the DHW electric heater (if connected) will continue to be enabled until the setpoint temperature is reached.

Automatic reset

Only after 24hrs, or at the next time clock enable period (if an external DHW time clock is used), the system controller will use the Heat Pump once again to load the DHW tank.

4.6.4. DHW Electric Heater


• Configuration Specific

This function is only available in configurations 1 and 2 (CONF 1,2).

• Function

The DHW tank may have an internal electric heater for situations when the heatpump is unable to fully load the DHW tank. After the DHW electric heater waiting time, if the DHW temperature has not reached the DHW setpoint, the DHW electrical heater enable output is switched on. The electrical heater operates on its own thermostat to raise the temperature of the DHW tank.

• Diagram

• Parameter settings

P34 DHW Electric Heater Waiting Time (default 45 min)

<i>i</i>	NOTE
	ectric heater should have its own thermostat set to a higher value than the DHW setpoint of the System Iller. Please take care about the type of DHW storage tank fitted and the position of the electric heater.

4.6.5. Using the Boiler for DHW loading

• Configuration Specific

Applies only to configurations CONF 3,5

• Function

The boiler may also be used to raise the temperature of the DHW tank if the Heat Pump is not able to reach the DHW supply setpoint by itself. The boiler will only start after a time delay defined by parameter P19 (waiting time for boiler) in order to allow the Heat Pump time to satisfy the DHW loading demand by itself.

• Parameter setting

P19 Waiting Time for Boiler (default 30 min)

4.6.6. Response of the Heat pump to a DHW demand

• Function

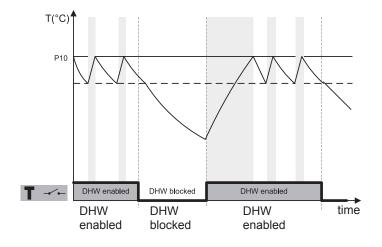
Since the heat pump only reads the control signal (mA) once every 20 minutes there can be a delay before the system responds to the DHW request. In order to improve this response time, the System Controller uses a feature of the heat pump that when the control signal is set to its highest value, it responds immediately. So if the supply setpoint has to be increased due to a DHW demand, then the supply setpoint is set to the parameter EP29 (Heat Pump maximum supply temperature) for a certain time. This time is the Heat Pump Max Time High Setpoint (EP35). When this time period expires, the Supply Setpoint is set to the normal calculated DHW supply setpoint.

• Parameter setting

EP35 Heat Pump Max Time High Setpoint (default 180sec)

4.6.7. DHW Time Program

• Function


A DHW time program is not provided inside the controller. An external timer can be used by itself or together with a tariffswitch device. For example, with an external timer it is possible to block DHW loading during daytime periods.

It is possible to use

- 1. Only a external timer. Operates according to EP24 setting.
- An external timer in series with a tariff-switch device. In this case: if EP24=3 both the external timer and the tariff-switch contacts must be closed to allow DHW loading if EP24=4 either of the external timer or the tariff-switch contacts can be open to allow DHW loading.
- An external timer in parallel with a tariff-switch device. In this case: if EP24=3 either of the external timer or the tariff-switch contacts can be open to allow DHW loading if EP24=4 both the external timer and the tariff-switch contacts must be closed to allow DHW loading.
- 4. Only a tariff switch device. Operates according to EP24 setting.

Depending on the setting of the configuration of tariff/timer input parameter (EP24), DHW loading can be blocked according to the status of the input (open or closed).

• Diagram

• Parameter setting

P24 Configuration of Tariff/Timer Input (default 4)

P24	Open Circuit on termináis 10/11	Closed Circuit on termináis 10/11
0	Tariff/Timer input is ignored	
1	Tariff/Timer input is used for Heat Pump blocking	
2	Tariff/Timer input is used for Heat Pump blocking	
3	DHW is blocked DHW is enabled	
4	DHW is enabled	DHW is blocked

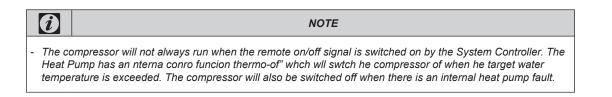
\boldsymbol{i}	NOTE
- The t	ariff/timer input can be used for DHW time switching OR Heat Pump blocking, not both.

4.7. HEATPUMP CONTROL FUNCTIONS

4.7.1. Heatpump Control

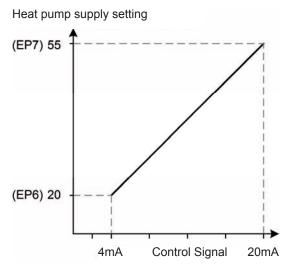
The System Controller normally switches the heat pump on when there is a demand from the heating or the DHW circuit. The Heat Pump on/off output of the System Controller is connected to the Remote on/off input of the heat pump.

The heat pump will start the water circulation pump (primary pump) when the remote on/off input is switched on, and enable its internal control of the compressor and heat pump system components.


The System Controller switches the heat pump off when :

- th	ne outdoor temperature	(TEXT) < -20°C	adusabe, see Heat Pump	operating
------	------------------------	----------------	------------------------	-----------

or, the return water temperature > 60°C
or, heat pump blocking is active


adusabe, see Heat Pump operating limits) adusabe, see Heat Pump Return High Lmt") (tariff/timer input)

SMGB0044 rev.0 - 10/2008

4.7.2 Heatpump Setting Control Signal

When there is a demand for heating or DHW, the System Controller will send to the heat pump a signal for the required Heat Pump outlet temperature. The System controller uses the 4-20mA connection to represent the outlet water temperature setpoint. The heatpump will modulate the appliance according to its own control strategy to achieve the correct output water temperature.

A conversión table from water temperature setting to mA signal is provided at the end of this guide.

Calculation: Heat Pump Supply Setting = SSUP (supply setpoint) + P31 (Heat Pump Sensor Offset)

The Heat Pump Supply setting is always constrained within the máximum and mínimum heat pump supply temperatures. These limits depend on the current outside temperature; see Hea Pump Operaing Lmts". Heat Pump Sensor Offset is explained in the next section.

Parameter settings

EP6 Heat Pump Supply Setpoint at 4mA (default 20°C) EP7 Heat Pump Supply Setpoint at 20mA (default 55°C)

Ø	NOTE
	parameters should only be changed with the approval of the manufacturer. Engineering Parameters (EP) y available for service engineers.

4.7.3. Heatpump Sensor Offset

In practice, there may be a difference between the heat pump outlet temperature (measured by the Heat Pump) and the supply temperature (measured by the system controller). This can be caused by:

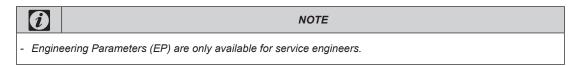
- 1. Different measuring position. The Heat Pump is outside and some loss of heat is possible between the heat pump and the supply pipes inside the house.
- 2. Different types of sensor. The Heat Pump measures the outlet temperature using an immersion-type sensor directly in the water flow after the condenser. The System Controller uses a strap-on type sensor, which depending on the ambient conditions, will typically measure a lower temperature than an immersion-type in the same location.

This difference needs to be taken into account for optimum control performance, and parameter P31 is provided so this can be adjusted according to the installation.

Parameter Settings

P31 Heat Pump Sensor Offset (default 3K)

	\boldsymbol{i}	NOTE
-	lt is im be tak	portant to minimise this effect as much as possible during installation. The following precautions should en :
		Fully insulate the supply and return pipes.
		Ensure that the supply temperature sensor is tightly strapped-on to the pipe with the metal clip provided.
-		etal clip should be used directly around the sensor element itself (since it itself improves the heat transfer) en insulation should be placed around the sensor and fixed securely in place.

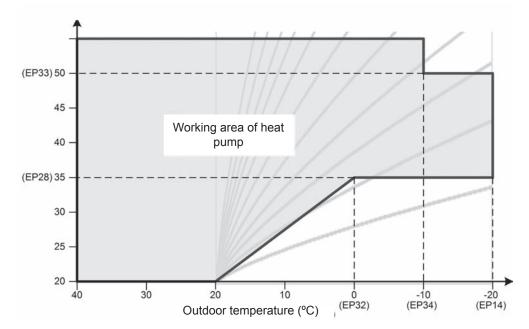

4.7.4. Heatpump Maximum Return High Limit

The Heat Pump itself ensures good control of the outlet water temperature, and switches off the compressor when the return water temperature gets too high. However, in some circumstances with bi-valent systems, the boiler may be operating at high supply and return temperatures. If the return water temperature to the Heat Pump rises above 65°C it w il generate a system fault ("excessively high water tem perature"). To prevent this happening, the System Controller will directly switch off the heat pump if the return temperature rises above a set limit.

Return water temperature (TRET) > EP13 + 0.5K Return water temperature (TRET) < EP13 - 0.5K Heat Pump is switched off Heat Pump may be switched on.

Parameter Settings

EP13 Heat Pump Maximum Return Temperature (default 60°C). This value should not normally need to be changed.


4.7.5. Heatpump Operating Limits

Heat Pump operation is only possible within certain temperature ranges as defined below. Parameters are provided in order to adjust the working area if required to do so by Hitachi.

The Heat Pump water temperature setting sent by the System Controller is always constrained to lie between the maximum and minimum limits defined by the operating limits.

If the outdoor temperature is below -20°C (EP14), the heat pump will always be switched off.

Heat Pump working area Heat Pump Outlet Temperature (°C)

Parameter Settings

EP14	Heat Pump mínimum outdoor temperature (default -20°C)
EP28	Heat Pump minimum supply temperature below outdoor temperature of EP32 (default 35°C)
EP29	Heat Pump máximum supply temperature above outdoor temperature of EP34 (default 55°C)
EP32	Heat Pump mínimum supply inflexión point (default 0°C)
EP33	Heat Pump máximum supply temperature below outdoor temperature of EP34 (default 50°C)
EP34	Heat Pump máximum supply changing point (default -10°C)

Ø	NOTE
- Engineering Parameters (EP) are only available for service engineers.	

4.7.6 Tariff Switch (Heat Pump blocking) Input

This function allows an external tariff-switch device to switch off the heat pump and electric heater during times of peak electricity demand. When the controller is working in bi-valent mode, the boiler will be switched on to provide the necessary heating. In mono-valent or mono-energetic systems, no heating will be provided during the period of high-tariff switching.

Parameter Setting

P24 Configuration of Tariff/Timer Input (default 4)

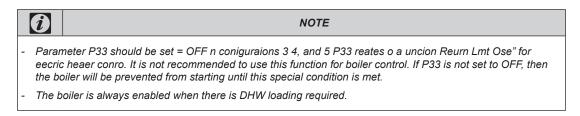
P24	Open Circuit on terminals 10/11	Closed Circuit on terminals 10/11
0	Tariff/Timer input is ignored	
1	Heat Pump is enabled	Heat Pump is blocked
2	Heat Pump is blocked	Heat Pump is enabled
3	Tariff/Timer input is used for DHW time clock	
4	Tariff/Timer input is used for DHW time clock	

	Ø	NOTE
- The tariff/timer input can be used for DHW time switching OR Heat Pump blocking, not both.		

4.8. BOILER CONTROL FUNCTIONS

4.8.1. Boiler Control

• Configuration Specific


Boiler control is available only in configurations 3,4,5 (CONF3, CONF4, CONF5)

The boiler control decides whether to switch the boiler on or off based on a proportional plus integral action (P+I) control algorithm and the difference between the Boiler Setpoint and the Supply Water Temperature (TSUP).

The boiler will only be used when:

- the outdoor temperature is below the bivalence point (máximum outdoor temperature for boiler operation)
- or the boiler has been manually released (after a heat pump fault).

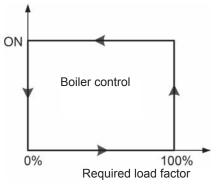
In addition the Supply-Return Difference Check is performed before allowing the boiler to switch on, unless the heat pump is switched off or has an internal fault.

Boiler Setpoint & Supply Setpoint Control Offset

If the heat pump is switched off, or has an internal fault, the Boiler Setpoint = Supply Setpoint (SSUP)

If the heat pump is switched on, the water setpoint used for the boiler control depends on the value of the Supply Setpoint. When the supply setpoint is low the boiler will only be used if the actual supply temperature is much lower than the desired setpoint. To achieve this, the boiler setpoint is offset lower than the supply setpoint. When the supply setpoint is higher than can be achieved by the heat pump alone, the boiler setpoint is equal to the supply setpoint. This function is intended to help reduce the number of times the boiler is used, to emphasise energy saving operation.

If Supply Setpoint > Heat Pump maximum supply temperature –Heat Pump Sensor Offset + 0.5K, then Boiler Setpoint = Supply Setpoint (SSUP)


If Supply Setpoint < Heat Pump maximum supply temperature –Heat Pump Sensor Offset - 0.5K, then Boiler Setpoint = Supply Setpoint (SSUP) –Supply Setpoint Control Offset (EP31)

The heat pump maximum supply temperature depends on the outdoor temperature and the heat pump operating limits.

Control Algorithm

The P+I algorithm calculates a "Load factor" from 0% to 100%. The boile r is switched on when the Load Factor reaches 100% and switched off when the Load Factor reaches 0%.

Required Load Factor = PI function (Boiler Setpoint -TSUP).

Parameter Settings

EP2 Integral Factor Required Load - Boiler/Electric Heater Control (default 2.5 %/Kmin.)

EP16 Proportional Band Required Load - Boiler/Electric Heater Control (default 6 K/100%)

EP31 Supply Setpoint Control Offset (default 4 K)

It is not normally recommended to change these parameters. They have been selected during laboratory tests for best performance in most situations.

Ø	NOTE
- Engineering Parameters (EP) are only available for service engineers.	

4.8.2. Supply-Return Difference Check

This function helps prevent the boiler operating unless the heat pump is already providing heat. When the heat pump is in "thermo-off" state (compressor off) or in "defrost", the difference between the supply temperature TSUP and return temperature TRET will be small (or negative in case of defrost) since no heating is provided. The boiler is prevented from switching on until this difference is greater than the Supply-Return Difference Limit (P32). A +/-0.5K control differential is applied.

TSUP-TRET > P32 + 0.5K	Boiler is allowed to switch on.
TSUP-TRET < P32 — 0.5K	Boiler is not allowed to switch on.

When the boiler starts from cold, the supply temperature can drop for a small time as the cold water in the heat exchanger is pumped into the system. This function would then cause the boiler to be switched off. In order to prevent this, this function does not operate when the boiler is switched on until a certain time has passed from the boiler starting. This delay time is defined by a parameter Boiler Delay Time (EP36).

Enable/ Disable

This function can be disabled by setting parameter P32=OFF

- Parameter Settings
- P32 Supply-Return Difference Limit (default 3K)
- EP36 Boiler Delay Time (default 5min)

A high value of P32 will prevent the boiler switching on until a large temperature difference is seen by the System Controller. With a low value of P32 or with the function disabled, the boiler may start more often, for example during defrost cycles.

Ø	NOTE
	check is ignored if the Heat Pump is switched off or has a fault. eering Parameters (EP) are only available for service engineers.

4.8.3. Boiler Minimum On / Off Times

In order to prevent inefficient short-cycling of the boiler, this function prevents the boiler from switching on or switching off until either the boiler minimum off time or boiler minimum on time, respectively, has elapsed.

• Parameter Settings

- P17 Boiler minimum ON time (default 2 min.)
- P18 Boiler minimum OFF time (default 5 min.)

High values of minimum ON and OFF times may cause large fluctuations in water temperature and should usually be avoided.

	i	NOTE
-	If the not ap	boiler is disabled, rather than off due to normal control (load=0%), then the boiler minimum ON time does oply.

4.8.4. Boiler Waiting Time

It is important with bi-valent systems that the Heat pump should first try to satisfy the heating demand by itself. For this reason a boiler waiting time applies. This means that when the heatpump cannot meet the heating demand, then the boiler is switched on only after the waiting time has elapsed.

The waiting time starts:

When the heat pump is switched on, or

 When the boiler switches off (but only also when the Supply Setpoint SSUP < heat pump máximum temperature — heat pump sensor offset).

This means that when the heatpump should normally be able to meet the heating demand on its own, the boiler waiting time applies, but when the supply setpoint is so high that the heat pump cannot meet the heating demand on its own, the waiting time does not apply.

Parameter Settings

P19 Waiting Time for Boiler (default 30min.)

A higher value of P19 will reduce the number of times that the boiler is used at lower supply setpoints, but the desired supply temperature may not be reached quickly if there is a high heating load (slower response). Conversely, a lower value of P19 will increase the number of times the boiler is used at lower supply setpoints, but ensure that the desired supply temperature is reached more quickly (better response).

4.8.5. Maximum Outdoor Temperature for Boiler Operation

This function disables the boiler control when the outdoor temperature is above the boiler maximum outdoor temperature setting. Above this setting it is assumed that the heat-pump is able to deliver all the requested heat by itself and the boiler is therefore not required.

Parameter Setting

P15 Máximum Outdoor Temperature for Boiler Operation (default 0°C)

• Enable/Disable

To disable this function and allow boiler operation at all outdoor temperatures, set the parameter P15=OFF.

 NOTE

 - The boiler is always available for DHW loading, independent of outdoor temperature.

4.9. ELECTRIC HEATER CONTROL FUNCTIONS

4.9.1. Electric Heater Control

Configuration Specific

Electric Heater control is available only in configuration 2 (CONF 2).

When the heatpump cannot meet the heating demand the 3-stage electric heater can be switched on to raise the supply temperature up to a máximum of 65°C. The electric heater control decides whether to switch on one or more of the electric heater stages based on a proportional plus integral action (P+I) control algorithm and the difference between the Electric Heater Setpoint and the Supply Water Temperature (TSUP).

The electric heater will only be used when:

- the outdoor temperature is below the bivalence point (máximum outdoor temperature for electric heater operation)
- or the electric heater has been manually released (after a heat pump fault)

In addition, two further checks are made before the electric heater is allowed to switch on. The prupose of these checks are to help ensure that the electric heater only switches on when the heat pump is working at its maximum capacity.

- 1. The Supply-Return Difference Check
- The Electric Heater Return High Limit Check These checks are not carried out if the heat pump is switched off or has an infernal fault.

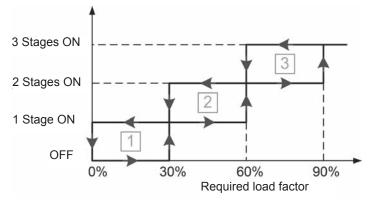
i	NOTE
- The boiler is always enabled when there is DHW loading required.	

• Electric Heater Setpoint & Supply Setpoint Control Offset

If the heat pump is switched off, or has an internal fault, the Electric Heater Setpoint = Supply Setpoint (SSUP)

If the heat pump is switched on, the water setpoint used for the electric heater control depends on the value of the Supply Setpoint. When the supply setpoint is low, the electric heater will only be used if the actual supply temperature is much lower than the desired setpoint. To achieve this, the electric heater setpoint is offset lower than the supply setpoint. When the supply setpoint is higher than can be achieved by the heat pump alone, the electric heater setpoint is equal to the supply setpoint. This function is intended to help reduce the number of times the electric heater is used, to emphasise energy saving operation.

If Supply Setpoint > Heat Pump maximum supply temperature –Heat Pump Sensor Offset + 0.5K, then Electric Heater Setpoint = Supply Setpoint (SSUP)


If Supply Setpoint < Heat Pump maximum supply temperature –Heat Pump Sensor Offset - 0.5K, then Electric Heater Setpoint = Supply Setpoint (SSUP) –Supply Setpoint Control Offset (EP31)

The heat pump maximum supply temperature depends on the outdoor temperature and the heat pump operating limits.

Control Algorithm

The P+I algorith m calculates a "Load factor" from 0% to 100%. The electric heater stages are switched on the load factor

Required Load Factor = PI function (Electric Heater Setpoint –TSUP)

Before switching in more or fewer stages (for example between stage 1 and stage 2), the System Controller waits for a certain time to prevent too fast switching. This time is the Inter-Stage Waiting Time, parameter EP20.

Controller pack Service Manual

Parameter Settings

EP2 Integral Factor Required Load - Boiler/Electric Heater Control (default 2.5 %/Kmin)

EP16 Proportional Band Required Load - Boiler/Electric Heater Control (default 6 K/100%)

EP20 Inter-Stage Waiting Time (default 10 sec)

EP31 supply Setpoint Control Offset (default 4 K)

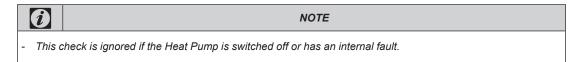
It is not normally recommended to change these parameters. They have been selected during laboratory tests for best performance in most situations. Correct positioning of the Supply Temperature Sensor close to the outlet of the Electric Heater should result in good control performance. If necessary, adjusting these parameters can correct unstable control behaviour in certain circumstances.

i	NOTE
- Engineering Parameters (EP) are only available for service engineers.	

4.9.2. Supply-Return Difference Check

This function helps prevent the electric heater operating unless the heat pump is already providing heat. When the heat pump is in "thermo-off" state (compressor off) or in "defrost", the difference between the supply temperature TSUP and return temperature TRET will be small (or negative in case of defrost) since no heating is provided. The electric heater is prevented from switching on until this difference is greater than the Supply-Return Difference Limit (P32). A +/-0.5K control differential is applied.

TSUP-TRET > P32 + 0.5K	Electric Heater is allowed to switch on.
TSUP-TRET < P32 — 0.5K	Electric Heater is not allowed to switch on.


• Enable/ Disable

This function can be disabled by setting parameter P32=OFF.

Parameter Settings

P32 Supply-Return Difference Limit (default 3K)

A high value will prevent the electric heater switching on until a large temperature difference is seen by the System Controller. With a low value or with the function disabled, the electric heater may start more often, for example during defrost cycles.

4.9.3. Electric Heater Waiting Time

It is important with mono-energetic systems that the Heat pump should first try to satisfy the heating demand by itself. Forthis reason an electric heaterwaiting time applies. This means that when the heatpump cannot meet the heating demand, then the electric heater is switched on only after the waiting time has elapsed.

The waiting time starts:

- When the heat pump is switched on, or
- When the electric heater switches off (but only also when the Supply Setpoint SSUP < heat pump máximum temperature - heat pump sensor offset).

This means that when the heatpump should normally be able to meet the heating demand on its own, the electric heater waiting time applies, but when the supply setpoint is so high that the heat pump cannot meet the heating demand on its own, the waiting time does not apply.

Parameter Settings

P19 Waiting Time for Electric Heater (default 30min.)

A higher value of P19 will reduce the number of times that the electric heater is used at lower supply setpoints, but the desired supply temperature may not be reached quickly if there is a high heating load (slower response). Conversely, a lower value of P19 will increase the number of times the electric heater is used at lower supply setpoints, but ensure that the desired supply temperature is reached more quickly (better response).

4.9.4. Electric Heater Return High Limit Check

The return high limit check is used to help ensure that the heat pump operates as much as possible even when higher supply temperatures are required, thus emphasising energy economy operation. The electric heater is disabled when the return water temperature (TRET) rises above the maximum heat pump outlet temperature minus the return limit offset (P33). A +/-0.5K control differential applies.

TRET > Heat Pump máximum supply temperature — P33 + 0.5K	Electric Heater disabled
TRET < Heat Pump máximum supply temperature — P33 - 0.5K	Electric Heater enabled

Since the electric heater is switched off then the return temperature rises too high, the effect will be that in some system conditions it will not be possible to reach 65°C supply temperature. If it is important to allow 65°C operation, then the parameter can be reduced or set to OFF, but the result is that in some situations the electric heater will operate on its own and the heat pump will not be used. This will cause higher energy costs.

Parameter Settings

P33 Return Temperature Limit Offset (default OFF)

	Ø	NOTE
0,		ighly recommended for CONF 2, that the parameter P33 is not left in the default OFF state. Inmended setting is 5K.

Enable/ Disable

This function can be disabled by setting the parameter P33=OFF.

107	SMGB0044 rev.0 - 10/2008
	Electric heater control functions

I

4.9.5. Maximum Outdoor Temperature for Electrical Heater Operation

This function disables the electric heater control when the outdoor temperature is above the electric heater maximum outdoor temperature setting. Above this setting it is assumed that the heat-pump is able to deliver all the requested heat by itself and the electric heater is therefore not required.

Parameter Setting

- P15 Maximum Outdoor Temperature for Electric Heater Operation (default 0°C)
- Enable/ Disable

To disable this function and allow electric heater operation at all outdoor temperatures, set the parameter P15=OFF.

4.10. MIXING VALVE CONTROL FUNCTIONS

4.10.1. Mixing Valve Control

Configuration Specific

This function only applies to configuration 4 (CONF 4)

When heating is required, the System Controller controls the mixing valve so that the mixed water temperature is close to the Supply Setpoint. The mixing valve position is calculated with a proportional plus integral action (P+I) control algorithm based on the difference between the Supply Setpoint and mixed water temperature (TMIX).

Desired Mixing Valve Position = PI function (Supply Setpoint –TRET)

The System Controller then decides how much to open or close the mixing valve to achieve the desired position of the valve. This is dependent on the running time of the actuator used on the valve. The running time is defined as the time it takes to drive the valve from the fully closed to the fully open position. Typically this can be between 1 and 4 minutes.

• Parameter Setting

- P9 Mixing Valve Runtime (default 120 sec)
- EP1 Mixing Valve Integral factor (default 2.5)

The installer should set the parameter p9 based on his selection of actuator and mixing valve. The value for EP1 has been chosen based on laboratory tests and it is not recommended to change it.

<i>i</i>	NOTE
- Engine	eering Parameters (EP) are only available for service engineers.

4.10.2. Mixing / Bypass Valve Control

Configuration Specific

This function only applies to configuration 5 (CONF 5)

When the boiler is switched on, the mixing valve control is enabled and operates in the same manner as described above (Mixing Valve Control).

When the boiler is switched off, and the difference between the supply water temperature (TSUP) and mixed supply temperature (TMIX) is small (less than EP3), the mixing valve is always closed (by-pass operation) so that the hot supply water from the heat Pump does not circulate through the boiler heat exchanger, which may cause unnecessary heat loss and reduction in system efficiency. While the water from the boiler (TSUP) is much hotter than the mixed supply temperature (TSUP), the mixing control continues to operate.

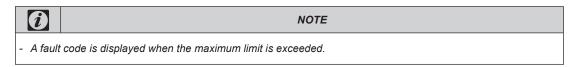
Parameter Setting

- P9 Mixing Valve Runtime (default 120 sec)
- EP3 Difference Supply water temperature (default 1.5K)

The value for EP3 has been chosen based on laboratory tests and it is not recommended to change it.

4.10.3. Mixed Heating Circuit Maximum Temperature Limit Protection

• Configuration Specific


This function only applies to configurations 4 and 5 (CONF 4,5)

The secondary circulation pump is switched off and the mixing valve closed when the maximum supply temperature (mixing circuit) setting is exceeded. This function helps prevent damage to floor heating systems by very high temperatures.

TMIX>P6	Pump switched off, mixing valve closed.
TMIX < P6 –5K	Returns to normal control.

Parameter Setting

P6 Maximum Supply Temperature

4.11. GENERAL FUNCITONS

4.11.1. System Frost Protection

The System Controller has a frost protection function to help prevent the heating system pipe-work freezing. When the actual outside temperature falls below the parameter (P22), the supply water temperature will be maintained at least at the parameter value (P21). A switching differential of 1K is applied.

Outside temperature (TEXT) < P22 Supply Setpoint (SSUP) determined by heating or DHW demand but always >= P21

Outside temperatura (TEXT) > P22+1K Supply Setpoint (SSUP) determined by heating or DHW demand.

• Parameter Settings

P21 Frost Protection minimum Supply Temperatura (default 20°C)P22 Frost Protection Activation Temperatura (default 2°C)

Enable/ Disable

To disable the system frost protection function, set P22=OFF.

4.11.2. Automatic Summer Switch-Off

At higher outside temperatures it doesn't make sense to keep heating the building. The System Controler will switch the heating off when the average daily outdoor temperature (averaged over 24hrs) rises above the parameter (P26). A control differential of +/-0.5K is applied.

Algorithm

Average Outside Temperatura > P26

Summer Switch-Off condition is active.

Average Outside Temperatura < P26-0.5K Summer Switch-Off condition is not active.

When the Summer Switch-Off condition is active, the heating is switched off. To disable the automatic summer switch-off function, set P26=OFF.

• Parameter Settings

P26 Summer Switch-off Temperature (default 20°C)

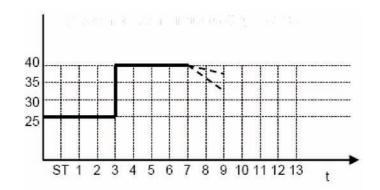
Enable/ Disable

To disable the automatic summer switch-off function, set P26=OFF

4.11.3. Pump and Valve Seizure Protection

The System Controller has an anti-seize protection function for valves and pumps which helps to prevent these components sticking during long periods of inactivity. Every 24hrs the components which have not been used will be run for a short period.

4.11.4. Screed function (drying for new floors)


The screed function is used exclusively for the required drying of newly applied screed on floor heating systems. The process is based on EN 1264 part 4. When the screed function is activated :

- 1. The flow temperature is kept constant at 25°C for 3 days
- 2. Heating is set at the maximum supply setpoint (P6) for 4 days (water temperature is always limited to 55°C)

On completion of the screed function, the controller returns to normal operation.

To Activate

The function is activated by setting parameter P25 to 1. The screed function can be deactivated at any time by setting the parameter P25 to 0.

Parameter Settings

P25 Start Screed-Drying Function (default 0)

NOTE

 If there is a power interruption, the screed function will continue when the power is restored.

4.12. PARAMETER TABLES

4.12.1. Installer Parameters

• Setting Instructions

Please refer to the System Controller Installation & Operation Manual for instructions on how to set the installer parameters.

ID	Parameter	CONF	Description	Min	Max	Step	Default
CONF	System Configuraron	12345	Set according to trie type of hydraulic configuraron installed.	1	5	1	3
P1	DHW Configuration	123-5	Set to 0=No DHW, 1 =DHW valve, 2=DHW pump	0	2	1	0
P2	Secondary Pump	12	Set to 1 if a buffer/hydraulic separator and a secondary pump is used (CONF 1 or CONF 2 only)	0	1	1	0
P3	Pump Overrun Time	12345	Sets how long trie pumps run afterthe heating is switched off.	1	10	1	2 min.
P4	OTC Heating Curve Gradient	12345	Sets the heating curve for OTC control function	0.2	2.2	0.1	1.1
P5	Mínimum Supply Temperature	12345	Sets the minimum supply water temperature for the heating.	5	40	1	15°C
P6	Zone 1: Máximum Supply Temperature	12345	Sets the maximum supply water temperature for the heating (zone 1)	20	55/65/ 90*	1	55°C
P7	Room Compensation Factor	12345	Sets the room temperature influence for the OTC control function	0	5	0.5	2
P9	Actuator Run Time / Mixing valve Control	45	Set to the running time of the actuator (see actuator manufacturer's technical data)	30	600	10	120 s
P10	DHW setpoint (not available if P1 =0)	123-5	Setpoint for the DHW control function.	45	65	1	45° C
P11	DHW differential (not available if P1 =0)	123-5	DHW control differential	1	10	1	5 K
P12	DHW supply offset (not available if P1=0)	123-5	Influences how quickly the hot water tank is heated	1	30	1	10 K

SMGB0044 rev.0 - 10/2008

Parameter tables

Service Manual

ID	Parameter	CONF	Description	Min	Мах	Step	Default
P15	Máximum Outdoor Temperature for Boiler / Electric Operation.	-2345	Boiler / Electric heater will be disabled above this temperature (Heat Pump works on its own). OFF means the boiler/electric heater is always enabled.	-20	20, then OFF	1	0°C
P17	Boiler Minimum ON Time	345	Sets the minimum ON time of the boiler to reduce inefficient short-cycling	1	30	1	2 min
P18	Boiler minimum OFF time	345	Sets the minimum OFF time of the boiler to reduce inefficient short-cycling	1	30	1	5 min.
P19	Waiting Time for Boiler/ Electric Heater	-2345	Sets the minimum time the controller will wait (after the heat pump is switched on) before using the boiler or electric heater	1	90	1	30 min.
P21	Mínimum Supply Setpoint during Frost Protection	12345	Sets the minimum supply water temperature when the frost protection function is active.	10	35	1	20 °C
P22	Frost Protection Activation Temperature	12345	Sets trie outdoor temperature below which trie frost protection function will activate.	-20, then OFF	5	1	2°C
P23	Zone2: Máximum Supply Temperature	12345	Sets the maximum supply water temperature for the heating (zone 2 extension)	20	55/65/ 90*	1	50°C
P24	Configuraron of Tariff/ Timer Input	12345	The sets the meaning of the digital input "Tariff/Timer"	0	4	1	4
P25	Start Screed-Drying Function	12345	Set to 1 to start immediately trie underfloor screed-drying function	0	1	1	0
P26	Summer switch-off temperature	12345	Sets the daily average outdoor temperature above which the heating will be switched off.	10	25, then OFF	1	20°C
P27	Maximum allowed DHW loading time (not available if P1=0)	123-5	Sets the maximum time allowed for DHW loading. After this time, if the DHW setpoint is not achieved, the controller will nevertheless return to heating.	1	12	0.5	1.5 hr
P30	No-load function enable	12345	Disables the heating in Zone 1 if the OTC calculated supply setpoint falls below the room temperature	0	1	1	1
P31	Heat Pump Sensor Offset	12345	Compensates for differences in temperature measurement between the Heat Pump and the Supply Sensor.	0	5	1	3°C
P32	Supply-Return Difference Control Limit	-2345	Control parameter to help maximise running time of the heat pump and minimise use of the electric heater or boiler.	1, then OFF	10	1	3°C
P33	Return Temperature Limit Offset	-2345	Control parameter to prevent electric heater use when the return temperature is too high for heat pump operation.	1, then OFF	15	1	OFF
P34	DHW Electric Heater Waiting Time (not available if P1=0)	12	Sets the time to wait after starting to heat the DHW tank before enabling the special output for "DHW electric heater enable"	0	60	1	45min

CONF: Only parameters that are allowed in a particular configuration are shown on the display.

4.12.2. Engineering Parameters

Engineering Parameters (EP) are provided for service engineers or the manufacturer or make adjustments that may be required to fix difficult or unusual problems. They are accessed in a similar way to the installer parameters via the front panel keypad.

Setting Instructions

To enter Engineering Parameter Display mode from the Normal Operation mode, press the **Set** and **i** butons togeher or a least one second. The dspay will show EP1" (or EP2" or EP5" depending on he system configuration) to indicate that the System Controller is in Engineering Parameter Display mode, and shows the parameter abbreviation and its current setting.

- 1. Use the "+" and "-" buttons to move up or down the parameter list according to the table.
- 2. To change a parameter setting, use the set button to enter Parameter Setting Mode. The value of the parameter will flash to show that it can now be changed. Use the "+" and "-" buttons to change the value to the desired setting.
- 3. To store the parameter setting, press the 💷 button. The flashing will stop to show the value has been saved. Instead,

to cancel the change, and retain the previously stored value, press the 🖭 button.

4. Continue to change the parameters as required. When finished, or at any time, pressing the **i** button will return the display to Normal Operation mode.

ID	Parameter	CONF	Description	Min	Мах	Step	Default
EP1	Mixing Valve Integral Factor	45	Mixing Valve Control: the integral reset factor of the P+I control algorithm.	0.0	20.0	0.1	2.5 %/Kmin
EP2	Integral Factor Required Load	-2345	Electric Heater or Boiler Control: the integral reset factor of the P+I control algorithm.	0.0	20.0	0.1	2.5 %K/min
EP3	Difference Supply Water Temperature	5	Mixing / Bypass Valve Control: offset to decide when to start the mixing control.	0.0	5.0	0.1	1.5 K
EP5	Show Entire Menu	12345	Setting EP5=1 shows all installer and engineering parameters independent of configuration.	0	1	1	0
EP6	Heat Pump supply setpoint at 4mA	12345	Heat Pump Control: the outlet supply setpoint of the Heat Pump for a 4mA control signal.	10	30	1	20°C
EP7	Heat Pump supply setpoint at 20mA	12345	Heat Pump Control: the outlet supply setpoint of the Heat Pump for a 20mA control signal.	40	70	1	55°C
EP8	Mixing Valve Proportional Band	45	Mixing Valve Control: the proportional band of the P+I control algorithm.	0.2	20.0	0.2	6.0K
EP13	Heat Pump Máximum Return Temperature	12345	Heat Pump Control: the maximum return temperature allowed while the heat pump is on.	20	70	1	60°C
EP14	Heat Pump Mínimum Outdoor Temperature	12345	Heat Pump Operating Limits: Defines the lowest possible outside temperature of operation of the heat pump.	-25	20, then OFF	1	-20 °C
EP16	P band Required Load	-2345	Electric Heater or Boiler Control: the proportional band of the P+I control algorithm.	0.2	20.0	0.2	6.0K
EP20	Inter-Stage Waiting Time	-2	Electric Heater Control: The minimum time between switching stages of the electric heater.	10	250	10	10sec
EP28	Heat Pump Mínimum Supply Temperature.	12345	Heat Pump Operating Limits: mínimum supply temperature below outside temperature of EP32	10	40	1	35°C
EP29	Heat Pump Máximum Supply Temperature	12345	Heat Pump Operating Limits: máximum supply above outdoor temperature of EP34.	40	70	1	55°C
EP31	Offset Supply Setpoint	-2345	Electric Heater or Boiler Control: reduced supply setpoint offset for control of electric heater or boiler.	0	10	1	4K
EP32	Heat Pump Mínimum Supply Inflexión Point	12345	Heat Pump Operating Limits: parameter to define shape of minimum supply temperature operating curve.	-25	20	1	0°C
EP33	Heat Pump Máximum Supply Temperature	12345	Heat Pump Operating Limits: máximum supply temperature below outside temperature of EP34	40	70	1	50°C
EP34	Heat Pump Máximum Supply Changing Point	12345	Heat Pump Operating Limits: parameter to define point at which maximum supply temperature changes.	-25	20	1	-10°C
EP35	Heat Pump Max Time High Setpoint	12345	DHW Control: time that supply setpoint is held at maximum when DHW demand occurs.	0	180	1	180sec
EP36	Boiler Delay Time	345	Boiler Control: Inhibits the Supply-Return Difference Check until this time has expired after the boiler is switched on.	1	15	1	5min

4.13. CONVERSION TABLE: HEAT PUMP SUPPLY TEMPERATURE TO mA

The following table converts the Heat Pump supply temperature setting in °C to current (I) in mA.

mA	Setting (°C)
2.0 i < 2 2	15.5
2.2 i < 2 4	16.0
2.4 i < 27	16.5
2.7 á < 2 9	17.0
2.9 á < 3 1	17.5
3.1 <i>i</i> < 3 3	18.0
3.3 i < 3 6	18.5
3.6 i < 3 8	19.0
3.8 <i>i</i> < 4 0	19.5
4.0 <i>i</i> < 4 3	20.0
4.3 <i>i</i> < 4 5	20.5
4.5 á < 4 7	21.0
4.7 <i>i</i> < 4 9	21.5
4.9 <i>i</i> < 5 2	22.0
5.2 <i>i</i> < 5 4	22.5
5.4 <i>i</i> < 5 6	23.0
5.6 <i>i</i> < 5 9	23.5
5.9 <i>i</i> < 6 1	24.0
6.1 <i>i</i> < 6 3	24.5
6.3 <i>i</i> < 6 5	25.0
6.5 <i>i</i> < 6 8	25.5
6.8 <i>i</i> < 7 0	26.0
7.0 i < 7 2	26.5
7.2 i < 7 5	27.0
7.5 á < 7 7	27.5
7.7 i < 7 9	28.0
7.9 <i>i</i> < 8 1	28.5

mA	Setting (°C)
8.1 <i>i</i> < 8 4	29.0
8.4 <i>i</i> < 8 6	29.5
8.6 <i>i</i> < 8 8	30.0
8.8 i < 91	30.5
9.1 <i>i</i> < 9 3	31.0
9.3 i < 9 5	31.5
9.5 i < 9 7	32.0
9.7 <i>i</i> < 100	32.5
10.0 <i>i</i> < 102	33.0
10.2 <i>i</i> < 104	33.5
10.4 <i>i</i> < 107	34.0
10.7 <i>i</i> < 109	34.5
10.9 <i>i</i> < 111	35.0
11.1 á < 11 3	35.5
11.3 <i>i</i> < 11 6	36.0
11.6 á < 118	36.5
11.8 á < 120	37.0
12.0 <i>i</i> < 123	37.5
12.3 <i>i</i> < 125	38.0
12.5 <i>i</i> < 127	38.5
12.7 <i>i</i> < 129	39.0
12.9 <i>i</i> < 132	39.5
13.2 <i>i</i> < 134	40.0
13.4 <i>i</i> < 136	40.5
13.6 á < 139	41.0
13.9 <i>i</i> < 141	41.5

mA	Setting (°C)
14.1 <i>i</i> < 143	42.0
14.3 <i>i</i> < 145	42.5
14.5 <i>i</i> < 148	43.0
14.8 <i>i</i> < 150	43.5
15.0 <i>i</i> < 152	44.0
15.2 <i>i</i> < 155	44.5
15.5 <i>i</i> < 157	45.0
15.7 <i>i</i> < 159	45.5
15.9 <i>i</i> < 161	46.0
16.1 <i>i</i> < 164	46.5
16.4 <i>i</i> < 166	47.0
16.6 <i>i</i> < 168	47.5
16.8 <i>i</i> < 171	48.0
17.1 <i>i</i> < 173	48.5
17.3 <i>i</i> < 175	49.0
17.5 i < 177	49.5
17.7 <i>i</i> < 180	50.0
18.0 <i>i</i> < 182	50.5
18.2 <i>i</i> < 184	51.0
18.4 <i>i</i> < 187	51.5
18.7 <i>i</i> < 189	52.0
18.9 <i>i</i> < 191	52.5
19.1 <i>i</i> < 193	53.0
19.3 <i>i</i> < 196	53.5
19.6 á < 198	54.0
19.8 <i>i</i> < 200	54.5
20.0 <i>i</i> < 203	55.0

114

4

SMGB0044 rev.0 - 10/2008

resist. O)

793.7

770.3

747.7

725.8

704.7

684.2

664.5

645.3

626.9

609.0

591.7

575.0

558.8

543.2

528.0

513

499

485

472

459

4.14. SENSOR RESISTANCE TABLES

NTC 20k Celsius Temperature Characteristic

temp. (°C)	resist. O)	temp. (°C)	resist. O)
-50.0	1659706	-9.0	115575
-49.0	1541379	-8.0	109189
-48.0	1432919	-7.0	103194
-47.0	1332091	-6.0	97564
-46.0	1238358	-5.0	92274
-45.0	1153525	-4.0	87303
-44.0	1073429	-3.0	82628
-43.0	999894	-2.0	78232
-42.0	932327	-1.0	74094
-41.0	869327	0.0	70200
-40.0	814000	1.0	66515
-39.0	759391	2.0	63046
-38.0	708806	3.0	59777
-37.0	661924	4.0	56697
-36.0	618451	5.0	53793
-35.0	578119	6.0	51055
-34.0	540677	7.0	48472
-33.0	505902	8.0	46034
-32.0	473588	9.0	43733
-31.0	443546	10.0	41560
-30.0	415600	11.0	39500
-29.0	389298	12.0	37553
-28.0	364833	13.0	35714
-27.0	342063	14.0	33975
-26.0	320860	15.0	32331
-25.0	301107	16.0	30775
-24.0	282696	17.0	29303
-23.0	265528	18.0	27909
-22.0	249511	19.0	26590
-21.0	234561	20.0	25340
-20.0	220600	21.0	24155
-19.0	207607	22.0	23032
-18.0	195459	23.0	21967
-17.0	184096	23.0	20958
-17.0	173463	24.0	20958
-15.0	163508	25.0	19089
-14.0	154185	20.0	18224
-14.0	145450	27.0	17404
-13.0	137262	28.0	16624
-12.0			
-11.0	129583 122380	30.0	15884

4.15. TECHNICAL DATA

4.15.2. System Controller (XEK23232 A)

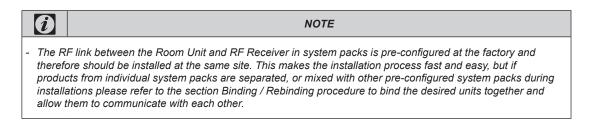
Power supply	230Vac +10%, -15%, 50Hz
Power Consumption	Max 5VA
Ambient Operating Temperature	0 to 50°C
Storage Temperature	-20 to 55°C
Humidity	0 to 90% RH non-condensing
Dimensions	121 x 161.5 x 46mm (WxHxD)
Material Base	PA-GF 25-FR
Material Cover	PC-FR (VO certified)
Degree of Protection	IP20 (IP30 with cable glands)
Fire Class	VO
Protection class	Class I (according to EN60730-1)
Emissions Standards	Complies with EN61000-6-3
Immunity Standards	Complies with EN61000-6-1
Safety Standards	Complies with EN60730-1:2007
CE Compliance	93/68/EEC
WEEE Compliance	2002/96/EC
RoHS Compliance	2002/95/EC
Heat Pump Control Signal	0-20mA, (max 10V @ 20mA), cable length max 20m (with wire cross-section 0.5mm ²)
Boiler output relay	Potential free contacts (24V-230Vac 0.5A)
DHW electric heater enable output relay	Potential-free contacts (230Vac 0.5A)
All other output relays	230Vac 0.5A
Tariff / Timer Input	Input for potential-free contact (rated 5Vdc, switching current 1mA)
Heat Pump Fault Input	Input for potential-free contact (rated 5Vdc, switching current 100mA)
RF Receiver connection	Serial communications according to OpenTherm® technical specification v2.3 (max 18V, 23mA, 1000 baud)
Diagnostic Interface	I ² C Bus Specification v2.1. An I ² C to RS232 interface is required for connection to a PC.

4.15.2. Water Temperature Sensor (XEK35524 A)

Element Type	NTC 20k @ 25°C
Mounting	Insertion well, or strap-on pipe with provided metal clip
Range, Precision	+5 to +90°C, +/-1K
Cable Length	2m cable, 2 core. (max cable length 100m)
Dimensions (cartridge)	6.5mm Ø, 50mm long
Protection class	IP62

4.15.3. Outdoor Temperature Sensor (XEK35438 A)

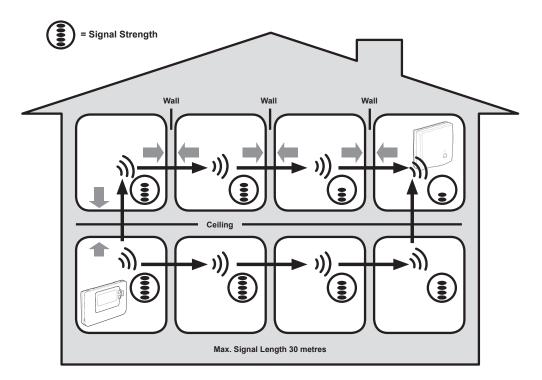
Element Type Mounting Range, Precision Dimensions Housing Electric Connection Cable Length Protection Class NTC 20k @ 25°C Outside wall mounting -30 to +40°C, +/-1K 95 x 65 x 70mm (HxWxD) Plastic (ABS) Terminals for 2 x 1.5mm² cable Max 100m IP30


4.16. SYSTEM MMI PACK (ROOM UNIT AND RF RECEIVER)

4.16.1. Room Unit installation guide

◆4.16.1.1. Description

The Room Unit communicates with the RF Receiver on an 868MHz Radio Frequency (RF) band to control the Heat Pump System Controller. Neither product will communicate with other RF products that use different frequencies or communication protocols.

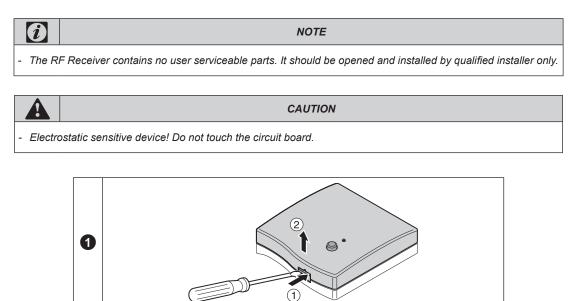

♦ 4.16.1.2. Installation information

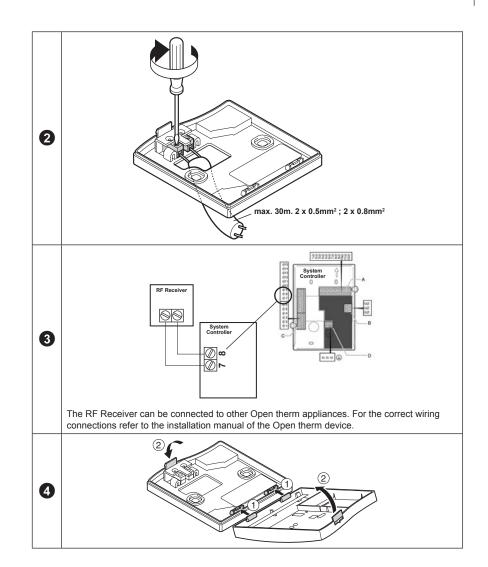
As these products communicate using RF technology special care must be taken during installation. The location of the RF components as well as the building structure may influence performance of the RF system. To assure system reliability, please review and apply the information given below.

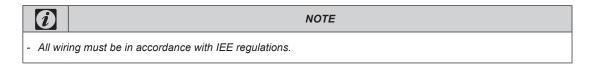
Within a typical residential building the two products should communicate reliably within a 30m range. It is important to take into consideration that walls and ceilings will reduce the RF signal. The strength of the RF signal reaching the RF Receiver depends on the number of walls and ceilings separating it from the Room Unit, as well as the building construction - the diagram below illustrates an example of typical signal strength reduction. Walls and ceilings reinforced with steel or plasterboard walls lined with metal foil reduce the RF signal significantly more.

Once a position is selected for the Room Unit this can be checked using the RF Communication Test mode as described in section Locating the Room Unit. If the position is unsuitable the RF Receiver will not respond and an alternative position for the Room Unit must be selected.

4




Typical example of building fabric signal losses


♦ 4.16.1.3. Installing the System MMI Pack


Please follow the illustrations and information below in sequence to install the RF Receiver and Room Unit correctly. To enable special features and see what other system options are available refer to section Installer Mode.

♦ 4.16.1.4. Installing the RF Receiver

4.16.2. Installing the Room Unit

♦ 4.16.2.1. Power up

Installing the Batteries:

- **a.** Lift up the front cover of the Room Unit to reveal the battery cover and product controls.
- **b.** Remove the battery cover by pressing down and sliding out.
- c. Insert the 2 x AA LR6 Alkaline Batteries supplied with the Room Unit, ensuring the correct orientation.

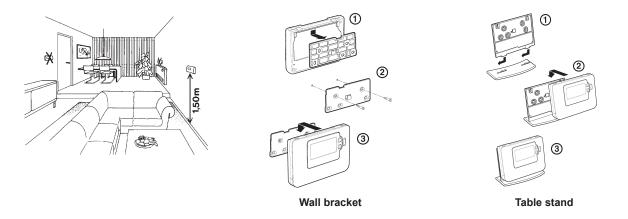
- **d.** After a short pause the Room Unit will display information on the screen and is now ready for use.
- e. Replace the battery cover by sliding it firmly back into the front of the Room Unit.

Setting the date and time:

a.	Press the 🗊 button to begin setting the date. When you set the date for the first time after the batteries are inserted, the display will show:	
	Press the \bigcirc \bigcirc or \bigcirc buttons to set the current day of the month (e.g. d 01 = 1st day of the month) then press the green \bigcirc button to confirm.	
b.	Press the \bigcirc $\textcircled{+}$ or \bigcirc buttons to set the current month of the year (e.g. m 01 = January) then press the green \bigcirc button to confirm.	<u>י</u> הק הוק (
C.	Press the \bigcirc $\textcircled{+}$ or \bigcirc buttons to set the current year (e.g. yr 07 = 2007) then press the green \bigcirc button to confirm.	فَ 'ہے۔
	The date is now stored and the Day Indicator will be displayed under the current day of the week (e.g. 1 = Monday, 2 = Tuesday, etc.)	
d.	Use the \textcircled{O} or \textcircled{O} buttons to set the correct time then press the green \textcircled{O} button to confirm. Each press of the buttons will change the time by one minute and holding them down will change the time slowly at first and get progressively quicker.	
	<i>NOTE</i>	
-	If this mode is entered accidentally then press the \mathfrak{B} , \checkmark or \mathfrak{O} buttons to exit.	

◆4.16.2.2. RF Communication check (test mode)

To check the RF communication, hold the **Room Unit** about 2-3 metres from the installed RF Receiver. Set the **Room Unit** to off by pressing the button. then press the $\r{}$ and buttons together with the button for 3 seconds. The unit will display "test" and it will send test signals to the **RF Receiver**. If the test signals are received the LED on the RF Receiver will flash between 1 and 5 times. The number of flashes indicates the strength of the radio signal. The higher the number of flashes, the stronger the signal is.


i	NOTE
	ED does not flash or if you are installing a replacement RF Receiver or Room Unit, follow the procedures bed in section Binding / Rebinding Procedure.

♦ 4.16.2.3. Locating the Room Unit

While still in the Test Mode, the Room Unit should be located taking the following into consideration and reviewing the illustrations below:

1. Find a suitable location where the signal transmission is reliable. Reliable transmission is indicated when the RF Receiver is flashing the green LED every 6 seconds.

- 2. Install the **Room Unit** EITHER on the wall using the wall bracket OR attach the optional table stand as shown in below.
- 3. Exit the Test Mode by pressing the (A) or () button.

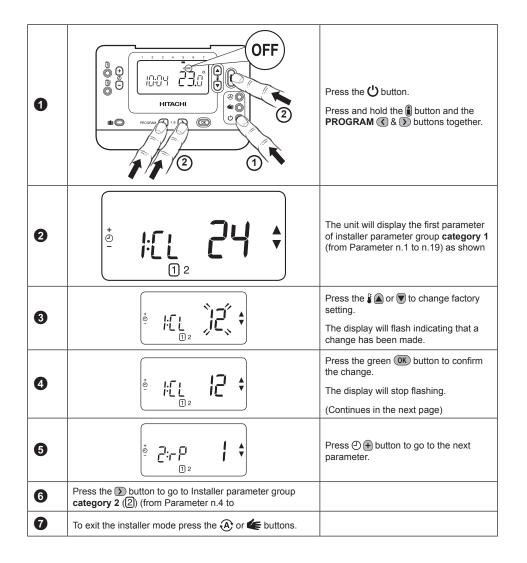
- The Room Unit should be installed in an open space for best performance as it is a radio frequency device.
- Leave at least 30cm distance from any metal objects including wall boxes and at least 1 metre from any other electrical equipment as radio, TV, PC etc.
- Do not mount onto metal wall boxes.
- It is recommended that the RF Receiver is fully installed.

4.16.3. Communication loss

In the event of an RF communications loss, the LED on the RF Receiver will indicate which type of fault has occurred.

- If there is a communications fault between the RF Receiver and the Room Unit, then the LED on the RF Receiver will flash red for 0.1 sec ON every three seconds.
- If there is a fault in communications between the boiler or System Controller, then the LED on the RF Receiver will flash 3 times quickly and then be off for three seconds.
- If there is more than one Room Unit installed, as in multi-zone systems for example, and communications is lost with one zone, then the red LED on the RF Receiver will flash two times quickly and then be off for two seconds.
- If there is more than one Room Unit installed, as in multi-zone systems for example, and communications is lost with both zones, then the red LED on the RF Receiver will flash once for 0.1 sec ON, and 0.9 sec OFF.

Once the faulty device has been identified, replace as necessary and follow the re-binding procedure as described in section Binding / Rebinding Procedure.


4.16.4. Installer mode

Installer Mode is used to alter the system settings for specific applications, to use the special features of the Room Unit in a different way or to alter the factory preset parameters. Parameters are divided into two groups:

- Category 1 parameters Room Unit Setup
- Category 2 parameters System Setup. (These are all listed in section Installer Parameters Table.).
- SMGB0044 rev.0 10/2008

System MMI Pack (Room unit and RF receiver)

♦ 4.16.4.1. Entering installer mode

♦ 4.16.4.2. Fail-Safe mode setup

The fail-safe mode defines the system status if the RF communication is lost (e.g. when the **Room Unit** stops communicating due to discharged batteries). If the system is a direct (radiator one), then the factory setting will make the system revert to a set point of 10°C for frost protection. If indirect loops are added, the system will continue to operate at the last communicated setpoint.

♦ 4.16.4.3. Using the Room Unit for specific applications

The Room Unit is a versatile controller that can be used to control many different applications. Please note that when the Room Unit is installed in conjunction with a System Controller, the functionality will differ to that when installed with a standard boiler system. Most of the functions shown below will be controlled by the System Controller and be set within its parameters. Therefore, some of the system parameters within the Room Unit menu will not apply. Please also note other changes to the setting of the optimisation and proportional band settings as shown in the the next tables.

Í

NOTE

In order for the Room Unit to send the heating demand signal to the RF Receiver, it is essential that the Category 2 parameter 8:Su is set to the correct value (see Installer Parameters Table, 3.5.2 Category 2 – System Settings). Failure to do this will mean that the heating system will not respond to changes in the setpoint on the Room Unit. Under these circumstances the system will operate with no input from the Room Unit and may not therefore provide adequate temperature control.

♦ 4.16.4.4. Using the special features of the Room Unit

Special feature	Description:	Enable/Disable
Heating operation	(This feature is not available with the system) This product can be used for heating applications. You can independently modify the profile.	To enable: Set parameter 4:HC (category 2) to 1.
Summer/winter auto time change	This feature moves time automatically on the last Sunday of March and the last Sunday of October. The feature is factory enabled.	To enable: Set parameter 3:tC (category 1) to 1.
Temperature offset	If the Room Unit is located in a particularly hot/cold location for reliable signal transmission reasons then the measured/displayed temperature can be adjusted by +/- 3°C. This is useful if the homeowner wants the reading to match another appliance temperature display.	Set parameter 12:tO (category 1) to the required offset value.
Upper/lower temperature limit	The normal upper temperature limit of 35°C can be reduced to 21°C to save the homeowner energy. The normal lower limit of 5°C can be increased up to 21°C to protect inhabitants from cold.	Set parameter 6:uL (category 1) to the desired upper limit. Set parameter 7:LL (category 1) to the desired lower limit.

4.16.5. Installer parameters table

◆4.16.5.1. Category 1 - Room Unit settings

Parameter	Parameter No.	Factor	y Default Setting		Optional Setting
	Cat	egory 1 Pa	rameters – Room Un	it Settings	3
		Display	Description	Display	Description
AM-PM / 24hr Display	1:CL	24	24 hr clock display format	12	12 hr – AM/PM clock display format
Reset Time/ Temp Program	2:rP	1	Time / Temp profile set to factory default Changes to 0 when one of the time/temp profiles are changed	0	Time / Temperature are as programmed To restore the factory profile set to 1
Auto Summer/ Winter Time Change	3:tC	1	Auto Summer/ Winter Time Change Enabled	0	Auto Summer/Winter Time Change Disabled
LCD Backlighting	5:bL	1	Backlighting Enable	0	Backlighting Disabled
Upper Temp Limit	6:uL	35	35°C Upper Temp. Limit	21 to 34	21°C to 34°C adjustment in 1°C steps

SMGB0044 rev.0 - 10/2008

Parameter	Parameter No.	Factory Default Setting			Optional Setting
	Category 1 Parameters – Room Ur			nit Settings	3
Lower Temp Limit	7:LL	5	5°C Lower Temp. Limit	5 to 21	6°C to 21°C adjustment in 1°C steps
Optimisation Note: This parameter will not function with the System Controller.	8:OP	0	Optimisation Disabled	1	Optimisation Enabled DO NOT CHANGE
Temperature Offset	12:tO	0	No temperature offset	-3 to +3	-3°C to +3°C adjustment in 0.1°C steps
Proportional Band Width Note: This function is for use with the extension system only. It will not function with the System Controller alone	13:Pb	1.5	Proportional band of 1.5 degrees	1.6 to 3.0	1.6°C to 3.0°C adjustment in 0.1°C steps
Reset Parameters to Factory Defaults	19:FS	1	All settings at factory defaults Changes to 0 when one of the parameter is changed	0	Settings are as modified above To restore the factory profile set to 1

Ì	NOTE
Reme	mber to always press the green or button to confirm that you want to store your new Installer Set-Up

- Remember to always press the green **(N)** button to confirm that you want to store your new Installer Setting. To exit the Installer Mode press the **(A)** or **(4)** button.

◆4.16.5.2. Category 2 - System settings

\boldsymbol{i}	NOTE
	ure correct heat pump system operation, parameter "8:Su" must be set correctly. See note in section the Room Unit for Specific Applications.

Parameter	Parameter No.	Factory Default Setting			Optional Setting		
Category	Category 2 Parameters – System Settings (press the) button to access this category)						
Heat/Cool selection enable / disable	4:HC	0	Disabled	1	Enabled DO NOT CHANGE		
Room Temperature Sensor Use	8:Su	0	Programmer and room compensation unit	1	Programmer only. Transmits demand and room setpoint (no temperature displayed)		
Maximum Flow Setpoint (extension systems only)	11:uF	55	55°C Maximum Flow Temp.	0 to 99	0°C to 99°C adjustment in 1°C steps		

HITACHI

Inspire the Next

Parameter	Parameter No.	Factory Default Setting			Optional Setting	
Category	Category 2 Parameters – System Settings (press the) button to access this category)					
Minimum Flow Setpoint (extension systems only)	12:LF	15	15°C Minimum Flow Temp.	0 to 50	0°C to 50°C adjustment in 1°C steps	
Mixing Value Run Time (extension systems only)	13:Ar	150	150 seconds	0 to 240	0 to 240 sec. adjustment in 1sec steps	
Pump Overrun Run Time (extension systems only)	14:Pr	15	15 minutes	0 to 99	0 to 99 mins adjustment in 1min steps	

i

NOTE

Remember to always press the green ON button to confirm that you want to store your new Installer Set-Up setting. To exit the Installer Mode press the A or for button.

4.16.6. Binding / Rebinding procedure

The binding operation described below is required if:

- Any of the system components (Room Unit or RF Receiver) are replaced.
- The RF Receiver has incorrect or no binding data stored (e.g. when pre-bound system pack components have been mismatched).

ΝΟΤΕ		
	- During	the binding procedure keep approximately 1m distance between the Room Unit and the RF Receiver.

To bind/rebind:

- 1. Hold button on RF Receiver for 15 seconds. LED will flash red 0.1 sec ON, and 0.9 sec OFF.
- 2. Hold button on RF Receiver for 5 seconds. LED will flash red for 0.5 sec ON, and 0.5 sec OFF.
- 3. Press the 🖰 button on the Room Unit.
- 4. Hold 👔 🔊, 🗑 and 🔇 buttons for 2 seconds. Display will show "InSt CO". The boiler and RF signal icons will be displayed.
- 5. Press the green OK button.
- 6. When Red LED on the RF Receiver goes off, the devices are bound.
- 7. If binding is unsuccessful, then the LED will stay on. In this case, move the Room Unit and repeat the procedure from the beginning.
- 8. The LED on the RF Receiver will flash green every 10 seconds to indicate that the device is live.
- 9. Now go to Section 2. Installing the System MMI Pack to setup the system.
- SMGB0044 rev.0 10/2008

System MMI Pack (Room unit and RF receiver)

4.16.7. Technical data

◆4.16.7.1. Specifications

System Controller	
Power Supply	230Vac, 50Hz
Power Consumption	Max. 5 VA
Ambient Temperature	0 to 50 °C
Storage Temperature	-20 to 55 °C
Humidity	0 to 90% RH non-condensing
Dimensions	121 x 161.5 x 46mm (WxHxD)
Material Base	PA-GF 25-FR
Material Cover	PC-FR (VO certified)
Degree of Protection	IP20 / IP30 with cable glands
Fire Class	V0
Heat Pump Control Signal	4-20 mA, (max10V @ 20mA)
Boiler / DHW electric heater enable output	230Vac 0.5A (potential-free)
All other relay outputs	230Vac 0.5A (not potential-free)
Tariff/Timer input	5V, 1mA (a potential-free contact should be used)
Heat Pump Fault input	5V, 1mA (a potential-free contact should be used)

TEMPERATURE SENSOR

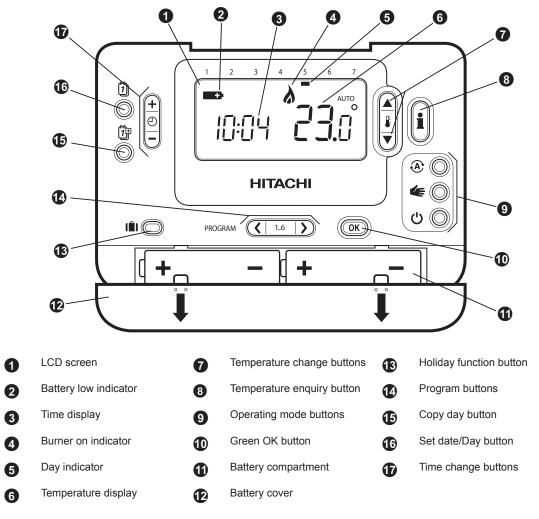
Water temperature sensor element	Type NTC20k @ 25°C
Range, precision	+5 to +90 °C, +/-1 K
Cable length	2m cable, 2 core (max 100m)
Dimensions (cartridge)	6.5 mm Ø, 50 mm long
Protection class	IP 62

OUTSIDE SENSOR

Outdoor temperature sensor element	Type NTC20k @ 25°C
Range, precision	-30 to 40 °C, +/-1 K
Dimensions (HxWxD)	95 x 65 x 70 mm
Housing	Plastic (ABS)
Electric connection	Terminals for 2 x 1.5mm ² cable
Cable length	1m (max 100m)
Protection Class	IP 30

♦ 4.16.7.2. Standards, approvals and function definition

Purpose of the device is temperature controlling
Device meets Protection class 1, EN 60730-1,
Device meets EN61000-6-3 : emission standard, residential, commercial and light industry.
Device meets immunity standard EN61000-6-1
Refer to Code of Practice standards EN61000-5-1 and -2 for guidance
The unit complies with OpenTherm Protocol Specification v2.3c
Independently installable electronic control system with fixed installation
Type of action is Type 1.B
Temperature for ball-thrust hardness test for housing components is 75 °C and for live parts such as, for example, terminals is 125 °C
Pollution severity is 2
Rated impulse voltage is 4000 V (corresponding to Overvoltage category III)
Software class is A
NB1: Keep AC mains supply/load cables separate from signal wiring
NB2: Installation to be carried out by a suitably qualified person
Refer to Code of Practice standards EN61000-5-1 and -2 for guidance



4.16.8. Room Unit user guide

• Description

The Hitachi programmable wireless room unit is designed to control your heating system efficiently, providing comfortable temperatures when you are at home and energy savings when you are away. The following instructions explain how to program and use the Hitachi room unit to provide the highest home comfort with a minimum cost.


- Features
 - Ergonomic user interface featuring an 'OK-button'.
 - · Large LCD (Liquid Crystal Display) Screen with backlight.
 - 7-day heating program to match your lifestyle, whilst maximising energy savings.
 - 6 independent temperature levels per day (from 5°C to 35°C).
 - Holiday button saves energy by letting you reduce the temperature for 1 to 99 days.
 - · Built-in Memory holds the user program indefinitely.
- Controls layout

◆ 4.16.8.1. Setting-up

This section shows you how to setup and run the Hitachi room unit in 3 simple steps:

STEP 1: Installing the batteries

To install the batteries:

- a. Lift up the front cover of the Hitachi room unit to reveal the battery cover and product controls.
- b. Remove the battery cover by pressing down and sliding out.
- c. Insert the 2 x AA LR6 Alkaline Batteries supplied with the Hitachi room unit, ensuring the correct orientation (see 'Controls Layout' on page 12).
- d. After a short pause the Hitachi room unit will display information on the screen and is now ready for use.
- e. Replace the battery cover by sliding it firmly back into the front of the Hitachi room unit.

STEP 2: Setting the date and time

To set the Date and Time:

- a. Press the $\overline{1}$ button to begin setting the date.
- b. Press the 🕐 🕂 or 🕞 buttons to set the current day of the month (e.g. d01 = 1st day of the month) then press the green **OK** button to confirm.
- c. Press the 🕘 🕂 or 📼 buttons to set the current month of the year (e.g. m01 = January) then press the green **OK** button to confirm.
- d. Press the () + or buttons to set the current year (e.g. yr08 = 2008) then press the green button to confirm. The date is now stored and the Day Indicator will be displayed under the current day of the week (e.g. 1 = Monday, 2 = Tuesday, etc.)
- e. Use the () (+) or (-) buttons to set the correct time then press the green (0K) button to confirm. Each press of the buttons will change the time by one minute and holding them down will change the time slowly at first and get progressively quicker.

STEP 3: Running the built-in heating program

The Hitachi room unit is now ready for operation. Press the 🏵 button and the built-in heating program will start running.

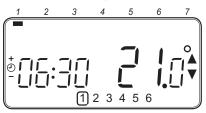
<i>i</i>	NOTE
	ilt-in heating program has been designed to provide normal comfort requirements, but if you want to nise the settings please see the next section 'Programming the Hitachi room unit'.

♦ 4.16.8.2. Programming

The built-in heating program

The built-in heating program has 6 temperature level changes per day that can be set between 3.00am and 2.50am the following day - allowing you to maintain the evening temperature after midnight. Each temperature level can be set between 5° C and 35° C, and adjusted in 0.5° C increments. The factory default program for heating is as follows.

Monday to Friday	Period	1	2	3	4	5	6
(Day 1 to 5)	Time	6:30	8:00	12:00	14:00	18:00	22:30
	Temperature	21°C	18ºC	21ºC	18ºC	21ºC	16ºC
Saturday to Sunday	Period	1	2	3	4	5	6
Saturday to Sunday (Day 6 to 7)	Period Time	1 8:00	2 10:00	3 12:00	4 14:00	5 18:00	6 23:00

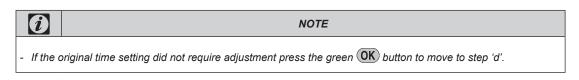

Reviewing the heating program

To review or edit the heating program use the PROGRAM \bigcirc or \bigcirc buttons to navigate between the 6 individual programming periods for that day. Use the button 1 to step through each day of the week, so the complete 7 day heating program can be reviewed or edited.

Modifying the heating program

To change the heating program:

a. Press either of the PROGRAM (or) buttons to enter the programming mode. The time / temperature settings for period 1 on Monday (Day 1) will be flashing as shown. The active period is highlighted by a flashing square around the numbers at the bottom of the screen and the selected day is shown with the day indicator.



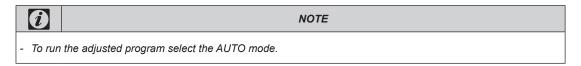
b. To adjust the period start time use the 🕘 🛨 or 📼 buttons, the 'OK?' indicator will be displayed to confirm the change. Holding the button down will change the time quickly.

	NOTE
- If you are pre	essing the \bigcirc $+$ or $-$ buttons and the display flashes the next period, it means the next period
will be pushe	of forward.

SMGB0044 rev.0 - 10/2008

c. Once the required time is reached press the green **OK** button to confirm.

- d. The temperature setting for period 1 on Monday (Day 1) will now be flashing. To adjust this press the **F** or **v** buttons and confirm the setting again by pressing the green **ok** button.
- e. The next time and temperature period will now be active. Adjust this by repeating steps b d above until all 6 periods are set for Monday or press the A button to run the program as set, at any time.


You now have a choice of how to set the program for the next day:

f. i) Press the button III to copy Monday's program into Tuesday. The display will go blank apart from the 'non flashing' day indicator, which indicates the day copied and the 'flashing' target day to copy the program to. To accept this day press the green OK button. To select a different target day press the II button until the 'flashing' day indicator is under the required day, then accept it by pressing the green OK button.

	NOTE	
- Once the target day	is confirmed it becomes the day that is copied if the 🗊 button is pressed again.	

OR

ii) Press the *D* button to move the day indicator to Tuesday (Day 2). The program for that day can then be adjusted by following steps b to e. Programs for the remaining days can be set in the same way, using the *D* button to move to the next day. To exit the programming mode select the desired operating mode by pressing the *D*, *C* buttons.

Disabling / Enabling time periods

The Hitachi room unit has 6 periods each day that can be programmed, but you may not need all of these switch points for your heating requirements. Therefore, any period from 2 to 4 can be removed from (or returned to) the heating program profile.

To disable or enable time periods:

- a. To disable unwanted periods go to the desired period (2 to 6) using the PROGRAM (or) buttons to navigate, ensure the correct period is highlighted with the flashing square symbol. Press and hold the button for at least 2 seconds and the display will indicate the period has been removed from the program.
- b. To enable periods again follow the same procedure as above, navigating to the already disabled period. To enable this period again press and hold the i button for at least 2 seconds.

+4.16.8.3. Operating

Choosing the operating mode

The Hitachi room unit can operate in three different modes: Automatic, Manual or Off. To set the operating mode press either of the (2), (4) buttons. The screen indicates which mode is currently active by displaying AUTO, MAN or OFF.

- AUTOMATIC ((A)) mode sets the Hitachi room unit to follow the built-in temperature program (default or personalised). Operating the Hitachi room unit in this mode is the best way to maintain a high level of temperature comfort whilst maximising your energy savings.
- MANUAL () mode sets the Hitachi room unit to act as a simple thermostat with a fixed setpoint throughout the day. The setpoint can be adjusted from 5°C to 35°C by using the C or v buttons. The Hitachi room unit will continue to maintain this temperature until another operating mode or temperature is selected.
- ・OFF (し) mode sets the Hitachi room unit to control to a minimum temperature setting of 5°C (default) that acts as a frost protection measure for your home.

During normal operation

Temperature Override

During normal operation (AUTO (A) or mode) the programmed temperature can be adjusted manually by pressing the A or A buttons or the A button. The 'target' temperature will be displayed and flash for 5 seconds - during this time the \oiint{A} or A buttons can be used to modify the set value. Note: This temperature override is cancelled at the next programmed temperature change.

• Temperature Enquiry

When the Hitachi room unit is configured to control the room temperature directly it will display the current room temperature. To review the programmed 'target' temperature (the temperature which the Hitachi room unit is trying to maintain) press the **()** button. This 'target' temperature value will be displayed flashing for 5 seconds before returning to the current room temperature value.

Using the special functions

HOLIDAY Function

The holiday function allows you to set a constant temperature (default = 10° C) for a specified number of days (from 1 - 99 days). This lets you save energy and related costs when you are away from home, but resumes normal operation on the day of your return.

To set the Holiday function:

- a. Ensure the Hitachi room unit is running in AUTO ((A)) or MAN (()) operating modes.
- b. Press the holiday button to display the holiday () days counter and temperature setting, along with the holiday indicator ().
- c. Press the 🕘 🛨 or 🖵 time buttons to set the holiday time (1 to 99 days) and press the green OK button to confirm.
- d. Press the F 🔊 or 🔍 buttons to set the holiday temperature (5°C to 35°C) and press the green OK button to confirm.

The Hitachi room unit will now control to the new temperature for the set number of days that your home is vacant. At midnight the holiday counter will be reduced by one until the selected number of days have passed. The Hitachi room unit will then return to normal operation as set by the AUTO ((A)) or MAN ((C)) mode. To cancel the HOLIDAY function or to exit the function at any time press the ((A)) button a second time.

SMGB0044 rev.0 - 10/2008

System MMI Pack (Room unit and RF receiver)

Adjusting the time

To adjust only the time during normal operation use the \bigcirc \bigcirc or \bigcirc buttons to adjust the time and press the green \bigcirc button again to confirm any changes.

♦ 4.16.8.4. Troubleshooting System MMI Pack

Symptom	Possible cause	Remedy	
	Batteries not installed.	Check to see if there are batteries in the battery compartment and the paper tab has been removed.	
The Hitachi room unit has a blank LCD screen.	Incorrect battery orientation.	Check that the batteries have been installed in the correct orientation.	
	Exhausted batteries.	Replace with new batteries.	
The Hitachi room unit shows a flashing 14 symbol on the LCD screen.	Batteries are exhausted and need replacing.	Replace with new batteries.	
The Hitachi room unit shows a flashing symbol on the LCD screen.	Fault in Hitachi room unit	Remove and re-insert the batteries in the Hitachi room unit. If the symbol does not clear itself in a few minutes call the installer.	
	No power to heating system.	Check that there is power to the heating system.	
The Hitachi room unit's LCD display works but the heating does not switch on.	Program does not call for heat.	Press the for button and then press the for a to increase the temperature a few degrees above the current room temperature. The heating should come on after a few seconds.	
	Wrong electrical connection.	Call the installer to check the electrical connections	
The red LED on the receiver located next to heat pump controller is	RF communication lost due to the wrong location of the Hitachi room unit.	Hook the Hitachi room unit back on the wall bracket or replace the Hitachi room unit on the table stand in the position where RF communication was reliable.	
constantly on or flashing.	RF communication fault.	Call installer.	
The RF Receiver does not react to setpoint changes on the Room Unit.	The Room Unit and RF Receiver are not bound or the installer parameter 8:Su has not been set correctly.	Make sure that the 8:Su parameter value is set correctly. Reset the RF Receiver by pressing and holding the push button for 15 seconds. Then follow the binding / rebinding procedure as described in section 4. Binding / Rebinding Procedure.	
After the binding procedure the red LED continues to flash on the RF Receiver.	Incorrect or incomplete binding procedure. Incorrect position of the Room Unit during binding.	Repeat the binding procedure. Repeat the binding procedure keeping approx. 1m distance between the RF Receiver and the Room Unit.	
The red LED is on the RF Receiver (Communication loss)	The RF Receiver receives no RF messages from the Room Unit: RF signal is blocked due to wrong location of the Room Unit.	Re-locate the Room Unit . Installing the System MMI Pack. Replace batteries in the Room Unit.	
	Room Unit batteries are exhausted.		

+4.16.8.5. Diagnostic mode

The Room Unit has a user accessible mode that provides information useful to a remote service person and a means of checking whether the heating system is working. To access this press the O button then press and hold the O button for 5 seconds. The Room Unit will enter the user settings mode. Next press and hold the O and O O buttons together. The following information can be viewed on the display by pressing the \oiint or O buttons : model ID, date code (WW/YY) & checksum.

♦ 4.16.8.6. FAQ's

How do I change the batteries on the thermostat when they run out?

The Hitachi room unit constantly monitors the battery power level, which typically lasts for about 2 years before needing replaced. When the power is running low a flashing symbol will be displayed on the screen. To change the batteries follow the steps in the above section ('STEP 1: Installing the Batteries' on page 3), replacing the used batteries with new ones in Step c. Note: While changing the batteries your program settings will be stored but you may need to adjust the time settings to be correct.

I want to use the table stand instead of wall mounted bracket. Where can I position the room unit?

It is important to keep the room unit in a location where reliable RF communication was proven. Advise your installer where would you like to position the room unit and he will check if the RF communication is reliable in the selected location(s).

Important: As this is a wireless device certain objects could interfere with the RF signal - Leave at least 30cm distance from any metal objects (including wall boxes) and at least 1 metre from any other electrical equipment eg. radio, TV, PC, etc.

4.17. SENSOR PACK

4.17.1. Water Temperature Sensor

The best location for measuring the temperature and, therefore, inserting the KTF 20, is the immersion well for boiler temperature displays, boiler thermostat, and safe temperature guard. There is usually space for the KTF 20 sensor in this well (sensor cartridge: 6.5 mm Ø, 50 mm long).

In order to have good heat transmission between the sensor cartridge and the immersion well, the contact strip supplied must be inserted along with the cartridge. If there is no space in the well for the KTF 20, another separate well can be used near the aforementioned immersion well.

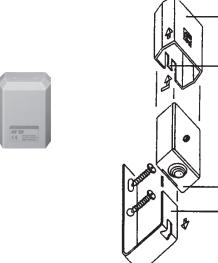
Either the VF 20T, -NT is to be used or only the immersion well of the VF 20T, -NT together with the KTF 20. Again, in order to have sufficient heat transmission, the sensor cartridge of the KTF 20 must be inserted with the contact strip supplied.

4.17.2. Outside Temperature Sensor

• Location of device

The most important rule for locating the Outdoor Temperature Sensor is that it should have the same temperature, wind, and solar conditions as the occupied rooms. In most cases, the Outdoor Temperature Sensor is to be mounted on the coldest side of the building (N–NW side) so as not to be affected by direct sunshine. This is to ensure that it will be warm enough in each room of the house. Only when the windows of all the rooms to be regulated face in the same direction can the sensor element be mounted onto the outside of this same wall. This can also be the south side of the house. The Outdoor Temperature Sensor's protective housing prevents the sun's rays from affecting the sensor. If the sensor has been mounted on the south side of a house with large windows facing in this direction, it is recommended that you remove the sun guard. Do not mount the Outdoor Temperature Sensor in a protected area, such as a wall niche or under the balcony. It should be put on an open façade so that it can detect all weather conditions. Avoid mounting the sensor above doors and windows since warm air movements may otherwise influence the measurement results. The Outdoor Temperature Sensor should be mounted about 2/3 the way up the wall on buildings of no more than 3 stories; on taller buildings, between the second and third stories.

• Mounting


Press in the clasp (\mathbf{R}) and pull off the top (\mathbf{H}). Pull the clip (\mathbf{B}) out of the housing (\mathbf{G}). Screw on the clip (\mathbf{B}) and put on the housing. To wire, unscrew the lid. Slide the top (\mathbf{H}) over the housing until the clasp is firmly attached.

Η

R

G

В

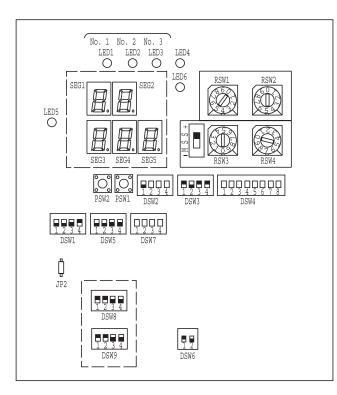
5. UNITS CONTROL SYSTEM

CONTENTS

5.1.	Device control system	137
5.2.	Yutaki unit PCB	138
5.3.	Safety and control device setting	139

5.1. DEVICE CONTROL SYSTEM

Control outlingt	Purpose		
Control subject	Heating operation	Defrost operation	
Control frequency of inverter compressor	The frequency control is determined with the next parameters: - Temperature difference between water outlet temp. and target water temperature.	Fixed frequency	
Opening degree expansion valve for main circuit	 Control range of expansion valve opening degree is determined to optimize TsSH. 	Fully open	
Opening degree expansion valve for liquid injection	 Specified opening degree controlled by temp. on the top of compressor (Td.). 	-	
Fan	 Fan Step is controlled according to PS (Suction pressure) 	Fan stop.	
4-Way valve (RVR)	ON	OFF	
Solenoid valve (SVG) (Hot gas bypass)	- Turn ON at starting before 4-way valve ON.	Turn ON for 1 minute at defrosting	
Solenoid valve (SVI) (Liquid injection)	- Turn ON if Td≥90°C continue 3 seconds	OFF	


Temp.:Temperature Td: discharge temperature TsSH: Suction gas super heat Ps: suction pressure

SMGB0044 rev.0 - 10/2008

5.2. YUTAKI UNIT PCB

PCB drawing

The PCB in the Yutaki unit operates with nine DIP switches, six LEDs and two rotary switches. The location is as follows:

LED indication	Function
LED 1	
LED 2	Power supply indication
LED 3	
LED 4	Operation status indication
LED 5	Alarm indication
LED 6	Setting mode indication

Switch indication			
DSW1	Optional functions		
DSW2	Unit control configuration / Unit HP		
DSW3	Unit control configuration		
DSW4	Unit model configuration		
DSW5	H-Link available / H-Link adress		
DSW6	End resistance / Fuse recovery		
DSW7	Unit control configuration		
DSW8	Setting Pd Pressure Sensor Type		
DSW9	Setting Ps Pressure Sensor Type		

Rotatory switch		
RSW1 & RSW2	Heating setting temperature	
RSW3 & RSW4	Not used	
SSW	UP="+ Temp." / DOWN="-Temp."	

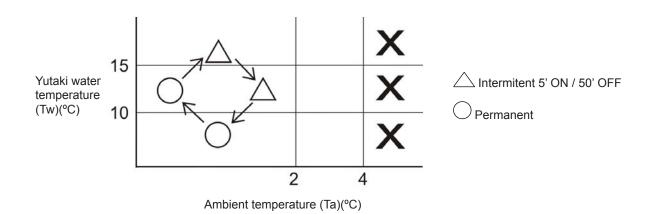
Jumper setting		
JP2	$Cut \Rightarrow Re-Start after power failure$	

i	NOTE
	e mark "■" indicates position of dips switches. Figures show ting before shipment or after selection.
- Not	t mark "■" indicates pin position is not affecting.

A	CAUTION
set	ore setting dips switches, firstly turn off power source and the position of the dips switches. If the switches are set yout turning off the power source, the contents of the setting

5.3. SAFETY AND CONTROL DEVICE SETTING

MODEL		RHUE3AVHN	RHUE4AVHN	RHUE5A(V)HN	
For compressor				•	
Pressure switches		Automatic Reset, Non-Adjustable (one per unit)			
HIGH Cut-Out	MPa	4.15 ^{-0.05} -0.15	4.15 ^{-0.05} -0.15	4.15 ^{-0.05} -0.15	
Cut-In	MPa	3.20±0.15	3.20±0.15	3.20±0.15	
Fuse					
1~ 230V 50Hz	A	40	40	50	
3N~ 400V 50Hz	A	-	-	2x20	
For condenser fan motor					
Internal thermostat		Automatic Reset, Non-Adjustable (one per each fan)			
Cut-Out	°C	-	-	-	
For control circuit					
Fuse (on PCBw1)	A	5	5	5	
Fuse (on PCBw3)	A	5	5	5	
Fuse (on PCBw4)	A	5	5	5	
For water pump circuit					
Fuse	A	3.15	3.15	3.15	

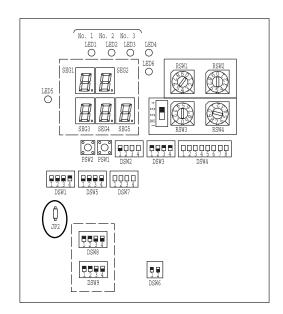

6. AVAILABLE OPTIONAL FUNCTIONS

CONTENTS

6.1.	Freeze protection1	41
6.2.	Restart after power failure1	41

6.1. FREEZE PROTECTION

Using setting point *PR*=1. The unit is controlling the pump in order to avoid water circuit freeze as the following graphic indicates:


When ambient temperature is going down, the pump will be activated and will be off if Ta>4°C.

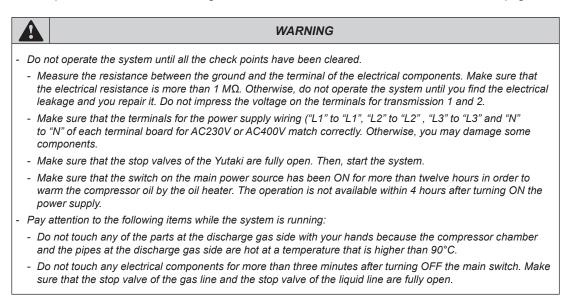
When Tw is going down, the pump will be at intermitent status. If Tw≤10°C, pump will be at permanent status. It will come back to intermitent status when Tw>15°C.

6.2. RESTART AFTER POWER FAILURE

Jumper JP2 forces the unit to maintain the status before the failure.

If the unit was running, once the power is recovered the unit will run again. On the other hand, if the unit was stopped, it will remain stopped.

7. TEST RUN

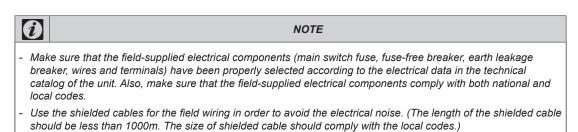

CONTENTS

7.1. Checking procedure before the test run	143
7.1.1. Check before start up	144
7.2. Test run procedure for Yutaki	145

7.1. CHECKING PROCEDURE BEFORE THE TEST RUN

When you have finished the installation, perform the test run according to the following procedure. After performing the test run, hand over the system to the customer.

- Perform the test run of the Yutaki one by one.
- Make sure that the electrical wiring and the refrigerant piping are correctly connected.
- You should perform the test run according to the "7.2 Test Run Procedure for Yutaki" on the next pages.



DANGER

- Do not push the button of the magnetic switch(es). If you do so, you might cause a serious accident.

Checking procedure

- 1. Make sure that the stop valve of the gas line and the stop valve of the liquid line are fully open.
- 2. Make sure that there is no refrigerant leakage. (The flare nuts sometimes loosen because of the vibration during the transportation).
- 3. Make sure that the switch on the main power source has been ON for more than twelve hours in order to warm the compressor oil by means of the oil heater.
- 4. Check whether or not the electrical wiring of the Yutaki is connected as shown in chapter "3" Electrical Wiring.
- 5. Make sure that each wire terminal is correctly connected at the power source.

7.1.1. Check before start up

- Check that the hydraulic connections are tight.
- Check that water pressure is 1 bar minimum.
- Check that the water flow is constant and that the purge of the circuit is correct.
- Check that the protections and electrical connections are in line with the electrical patterns and this leaflet.
- Turning on the heat pump YUTAKI
- Turning on the electric heater EH 6 1.
- The power relays for heater are controlled by the Yutaki controller.
- Set the temperature for water (on YUTAKI) to a value of 55°C to ensure the engagement of the resistance, whatever the temperature outside.

7.2. TEST RUN PROCEDURE FOR YUTAKI

DIP switch can be set while the power source is ON.

• Setting of DIP switches (before shipment)

DSW	RHUE3AVHN	RHUE4AVHN	RHUE5AVHN	RHUE5AHN
DSW1	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW2	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW3	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW4	ON	ON	ON	ON
	12345678	12345678	12345678	12345678
DSW5	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW6	ON	ON	ON	ON
	12	1 2	12	12
DSW7	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW8	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4
DSW9	ON	ON	ON	ON
	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4

WARNING

- Do not touch any other electrical components while you are setting the switches on the PCB.

- Do not attach or detach the service access panel when the power source for the Yutaki is ON.

• Parameters check using 7-Segment

Press PSW2 more than 3 seconds. Now you can consult the Yutaki parameters by pressing PSW2 (up) or PSW1 (down).

Code (Upper side)	Data (Lower side)	Content	Code (Upper side)	Data (Lower side)	Content
	OFF	Operation status	ŁP	OFF	Liquid refrigerant temperature
Pd	OFF	Pd	ĿН	OFF	Evaporating temperature
P5	OFF	Ps	£5	OFF	Ts
Łc	OFF	Chilled water setting temperature	Eo	OFF	Exp. V pulse
tc.	OFF	Chilled water setting temperature 2	ĹF	OFF	Compressor Hz
Eh	OFF	Hot water setting temperature	FS	OFF	Fan stop
Ŀh.	OFF	Hot water setting temperature 2	۵	dEF	Manual defrost ON (if PSW1 & PSW2 pushed together for 3 sec.)
ln	OFF	Water inlet	no.	OFF	ROM No.
ot	OFF	Water outet	۲d	OFF	Model identification
ĿЯ	OFF	Ambient temperature	oP	OFF	Optional Function selection status
Łd	OFF	Td	-	-	-

8. TROUBLESHOOTING

CONTENTS

8.1.	Uı	Unit and System controller - Power Supply failure					
8.1	.1.	Abnormal operation of the devices	149				
8.2.	In	itial troubleshooting	155				
8.2	.1.	Troubleshooting by alarm code					
8.2	.2.	Incidents of operation					
8.3.	Fa	ailure diagnosis method					
8.4.	Cl	hecking procedure for main parts	199				
8.4	.1.	RHUE(3~5)AVHN. Procedure for checking the DIP-IPM.					
8.4	.2.	RHUE5AHN. Procedure for checking the ISPM					
8.4	.3.	Checking capacitors CB1 & CB2.					
8.4	.4.	Fault diagnosis of DC fan motor	Fault diagnosis of DC fan motor				

8

8.1. UNIT AND SYSTEM CONTROLLER - POWER SUPPLY FAILURE

- The LED and the 7-segment display are not indicated.
- Not operated.

If the fuses are blown out or a circuit breaker is activated, investigate the cause of the overcurrent and take the necessary action.

Observed failure	Cause		Check item	Action (Turn OFF the main switch)
Power failure or power is not ON			Measure the voltage using a voltmeter	Supply the power
Blown out fuse or activation of	Accidental grounding for live cables		Measure the insulation resistance	Remove the cause of the short circuit and replace the fuse
the breaker at the power source	Failure of compre	ssor motor	Measure the interphase resistance, insulation	Replace compressor and fuse
	Failure of fan	motor	resistance	Replace fan motor and fuse
	Live cables sho	ort circuit	Check for any un-insulated part of the wires	Remove the cause of the short circuit and replace the fuse
	Short circuit of the co earth	ontrol circuit to	Measure the insulation resistance	Remove the cause of the short circuit and replace the fuse
	Failure of the magnetothermic switch for the compressor	Insufficient contact	Check for magnetothermic switch to activate correctly	Replace magnetothermic
		Coil failure	Measure coil resistance	switch and fuse
	Failure of the magnetothermic switch for the pump	Insufficient contact	Check for magnetothermic switch to activate correctly	Replace magnetothermic
		Coil failure	Measure coil resistance	switch and fuse
Blown out fuse at the control circuit	Failure of auxiliary relay	Insufficient contact	Check for magnetothermic switch to activate correctly	Replace auxiliary relay and
		Coil failure	Measure coil resistance	fuse
	Failure of solenoid valve coil	Coil failure	Measure coil resistance	Replace coil and fuse
	Short circuit in PCB		Check for the existance of any conductive contaminants	Remove the particles and replace fuse
	Oil heater failure		Meassure resistance	Replace heater and fuse
	Failure of freeze protection heater for water piping		Meassure resistance	Replace heater and fuse
Failure of the transformer			Check the transformer voltage output	Replace the transformer

Service Manual

Observed failure	Cause	Check item	Action (Turn OFF the main switch)
System controlle	er cable disconnected	Connect the cable	Replace the cable or repair the cable
	or inverted phase order ("ឆ្ន5" alarm). ree phase unit.	Check the connection of R,S and T phase.	Reorder the phases
Failure of remote/local switch	or remote/local switch set at "local"	Check remote/local switch	Turn the switch to "remote" or replace switch
Deficient contact at terminal	Insufficient connection or incorrect connection of the Yutaki unit PCB	Check the connectors and	Remove rust, dust or any contaminants, check the correct tightening of the terminals
controller connectors	Insufficient connection or incorrect connection of the terminal in remote controller	terminals	
Failure of the	e system controller	See point 4.2.5. "Troubles	hooting of system controller"
Undefined PCB failure	Unconnected wires to PCB	Check the connectors	Correctly connect the wires
	Failure of PCB	Check PCB through its self- diagnostic mode	Replace PCB if it failed
Incorrect w	viring connection		procedure that is displayed in T RUN"

8.1.1. Abnormal operation of the devices

Observed failure	Cause		Check item	Action (Turn OFF the main switch)
		Insufficient air flow to the	clogging of the air side heat exchanger?	Remove the clogging
		heat exchanger	Obstacles at the inlet or the outlet of the airside heat exchanger	Remove the obstacles
			Is the service area for the unit sufficient?	Make sure the service area
			correct fan speed?	Replace the fan motor
		Excesive inlet air temperature at the	Short circuited air to the unit?	Remove the cause of the shor-circuit air
		airside exchanger	Any heating source near to the unit?	Remove the heat source
	Excessively high discharge pressure (high pressure switch activated)	Excessively charged refrigerant	Expansion valve opening & sub cool	Correctly charge the refrigerant
		Non -condensed gas during the cycle	Check each temperature and each pressure	Charge the refrigerant after the vacuum pumping
		Discharge pipe clogged	Check the clogging	Remove the clogging
Cooling mode (1 minute power on)		Clogging of the strainer	Check for clogging (Symptom: You can appreciate a temperature gradient between strainer inlet and outlet)	Clean or replace the strainer
		Clogging of the heat exchanger	Check for clogging	Remove the clogging
			Check the connection cord and the connector	Replace the connector
		Failure or malfunction of the expansion valve	Is there an operation sound from the coil?	Replace the coil
			Is the thermistor for the compressor normal?	Replace the themistor or pressure sensor
			Is the thermistor correctly installed on the suction pipe?	Install correctly the thermistor
		Excessively high water inlet temperature	Check water temperature	Refer to the customer
	Failure fan n	notor (not running)	Measure the motor's terminals resistance	Replace fan motor
	Excessively high suction pressure Malfunction or internal leakage of the 4-way valve		Check the temperature difference between the inlet and outlet of the 4-way valve	Replace the 4-way valve

Abnormal operation of the devices (Cont.)

Observed failure	Ca	use	Check item	Action (Turn OFF the main switch)
			Clogging of the expansion valve	Replace the expansion valve
		Too much super-heat	Clogging of the strainer	Clean or repair the strainer
			Malfunction or internal leakage of the 4-way valve	
Cooling mode (1 minute power on)	Excessively high discharge gas temperature	Excessively high suction gas temperature	Gas leakage or insufficient refrigerant	Replace the 4-way valve
		Td. thermistor failure	Measure the thermistor resistence	Replace thermistor
		Failure solenoid valve for liquid injection	Check the solenoid valve activation	Replace the solenoid valve
		Clogging of the liquid injection capillary tube	Check for clogging	Replace capilary
Blown out fuse at the	Pump block		Check water freezing or clogging	Removes the clogging
pump suction	Over current of the pump		Check pump current	Replace the pump
	Insufficient water flow		Check inlet and outlet water temperature difference	Increase the water flow
	Pump reverse rotation		Check pump running direction	Connect correctly the pump wiring
	Air mixed in the water		Check air purger	Empty the air contained
	Water inlet and outlet temperature themistor failure		Measure the thermistor resistance	Replace the thermistor
Freeze protection control	Pump reverse rotation		Check the rotation direction	Change rotation direction
activated	Water outlet temperature excessively low		Check that water outlet temperature is not out of working range	Check correct installation
	Clogging of the	e water strainer	Check the water strainer	Remove the clogging
	Clogging of the water side heat exchanger		Check the water side heat exchanger	Chemical cleannig
	Malfunction of the I	ow pressure sensor	Sensor wiring - Check the sensor characteristics	Fix wire. Replace low pressure sensor
	Gas leakage or low o	Gas leakage or low quantity of refrigerant		Charge correctly the refrigerant quantity

Abnormal operation of the devices (Cont.)

Observed failure	Ca	use	Check item	Action (Turn OFF the main switch)
	-	Insufficient water flow	Check the water temperature difference between inlet and outlet	Increase the water flow
		Too much refrigerant	Check clogging of discharge side pipe	Remove the clogging
		Clogging of the expansion valve	Check clogging of discharge side pipe	Remove the clogging
	High cut caused by Pd (high pressure) surpassing	Clogging strainer (not water)	Check the temperature difference before/after strainer	Replace or cleaning strainer
		Clogging of the 4-way valve	Check the clogging	Remove the clogging or replace the 4-way valve
		Water scale attaching inside the water side heat exchanger	Check the water side exchanger	Chemical cleaning
		Excessively high water outlet temperature	Check water temperature	Check the installation
	Excessively high discharge gas temperature (too much super-heat)	_	Check gas leakage or shortage of refrigerant	Replace the 4-way valve
			Malfunction of check valve	Replace check valve
Unit stopped in heating			Clogging of the expansion valve	Remove the clogging
operation			Clogging of the refrigerant side strainer	Replace or clean the strainer
		Failure discharge gas temperature thermistor	Measure the resistance of thermistor	Replace the thermistor
		Failure liquid bypass solenoid valve	Check solenoid valve	Replace the solenoid valve
		Clogging of the solenoid liquid solenoid bypass capilary	Clogging of capilary	Replace capilary
			Voltage supply too high/ low	Check the limits in "working range". (I-III phase)
		Excesive current consumption	Check the interface impedance or power supply	Measure each interface voltage & contact the electrical company
			Excessively high pressure in the high pressure sensor	Check the cause
	Over current compressor		Check the main fuse	Replace the fuse
		Single or double phase operation (only 3 phase model)	Check the loose of the screw power supply terminal	Tighten the screw
			Check contact point or magnetic contact for compressor	Replace magnetic contact

8

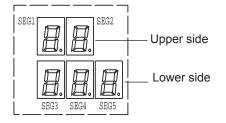
152

Abnormal operation of the devices (Cont.)

Observed failure	Cause		Check item	Action (Turn OFF the main switch)
		Failure compressor bearing	Check bearing seal state	Replace the compressor
	Over current compressor	Failure in the compressor motor insulation	Check insulation resistance	Replace the compressor (option "replace the insulation")
		Failure current sensor for compressor	Check the connector	Repair the wiring connection or replace the current sensor
	Blown out fuse at the	Blocked pump	Check if there exist any solid particle, or iced water	Chemical cleaning of the foreign particle
	pump circuit	Failure of the magnetic contact of the pump	Check the magnetic contact	replace the magnetic contact
	Automatic defrost is de- activated	Failure of the thermistor	Measure the resistance of the thermistor	Replace the thermistor
		Failure of the 4-way valve	Check the activation 4-way valve	Replace the 4-way valve
A lot of ice is attached on the airside (heating mode heat exchanger)	Short circuited		Check obstacles around the unit	Remove the obstacles
exchanger)	Failure of the low pressure sensor		Check the display pressure and actual pressure	Remove the low pressure sensor
	Unit is in ice condition			Perform manual defrosting
Unit is stopped by highcut in defrost operation	Failure of high p	pressure sensor	Check the pressure & actual value of the high pressure sensor	Replace high pressure sensor

Abnormal operation of the devices (Cont.)

Observed failure	Cau	se	Check item	Action (Turn OFF the main switch)
	Heating load is higher	than heating capacity	Check the heating load	Install an adequate size unit
	Excessively low suction pressure	Gas leakage	Check gas leakage & super-heat	Charge correctly the quantity of refrigerant
	Clogging of the e	expansion valve	Check the clogging of expansion valve	Remove clogging
	Clogging of t	the strainer	Check temperature difference before/after strainer	Clean or replace the strainer
	Clogging of side lo	ow pressure pipe	Check the temperature difference of each pipe	Remove the clogging
	Malfunction of th	ne check valve	Check the difference temperature before/after check valve	Replace the check valve
	Shortage air flow in the air side heat exchanger		Excessively dust in airside heat exchanger	
			Clogging of the inlet/ outlet at the air side heat exchanger is clock	Remove it
Incufficient booting			Shortage the service space for Yutake unit	Secure service space
Insufficient heating process			Device rotation fan motor	Correct wiring of the fan motor
	Air temperature through heat exchanger air flow		Check the air short circuit	Repair short circuit
	Defrosting it is not enough		Check the evaporating thermistor	Replace the thermistor
			Check the 4-way valve	Replay 4-way valve
		Shortage of waterflow	Check the difference of temperature between inelet/outlet of the unit	Increase the water flow
		Pump reverse rotation	Check the rotation direction	Correct the direction
	Excessively high discharge pressure	Air mixing in the water	Check air purger	Empty the air contained
		Excessively high hot water temperature	Check the water thermistor of the unit	Replace the water thermistor or PCB
		Refrigerant excessively discharged	Check refrigerant cycle temperature	Charge the correct quantity

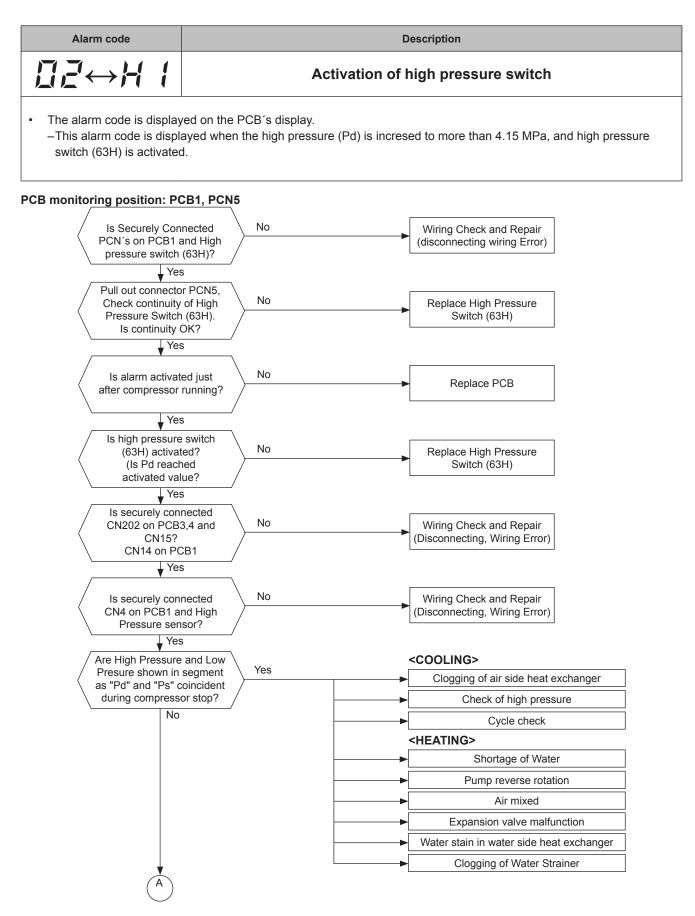

Abnormal operation of the devices (Cont.)

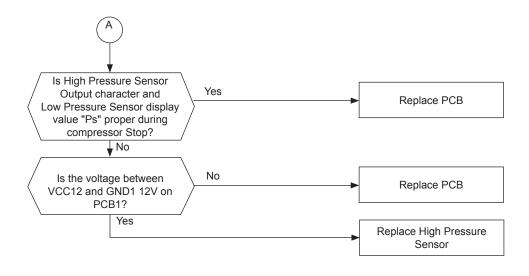
Observed failure	Car	Cause		Action (Turn OFF the main switch)
		Non-condensable gas in the refrigerant cycle	Turn off the unit & check the relation between temperature and pressure	Evacuate and charge refrigerant again
		Clogging of the high pressure pipe	Check the clogging	Remove ghe clogging
		Clogging of the expansion valve	Check the clogging	Remove the clogging
Insufficient heating	Excessively high	Clogging of the strainer	Check the difference temperature before/after strainer	Replace the strainer
process	discharge pressure	Water scale is attached in the water side heat exchanger	Check the heat exchanger	Chemical cleaning
		Malfunction or internal leakage of the 4-way valve	Check the difference temp. between inlet & outlet of the 4-way valve	Replace the 4-way valve
		Wiring failure of the 4-way valve	Check the electrical continuity at the termilnals	Repair wiring or replace 4-way valve
		Failure compressor	Check pressure cycle temperature & running current	Replace the compressor
	Unit propeller fan is hitting the shroud		Visually inspect it	Adjust the position of the propeller fan
	Abnormal sound form the compressor	Faulty installation	Check that each part is tightly fixed	Tightly fix each part
		Liquid ref. compression	Adjust the suction gas temperature and pressure	Ensure super-heat
Unit is running but does not make any sound		Wear or breakage of the internal compressor parts	Abnormal sound from the inside of the compressor	Replace the compressor
		No heat by the oil heater	Check the resistance of the oil heater and it's fuse	Replace the oil heater and the fuse
	Humming sound from the magnetic conductor		Check the surface of the contacts	Replace the magnetothermic switch
	Abnormal vibration of the cabinets		Check each fixing screw	Tightly fix each screw

8.2. INITIAL TROUBLESHOOTING

• Checking using the 7-segment display.

7-seg. display info.

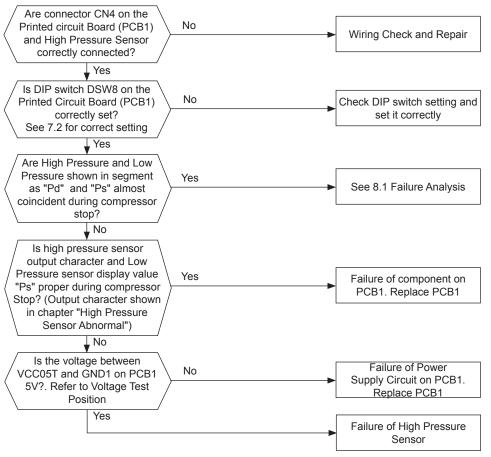



(See the following table for details)

General Indication	Content
88	Proceeding Initialization
88	Power ON (During unit stoppage)
PU	Pump Operation (During unit stoppage)
РЦ	Waiting of pump feedback (During unit operation)
٥F	Stoppage by Thermo-OFF
HE	Heating operation (Normal operation)
HE↔PD	Heating operation (Activation of forced compressor frequency control due to low pressure difference:forced up)
HE↔P I	Heating operation (Activation of forced compressor frequency control due to high pressure difference:forced down)
HE↔P2	Heating operation (Activation of forced compressor frequency control due to excessively high discharge pressure: forced down)
HE↔P∃	Heating operation (Activation of forced compressor frequency control due to excessively high current :forced down)
НЕ⇔РЧ	Heating operation (Activation of forced compressor frequency control due to excessively high inverter fin temperature: forced down)
₽-↔05	Retry operation (by alarm 02-91, t1)
₽-↔11	Retry operation (by alarm 02-e1)
₽-↔ 12	Retry operation (by alarm 02-h1)
₽-↔ 17	Retry operation (by alarm 51, 52, 53, 54)
18 ↔ 19	Retry operation (by alarm 04, 06)
ED (Flickering)	Initializing electronic expansion valve
Fo	Fan manual operation

Alarm code	Content	
[]2↔H (Activation of high pressure swicth	
02↔h (Activation of protection control for excessively high pressure	
	Activation of low pressure control	
[]2↔E (Excessively low pressure difference	
02⇔51	Excessively high discharge gas temperature	
02↔91	Excessively low temperature of heating exchanger refrigerant inlet	
02↔E 1	Excessively low suction gas temperature	
۵ч	Abnormal transmission between Inverter PCB and Main PCB	
05	Abnormality of Power Supply Phase	
05	Excessively low voltage or excessively high voltage for the inverter	
11	Failure of water inlet temperature thermistor	
12	Failure of water outlet temperature thermistor	
EI	Activation of freeze protection control (water inlet)	
[]2↔ []	Activation of freeze protection control (water outlet)	
14	Excessively high water temperature (compressor running)	
21	Failure of refrigerant evaporating temperature thermistor (Open/Short)	
22	Failure of ambient temperature thermistor (Open/Short)	
23	Failure of discharge gas temperature thermistor (Open/Short)	
24	Failure of refrigerant liquid temperature thermistor (Open/Short)	
26	Failure of suction gas temperature thermistor (Open/Short)	
27	Failure of discharge gas pressure sensor (Open/Short)	
28	Failure of suction gas pressure sensor (Open/Short)	
30	Incorrect PCB Setting	
32	Transmission error between Main PCBs (this alarm code is not available in this model)	
40	Incorrect PCB operation	
51	Abnormal operation of the current sensor	
52	Activation of protection for inverter instantaneous over current	
53	Transistor module protection activation	
54	Increase in the inverter fin temperature	
57	Abnormality of fan motor protection	
5 <i>P</i>	No feed back signal from water pump	
5E	Cooler water failure (this alarm is not available in this unit)	
55	Condenser water failure (this alarm is not available in this unit)	
ア は(flickering)	Excessively high water temperature (compressor stop)	
FR	Failure of fan motor (MF1)	
FЬ	Failure of fan motor (MF2)	

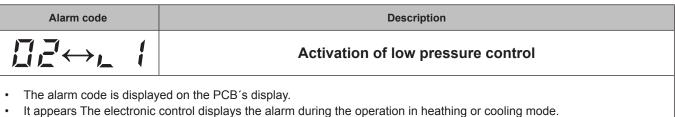
8.2.1. Troubleshooting by alarm code



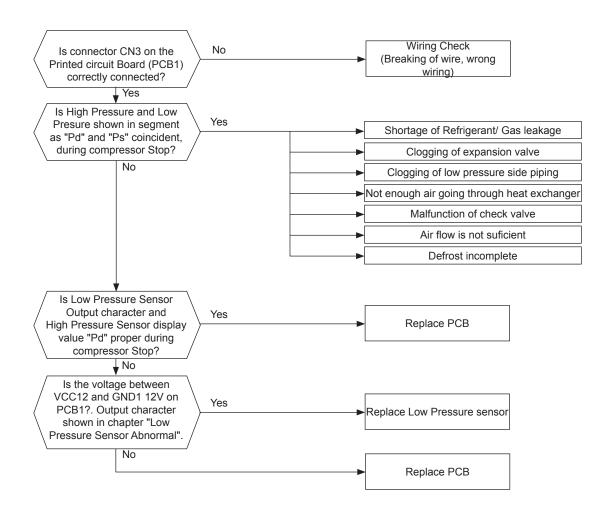
Ø	NOTE	
- In case that the low pressure is higher than 2.2 Mpa, segment shows 2.2 Mpa.		
- In this	case, connect a pressure gauge to high pressure check joint, check the pressure shown in the gauge.	

8

- The alarm code is displayed on the PCB's display.
- During normal operation, (in cooling o heating operation mode) the Electronic Control stops and restarts automatically after 3 minutes.
- The Stop alarm appears after 3 retries during 30 minutes.
 This alarm code is displayed when the high pressure (Pd) is incressed to more than 3.9 MPa, during 10 seconds in compressor running frequency more than 40 Hz or,
 - -This alarm code is displayed when the high pressure (Pd) is incressed to more than 3.5 MPa, during 10 seconds in compressor running frequency lees than 40 Hz.

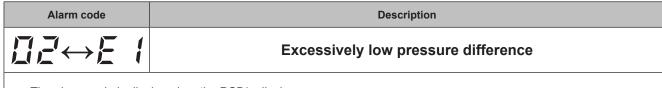


 NOTE


 - In case that the low pressure is higher than 2.2 Mpa, segment shows 2.2 Mpa.

 - In this case, connect a pressure gauge to high pressure check joint, check the pressure shown in the gauge.

-This alarm code is displayed when the suction pressure (Ps) is less than 0.1 Mpa during 3 seconds.


PCB monitoring position: PCB1, CN3

 NOTE

 - In case that the low pressure is higher than 2.0 Mpa, segment shows 2.0 Mpa.

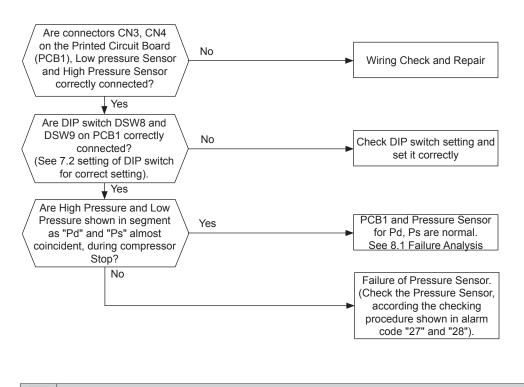
 - In this case, check if the high pressure value "Pd" shown in segment is higher than 1.0 Mpa.

- The alarm code is displayed on the PCB's display.
- The compressor stops and restarts automatically in 3 minutes.
- The Stop alarm appears after 3 retries during 30 minutes.
 - This alarm code is displayed when the Pressure Ratio calculated from High Pressure "Pd" and Low Pressure "Ps" is less than 1.8 MPa during 3 minutes.

PCB monitoring position: PCB1, CN3 and CN4

Retry code: P-11

Calculation Formula for Pressure Ratio:


Pressure Ratio= High Pressure "Pd" + 0.1 Low Pressure "Ps" + 0.1

Example:

Pd= 1.6 Mpa

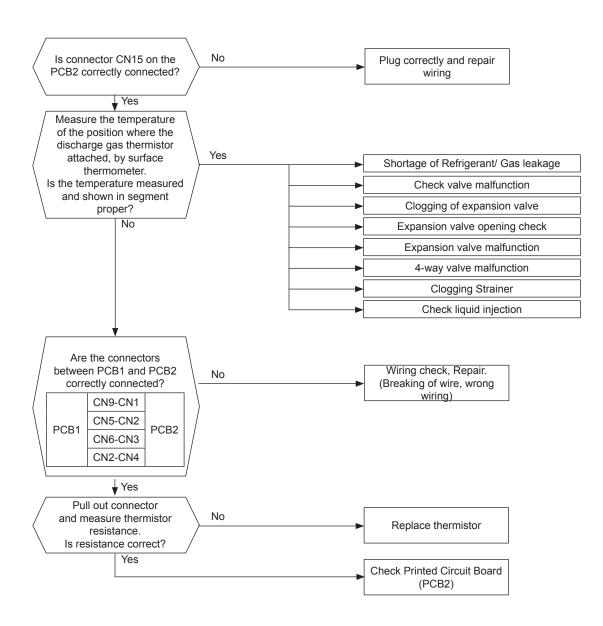
Pressure Ratio =
$$\frac{1.6 + 0.1}{0.7 + 0.1} = 2.13$$

Ps= 0.7 Mpa

- In case that the low pressure is higher than 2.2 Mpa, segment shows 2.2 Mpa.

- In this case, connect a pressure gauge to high pressure check joint, check the pressure shown in the gauge.

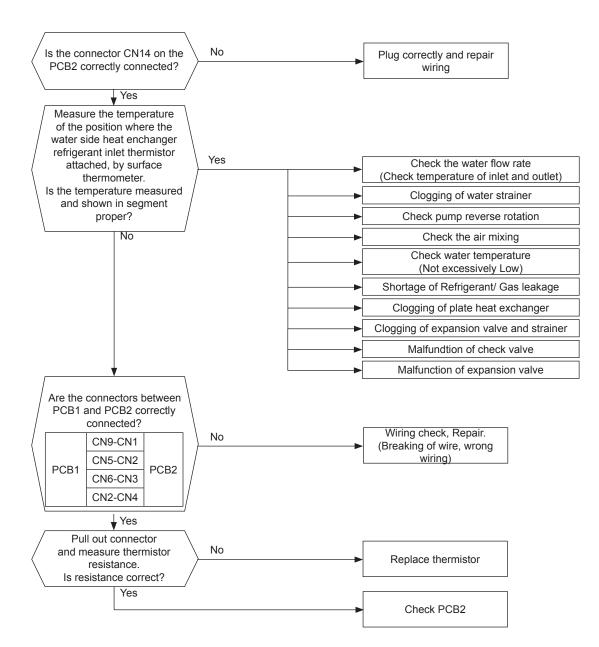
NOTE


i

Alarm code	Description	
	Excessively high discharge gas temperature	
The alarm code is displayed on the PCB's display.		

-This alarm code is displayed when the discharge gas temperature is increased to 120°C and continues for 10 minutes.

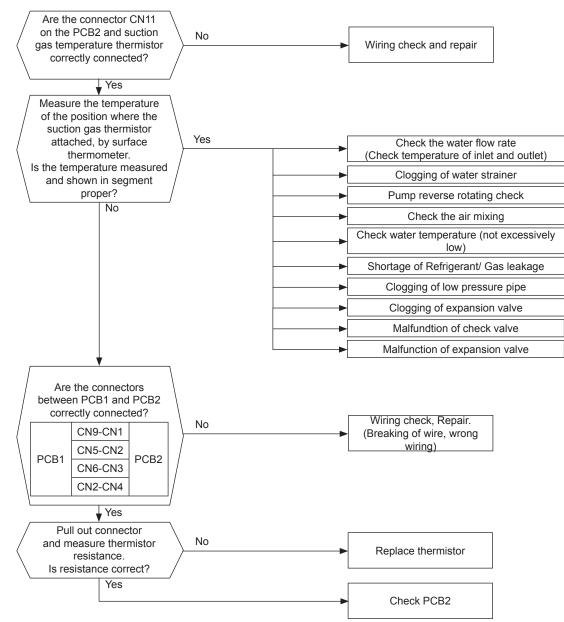
-The discharge gas, temperature is increased over 140 °C during more than 5 seconds.

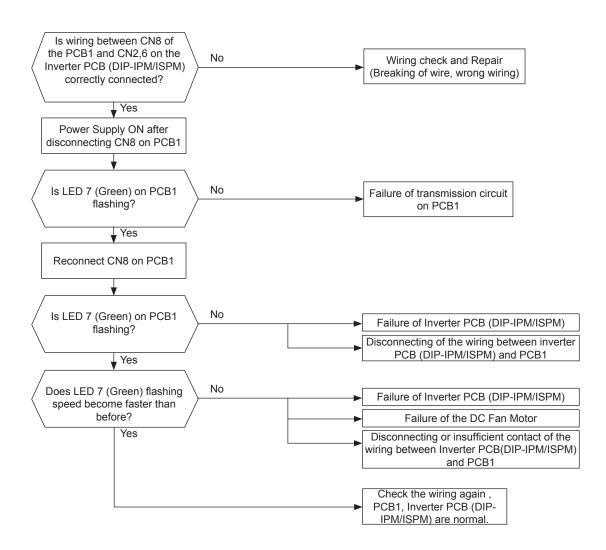

PCB monitoring position: PCB2, CN15



Alarm code	Description	
	Excessively low temperature of heat exchanger refrigerant inlet	
The alarm code is displayed on the PCB's display		

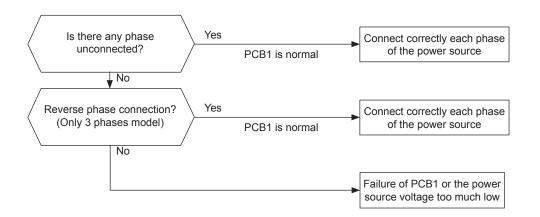
- The alarm code is displayed on the PCB's display.
- The compressor stops and restarts automatically in 3 minutes.
- The alarm appears after 3 retries during 30 minutes.
 - -This alarm code is displayed when the Refrigerant temperature in water side heat exchanger inlet (Tp) is less than -6°C during 3 seconds. (Only for cooling operation).
 - -The Refrigerant temperature in water side heat exchanger inlet (Tp) is less than -20°C during 10 seconds. (Only for defrosting operation). No retry during defrosting operation. Alarm stop immediately.


Retry code: P-06

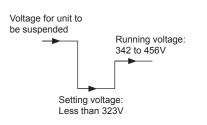


- The alarm code is displayed on the PCB's display.
- The compressor stops and restarts automatically in 3 minutes.
- The alarm appears after 3 retries during 30 minutes.
 This alarm code is displayed when the suction gas temperature (Ts) is lower than -5°C during 10 seconds. (Only cooling operation).

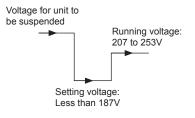
Retry code: P-06



Alarm code	Description	
	Abnormal transmission between Inverter PCB and Main PCB	
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the communication between Main PCB (PCB1) and Inverter (DIP- IPM/ISPM) is not performed correctly during 30 seconds. 		


Troubleshooting	HITACHI
Service Manual	Inspire the Next

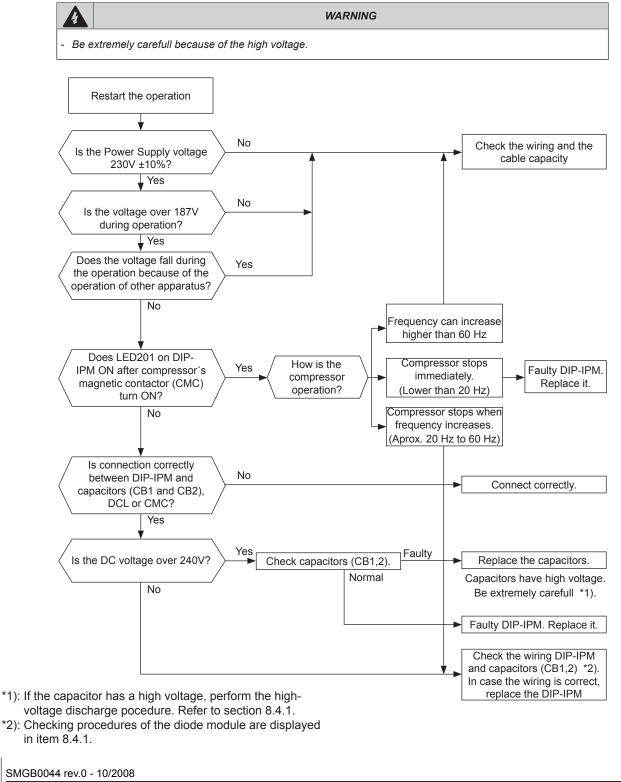
Alarm code	Description	
<u>0</u> 5	Abnormality of Power Supply Phase	
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the power source phases are reversely connected or one phase is not connected 		

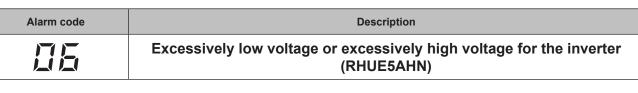


See below:

• RHUE5AHN (Three phase)

• RUE3~5AVHN (Single phase)

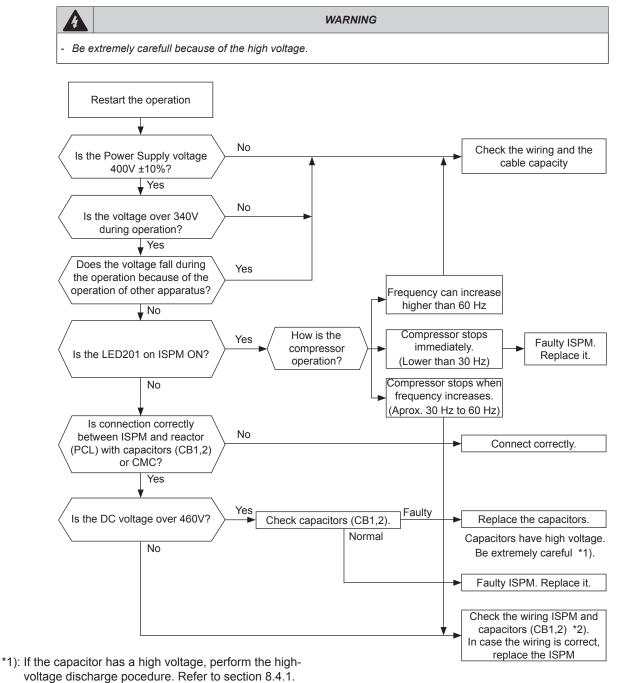



.

Alarm code	Description	
88	Excessively low voltage or excessively high voltage for the inverter (RHUE3~5AVHN)	

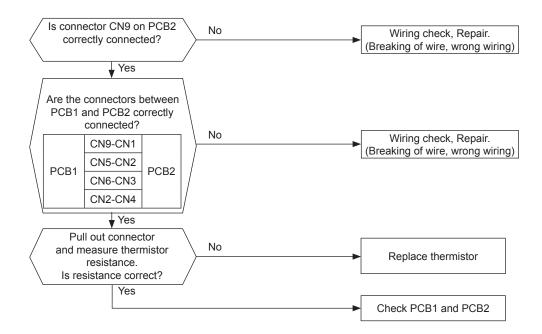
- The alarm code is displayed on the PCB's display.
 - The alarm appears after 3 retries during 30 minutes.
 - This alarm code is displayed when the voltage between terminal "P" and "N" of DIP-IPM is insufficient.

Retry code: P-18

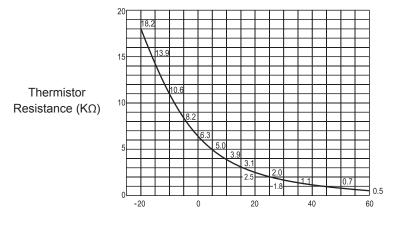


- The alarm code is displayed on the PCB's display of the outdoor unit.
 - The alarm appears after 3 retries during 30 minutes.
 - This alarm code is displayed when the voltage between terminal "P" and "N" of ISPM is insufficient.

Retry code: P-18


.

- *2): Checking procedures of the diode module are displayed in item 8.4.1.
- *3): DC voltage measuring position:
 - ISPM "P" terminal to "+" terminal of tester, "N" terminal to "-" terminal of tester measuring position: DC 1000V.

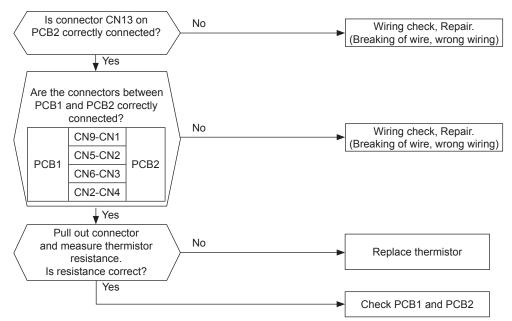

Service Manual	
----------------	--

Alarm code Description		
Failure of water inlet temperature thermistor		
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the water inlet temperature thermistor is short circuited or cut. 		

Measuring the thermistor resistance value:

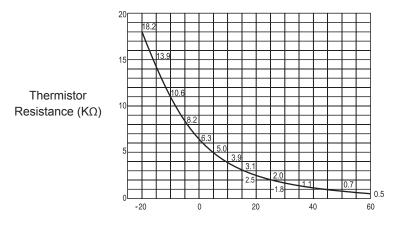
Thermistor characteristics

Temperature (°C)


|--|

NOTE

Measure the resistance at least in 2 different points which the temperature is different more than 10 °C.

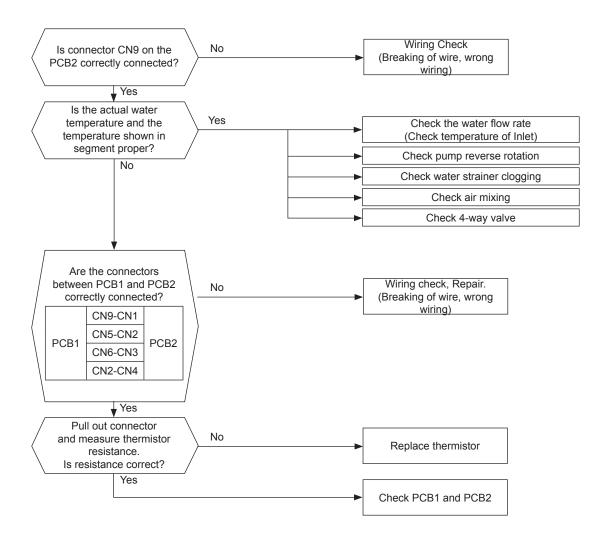

Troubleshooting Service Manual	HITACHI Inspire the Next
	 Inspire the Next

Alarm code	Description
{ <i>j</i> _1	Failure of water outlet temperature thermistor
	blayed on the PCB´s display. splayed when the water outlet temperature thermistor is short circuited or cut.

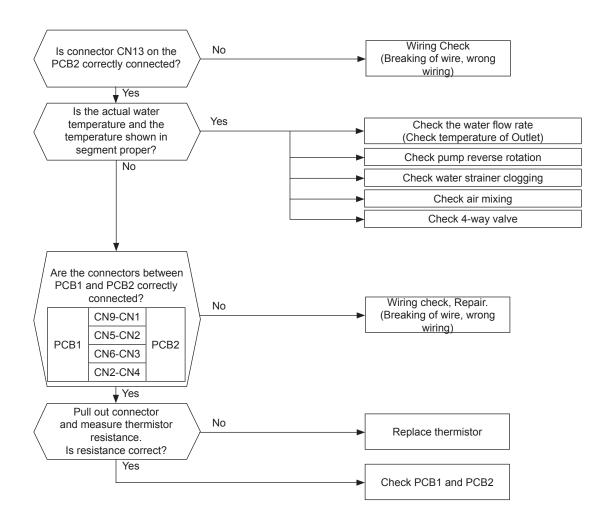
Measuring the thermistor resistance value:

Thermistor characteristics

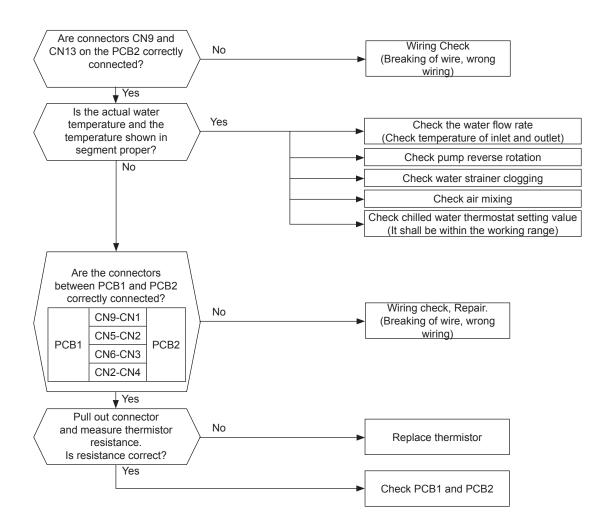
Temperature (°C)



NOTE

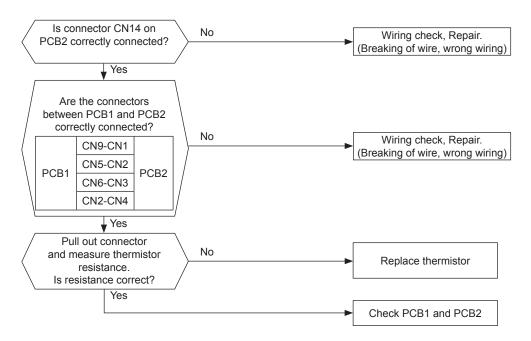

- Measure the resistance at least in 2 different points which the temperature is different more than 10 °C.

Alarm code	Description
E	Activation of freeze protection control (water inlet)
	played on the PCB´s display. splayed when the chilled water temperature is lower than 2°C.

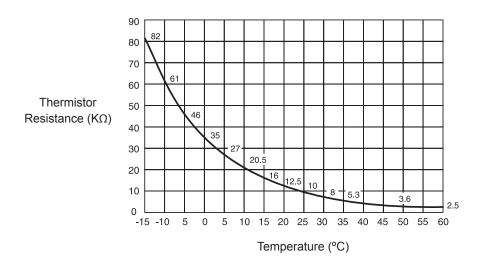


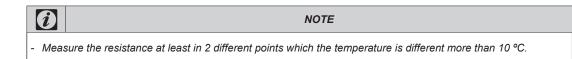
Troubleshooting Service Manual		HITACHI Inspire the Next
Alarm code	Description	
	Activation of freeze protection control (water outlet)	
	ayed on the PCB´s display. Dayed when the chilled water temperature is lower than 2°C.	

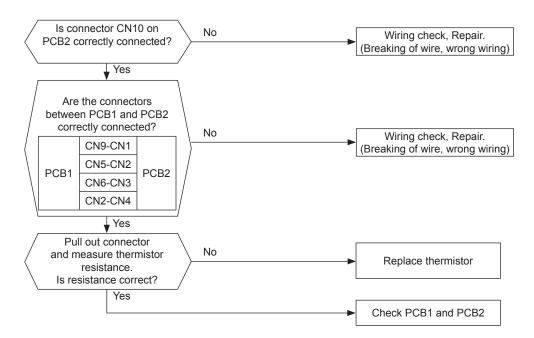
Alarm code	Description
{ }- {	Excessively high water temperature (compressor running)
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the water temperature is above 59°C during compressor operation. (Only heatin operation). 	


PCB monitoring position: PCB2, CN9 (Water Inlet) PCB2, CN13 (Water Outlet)

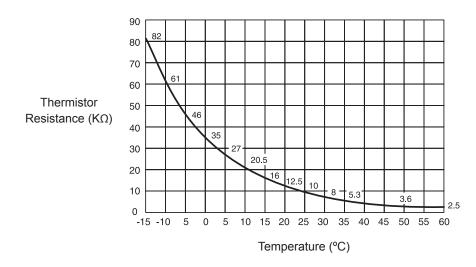
Troubleshooting Service Manual	HITACHI Inspire the Next
Alarm code	Description
21	Failure of refrigerant liquid temperature thermistor (Open/Short)
Alarm code	


The alarm code is displayed on the PCB's display.
 This alarm code is displayed when the thermistor is short circuited or cut.


PCB monitoring position: PCB2, CN14


Measuring the thermistor resistance value:

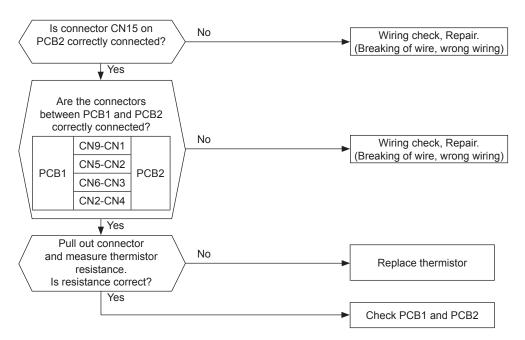
Thermistor characteristics



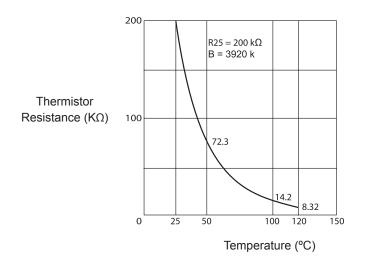
Alarm code	Description
	Failure of ambiente temperature thermistor (Open/short)
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the thermistor is short circuited or cut. 	

Measuring the thermistor resistance value:

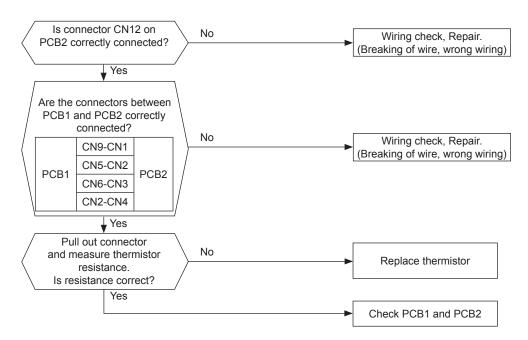
Thermistor characteristics



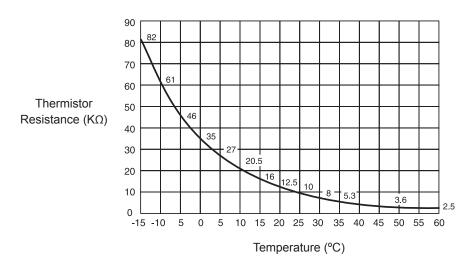
NOTE


- Measure the resistance at least in 2 different points which the temperature is different more than 10 °C.

Troubleshooting Service Manual	HITACHI Inspire the Next
Alarm code	Description
Failure of discharge gas temperature thermistor (Open/Short)	
	displayed on the PCB´s display. s displayed when the thermistor is short circuited or cut.


Measuring the thermistor resistance value:

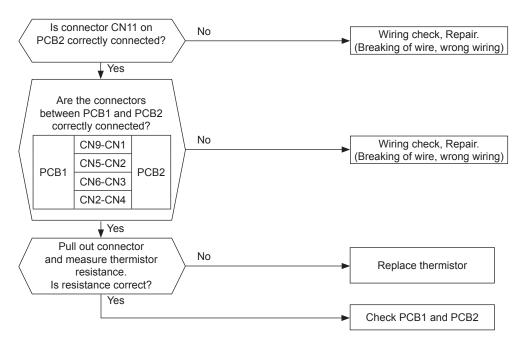
Thermistor characteristics


	NOTE
- Measure the	e resistance at least in 2 different points which the temperature is different more than 10 °C.

Alarm code	Description	
	Failure of refrigerant evaporating temperature thermistor (Open/Short)	
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the thermistor is short circuited or cut. 		

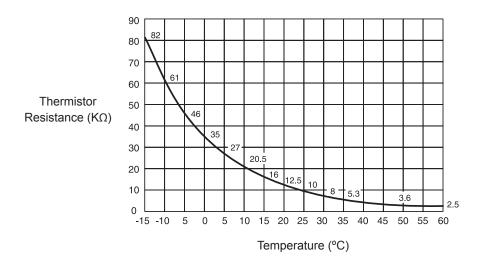
Measuring the thermistor resistance value:

Thermistor characteristics


NOTE

- Measure the resistance at least in 2 different points which the temperature is different more than 10 °C.

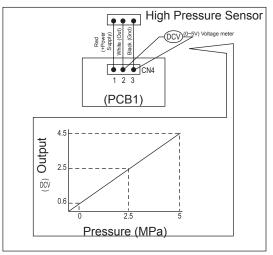
MGB0044	rev.0 -	10/2008


S

Troubleshooting Service Manual		HITAC Inspire the	
Alarm code		Description	
Failure of suction gas temperature thermistor (Open/Short)			
		blayed on the PCB´s display. splayed when the thermistor is short circuited or cut.	


Measuring the thermistor resistance value:

Thermistor characteristics



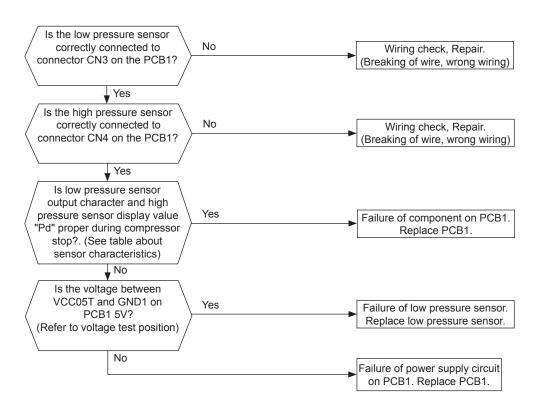
Ì	NOTE
- Meas	ure the resistance at least in 2 different points which the temperature is different more than 10 °C.

Alarm code	Description
	Failure of discharge gas pressure sensor (Open/Short)
 The alarm code is displayed on the PCB's display. This alarm code is displayed when the high pressure sensor is short circuited or cut. 	

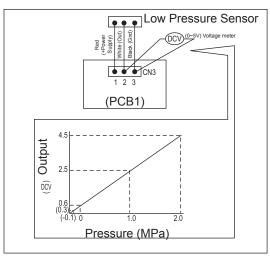
Characteristics of high pressure sensor

i

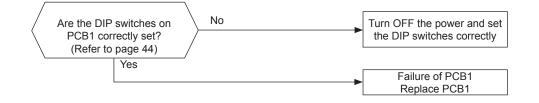
NOTE


- In case that the low pressure is higher than 2.2 Mpa, segment shows 2.2 Mpa.

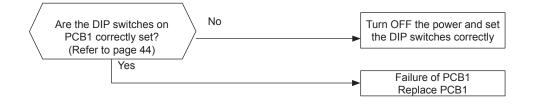
- In this case, connect a pressure gauge to high pressure check joint, check the pressure shown in the gauge.


Troubleshooting Service Manual		HITACHI Inspire the Next
Alarm code	Description	
28	Failure of suction gas pressure sensor (Open/Short)	

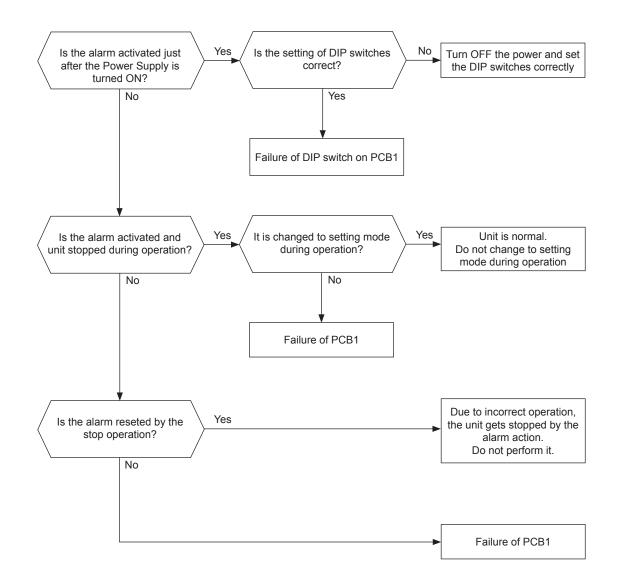
The alarm code is displayed on the PCB's display.
 This alarm code is displayed when the low pressure sensor is short circuited or cut.


PCB monitoring position: PCB1, CN3

Characteristics of low pressure sensor



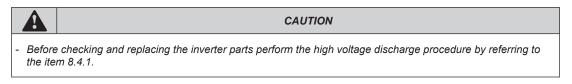
Alarm code	Description
E	Incorrect PCB Setting
 The alarm code is displayed on the PCB's display. This alarm code is displayed when wrong settings are performed in DIP switches on PCB. 	

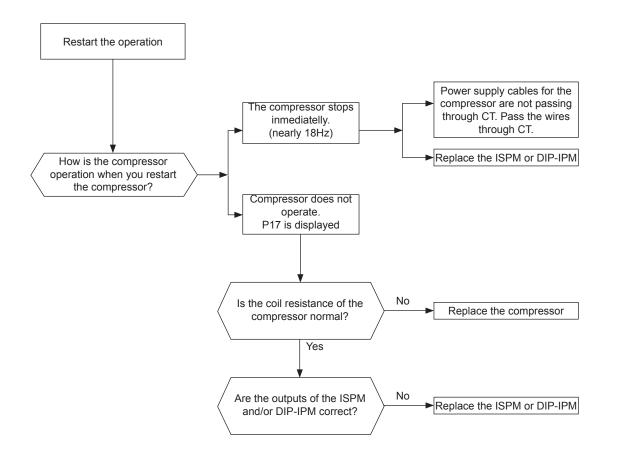

Troubleshooting	HITACHI
Service Manual	Inspire the Next

Alarm code	Description
	Transmission error between Main PCBs (this alarm code is not available in this unit)
The alarm code is disp	layed on the PCB´s display.

Alarm code	Description
	Incorrect operation
The alarm code is displayed on the PCB's display	

-This alarm code is displayed when wrong settings is performed in DIP switch on PCB or prohibited operation is performed.

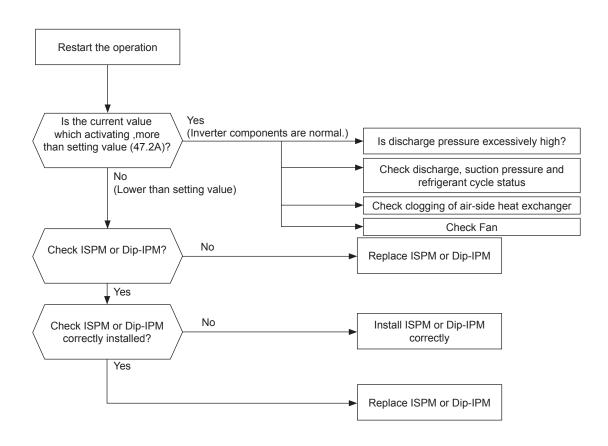



Alarm code	Description
51	Failure of the current sensor for "Inverter" (0 A detection)
 The alarm code is displayed on the PCB's display The compressor stops and restarts automatically in 3 minutes. 	

• The alarm appears after 3 retries during 30 minutes.

-This alarm code is displayed when the frequency of the compressor is maintained at 15~18 Hz after the compressor is started, one of the absolute values of the running current at each phase U+, U-, V+ and V- is less than 1.5A (including 1.5A).

Retry code: P-17

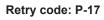


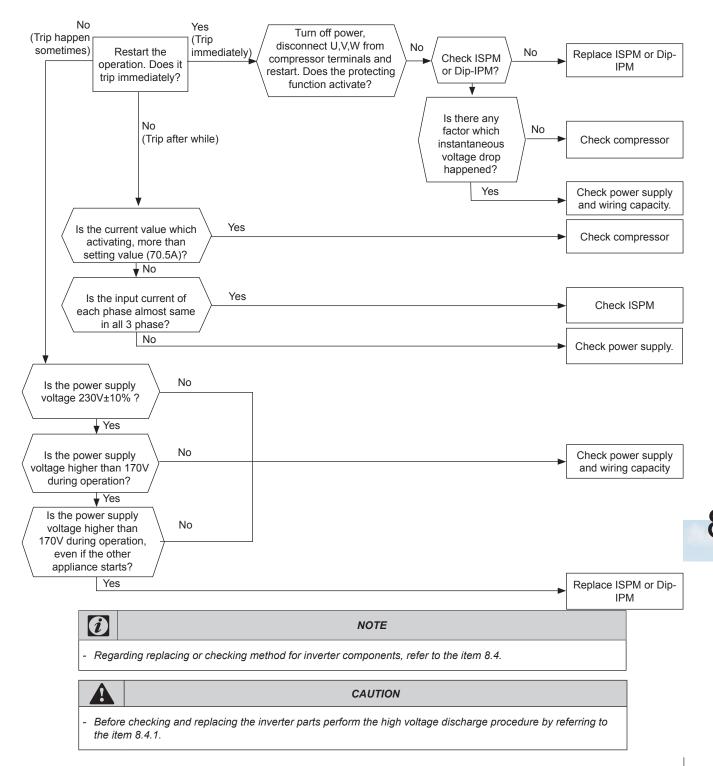
Alarm code	Description
5,2	Activation of protection for inverter instantaneous over current (1)
The alarm code is disr	played on the PCB's display

- ode is displayed on the PCB's display.
- The compressor stops and restarts automatically in 3 minutes. ٠
- ٠ The alarm appears after 6 retries during 30 minutes. -This alarm code is displayed when the compressor current is higher than the set value. Totally 3 minutes during 10 minutes.

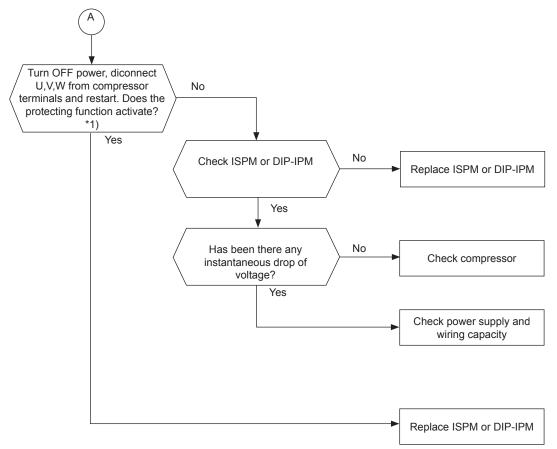
\boldsymbol{i}	NOTE
- Regarding rep	lacing or checking method for inverter components, refer to the item 8.4.

CAUTION


Before checking and replacing the inverter parts perform the high voltage discharge procedure by referring to the item 8.4.1.

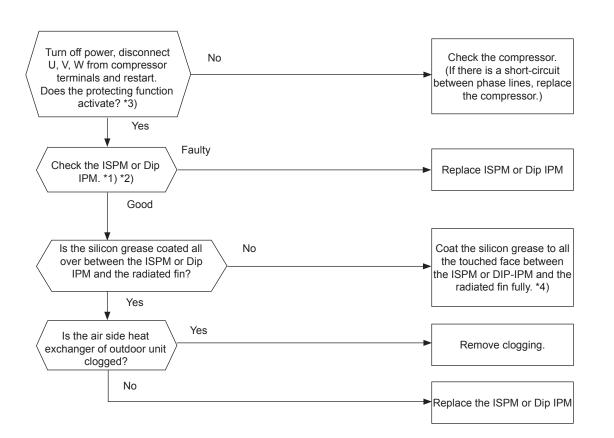

185

Troubleshooting	
Service Manual	


Alarm code	Description
52	Activation of protection for inverter instantaneous over current (2)

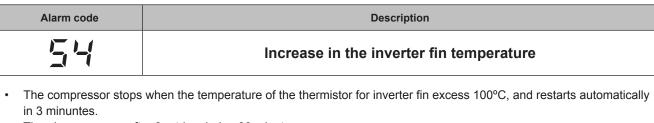
- The alarm code is displayed on the PCB's display.
- The compressor stops and restarts automatically in 3 minutes.
- The alarm appears after 6 retries during 30 minutes.
- -This alarm code is displayed when the compressor current is higher than the set value.





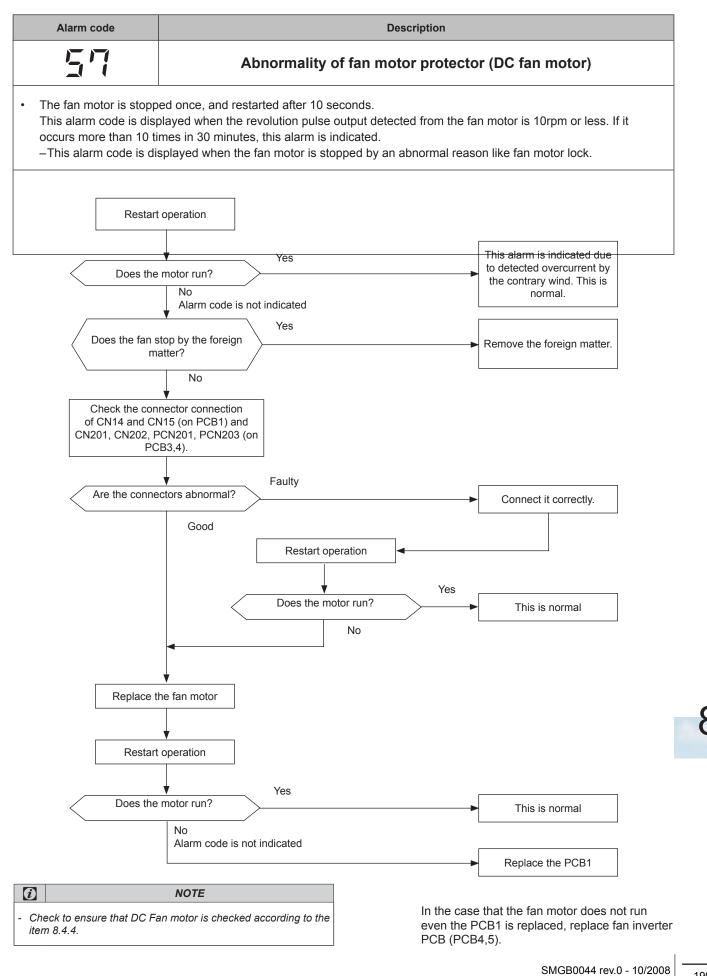
*1): Turn ON the No.1 switch of the DIP switch on ISPM when restarting with disconnecting the terminals of the compressor. After troubleshooting, turn OFF the No.1 switch of the DIP switch on ISPM.

Alarm code	Description	
53	ISPM or DIP-IPM protection activation	
This alarm is indication operation is perform	ve detecting function of abnormality. ated when the transistor module detect the abnormality 3 times in 30 minutes including 3. Retry ned up to the occurrence of 2 times. (The compressor restarts automatically in 3 min.)	
Conditions:		
	o the transistor module such as	
or	Short circuited or grounded	
•	Abnormal temperature of the IPM or Dip IPM	
or		
Control voltage decrease		



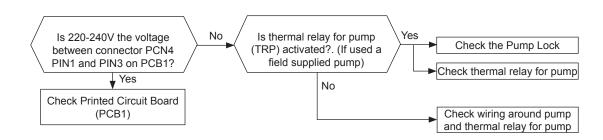
- *1) Perform the high voltage discharge work by referring to the item 8.4.1 before checking and replacing the inverter components.
- *2) Regarding replacing or checking method for inverter components, refer to the item 8.4
- *3) Turn ON the No.1 switch of the dip switch DSW1 on Inverter PCB when restarting with disconnecting the terminals of the compressor. After troubleshooting, turn OFF the No.1 switch of the dip switch DSW1 on Inverter PCB.
- *4) Use the silicon grease provided as accessory (Service parts No. P22760).
 - NOTE

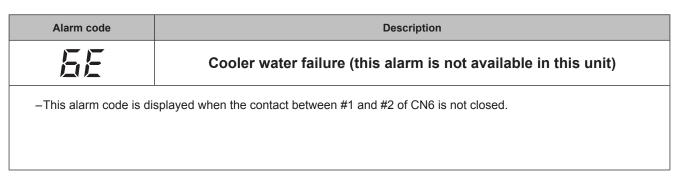

 - When alarm code "53" is indicated, the fan motor (DC motor) ensure that DC fan motor is checked according to the item 8.4.4.



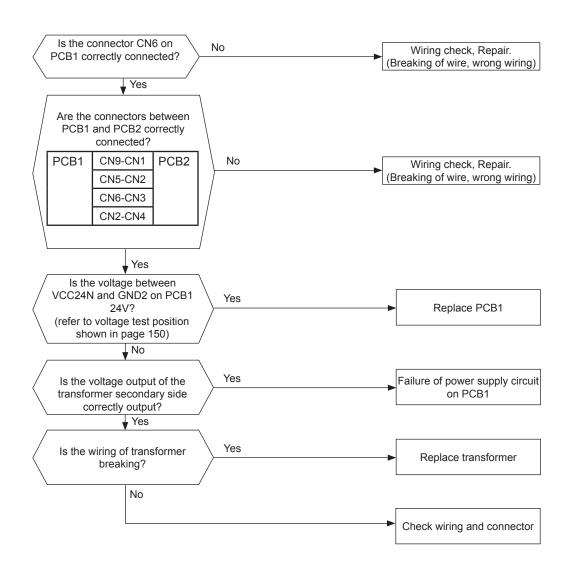
• The alarm appears after 3 retries during 30 minutes.

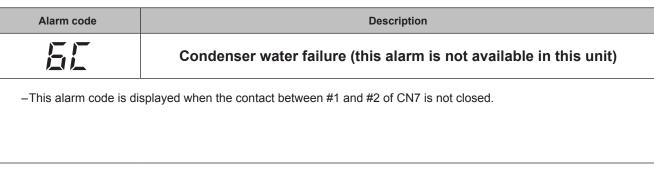
1*): Perform the high voltage discharge work by referring to the item 8.4.1 before checking and replacing the inverter components.

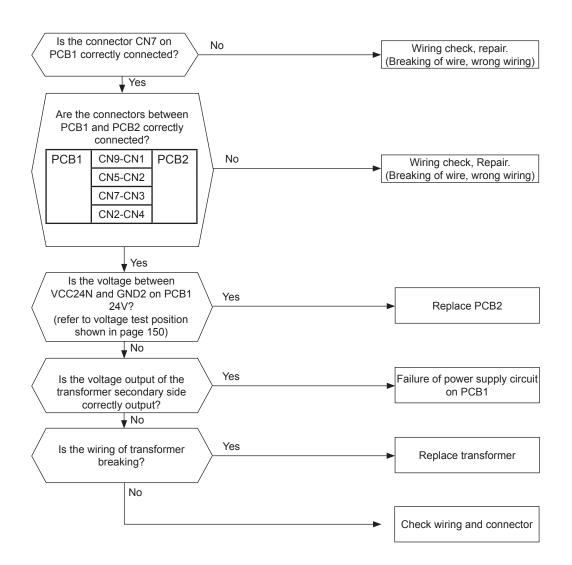



Troubleshooting by alarm code

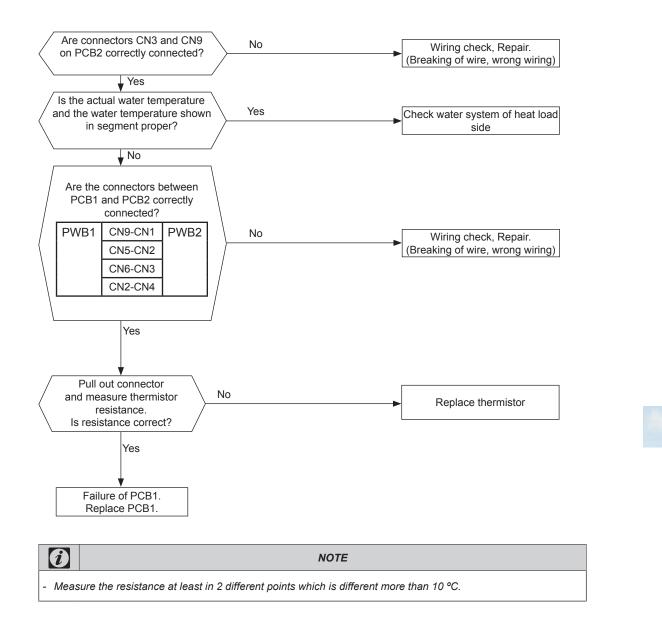
Alarm code	Description
5,5	No feed back signal from water pump


- The alarm code is displayed on the PCB's display.
- It is available once feedback signal confirmed.
 - -This alarm code is displayed when the Pump operation feedback signal (terminals 1-2) is OFF during pump interlock (CMp) ON (terminals 3-4).

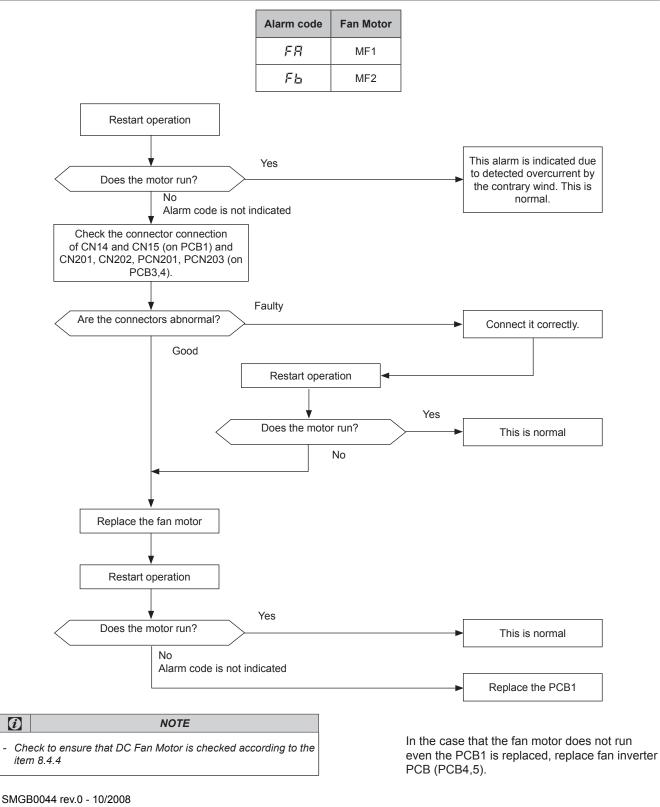

PCB monitoring position: PCB1, PCN4



PCB monitoring position: PCB1, CN6


PCB monitoring position: PCB1, CN7

Alarm code	Description	
(flickering)	Excessively high water temperature (compressor stop)	
Water temperature is i	ncreased to 65° C by heat generation in numbor other heat source during only numbrunning	


- Water temperature is increased to 65°C by heat generation in pump or other heat source during only pump running (during compressor stop: during thermo off or during pump automatic operation in winter).
- If water temperature is decreased less than 6°C due to pump stop, it becomes normal status automatically.
- Since this is not an abnormality of unit, it is not saved in alarm history.
 When this alarm happen, check the water system first. If any cause can not be detected, check the unit according to the following procedure.

PCB monitoring position: PCB2, CN3 and CN9

Alarm code	Description			
FA,Fb	Failure of fan motor			

. This alarm is indicated when the revolution pulse output from the fan motor is the reverse revolution signal is detected. The fan motor is stopped once, and restarted after 10 seconds. If it occurs more than 10 times in 30 minutes, this alarm is indicated.

i

_

8.2.2. Incidents of operation

The operation of the heater is bonded to the Yutaki heat pump.

(If that is in default, the heater can be activated only if specific programming controller Yutaki is done). The heater can be activated by the controller Yutaki under request for additional power or temperature.

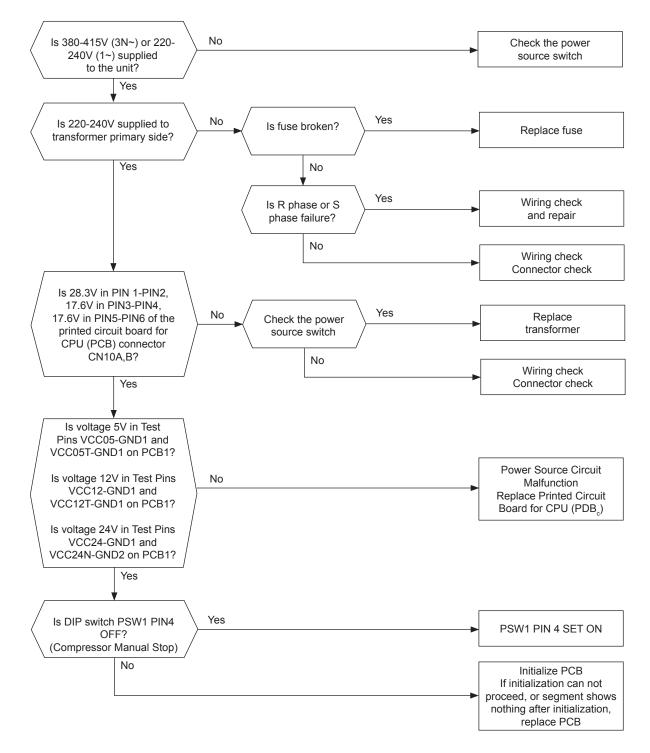
In case of non-functioning heater should check:

- That signals to the heat pump function.
- That fuse protection heater in a state.
- That the water pressure is at least 1 bar.
- That the water flow is assured permanently.

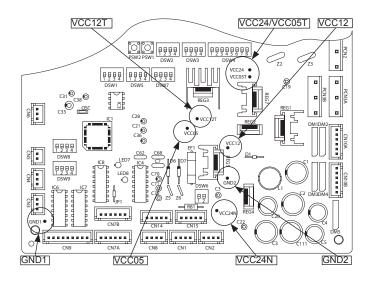
If the above checks are correct:

- Turn off the heater isolating fuses.
- Open the hood of connecting the heater.
- Check the good son tightening supply and command.

Press firmly on the push rearmament security heat between the 2 relays electrical power to rearm security heat. (It is possible that safety heater thermal be triggered due to a stoppage of water flow).

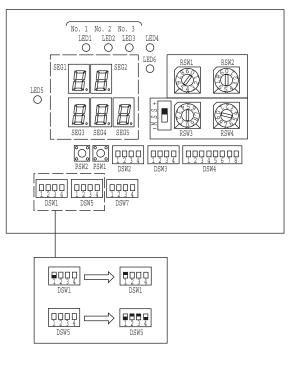

- Close the door connecting the heater.
- Switch on the power and restart the heat pump.

In case of non-functioning heater, remove the heater and demand its replacement.

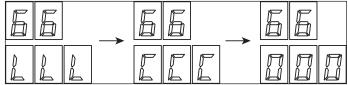

8.3. FAILURE DIAGNOSIS METHOD

• General check of failure diagnosis.

In the case of no segment indication, unit can not operate.

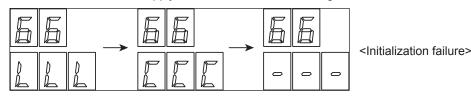


Voltage test position:



Inicialization procedure

Power Supply OFF, and set DSW1-1, DSW5-2,3 ON, and DSW 5-1,4 OFF on PCB (Record original DIP switch setting)



Power Supply ON, and confirm segment shows as follows:

<Initialization successfully done>

If segment shows as follows, Power Supply OFF once, and Power ON again:

If segment shows as "Initialization Successfully Done", Initialization Succeed. Power Supply OFF, and DSW1-1, DSW5-2,3 set original setting again. Initialization is finished. In other case, if segment shows nothing even if doing Initialization procedure, or shown Initialization Failure, PCB1 is broken and replace PCB1.

8.4. CHECKING PROCEDURE FOR MAIN PARTS

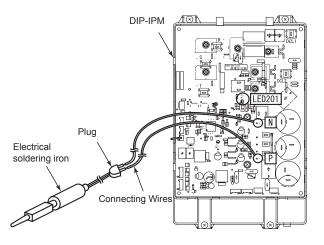
8.4.1. RHUE(3~5)AVHN. Procedure for checking the DIP-IPM.

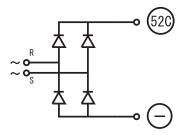
High voltage discharge is an imperative work for replacing parts.

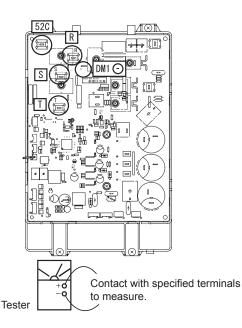
A	WARNING
- Perfor shock.	m this high voltage discharge work to avoid an electric

- Turn OFF the main switches and wait for three minutes. Make sure that no high voltage exists. If LED201 is ON after start-up and LED201 is OFF after turning OFF power source, the voltage will decrease lower than DC50V.
- 2. Connect connecting wires to an electrical soldering iron
- Connect the wires to terminals, P and N on DIP-IPM.
 => Discharging is started, resulting in hot soldering iron. Pay attention not to short-circuit between terminal P(+) and N(-)
- 4. Wait for 2 or 3 minutes and measure the voltage once again. Check to ensure that no voltage is charged.
- Inverter module checking procedure

Internal circuit of rectified part of DIP-IPM


Non-faulty if [1] – [8] are checked and satisfied. (Measure with 1 $k\Omega$ range of a tester.)


Ø	NOTE
- DO NO	DT use a digital tester.


- 1. Touch [+] of the tester to DIP-IPM 52C terminal, and [-] to DIP-IPM R, S terminals to measure the resistance. Normal if all three terminals have 1 k Ω or greater.
- 2. Contrary to [1], touch [-] of the tester to DIP-IPM 52C terminal, and [+] to DIP-IPM R, S terminals to measure the resistance.

Normal if all three terminals have 100 $\mbox{k}\Omega$ or greater.

- Touch [-] of the tester to [-] of DIP-IPM DMI (soldered part), and [+] of the tester to DIP-IPM R, S terminals to measure the resistance. Normal if all three terminals have 1 kΩ or greater
- 4. Contrary to [3], touch [+] of the tester to [-] of DIP-IPM DMI, and [-] of the tester to DIP-IPM R, S terminals to measure the resistance. Normal if all three terminals have 100 k Ω or greater.

5. Touch [+] of the tester to [P] of DIP-IPM (soldered part), and [-] to DIP-IPM U, V, W terminals to measure the resistance.

Normal if all three terminals have 1 $k\Omega$ or greater.

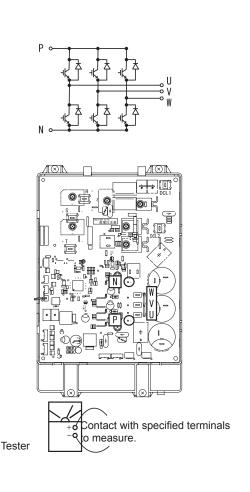
- Contrary to [5], touch [-] of the tester to [P] of DIP-IPM (soldered part), and [+] to DIP-IPM U, V, W terminals to measure the resistance. Normal if all three terminals have 30 kΩ or greater. (Resistance gradually increases during measurement.)
- Touch [-] of the tester to [N] of ISPM (soldered part), and [+] to ISPM U, V, W terminals to measure the resistance. Normal if all three terminals have 1 kΩ or greater.
- Contrary to [7], touch [+] of the tester to [N] ofDIP-IPM (soldered part), and [-] to DIP-IPM U, V, W terminals to measure the resistance. Normal if all three terminals have 30 kΩ or greater. (Resistance gradually increases during measurement.)

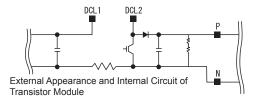
Internal circuit of ACT part of inverter module

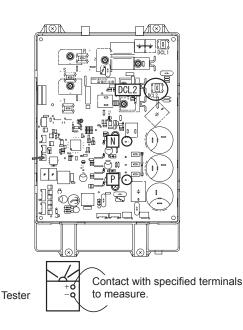
Non-faulty if [9] – [13] are checked and satisfied.

(Measure with 1 k Ω range of a tester.)

<i>i</i>	NOTE
- DO NO	DT use a digital tester

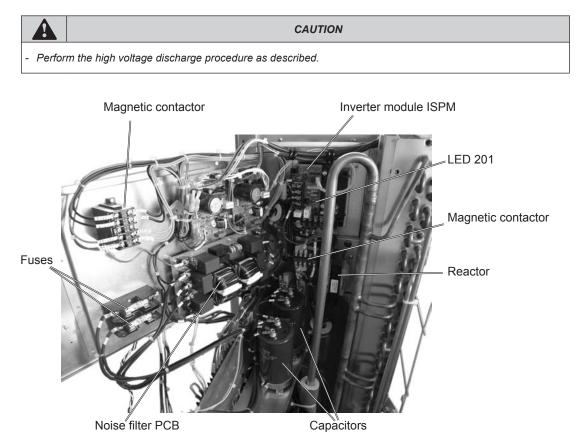

- 9. Check items [1] [8].
- 10. Touch [+] of the tester to DIP-IPM DCL2 terminal, and [-] to [P] of ISPM/DIP-IPM (soldered part) to measure the resistance.


Normal if all three terminals have 100 $k\Omega$ or greater


- 11. Contrary to [10], touch [-] of the tester to DIP-IPM DCL2 terminal, and [+] to [P] of DIP-IPM (soldered part) to measure the resistance. Normal if all three terminals have 1 k Ω or greater.
- 12. Touch [+] of the tester to DIP-IPM DCL2 terminal, and [-] to [N] of DIP-IPM (soldered part) to measure the resistance.

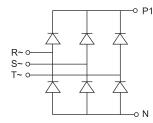
Normal if all three terminals have 100 $k\Omega$ or greater.

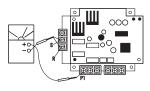
13. Contrary to [12], touch [-] of the tester to DIP-IPM DCL2 terminal, and [+] to [N] of DIP-IPM (soldered part) to measure the resistance. Normal if all three terminals have 10 k Ω or greater. (Resistance gradually increases during measurement.)

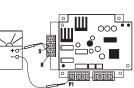


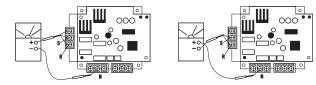
8.4.2. RHUE5AHN. Procedure for checking the ISPM.

Remove all the terminals of the ISPM before check. If items (a) to (h) are performed and the results are satisfactory, ISPM is normal. Measure it under 1 k Ω range of a tester.

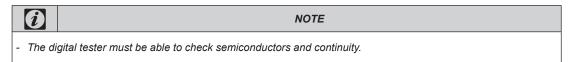



Procedure using an analog tester:

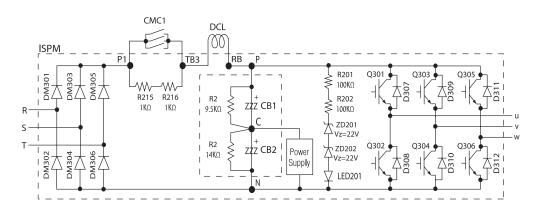

Checking the diode module:


- By touching the + side of the tester to the P1 terminal of ISPM and the - side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 1 kΩ, it is normal.
- 2. By touching the side of the tester to the P1 terminal of ISPM and the + side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.
- 3. By touching the side of the tester to the N terminal of ISPM and the + side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 1 k Ω , it is normal.
- 4. By touching the + side of the tester to the N terminal of ISPM and the side of the tester to R and S of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.





Checking the transistor module:


- 1. By touching the + side of the tester to the P terminal of ISPM and the side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 1 k Ω , it is normal.
- 2. By touching the side of the tester to the P terminal of ISPM and the + side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.
- 3. By touching the side of the tester to the N terminal of ISPM and the + side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 100 k Ω , it is normal.
- By touching the + side of the tester to the N terminal of ISPM and the - side of the tester to U, V and W of ISPM, measure the resistance. If all the resistances are more than 1 kΩ, it is normal.

• Procedure using a digital tester:

Based on the following scheme of ISPM with the contactor, the reactor, capacitors and the resistance, follow the next procedures.

• Checking the diode module

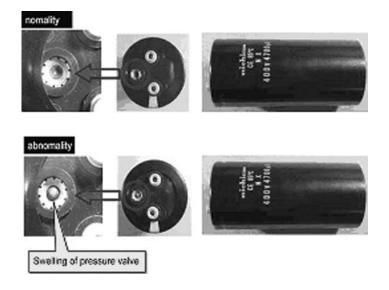
- 1. By placing a jumper from +P1 to -RST or -N to +RST, no continuity and no variation on voltage drop should appear.
- 2. By placing a jumper from P1 to +RST or +N to RST: continuity and variation on voltage drop (nearly 0,365) should be displayed, and the same value in all cases. Not the same value means that the diode module is damaged.

• Checking the transistor module

- 1. By bonding +P to -UVW or -N to +UVW, no continuity and no variation on voltage drop should appear.
- 2. By bonding -P to +UVW or +N to -UVW: continuity and variation on voltage drop (nearly 0,405) should be displayed, and the same value in all cases. Not the same value means that the diode module is damaged.

8.4.3. Checking capacitors CB1 & CB2.

 DANGER


 - Before installing the electrical wiring or before performing a periodical check, turn OFF the main switch of the unit. For safety reasons, be sure that the fan is stopped.

 - Prevent from touching the capacitors' terminals. High voltage should be present before discharging them.

 - Turn off the unit and wait for the LED 201 to be off before touching the components.

If it's possible, check the capacitance of each capacitor : 4700μ F ± 20% (between 3760μ F to 5640μ F).

A visual check of the pressure valve of capacitors must be done to ensure it's integrity:

It is not recommended to check tension.

PN = Power source x $\sqrt{2}$, PC=CN is nearly equal to PN/2.

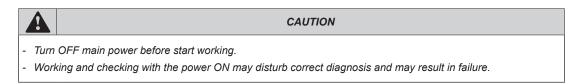
R1 & R2:

1) If the value is different:

- Capacitor could be damaged by overload.
- 04 alarm could be displayed if low supply voltage (CN) for ISPM control part is present.
- 2) R1 = 9.5Ω & R2 = 14.0 Ω . If these values are different, the capacitors will be not properly charged.

Resistance between P1 & TB3 = $2k\Omega$ (white resistance in the ISPM).

In case that Mg. SW 52C (CMC1) is not ON, the compressor current will travel through these resistances, and they will be broken. Mg. SW 52C (CMC1) should be checked. Check the resistance between the primary and secondary terminal where the contact point is melted for Mg. SW 42C. If there is continuity, the contact is melted and 52C is broken (NG).


Reactor resistance can be messured between TB3 and RB = $0,2\Omega$. Checking this component is not necessary.

Ø	NOTE
	filter does not affect ISPM directly, so is not necessary to check it when ISPM fails. digital or analog testers are valid to check the values.

8.4.4. Fault diagnosis of DC fan motor.

About DC fan motor fault diagnosis:

When ISPM/DIP-IPM is faulty and Alarm 53 appears, the fan motor may also be damaged. To prevent ISPM/DIP-IPM damage which may result from operation combined with a faulty fan motor, check also if the fan motor is not damaged when ISPM/DIP-IPM is replaced

DC motor(s) included in different models:

Model	Pieces
RHUE3AVHN	2
RHUE4AVHN	2
RHUE5AVHN	2
RHUE5AHN	2

• Fault diagnosis procedure

1. Remove fan motor connectors from the control PCB ISPM or DIP-IPM and turn the fan motor shaft by hand.

Normal	Fan motor shaft turns smoothly
Faulty:	No continuous rotary torque movement felt when turning the motor by hand. This occurs because the internal magnet of the fan motor breaks the movement when the internal electronic circuit of the fan motor has a short-circuit fault

2. Measure the fan motor resistance using a tester.

Measurement procedure					
1.	Remove the fan motor connector from the control PCB, ISPM or DIP-IPM.				
2. Connect the black test lead of the tester to the black wire pin the fan motor connector					
3. Connect the red test lead to the wire connector pin to be					
	Results				
Normal: Observed values will be close to the normal values in t below					
Faulty:	Observed values will be deviated from the normal values in the table below. Generaly an open-circuit fault shows ∞, and a short-circuit fault shows several Ω-kΩ.)				

Internal electronic circuit fault of the fan motor including short-circuit and breakage can be checked.

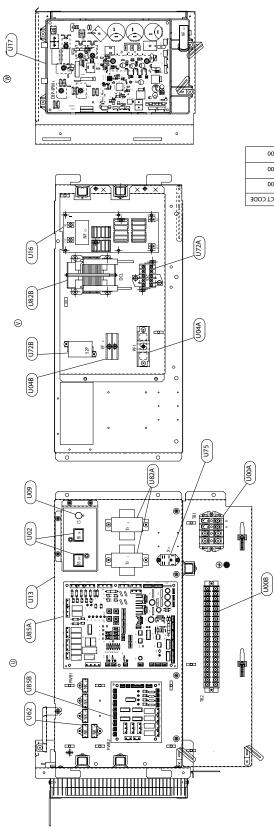
Madal	Matarmadal	Wire color for checking (Normal value) Ω			
Model	Motor model	Red-black	White-black	Yellow-black	Blue-black
RHUE(3~5)A(V)HN	SIC-68FV-D851-7.8	$1 \text{ M}\Omega$ or greater	42-78 KΩ	168-312 KΩ	1 M Ω or greater

(*) Values are shown for referenctial purpose. While actual values may vary depending on the type of the tester; any tester can be used to determine any short-circuit or breakage based on ∞ or several Ω /several k Ω or 0Ω .

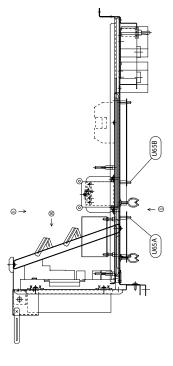
• Other parts

Part name	Unit models Model code		Resistance (Ω)
Solenoid valve for gas bypass		105-52-52 (50Hz)	1540.00 at 20 °C
Solenoid valve for liquid injection		105-52-52 (50Hz)	1540.00 at 20°C
Reversing valve		STF-01AJ502D1 (50Hz)	1435.00 at 20°C
	RHUE3.4AVHN	EK306AHD-27A2	0.24 at 20°C
Compressor motor	RHUE5AVHN	EK406AHD-36A2	0.20 at 20°C
	RHUE5AHN	EK405AHD-36D2	0.239 at 20°C

9. SPARE PARTS


CONTENTS

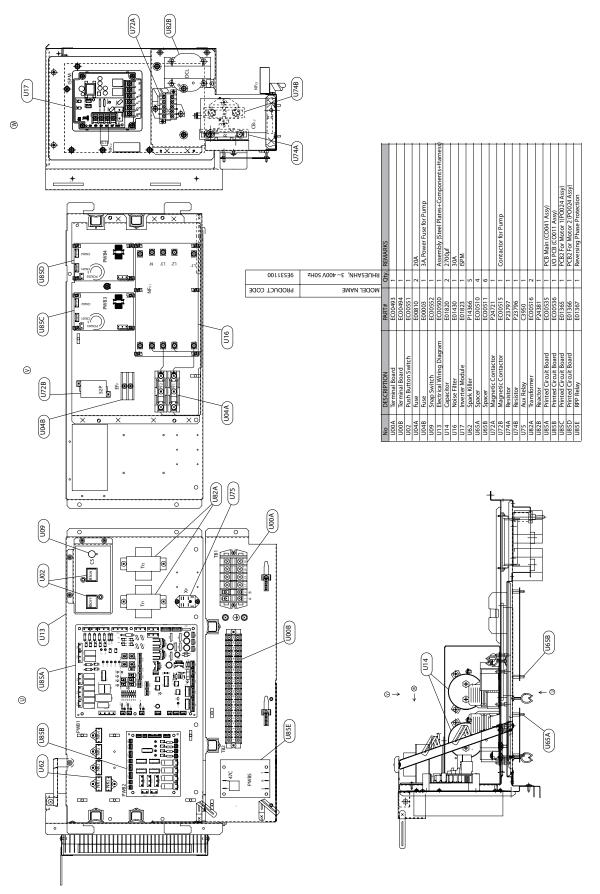
9.1.	RHUE(3~5)AVHN	207
9.2.	RHUE5AHN	208
9.3.	RHUE(3~5)A(V)HN	209



9.1. RHUE(3~5)AVHN

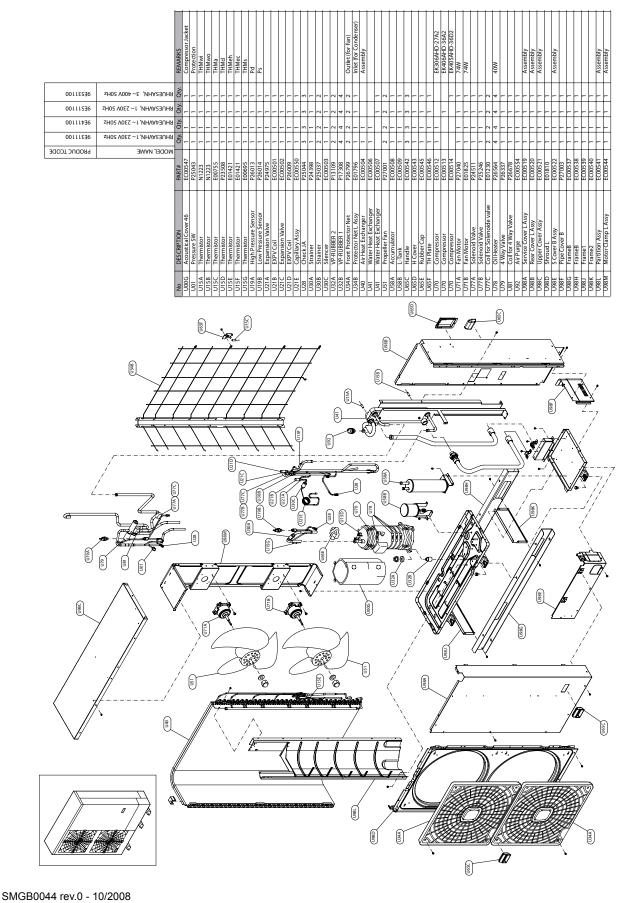
* Cycle and structural parts

		REMARKS				40A	50A	3A, Power Fuse for Pump		Assembly(Steel Plates+Components+Harness)	Assembly (Steel Plates+Components+Harness)	Assembly (Steel Plates+Components+Harness)	30A	DIP-IPM (17A)	DIP-IPM (25A)					Contactor for Pump					PCB Main (CO041 Assy)	I/O PCB (CO011 Assy)
00111536	zH02 V052 ~Г ,VHVA23UHЯ	Qty.		-	1		_	1	-			-	1		1	2	4	6	-	_	-	2		_	_	-
00111436	RHUE4AVHN, 1~ 230V 50Hz	Qţ,	-	-	-	-		-	-		-		-	-		S	4	9	-		-	2	-		_	-
00111836	SHUE3AVHN, 1 ~ 230V 50Hz	ġ.	-	-	1	1		1	-	1			1	-		2	4	6	-	-	-	2	1		_	-
PRODUCT COE	MODEL NAME				_						~	_														
		PART#	E01818	EC00494	EC00551	P24776	P24728	E00003	EC00552	EC00497	EC00498	EC00499	P26446	E01821	E01822	P14366	EC00510	EC00511	P24721	EC00515	C3950	EC00516	P26450	E01828	EC00535	EC00536
		DESCRIPTION	Terminal Board	Terminal Board	Push Button Switch	Fuse	Fuse	Fuse	Snap Switch	Electrical Wiring Diagram	Electrical Wiring Diagram	Electrical Wiring Diagram	Noise Filter	Inverter Fin Assy	Inverter Fin Assy	Spark Killer	Spacer	Spacer	Magnetic Contactor	Magnetic Contactor	Aux Relay	Transformer	Reactor	Reactor	Printed Circuit Board	Printed Circuit Board
		٩	N00A	U00B	U02	U04A	U04A	U04B	60N	U13	U13	U13	U16	U17	U17	U62	U65A	U65B	U72A	U72B	U75	U82A	U82B	U82B	U85A	U85B



7 SMGB0044 rev.0 - 10/2008 RHUE(3~5)AVHN Spare parts Service Manual

HITACHI Inspire the Next


9.2. RHUE5AHN

9.3. RHUE(3~5)A(V)HN

* Cycle and structural parts

RHUE(3~5)A(V)HN

10. SERVICING

CONTENTS

10.1. R	RHUE(3~5)A(V)HN	212
10.1.1	. Removing service cover	212
	. Removing air outlet grille	
10.1.3	. Removing upper cover	
10.1.4	. Removing the lower part of service panel and rear panel	
10.1.5	. Removing Yutaki fan motor	
10.1.7	. Removing the compressor	
10.1.6	. Mounting Yutaki fan motor	
10.1.8	. Removing high pressure switch	
10.1.9	. Opening electrical box (P-mounting plate)	
10.1.1	0. Removing the coils for the reversing and solenoid valves	
10.1.1	1. Removing electronic expansion valve coils	
10.1.1	2. Removing pressure switches	
10.1.1	3. Removing reversing valve	
10.1.1	4. Removing expansion valve	
10.1.1	5. Removing solenoid valve	
10.1.1	6. Removing electrical components	
10.1.1	7. Removing inverter components	
10.1.1	8. Removing the ISPM	
10.1.1	9. Removing the DIP-IPM	
10.1.2	0. Removing the electrical-noise filter	
10.1.2	1. Removing other electrical components	

DANGER

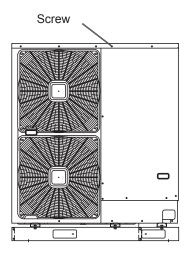
- Before performing any of the service operations described in this chapter, turn all the main switches off and place security lockers or convenient warning indicators in order to prevent them from turning on accidentally.
- In case of blocked or stucked parts, use appropiated tools and eventually lubricants to release them.
- In case of sharped edged parts, as covers, use security gloves to avoid getting injured.
- When performing brazing work, besides security gloves it is a must to wear convenient eye protection.
- Check and be sure that the LED201 (Red) located on the inverter module is OFF during the whole electrical maintenance operation.
- Do NOT touch the electrical components when the LED201 (Red) located on the inverter module is ON to avoid electrical shock.
- Do not pour water into the unit. These products are equipped with electrical parts. If water contacts with electrical components then it will cause a serious electrical shock.
- Do not touch or adjust safety devices inside the units. If these devices are touched or adjusted, it may cause a serious accident.
- Do not open the service cover or access the unit without disconnecting the main power supply.
- In case of fire turn OFF the main switch, put out the fire at once and contact your service contractor.

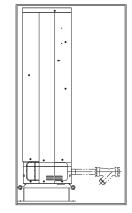
4

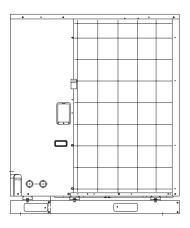
NOTE

- All compressors are connected by brazing. Check whether there are flammable things around when using a burner for pipe connections, if not, oil existing pipe inside may ignite.
- Do not expose the refrigerant cycle to the atmosphere for a long period in order to avoid mixing the water and foreign particles into the refrigerant cycle. After removing compressor, replace it quickly. If exposed for a long period, seal the suction pipe and discharge pipe.
- Remove the cap for the compressor just before replacing the compressor. Before mounting the compressor, seal the suction pipe and discharge pipe with a tape to protect the compressor from foreign particles. Remove the tape at pipe connection.
- Do not use any sprays such as insecticide, lacquer, hair spray or other flammable gases within approximately one (1) meter from the system.
- If circuit breaker or fuse is often activated, stop the system and contact your service contractor.
- Do not put any strange material (sticks, etc) into the air inlet and outlet. These units have high speed rotating fans and it is dangerous that any object touches them.

Contents

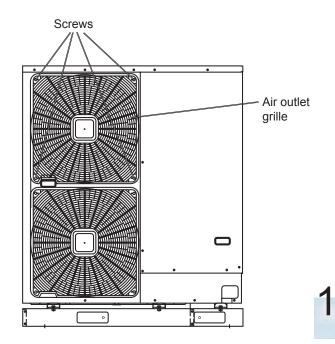

10.1. RHUE(3~5)A(V)HN

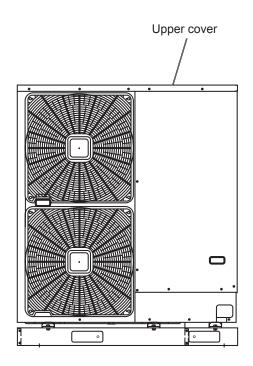

10.1.1. Removing service cover


Remove the main parts according to the following procedures.

Ø	NOTE								
- Screws are represented as black points in the figure besides. To reassemble, perform the procedures in reverse.									
 To prevent contamination of the refrigerant with water or foreign particles, do not expose open pipes to atmosphere for long periods. 									
- If nec	essary, seal pipe ends using caps or tape.								

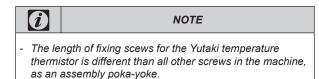
- 1. Remove the nine (9) fixing screws of the upper cover.
- 2. Remove the fourteen (14) fixing screws of the front cover.
- 3. Slide the service cover downward and remove it.
- 4. Pay attention of not falling off the service cover.

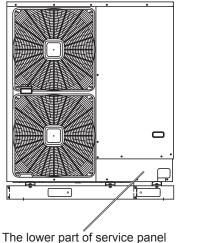


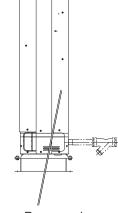

10.1.2. Removing air outlet grille

- 1. Remove the eight (8) fixing screws.
- 2. Lift the air outlet grille holding the lower parts.
- 3. Release the extruded hook of the air outlet grille from the shroud.

10.1.3. Removing upper cover

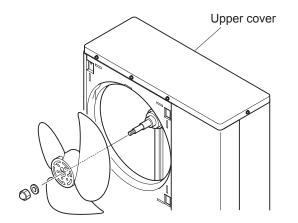

- 1. Remove the nine (9) screws fixing the upper cover
- 2. Lift the upper cover upwards.

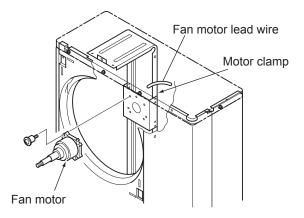



10.1.4. Removing the lower part of

service panel and rear panel

 Remove the four (4) fixing screws at the lower part of the service panel and remove the lower part of the service panel by pulling towards the front side. Remove the upper cover according to section "Removing upper cover" in this chapter.

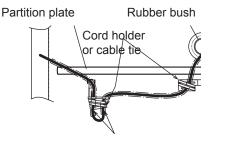



Rear panel

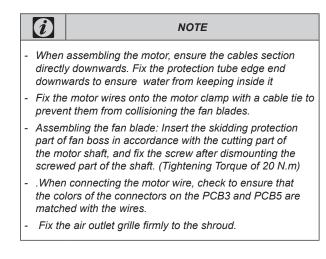
SMGB0044 rev.0 - 10/2008 RHUE(3~5)A(V)HN

10.1.5. Removing Yutaki fan motor

- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- 2. Remove the air outlet grille according to the section "Removing air outlet grille" in this chapter.
- 3. Remove the upper cover according to the section "Removing upper cover" in this chapter.
- 4. Disassembly the fan blade by removing the cap nuts and washers fixing the fan blade onto the motor shaft.

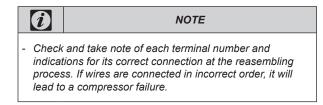

Fan components and technical features										
Powe	r supply	380V/60Hz								
		380-415V/50Hz								
Fan motor comp. No.	DC fan motor	PCB5 PCN203 (1, 3) CN201 (2, 3, 4)								
NO.	AC fan motor	PCB3 PCN404(White)								
Screw for motor	DC Fan Motor	M6 Screw with spacer x 4								
fixing	AC Fan Motor	M8 Screw x 4								
Motor clamp and	wiring fixing position	Motor Fan motor clamp lead wire DC fan motor AC fan motor								

10.1.6. Mounting Yutaki fan motor

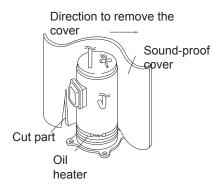

- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- 2. Remove the air outlet grille according to the section "Removing air outlet grille" in this chapter.
- 3. Remove the upper cover according to the section "Removing upper cover" in this chapter.
- 4. Disassembly the fan blade by removing the cap nuts and washers fixing the fan blade onto the motor shaft.

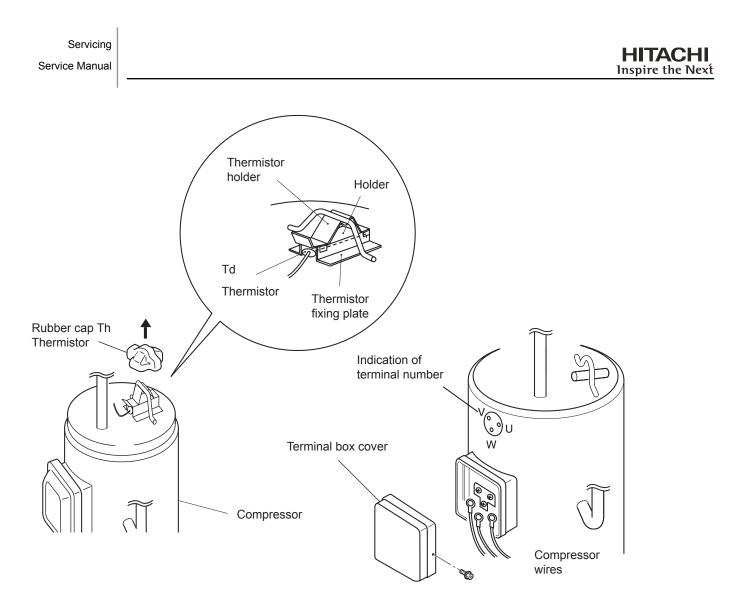
If the fan blade get stuck when trying to remove it, use a puller to disassembly the fan.

- 5. Remove the fan motor connector from the PCB3 and PCB5 at the electrical box.
 - Cut off the cable tie that fixes the lead wire of the fan motor.
 - Remove the four (4) screws that fix the motor to the motor clamp.
- Fix the motor wire with the cable tie or the cord clamp. If not, it may cause the disconnection of the fan motor's lead wire.
- 7. In order to avoid cutting edges, mount the rubber bush at the partition plate when inserting the motor wire through it. If not, it may cause the disconnection to the fan motor's lead wire.

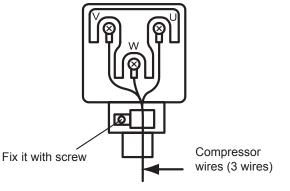


Install DC motor to this position facing down the trap




10.1.7. Removing the compressor

- Remove the service cover and the lower part of the service panel according to the section "Removing service cover" and the section "Removing lower part of service panel and rear panel". In case that the Yutaki is installed close to a wall closely, sepparate first the Yutaki from the wall.
- 2. Collect the refrigerant from the liquid stop valve, the gas stop valve and the check joint at the piping.
- Open the sound insulation cover wrapped around the compressor and remove the terminal box cover at the compressor fixed by one (1) screw. Disconnect the compressor wires in the terminal box and remove the sound insulation cover.



4. Remove the rubber cap and the thermistor on the top of the compressor.

Details for compressor terminals

1

WARNING

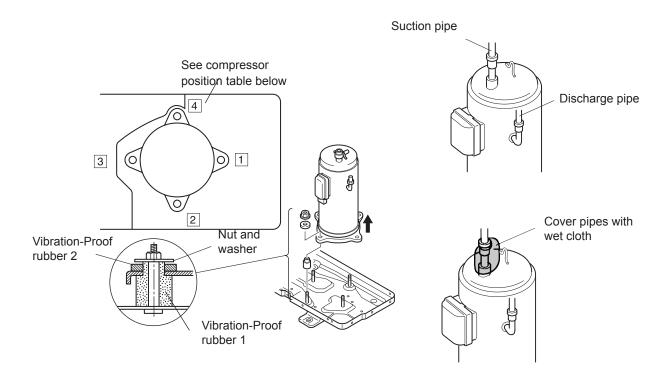
 All compressor pipes must be brazed to be connected to the refrigerant circuit. Ensure that all the sourrounding is free of flammable objects and liquids when performing piping brazing work.

216

- Fix NOTE
- Do not expose the refrigerant cycle to the atmosphere for a long period in order to avoid water and foreign particles entering into the refrigerant cycle. After removing the compressor, replace it quickly. If it is exposed to the ambiance for a long period, seal both suction and discharge pipes.

Í)

 Remove the cap for the compressor just before replacing the compressor. Before assembling the compressor, seal the suction pipe and discharge pipe with tape to protect the compressor interior from foreign particles. Remove the tape when connecting the pipes.


- 5. Remove the crankcase heater.(Oil heater on the lower case).
- 6. Remove the suction pipe and the discharge pipe from the compressor. Isolate the wires and electrical components to protect them from the burner flame when brazing the connection pipes.
- Remove the two (2) nuts fixing the compressor and remove the compressor from the unit by lifting it. Slightly incline it forward and lift.
- 8. For brazing the compressor connection pipes, first cool down the compresor piping side covering it with wet cloth. Then brazing material will not enter into the compressor. If the brazing material enters the compressor, it will cause compressor failures.

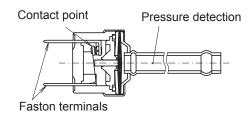
- 9. Reassemble the parts in the reverse order of the indicated removing procedures.
 - Tighten the screws (U, V and W) for compressor wires with 2.5N.m.
 - Fix the lead wire firmly.

i

NOTE

- Fix the lead wire for the compressor firmly using a cable tie to aviod the contact between the metal sheet sharp edges and the high temperature piping.

Fixation of the compressor to the bottom plate				
Compressor position	1	2	3	4
Vibration-proof rubber 1	0	0	0	0
Vibration-proof rubber 2	0	0	-	-
Nut	0	0	_	_


10.1.8. Removing high pressure switch

- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- 2. Collect the refrigerant from the check joint according to the section "Removing the compressor" in this chapter.
- 3. Disconnect the faston terminals from the pressure switch.
 - Cut the high pressure switch from the brazing neck using a burner.

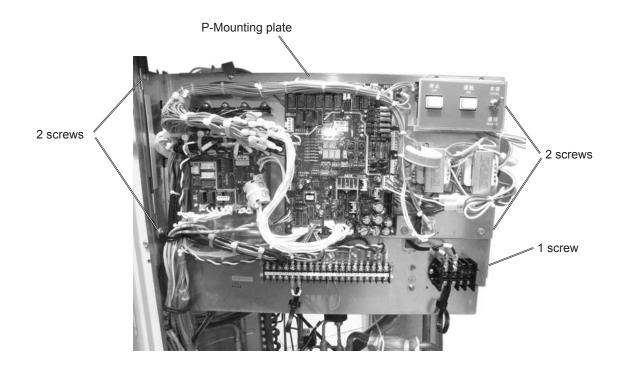
	DANGER	
the hig	t change the high pressure switch locally or change yh pressure cut-out set value locally. If changed, it use serious injury or death due to explosion.	
- Do no	t attempt to turn service valve rod beyond its stop	

Do not attempt to turn service valve rod beyond its stop.

High pressure switch structure

High pressure switch

4

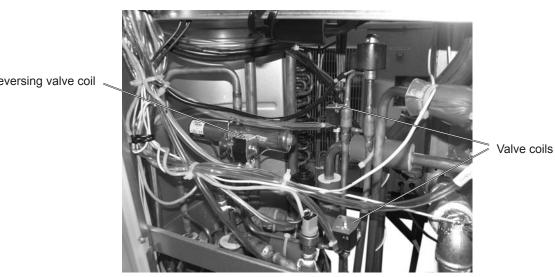

10.1.9. Opening electrical box

(P-mounting plate)

- 1. Remove the service cover according to the section "Removing the service cover" in this chapter.
 - Remove the five (5) screws fixing the electrical box. Open the P-mounting plate by rotating it 90 degrees to the left.

DANGER

- Check that the LED201 (red) located on the inverter module is OFF when opening the P-mounting plate.
- Do not touch the electrical components when LED201 (Red) located on the inverter module is ON in order to avoid an electrical shock.


10.1.10. Removing the coils for the

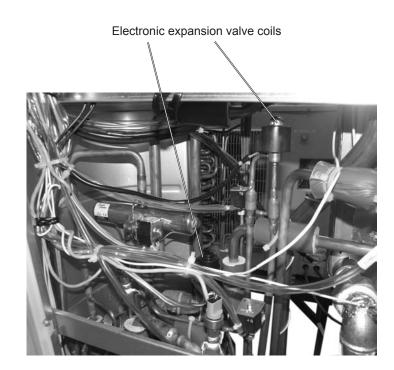
reversing and solenoid valves

- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- 2. Remove the reversing valve coil by removing the screw fixing the coil.

	i	NOTE
-	(Red)	t touch the electrical components when the LED201 located on the inverter module is ON in order to electrical shock.
-	Remo box.	ve the connectors on the control PCB of the electrical

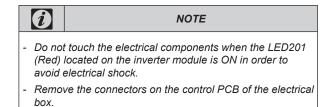
3. Remove the connector on the control PCB of the electrical box.

Reversing valve coil

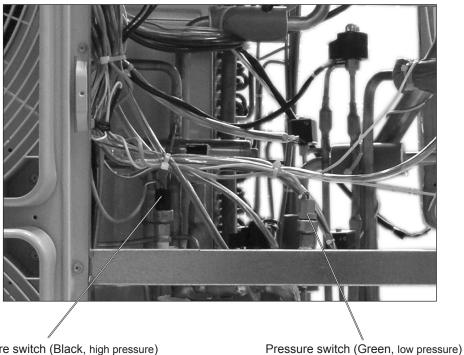

10.1.11. Removing electronic expansion

valve coils

1. Remove the service cover according to the section "Removing service cover".


	DANGER
	that the LED201 (red) located on the inverter e is OFF when opening the P-mounting plate.
(Red)	t touch the electrical components when LED201 located on the inverter module is ON in order to an electrical shock.

- 2. Remove the connector on the control PCB of the electrical box.
- Hold the electronic expansion valve coil and slightly rotate, then pull it up. Refer to the figure below to replace the electrical valve. The lock mechanism is equipped with the expansion valve coil. Check to ensure that the expansion valve coil is locked.


10.1.12. Removing pressure switches

- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- 2. There are two pressure switches: one green (low pressure) and one black (high pressure).
- 3. Remove the pressure switches

4. Remove the connector on the control PCB of the electrical box.

Pressure switch (Black, high pressure)

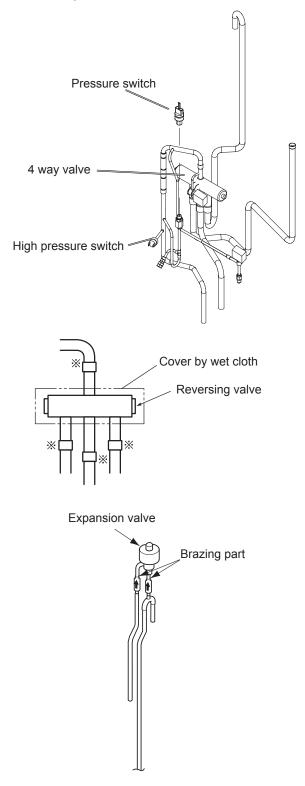
10.1.13. Removing reversing valve

- Remove the service cover and the rear service panel according to the section "Removing Service Cover" and the section "Removing lower part of service panel and rear service panel"in this chapter.
- 2. Collect the refrigerant from the check joint according to the section "Removing compressor".
- 3. Remove the reversing valve coil according to the section "Removing reversing valve coil".
- 4. Remove one (1) fixing screw for the valve-mounting plate.
- 5. Remove the stop valve at the gas side from the valvemounting plate by removing the two (2) screws.
- 6. Remove the reversing valve assemblies from the 4 brazed parts where it is fixed. Remove the brazing of the reversing valve and the stop valve at the gas using a blowtorch. Cool down the piping side covering it with wet cloth, in order to avoid brazing material entering the reversing valve. Protect the connecting wires and pipe insulation from the brazing frame.
- Remove the reversing valves from its assemblies 4 brazed parts *∞*.

10.1.14. Removing expansion valve

- Remove the service cover and rear service panel according to the section "Removing Service Cover" and the section "Removing Lower Part of Service Panel and Rear Service Panel".
- 2. Collect the refrigerant from the check joint according to the section "Removing Compressor".
- 3. Remove the coils according to the section "Removing Electronic Expansion Valve Coil".
- 4. Remove the brazing as shown in the figure below.

Electronic Expansion Valve: 2 brazing parts.

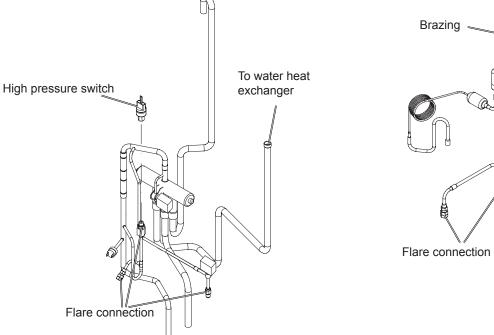

Perform the brazing to remove and reassemble the electronic expansion valve by cooling with wet cloth.

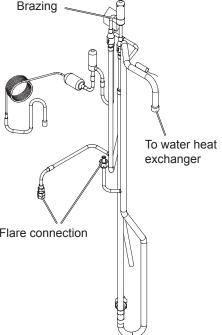
Protect the connecting wires and pipe insulation from brazing flame.

5. Reassemble the parts in the reverse order of removing procedures.

Perform the brazing with a blowtorchto remove and reassemble the reversing valve by cooling the pipes first with wet cloth in order to avoid brazing material entering the reversing valve.

 Reassemble the parts in the reverse order of removing procedures contained in this chapter. When SFV is removed, fix it according to the section "Removing the Reversing Valve and the Solenoid Valve" contained in this chapter.

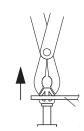

SMGB0044 rev.0 - 10/2008 RHUE(3~5)A(V)HN


10.1.15. Removing solenoid valve

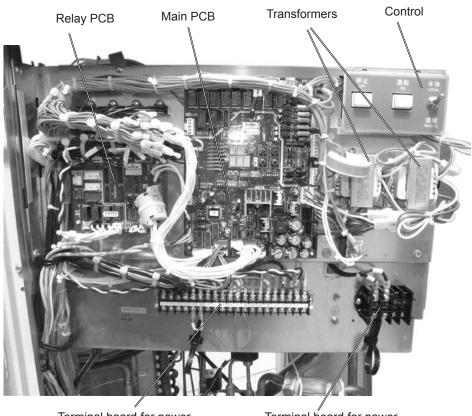
- Remove the service cover and the rear service panel according to the sections "Removing Service Cover" and "Removing lower part of service panel and rear panel", described in this chapter.
- 2. Collect the refrigerant from the check joint according to the section "Removing compressor" in this chapter.
- Remove the solenoid valve coil according to the section "Removing coils for reversing valve and solenoid valve (SVA1, SVA2 and SVF)" in this chapter.
- 4. Remove the brazing and flare nuts as shown in the figure below. Using a blowtorch and previously cooling the pipe side with wet cloth in order to avoid brazing material entering the reversing valve.
 - Solenoid Valve (SVA1): 2 brazing parts
 - Solenoid Valve (SVA2): 2 brazing parts
 - Solenoid Valve (SVF): 2 brazing coils
- 5. Perform the brazing to remove and reassemble the solenoid valve.
- 6. Protect the connecting wires and pipe insulation from the brazing flame.

- 7. Remove the flare nuts with two spanners to avoid twisting.
- 8. Reassemble the parts in the reverse order of removing order of removing procedures.

Fix the solenoid valve SVF as shown in the figure below.


10.1.16. Removing electrical

components


A	DANGER
	that the LED201 (red) located on the inverter e is OFF when opening the P-mounting plate.
(Red)	t touch the electrical components when LED201 located on the inverter module is ON in order to an electrical shock.

- 1. Remove the service cover according to section "Removing service cover" in this chapter.
 - Disconnect all the connectors in the PCB.
 - Remove the PCB by sliding four (4) holders in the arrow direction.
 - Remove the PCB for power distribution of the compressor and the motor.

- 2. Removing the relay PCB
 - Remove the service cover according to the section "Removing Service Cover" in this chapter.
 - Disconnect all the wires connected to the relay PCB.

Extraction of the PCB from the holders

Terminal board for power signal wires

Terminal board for power supply wires

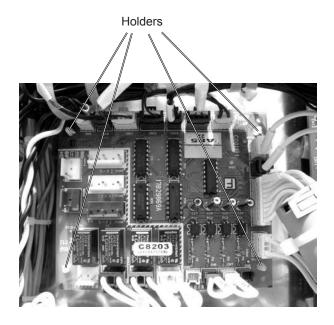
10.1.17. Removing inverter components

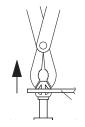
- 1. Remove the service cover according to the section "Removing service cover" in this chapter.
- Open the P-mounting plate by rotating 90 degrees to the left according to the section "Opening electrical box (P-Mounting Plate)" in this chapter.

Check that the LED201 (red)located on the inverter module is OFF when opening the P-mounting plate.

 Do not touch the electrical components when LED201 (Red) located on the inverter module is ON in order to avoid an electrical shock.

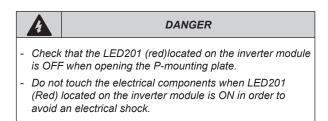
Removing the relay PCB


Check to ensure that the LED201 (Red) of the PCB is OFF.


Remove holders from the PCB. When reassembling the components, pass those holders again through the holes of the PCB.

DANGER

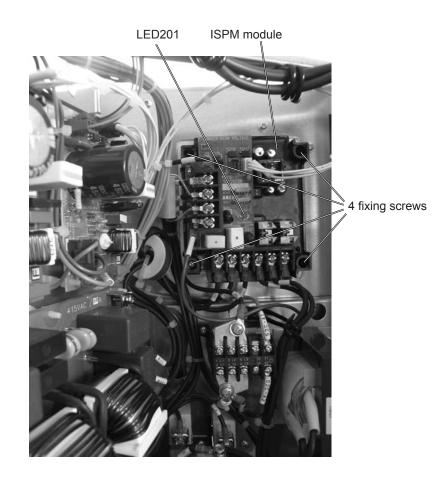
- Do not touch the electrical parts when LED201 (Red) located on the inverter module is ON to prevent from an electrical shock.
- When replacing the transistor module (IPM) and diode module (DM) on heat radiation fin, slightly apply the heat conducting silicon grease (Manufacture: Shin-Etsu Chemical Co., Ltd, Product No.: G-746) over the fin contact surface.
- Identify the terminal numbers with mark band. When reassembling, the terminals have to be connected to the correct numbers . If incorrectly connected, malfunctions or damages will occur.
- Correctly insert two wires of U and V phases for the power cable of inverter compressor into the current sensor, CTU and CTV on PCB2. Connect Phase U power cable with the current sensor Phase U (CTU) and Phase V power line with current sensor Phase V (CTV). If connected incorrectly, malfunction or electrical component damage will occur.
- When mounting PCB and the sheet metal part for PCB, pay attention not to clamp the electrical wiring together.
- In case of replacing control PCB, set all the dip switches as the same position before replacing. If not, malfunction may occur.
- Do not apply strong force to the electric components and PCBs to avoid damage.



Extraction of the PCB from the holders

10.1.18. Removing the ISPM

The ISPM is equiped in the RHUE-5AHN unit.



- 1. Disconnect all the wirings connected to the module.
 - Disconnect the wirings of the terminals +, , U, V, W
- 2. Disconnect all the wirings connected to the transistor module as shown below.
 - Disconnect the wirings of connector CN2, CN206 and CN207.
 - Disconnect the wirings from P, N, U, V, W on the transistor module.
 - Remove the four (4) fixing screws on the ISPM

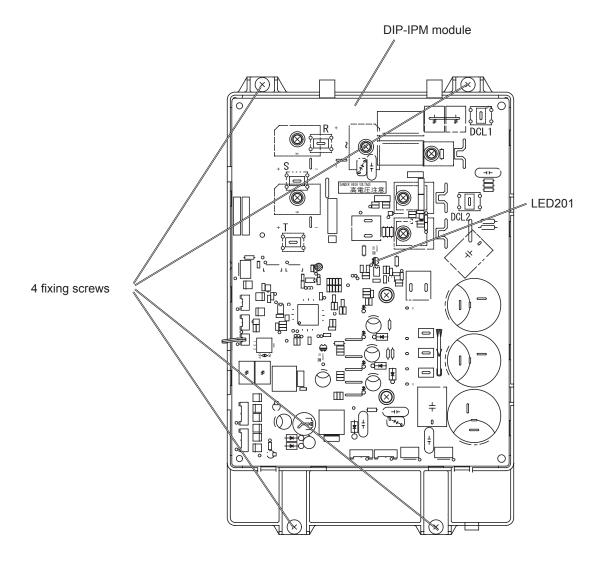
module to remove it ..

NOTE Identify the terminal numbers with the mark band numbers when reassembling. If incorrectly connected, malfunction or damage will occur. Check to ensure that the electrical wires will not be caught between the mounting electrical components and the mounting plates when the PCB is remounted.

 Apply silicon grease evenly on the whole rear side of the diode module and the transistor module when mounting. Silicon grease is available as a field-supplied accessory.

10.1.19. Removing the DIP-IPM

The DIP-IPM is equiped in the RHUE-(3~5)A(V)HN units.

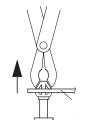

	DANGER
	that the LED201 (red)located on the inverter module when opening the P-mounting plate.
(Red)	t touch the electrical components when LED201 located on the inverter module is ON in order to an electrical shock.

- 1. Disconnect all the wirings connected to the module.
 - Disconnect the wirings of the terminals +, , U, V, W
- Disconnect all the wirings connected to the module.
 Remove the four (4) fixing screws on the DIP-IPM

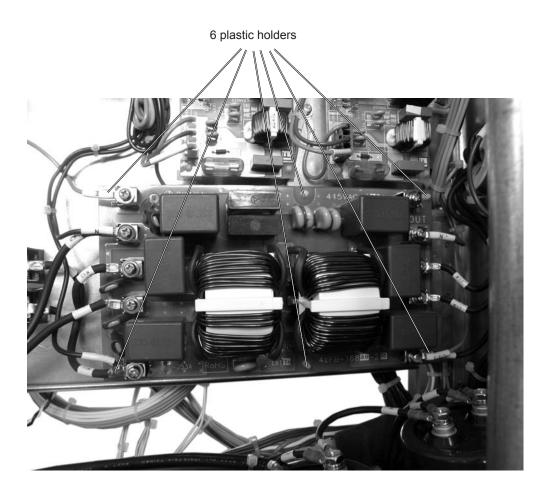
module to remove it.

	Ø	NOTE
-	when i	y the terminal numbers with the mark band numbers reassembling. If incorrectly connected, malfunction nage will occur.
-	betwee	to ensure that the electrical wires will not be caught en the mounting electrical components and the ing plates when the PCB is remounted.

 Apply silicon grease evenly on the whole rear side of the diode module and the transistor module when mounting. Silicon grease is available as a field-supplied accessory.


10.1.20. Removing the electrical-noise

filter


All RHUE Yutaki units are equiped with electrical-noise filter PCB.

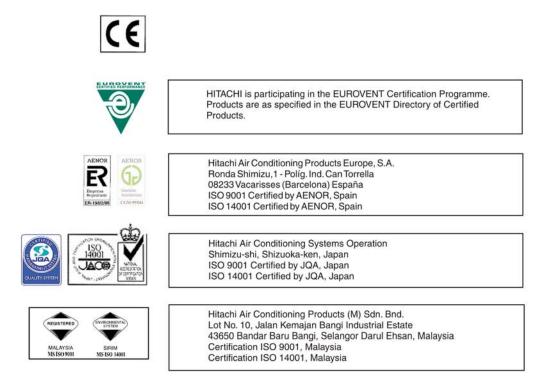
A	DANGER
	that the LED201 (red)located on the inverter module when opening the P-mounting plate.
(Red)	t touch the electrical components when LED201 located on the inverter module is ON in order to an electrical shock.

- 1. Disconnect all the wirings (9 in total) connected to the electrical-noise filter.
- 2. Remove the six (6) holders from the PCB. When reassembling the components, pass those holders again through the holes of the PCB.

Extraction of the PCB from the holders

10.1.21. Removing other electrical

components


- 1. Remove the service cover according to the section "Removing service cover"in this chapter.
- Open the P-mounting plate by rotating it 90 degrees to the left according to the section "Opening electrical box (P-Mounting Plate) in this chapter.
- 3. Check to ensure the LED201 (Red) of the inverter PCB is off when opening P-mounting plate.
- 4. Remove other electrical components according to the procedure below, and the figures on chapter 9.

	DANGER
	that the LED201 (red) located on the inverter e is OFF when opening the P-mounting plate.
- Do no	t touch the electrical components when LED201

(Red) located on the inverter module is ON in order to avoid an electrical shock.

	Ì	NOTE
-		nnect all the wires connected with the smoothing tor (CB, CB1, CB2, CA).

- If the wire has polar characters. Identify the wire mark band and the indication on the smoothing capacitor when wire connecting.
- Remove the two (2) screws fixing the smoothing capacitor and remove the smoothing capacitor.
- Disconnect all the wires connecting with the magnetic contactor (CMC1).
- Remove the two (2) screws fixing the magnetic contactor and remove the magnetic contactor.
- Remove the four (4) screws fixing the reactor and remove the reactor (DCL).
- Disconnect all the wires connected with the electrical-noise filter (NF1).
- Remove the noise filter by clamping the top of the holder (6 portions) with a pincher.
- Identify the terminal numbers with mark band. When reassembling, the terminals have to be connected to the correct numbers. If incorrectly connected, malfunctions or damages will occur.

HITACHI Inspire the Next