

Чиллеры и фанкойлы

Технических данных

Чиллер с водяным охлаждением, стандартная эффективность

EEDRU13-424

СОДЕРЖАНИЕ

EWWD-I-SS

1	Характеристики	2
2	Технические характеристики Технические параметры Технические параметры Электрические параметры Электрические параметры	3
3	Характеристики и преимущества Характеристики и преимущества	
4	Общие характеристики	
5	ОбозначенияОбозначения	
6	Таблицы производительности	. 15 . 16 . 24
7	Размерные чертежи Размерные чертежи	
8	Данные об уровне шума Данные об уровне шума	
9	Установка Способ монтажа	
10	Рабочий диапазон	
11	Характеристика гидравлической системы Кривая падения давления воды Испаритель/Конденсатор Падение давления для частичной рекуперации теплоты Падение давления для полной рекуперации теплоты	. 42 . 43
12	Описание технических характеристик	

1 Характеристики

- · Standard efficiency, standard sound levels
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Одновинтовой компрессор с бесступенчатым регулированием мощности
- Оптимизирован для работы с хладагентом R-134a

- 1-2-3 полностью независимых контура охлаждения
- Стандартный электронный расширительный клапан
- Кожухотрубный испаритель DX однопроходная сторона хладагента для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- Пульт MicroTech III

Льность Ном. кВт 405 (2) 481 (2) 562 (2) 660 (2) 783 (2) 863 (2) 955 (2) 1.0 Регупирование производительности ность Способ Бесступенч. Воступенч. 13 Входная мощность Нагрев Ном. кВт 73.5 (1) 88.6 (1) 104.2 (1) 124.3 (1) 145.7 (1) 160.3 (1) 176.4 (1) 19.9 ЕЕR Нагрев Ном. кВт 73.5 (2) 88.6 (2) 104 (2) 124 (2) 146 (2) 160 (2) 176 (2) 15 ЕЕR 4,51 (1) 4,43 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,47 (1) 4,47 (1) 4,47 (1) 4,47 (1) 4,47 (1) 4,47 (1) 4,47 (1) 4,57 (1) 4,43 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,37 (1) 4,47 (1) 4,47 (1) 4,57 (1) 4,43 (1) 4,57 (1) 4,47 (1) 4,57 (1) 4,43 (1) 4,57 (1) 4,52 (2) 5,28 (2)	1 (1) 907 (1 32 (2) 1.112 (3 ,1 (1) 205,4 (1 1 (2) 205 (2 0 (1) 4,42 (1 ,19 5,05 0 (2) 5,42 (2 ,16 5,76 971 3.996 262 4.288 48 241 0,3 43,4 53 44							
Регулирование регулирование производительности Входная мощность Одинимальная мощность Нагрев Ном. КВТ 73.5 (1) 88.6 (1) 104.2 (1) 124.3 (1) 145.7 (1) 160.3 (1) 176.4 (1) 191.	971 3.996 262 4.288 248 241 0,3 43,4 53 44							
Водная мощность Минимальная мощность % 25 13 13 14 14 15 16 16 16 17 17 16 17 17	1 (2) 205 (2 0 (1) 4,42 (1 ,19 5,05 0 (2) 5,42 (2 ,16 5,76 971 3,996 262 4.288 248 241 0,3 43,4 53 44							
Входная мощность Охлаждение Ном. КВТ 73,5 (1) 88,6 (1) 104,2 (1) 124,3 (1) 145,7 (1) 160,3 (1) 176,4 (1) 195	1 (2) 205 (2 0 (1) 4,42 (1 ,19 5,05 0 (2) 5,42 (2 ,16 5,76 971 3,996 262 4.288 248 241 0,3 43,4 53 44							
Нагрев Ном. КВТ 73,5 (2) 88,6 (2) 104 (2) 124 (2) 146 (2) 160 (2) 176 (2) 156 (2)	1 (2) 205 (2 0 (1) 4,42 (1 ,19 5,05 0 (2) 5,42 (2 ,16 5,76 971 3,996 262 4.288 248 241 0,3 43,4 53 44							
EER 4,51 (1) 4,43 (1) 4,39 (1) 4,31 (1) 4,37 (1) 4,38 (1) 4,41 (1) 4,42 (1) 4,42 (1) 4,43 (1) 4,31 (1) 4,37 (1) 4,38 (1) 4,41 (1) 4,42 (1) 4,43 (1) 4,43 (1) 4,31 (1) 4,37 (1) 4,38 (1) 4,41 (1) 4,42 (1) 4,52 4,53 4,47 5,04 5,27 5,06 5 5 5 5,51 (2) 5,33 (2) 5,37 (2) 5,38 (2) 5,41 (2) 5,61 5 5,51 (2) 5,43 (2) 5,31 (2) 5,37 (2) 5,38 (2) 5,41 (2) 5,61 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,31 (2) 5,37 (2) 5,38 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 5,41 (2) 4,41 (1) 4,42 (1) 4,42 (1) 4,41 (1) 4,41 (1) 4,4	0 (1) 4,42 (1 ,19 5,05 0 (2) 5,42 (2 ,16 5,76 971 3.996 262 4.288 248 241 0,3 43,4 53 44							
ESEER	971 3.996 262 4.288 248 241 0,3 43,4 53 44							
СОР 5,51 (2) 5,43 (2) 5,39 (2) 5,31 (2) 5,38 (2) 5,41 (2) <td>971 3.996 262 4.288 48 241 0,3 43,4 53 44</td>	971 3.996 262 4.288 48 241 0,3 43,4 53 44							
IPLV 5,41 5,28 5,27 5,20 5,83 6,27 5,81 6 Корпус Цвет Оцинкованный и покрашенный стальной лист Размеры Блок Высота мм 1.821 2.103 Ширина мм 1.466 1.350 Глубина мм 3.298 4.116 Вес Блок Эксплуатационный вес кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Водяной Тип Одноходовой кожухотрубный Теплообменник - испаритель Объем воды л 193 183 172 271 263 256 3 Расход воды Ном. л/сек 15,9 18,8 21,9 25,7 30,5 33,6 37,3 4 Водяной теплообменник - кондение кменни к кменни	971 3.996 262 4.288 48 241 0,3 43,4 53 44							
Корпус Цвет Материал Слоновая кость_ Размеры Блок Высота мм 1.821 2.103 Ширина мм 1.466 1.350 1.350 Глубина мм 3.298 4.116 Вес Блок усплуатационный вес кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Водяной теплообменник испаритель Тип Одноходовой кожухотрубный Расход воды Ном. л 193 18,8 21,9 25,7 30,5 33,6 37,3 4 Расход воды Ном. Теплоо КиПа курининый материал 37 50 54 62 55 44 57 Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Теплообменник - конденсатор Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 <td< td=""><td>971 3.996 262 4.288 48 241 0,3 43,4 53 44</td></td<>	971 3.996 262 4.288 48 241 0,3 43,4 53 44							
Размеры Блок Высота ширина мм 1.821 2.103 Ширина мм 1.466 1.350 Глубина мм 3.298 4.116 Вес Блок Эксплуатационный вес Кг кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Водяной теплообменник-испаритель Тип Одноходовой кожухотрубный Одноходовой кожухотрубный Расход воды Ном. л/сек 15.9 18,8 21,9 25,7 30,5 33,6 37,3 4 Спад номинального давления воды Изоляционный материал КПа 37 50 54 62 55 44 57 Водяной теплообменник-конденсатор Тип Одноходовой кожухотрубный Одноходовой кожухотрубный Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад номинального давления воды КПа 26 28 30 26 25	262 4.288 248 241 0,3 43,4 53 44							
Размеры Блок Высота мм 1.821 2.103 Ширина мм 1.466 1.350 Блок кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Эксплуатационный вес кг 2.380 2.396 2.410 2.457 4.217 4.228 4.243 4 Водяной теплообменник-испаритель Расход воды Ном. л/сек 15.9 18.8 21.9 25.7 30.5 33.6 37.3 2 Водяной теплообменник-испаритель КПа 37 50 54 62 55 44 57 Водяной теплообменник-конденсатор Кила пробрем воды КПа 37 л/сек 19.5 23.1 27.0 31.7 18.8 19.1 23.0 2 Спад номинального давления воды КПа 26 28 30 26 25 27	262 4.288 248 241 0,3 43,4 53 44							
Вес Блок Эксплуатационный вес кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Водяной теплообменник - испаритель Тип Объем воды л 193 183 172 271 263 256 2 Расход воды номинального давления воды Поминального давления Теплоо бменни к 15,9 18,8 21,9 25,7 30,5 33,6 37,3 4 Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный к 37 50 54 62 55 44 57 Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Одноходовой кожухотрубный 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27	262 4.288 248 241 0,3 43,4 53 44							
Водяной теплообменник испаритель Тип Одноходовой кожухотрубный Объем воды Лисек 15,9 18,8 21,9 25,7 30,5 33,6 37,3 4 57 4 62 55 44 57 4 62 55 44 57 4 62 57 6 62 62 6 62 6 6 6 6 6 6 6 6 6 6 6 6 6	262 4.288 248 241 0,3 43,4 53 44							
Вес Блок кг 2.150 2.160 2.179 2.224 3.909 3.927 3.945 3 Водяной теплообменник-испаритель Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 15,9 18,8 21,9 25,7 30,5 33,6 37,3 4 Спад номинального давления воды Изоляционный материал КПа 37 50 54 62 55 44 57 Водяной теплообменник-конденсатор Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27	262 4.288 248 241 0,3 43,4 53 44							
Водяной теплообменник - испаритель	262 4.288 248 241 0,3 43,4 53 44							
Водяной теплообменник - испаритель Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 15,9 18,8 21,9 25,7 30,5 33,6 37,3 4 Спад номинального давления воды Охлаж бменни к Теплоо бменни к кПа 37 50 54 62 55 44 57 Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27	248 241 0,3 43,4 53 44							
теплообменник - испаритель	0,3 43,4 53 44							
испаритель Расход воды Ном. Л/сек 15,9 18,8 21,9 25,7 30,5 33,6 37,3 24	0,3 43,4 53 44							
Расход воды Пом. Лисек 13,9 18,6 21,9 23,7 30,3 33,6 37,3 24 1	53 44							
номинального давления воды дение бменни к закрытая пора Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27								
давления воды к Изоляционный материал Закрытая пора Водяной теплообменник - конденсатор Спад номинального давления воды КПа 26 28 30 26 25 27								
Изоляционный материал Закрытая пора Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27								
Водяной теплообменник - конденсатор Тип Одноходовой кожухотрубный Спад номинального давления воды Охлаждение кПа 26 28 30 26 25 27								
теплообменник - конденсатор Расход воды Ном. л/сек 19,5 23,1 27,0 31,7 18,8 19,1 23,0 2 Спад Охлаждение кПа 26 28 30 26 25 27 номинального давления воды	Одноходовой кожухотрубный							
конденсатор Спад Охлаждение кПа 26 28 30 26 25 27 номинального давления воды	3.2 26.8							
номинального давления воды	28 26							
Спад Охлаждение кПа - 25 26 27								
номинального давления воды 2	26							
Модель Количество 1 2								
Уровень звуковой Охлаждение Ном. дБ(A) 94 97 98 мощности	99 100							
Уровень звукового давления Охлаждение Ном. дБ(A) 75 76 78 79	80 81							
Компрессор Туре Одновинтовой компрессор								
Количество_ 1 2								
Масло Объем заправки л 16 32								
Рабочий диапазон Испаритель Охлаж Мин. °CDB -8								
дение Макс. °CDB								
Конденсатор Охлаж Мин. °CDB 20								
дение Макс. °CDB 55								
Хладагент Тип R-134a								
Контуры Количество 1 2								
21								
Подсоединения труб Evaporator water inlet/outlet (OD) 168,3mm								
Вход/выход воды конденсатора (НД) 5"								

2-1 Техниче	еские параметры		EWWD34 0I-SS	EWWD40 0I-SS	EWWD46 0I-SS	EWWD55 0I-SS	EWWD65 0I-SS	EWWD70 0I-SS	EWWD80 0I-SS	EWWD85 0I-SS	EWWD90 0I-SS			
Защитные	Оборудование	01			Высоко	е давлени	е нагнетани	я (реле да	вления)	•				
устройства		02			Высокое	е давление	нагнетани	я (датчик да	авления)					
		03			Низкое	давление в	зсасывания	і (датчик да	авления)					
		04				Защита дв	вигателя ко	мпрессора						
		05		Высокая температура нагнетания										
		06		Низкое давление масла										
		07		Соотношение для низкого давления										
		08		Сильное падение давления масла в фильтре										
		09				Ф	азоиндикат	ор						
		10		Кнопка аварийного останова										
		11		Контроллер защиты от замерзания воды										

2-2 Технически	е параметры				EWWD95 0I-SS	EWWDC1 0I-SS	EWWDC1 2I-SS	EWWDC1 3I-SS	EWWDC1 4I-SS	EWWDC1 5I-SS	EWWDC1 6I-SS	EWWDC1 7I-SS	EWWDC1 8I-SS
Холодопроизводите льность	Ном.			кВт	982 (1)	1.024 (1)	1.151 (1)	1.200 (1)	1.270 (1)	1.341 (1)	1.395 (1)	1.449 (1)	1.503 (1)
Теплопроизводитель ность	Ном.			кВт	1.207 (2)	1.267 (2)	1.412 (2)	1.475 (2)	1.560 (2)	1.648 (2)	1.721 (2)	1.793 (2)	1.866 (2)
Регулирование	Способ			I			1	l	і Бесступенч	l.		l	I .
производительности	Минимальная мощ	НОСТЬ		%	1	3				8			
Входная мощность	Охлаждение	Ном.		кВт	224,7 (1)	242,6 (1)	261,6 (1)	275,1 (1)	289,8 (1)	307,0 (1)	325,5 (1)	344,3 (1)	363 (1)
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Нагрев	Ном.		кВт	225 (2)	243 (2)	262 (2)	275 (2)	290 (2)	307 (2)	325 (2)	344 (2)	363 (2)
EER	1 - 1 -	1		I	4,37 (1)	4,22 (1)	4,40 (1)	4,36 (1)	4,38 (1)	4,37 (1)	4,29 (1)	4,21 (1)	4,14 (1)
ESEER					5,15	5,00	5.05	5,09	5,13	5.06	5.05	4,96	4,79
COP					5,37 (2)	5,22 (2)	5,40 (2)	5,36 (2)	5,38 (2)	5,37 (2)	5,29 (2)	5,21 (2)	5,14 (2)
IPLV					5,90	5.64	5,71	5,74	5,76		74	5,65	5,45
Корпус	Цвет				,	-,	-,		оновая кос	,		-,	-,
, -	Материал				Оцинкованный и покрашенный стальной лист								
Размеры	Блок	Высота		мм	2 .	103	2.323						
T domops	Briok	Ширина	1	MM		350		2.130					
		Глубина		MM		116				4.439			
Bec	Блок	1319 071110	•	кг	4.080	4.092	6.079	6.097	6.136	6.174	6.192	6.210	6.228
200	Эксплуатационный	BEC.		кг	4.369	4.386	6.628	6.646	6.670	6.699	6.717	6.735	6.761
Водяной	Тип	ВСО		IN	4.000	4.000	0.020		овой кожух		0.717	0.700	0.701
теплообменник -	Объем воды			л	2	33	472	504	489	Груспын	4	72	
испаритель	Расход воды	Ном.		л/сек	47.0	49.0	55,1	57,4	60.8	64,2	66.8	69.4	72,0
	Спад номинального	Охлаж Теплоо дение бменни к		кПа	54	39	52	55	46	57	62	66	71
	давления воды	201405	K					2	I акрытая по	<u> </u>			
Водяной	Изоляционный мат	ериал							акрытая по овой кожух				
теплообменник -	Расход воды	Ном.		л/сек	27,2	30,5	20	<u>одноход</u> 2,6	22,9	Прусный	26,4		29,9
конденсатор	Спад номинального давления воды	Охлажд	ение	кПа	22	23		24	25		24		23
	Спад номинального давления воды 2	Охлажд	ение	кПа	2	3	2	24	23	2	24	2	3
	Модель	Количес	СТВО			2				3			
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)		100		1	01		1	03	
Уровень звукового давления	Охлаждение	Ном.		дБ(А)	8	11	80	8	31		8	33	
Компрессор	Туре	•		•			•	Однови	нтовой ком	прессор			
	Количество_					2				3			
	Масло	Объем :	заправки	Л	3	2				48			
Рабочий диапазон	Испаритель	Охлаж	Мин.	°CDB			•		-8				
		дение	Макс.	°CDB	15								
	Конденсатор	Охлаж дение	Мин. Макс.	°CDB	20 55								
	W	1	mano.	000	1								

2-2 Технически	е параметры			EWWD95 0I-SS	EWWDC1 0I-SS	EWWDC1 2I-SS	EWWDC1 3I-SS	EWWDC1 4I-SS	EWWDC1 5I-SS	EWWDC1 6I-SS	EWWDC1 7I-SS	EWWDC1 8I-SS			
Хладагент	Тип							R-134a	•	•	•				
	Контуры	Количество			2				3						
Контур охлаждения	Заправка		КГ	10	00	156	155	154	153	152	151	150			
Подсоединения труб	Evaporator water in	let/outlet (OD)		168,	168,3mm 219,1										
	Вход/выход воды і	онденсатора (НД)		5"											
Защитные	Оборудование	01				Высоко	е давление	е нагнетани	ия (реле да	вления)					
устройства	<u></u>					Высокое	е давление	нагнетани	я (датчик да	авления)					
		03	Низкое давление всасывания (датчик давления)												
		04		Защита двигателя компрессора											
		05		Высокая температура нагнетания											
		06		Низкое давление масла											
		07		Соотношение для низкого давления											
		08		Сильное падение давления масла в фильтре											
		08				Фазоиндикатор									
		10		Кнопка аварийного останова											
		11		Контроллер защиты от замерзания воды											

2-3 Электрич	еские параметры	ol		EWWD34 0I-SS	EWWD40 0I-SS	EWWD46 0I-SS	EWWD55 0I-SS	EWWD65 0I-SS	EWWD70 0I-SS	EWWD80 0I-SS	EWWD85 0I-SS	EWWD90 0I-SS			
Компрессор	Фаза				•	•		3	•	•	•				
	Напряжение		٧					400							
	Диапазон	Мин.	%					-10							
	напряжений	Макс.	%	10											
	Максимальный ра	абочий ток	Α	204 233 271 299 204 233							271				
	Способ запуска				•	•	Тройников	ое соедине	ние - Delta	•					
Компрессор 2	Максимальный ра	абочий ток	Α			-		204	23	33	27	71			
Электропитание	Фаза				3~										
	Частота		Гц	50											
	Напряжение	Напряжение			400										
	Диапазон	Мин.	%	-10											
	напряжений	Макс.	%					10							
Блок	Максимальный ст	артовый ток	Α	330		464		493	627	650	68	81			
	Номинальный рабочий ток	Номинальный Охлаждение		119	145	166	196	236	262	288	310	329			
	Максимальный ра	абочий ток	Α	204	233	271	299	407	436	465	504	542			
	Макс. ток блока д проводов	Макс. ток блока для размеров			256	298	328	448	480	512	554	597			

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки.
- (2) Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation
- (3) Уровни шума измеряются при темп. воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки; стандарт: ISO3744
- (4) Допуск напряжения \pm 10%. Разбаланс напряжений между фазами должен быть в пределах \pm 3%.
- (5) Максимальный стартовый ток: стартовый ток самого большого компрессора + ток другого компрессора при 75 % максимальной нагрузки
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; компрессоры.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: ток полной нагрузки компрессора х 1,1

2-4 Электрич	еские параметры	ol .		EWWD95 0I-SS	EWWDC1 0I-SS	EWWDC1 2I-SS	EWWDC1 3I-SS	EWWDC1 4I-SS	EWWDC1 5I-SS	EWWDC1 6I-SS	EWWDC1 7I-SS	EWWDC1 8I-SS	
Компрессор	Фаза							3			•		
	Напряжение		٧					400					
	Диапазон	Мин.	%					-10					
	напряжений	Макс.	%		10								
	Максимальный ра	абочий ток	271	299	233 271						299		
	Способ запуска				Тройниковое соединение - Delta								
Компрессор 2	Максимальный ра	абочий ток	Α	299 233 271 299									
Электропитание	Фаза			3~									
	Частота		50										
	Напряжение	٧	400										
	Диапазон	Мин.	%	-10									
	напряжений	Макс.	%					10					
Блок	Максимальный ст	артовый ток	Α	70	703		836 867		98	920	94	42	
	Номинальный Охлаждение рабочий ток		A	355	382	431	450	470	493	520	547	574	
	Максимальный рабочий ток А			570	597	698	736	775	814	841	868	896	
	Макс. ток блока д проводов	A	627	657	768	810	853	895	925	955	985		

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки.
- (2) Heating capacity, unit power input and COP are based on the following conditions: evaporator 15/10°C; condensor 40/45°C, unit at full load operation
- (3) Уровни шума измеряются при темп. воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки; стандарт: ISO3744
- (4) Допуск напряжения ± 10%. Разбаланс напряжений между фазами должен быть в пределах ± 3%.
- (5) Максимальный стартовый ток: стартовый ток самого большого компрессора + ток другого компрессора при 75 % максимальной нагрузки
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; компрессоры.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: ток полной нагрузки компрессора х 1,1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Функции и преимущества

Водоохлаждаемые охладители EWWD~I- с 1, 2 или 3 одновинтовыми компрессорами изготовляются в соответствии с требованиями консультантов и конечных пользователей. Конструкция блоков обеспечивает минимальные расходы на электроэнергию при максимальной охлаждающей способности.

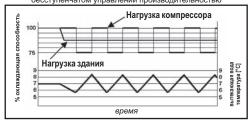
Опыт компании Daikin в проектировании охладителей в сочетании с отличными характеристиками обеспечивают уникальность охладителя EWWD~I- во всей отрасли.

Периодическая бесшумная работа

Конструкция компрессора с одним винтом и двумя роторами обеспечивает постоянный поток газа. Режим работы компрессора полностью устраняет газовые пульсации. Впрыск масла также в значительной степени снижает шум при работе механических узлов.

Сдвоенные камеры выпуска газа в компрессоре действуют в качестве аттенюаторов на основании деструктивной интерференции гармонических колебаний, благодаря которой результирующее колебание постоянно поддерживается на нулевом уровне. Работа компрессора с очень низким уровнем шума позволяет использовать EWWD~I- практически для любых целей.

Снижение вибрации охладителя EWWD~I- обеспечивает уникально тихую работу оборудования при устранении


передачи шумов через конструкцию и трубопроводы для охлаждающей воды.

Бесступенчатое регулирование производительности

Управление охлаждающей способностью осуществляется бесступенчато с помощью одного винтового компрессора, которым управляет микропроцессорная система. В каждом блоке имеется бесступенчатое управление производительностью в диапазоне от 100% до 25% (блоки с одним компрессором), до 12,5% (блоки с двумя компрессорами) или до 8,3% (блоки с тремя компрессорами). Эта регулировка позволяет привести производительность компрессора в соответствие с нагрузкой по охлаждению в здании без колебаний температуры воды на выходе испарителя. Этих колебаний температуры охлажденной воды можно избежать только при плавной регулировке.

Колебание ELWT (температура воды на выходе испарителя) при

Изменение ELWT (температура воды на выходе испарителя) в

При пошаговой регулировке нагрузки компрессора производительность зависимости от выбра компрессора будет слишком высокой или слишком низкой по сравнению с тепловой нагрузкой здания. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Блоки с бесступенчатой регулировкой обеспечивают преимущества по сравнению с блоками со ступенчатой регулировкой. Возможность постоянной регулировки в зависимости от энергетических потребностей системы и обеспечения постоянства температуры воды на выходе без отклонения от установленного значения - вот два преимущества, которые позволят вам понять, почему только блоки с бесступенчатой регулировкой могут оптимизировать условия работы систем.

Нормативные требования – Безопасность и соответствие положениям законодательства/директив

Все водоохладаемые блоки спроектированы и изготовлены в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI - EN ISO 9001:2004

FTA 1-2 Rev 00 1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Сертификации

Все оборудование имеет обозначение СЕ, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии с требованиями, действующими в странах вне ЕС (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Варианты исполнения

EWWD~I- предлагается в двух вариантах с различной эффективностью:

S: Стандартная эффективность

18 типоразмеров в диапазоне от 333 до 1510 кВт (производительность по охлаждению) с EER до 4,66 и ESEER до 5,75.

Х: Высокая производительность

11 типоразмеров в диапазоне от 362 до 1134 кВт (производительность по охлаждению) с EER до 5,10 и ESEER до 6,31.

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемая мощность компрессора, всех устройств управления и защитных систем.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воды на входе конденсатора.

$$\mathsf{ESEER} = \mathsf{A} \, \mathsf{x} \, \mathsf{EER}_{100\%} + \mathsf{B} \, \mathsf{x} \, \mathsf{EER}_{75\%} + \mathsf{C} \, \mathsf{x} \, \mathsf{EER}_{50\%} + \mathsf{D} \, \mathsf{x} \, \mathsf{EER}_{25\%}$$

	А	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воды на входе конденсатора (°C)	30	26	22	18

Конфигурации с различным уровнем шума

EWWD~I- предлагается в варианте со стандартным уровнем шума:

S: Стандартный уровень шума

4 - 1 Общие характеристики

Общие характеристики

Корпус и конструктивные особенности

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет Ivory White (Слоновая кость) (код Munsell 5Y7.5/1) (±RAL7044). На основной раме имеются крюки для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Винтовые компрессоры

Одновинтовой компрессор имеет хорошо уравновешенный механизм, исключающий нагрузку на ротор как в радиальном, так и в осевом направлении. Конструкция одновинтового компрессора обеспечивает его работу практически без нагрузки, благодаря чему проектный срок службы основных подшипников в 3-4 раза превышает аналогичный показатель для двухвинтовых компрессоров. Кроме того, устраняется необходимость в применении дорогостоящих и сложных систем выравнивания осевых нагрузок. Два противоположных ротора создают сбалансированные циклы компрессии. Сжатие одновременно создается на нижней и верхней частях винтового ротора, что устраняет радиальные нагрузки. Кроме того, оба конца винтового ротора подвергаются действию только давления всасывания, благодаря чему исключаются осевые нагрузки и значительные импульсные нагрузки, присущие двухвинтовым компрессорам.

Впрыскивание масла используется в этих компрессорах для достижения EER при высоком давлении конденсации. Блоки EWWD~I- оснащены высокоэффективными маслоотделителями, которые обеспечивают максимальное извлечение масла. Компрессоры имеют бесступенчатую регулировку производительности в диапазоне до 25% полной мощности. Данная регулировка осуществляется средствами, которые контролирует микропроцессор.

Стандартный пуск по схеме "звезда-треугольник"; также есть опция плавного пуска.

Соответствующий экологическим требованиям хладагент R-134a

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления), т.е. низкое TEWI (Общее эквивалентное влияние нагревания).

Испаритель

Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Указанные характеристики также повышают эффективность работы теплообменника, а также системы в целом.

Внешняя оболочка покрыта 10 мм изоляционным материалом с закрытыми порами. Каждый испаритель имеет по 1 контуру для каждого компрессора и изготавливается в соответствии с PED. Водоотводные патрубки испарителя поставляются с комплектом быстросъемных соединений Victaulic (стандарт)

Конденсаторы

Блоки оснащены кожухотрубными конденсаторами непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Блок имеет независимые конденсаторы: по 1 на контур. Изготовление соответствует РЕD. Конденсаторы укомплектованы запорным вентилем для жидкости и подпружиненным предохранительным клапаном. В блоках со стандартной эффективностью конденсаторы имеют однопроходную конфигурацию в качестве стандартного варианта, 2-проходная конфигурация предлагается в качестве опции; в блоках с высокой эффективностью конденсаторы имеют 2-проходную конфигурацию в качестве стандартного варианта, 4-проходная конфигурация предлагается в качестве опции. Для 2-4-проходных конденсаторов опция рекуперации тепла не предлагается.

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным. Электронные расширительные клапаны имеют уникальные характеристики: малая инерционность реагирования, высокочувствительность, функция принудительного отключения для предотвращения использования дополнительного электромагнитного клапана, обеспечение высоко линейного потока, плавная регулировка массового расхода без перегрузки контура хладагента, а также корпус из нержавеющей стали, устойчивый к коррозии.

ЕЕХV обычно работают с меньшим значением ΔР между сторонами высокого и низкого давления, чем термостатный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

GNC_1a-2-3-4b-5a_Rev.03_1a

4 - 1 Общие характеристики

Контур хладагента

Каждый блок имеет независимые контуры хладагента, каждый из которых включает:

- Одновинтовой компрессор с внешним маслоотделителем циклонного типа
- (Общий) Испаритель
- Конденсатор
- Датчик давления масла
- Реле высокого давления
- Датчик высокого давления
- Датчик низкого давления
- Индикатор влаги
- Высокоэффективный маслоотделитель
- Фильтр-осушитель со сменной внутренней частью
- Электронный расширительный клапан

Панель управления электрическими системами

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу IP54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Силовая секция

Относящаяся к электропитанию часть панели включает предохранители компрессоров и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается по умолчанию; используется для изменения уставок агрегата и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды и хладагента, программируемые значения, установки. Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров и EEXV, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы.

MicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от реле высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

Система управления - основные характеристики

- Бесступенчатое управление производительностью компрессора.
- Охладитель способен работать в состоянии частичного отказа.
- Работа на полную мощность при условии:
 - высокой температуры окружающей среды
 - высокой тепловой нагрузки
 - высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя.
- Вывод на дисплей значений температуры и давления конденсации-испарения, всасывания и выпуска, а также перегрева по каждому контуру.
- Регулировка температуры воды на выходе испарителя. Допуск по температуре = 0.1°С.
- Счетчики часов работы компрессора и насосов испарителя.
- Отображение состояния защитных устройств.
- Количество пусков и часов работы компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной).
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Запуск при высокой температуре воды в испарителе.

GNC_1a-2-3-4b-5a_Rev.03_2

4 - 1 Общие характеристики

- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре).
- Сброс установки значения (опция).
- Обновление приложения и системы с использованием обычных карт памяти SD.
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров.
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова.

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления).
- Высокое давление (датчик).
- Низкое давление (датчик).
- Высокая температура на выходе компрессора.
- Высокая температура обмоток двигателя.
- Фазоиндикатор.
- Низкое отношение давлений.
- Большое падение давления масла
- Низкое давление масла.
- Отсутствие изменения давления при пуске.

Безопасность системы

- Фазоиндикатор.
- Блокировка при низкой температуре окружающего воздуха.
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики.

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков.
- Клавиатура с 3 клавишами.
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением.
- Сервисный отчет содержит данные часов работы и общего состояния.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)

GNC_1a-2-3-4b-5a_Rev.03_3

4 - 1 Общие характеристики

Порядок работы охладителей

Контроллер MicroTech III обеспечивает возможность использования простых средств построения последовательностей с помощью цифровой или последовательной панели.

Цифровая панель программирования

Данная панель по сути представляет собой средство добавления этапов, способное включать/выключать до 11 блоков (охладителей или тепловых насосов, которые работают в одном режиме охлаждения или нагрева) в зависимости от выбранной точки установки; блоки подключаются к панели стандартными кабелями; необходимость в последовательной плате отсутствует.

Последовательная панель программирования

Данная панель определяет последовательность работы набора охладителей путем включения/выключения блоков (до 7 охладителей) с учетом их часов работы и необходимой нагрузки для оптимизации количества часов работы блоков для каждого состояния; для соединения блоков с панелью необходимы последовательные платы, экранированные кабели и (при наличии) BMS.

Стандартные принадлежности (входят в комплект базового блока)

Гидравлическое соединение испарителя Victaulic Kit - с прокладкой для простого и быстрого подключения трубок подачи воды.

Проектное рабочее давление воды на стороне испарителя составляет 10 бар

Проектное рабочее давление на стороне воды конденсатора составляет 16 бар

Конденсатор является 1-проходным (DT 4-8°C) в блоках со стандартной эффективностью, 2-проходным (DT 4-8°C) в блоках с высокой эффективностью

Пусковое устройство Y-D - Стандартная пусковая схема - "звезда"-"треугольник".

Две установки - Две установки температуры воды на выходе.

Фазоиндикатор - Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз.

Манометры на стороне высокого давления

Счетчик часов работы - Цифровой счетчик часов работы компрессоров.

Контактор аварийных сигналов - Контактор для полдачи аварийных сигналов.

Сброс установок, ограничение электропотребления и обработка аварийных сигналов от внешнего устройства

– Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); температура снаружи; Δt температуры воды в испарителе. Более того, устройство позволяет пользователю ограничить нагрузку агрегата сигналом 4-20 мА или при помощи сетевой системы. Микропроцессор может получать аварийные сигналы с внешнего устройства (насос, и т.п...- пользователь определяет должен ли этот сигнал остановить работу агрегата или нет).

Электронный расширительный клапан

Опции (на заказ)

100%-рекуперация теплоты (предлагается для EWWD~I-SS, 1- или 2-проходного конденсатора) - Происходит с помощью набора труб расположенных в одном корпусе с водными конденсаторами. Головки теплообменника имеют два патрубка для входящей/выходящей воды, служащей для рекуперации тепла, и 2 отдельных патрубка для воды конденсатора.

Частичная рекуперация тепла (доступна для EWWD~I-SS и -XS, 1-или 2-проходный конденсатор) - В верхней части конденсатора расположены трубки охлаждения, через которые происходит рекуперация примерно 10% отходящего тепла (в основном перегретого выходящего газа). Эти конденсаторы с трубками для частичной рекуперации тепла имеют верхушки со специальными соединителями, которые могут быть подключены к трубам для горячей воды.

Морской вариант - Позволяет агрегату работать при температуре жидкости на выходе до -8°С (необходим антифриз).

Вариант теплового насоса

Двойной набор фланцев для конденсатора

20 мм изоляция испарителя/конденсатора

Набор соединений Victaulic для конденсатора

Теплообменники Cu-Ni 90-10 - Для работы с морской водой теплообменники снабжены Cu-Ni трубками и специальной защитой внутри торцевых крышек.

Конденсатор является 2-проходным (DT 9-15°C) в блоках EWWD~I-SS, 4-проходным (DT 9-15°C) в блоках EWWD~I-XS

GNC_1a-2-3-4b-5a_Rev.03_4b

4 - 1 Общие характеристики

Запорный клапан всасывающей линии - Запорный клапан всасывающей линии установлен на всасывающее отверстие компрессора для облегчения техобслуживания.

Запорный клапан напорной линии - Запорный клапан напорной линии устанавливается на напорное отверстие компрессора для облегчения проведения техобслуживания.

Система со звукоизоляцией - Изготовленный из листового металла, снабженный изнутри изоляцией корпус является комплексным (расположен вокруг всего охладителя, а не только вокруг компрессоров). Он обеспечивает эффективное снижение шума.

Сдвоенный клапан сброса давления на испарителе

Плавный пуск - Электронное пусковое устройство снижает механическую нагрузку при пуске компрессора

Реле термоперегрузки компрессора - Устройства по обеспечению защиты от перегрузки мотора компрессора в дополнение к обычной защите электропроводки.

Слишком высокое/низкое напряжение - Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

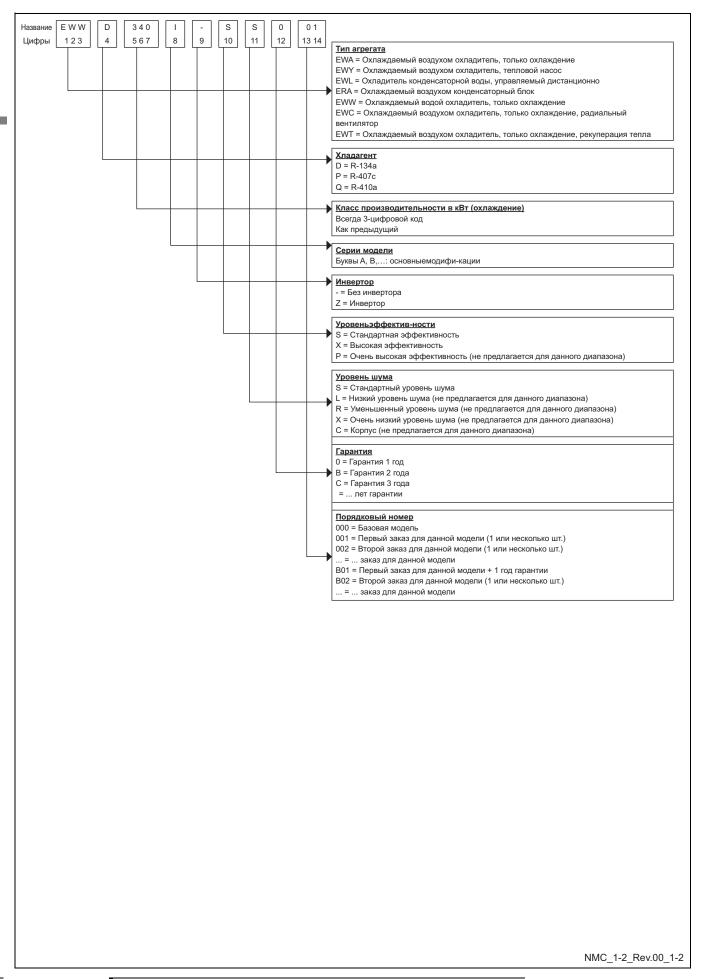
Счетчик потребляемой энергии - Это устройство определяет количество энергии, потребляемое охладителем в течение его срока службы. Оно устанавливается внутри блока управления на DIN -стойке и отображает на цифровом дисплее: межфазное напряжение, фазный и средний ток, активную и реактивную мощность, эффективную энергию, частоту.

Коррекция коэффициента мощности конденсатора - Установлена на электронной панели управления и соответствует заводским нормам. (Daikin рекомендует максимум 0,9)

Переключатель потока испарителя/конденсатора для водопроводов.

Резиновые антивибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Испытания в присутствии заказчика- Каждый аппарат испытывается на испытательном стенде перед отправкой клиенту. По запросу могут проводиться повторные испытания в присутствии клиента в соответствии с процедурами, указанными в форме запроса испытания. (Не предлагается для аппаратов с гликолевой смесью).


Набор контейнеров

Акустические испытания

GNC_1a-2-3-4b-5a_Rev.03_5

5 Обозначения

5 - 1 Обозначения

6 - 1 Условные обозначения таблицы производительностей

The Control	English - English - αγγλικά - Inglés	Deutsch	Ελληνικά	Español
the (A15°C) Twon't Kenterprise-Austritisensseriennpendur (A1 = 5K) To Confidence (A15°C) Tree (A15°C) Confidence (A15°C) Confidence (A15°C) Confidence (A15°C) Tree (A15°C) Confidence (Ta: Condenser inlet air temperature	Ta: Verflüssiger-Einlasslufttemperatur	Τα: Θερμοκρασία αέρα εισαγωγής συμπυκνωτή	Ta: temperatura del aire de entrada al condensador
cur Kindestung que Fluideclumenstonn an Vederangler que Fluideclumen	Twout: Evaporator leaving water temperature (Δt5°C)	Twout: Verdampfer-Austrittswassertemperatur (Δt = 5 K)	Τwout: Θερμοκρασία νερού εξόδου στον εξατμιστή (Δt 5°C)	Twout: temperatura de agua de salida del evaporador (∆t 5 °C)
of Pulciducinatestions of day. Pulciducinatestions of the Pulciducinatestion of the Pulciducinatestion of the Pulciducinatestion of the Pulciducinatestic of the Pulciducin	CC: Cooling capacity	CC: Kühlleistung	CC: Απόδοση ψύξης	CC: capacidad de refrigeración
Control of the Control of Contr	qw: Fluid flow rate	qw: Fluidvolumenstrom	φw: Ταχύτητα ροής υγρού	qw: caudal de líquido
Quee Culture	dpw: Fluid pressure drop	dpw: Fluiddruckabfall	dpw: Πτώση πίεσης υγρού	dpw: caída de presión de líquido
Quere Fluidoriumentor an inferiantified and weldumplier Quere Fluidoriumentor and inferiantified Quere Fluidoriumentor and inferiantified Quere Fluidoriumentor and inferiantified Quere Fluidoriumentor and Quere Fluidoriumentor and Quere Fluidoriumentor and Quere Fluidoriumentor and Quere Fluidoriumentor Quere Fluidoriume	Size	Größe	Μέγεθος	Tamaño
Commercial Commercia	qwe: Fluid flow rate at evaporator	qwe: Fluidvolumenstrom am Verdampfer	qwe: Ταχύτητα ροής υγρού στον εξατμιστή	qwe: caudal de líquido en el evaporador
Twe: Verdinstype-Austriksvasserlempentur (A = 5 K) Twe: Ceptoposorio spot épôco um on jumovumi (A 5°C)	dpwe. Fluid pressure drop at evaporator	dpwe: Fluiddruckabfall am Verdampfer	dpwe: Πτώση πίεσης υγρού στον εξατμιστή	dpwe: caída de presión de líquido en el evaporador
Twe. Vertampfier-Austritissussearlemperatur (Ai = 5 K) Twe. Vertampfier-Austritissussearlemperatur (Ai = 5 K) Twe. Vertampfier-Austritissussearlemperatur (Ai = 5 K) The Hebbelsung am Verflässiger The Hebbelsung am The Hebbelsung am The	Twc: Condenser leaving water temperature (Δt 5°C)	Twc: Verflüssiger-Austrittswassertemperatur (Δt = 5 K)	Τwc: Θερμοκρασία νερού εξόδου στο συμπυκνωτή (Δt 5°C)	Twc: temperatura de agua de salida del condensador (Δt 5 °C)
HC Heickeitung am Verflässiger querie (ALS*C) Français Gr. C. Passance frigoritque dyn. C. Chule de pression du liquides au niveau du condenseur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Chule de pression du liquide au niveau du condenseur dync. Enquerienture paragrapa sociale au niveau du condenseur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture de leau a la sonde de l'exponeteur dync. Enquerienture dyna en avoige sonde en un'exa du condenseur dync. Enquerienture pastneteure pastneteure Procondi dync. Enquerienture pastneteure pastneteure dync. Enquerienture pastneteure pastneteure dync. Enquerienture pastneteure pastneteure dync. Enquerienture pastneteure pastneteure dync. Enquerienture pastneteure pastneteure pastneteu	Twe: Evaporator leaving water temperature (Δt 5°C)	Twe: Verdampfer-Austrittswassertemperatur (Δt = 5 K)	Τwe: Θερμοκρασία νερού εξόδου στον εξατμιστή (Δt 5°C)	Twe: temperatura de agua de salida del evaporador (Δt 5 °C)
qwc. Toycimra porg, vpou on outminkaning qwc. Pluidhucharial am Verdampler qwc. Toycimra porg, vpou on outminkaning qwc. Toycimra grays and an Verdambler of Fair gain an Verdambler of Fair gain and the Color of	HC: Heat capacity at condenser	HC: Heizleistung am Verflüssiger	ΗС: Θερμαντική ικανότητα στο συμπυκνωτή	HC: capacidad de calefacción en el condensador
Emergias The Empty and the Components The Empty and the Empty a	qwc: Fluid flow rate at condenser	qwc: Fluidvolumenstrom am Verdampfer	qwc: Ταχύπτα ροής υγρού στο συμπυκνωτή	qwc: caudal de líquido en el condensador
Français Tar. Français Twout. Température de faua à la sortie de l'évaporateur (ALS°C) Two. Chute de pression du fiquide au riveau de fevaporateur (ALS°C) Two. Chute de pression du fiquide au riveau de fevaporateur (ALS°C) Two. Chute de pression du fiquide au riveau de fevaporateur (ALS°C) Two. Chute de pression du fiquide au riveau de revaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de feau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur de fevaporateur (ALS°C) Two. Température de ferau à la sortie de fevaporateur de fevapora	dpwc: Fluid pressure drop at condenser	dpwc: Fluiddruckabfall am Verflüssiger	dpwc: Πτώση πίεσης υγρού στο συμπυκνωτή	dpwc: caída de presión de líquido en el condensador
Françaire de l'activité de l'activité de l'activité de l'activité de pression du fondensalure de l'activité d'activité de pression du fiquide au niveau de l'évaporaleur (ALS*C) Twu: l'ampérature de leau à la sorte de l'évaporaleur (ALS*C) CC. Capacità di raffressamento d'apv. Chute de pression du fiquide au niveau de l'évaporaleur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de l'évaporaleur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de l'évaporaleur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de l'évaporaleur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de condensaur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de condensaur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau de condensaur (ALS*C) Twu: l'ampérature de l'activité de pression du fiquide au niveau du condensaur (ALS*C) Twu: l'ampérature de pression du fiquide au niveau du condensaur (ALS*C) Twu: l'ampérature de pression du fiquide au niveau du condensaur d'apv.: Perdit di carico del fuido al condensatore d'apve: Chute de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression du fiquide au niveau du condensaur d'apv.: Perdit de pression d'ap		9		
ature (ALS*C) Two. Température de l'ard admission du condenseur (ALS*C) Trout Emperature actina in lorgesso nel condensatione que condensa	English - Anglais - Inglese - Engels	Français	Italiano	Nederlands
ature (A15°C) Twout: Température de feau à la sortie de l'évaporateur (A15°C) Twout: Température de feau à la sortie de l'évaporateur d'evaporateur d'evapor	Ta: Condenser inlet air temperature	Ta : Température de l'air d'admission du condenseur	Ta: Temperatura aria in ingresso nel condensatore	Ta: Luchtinlaattemperatuur condensor
(A.5°C) The de pression du liquide qw.: Debt du liquide qw.: Dicture de pression du liquide qw.: Dicture de pression du liquide qw.: Dicture de pression du liquide au niveau de l'évaporateur qwe: Direction de pression du liquide au niveau du condenseur qwe: Direction de pression du liquide au niveau du condenseur qwe: Portata fluido all'evaporatore qwe: Dipperature de le au la sortie de l'évaporateur (14.5°C) Twe: Temperature acquis in uscita dall'evaporatore qwe: Departite de pression du liquide au niveau du condenseur qwe: Capacité calorifiue au niveau du condenseur qwe: Capaci	Twout: Evaporator leaving water temperature (Δt5°C)	Twout: Température de l'eau à la sortie de l'évaporateur (At 5°C)	Twout: Temperatura acqua in uscita dall'evaporatore ($\Delta t5^{\circ}C$)	Twout: Wateruittredetemperatuur verdamper ($\Delta t5^{\circ}C$)
(Δ15°C) Two: There de pression du liquide qwr. Portata fluido (Δ15°C) Two: Température de l'eau à la sortie du condenseur qwe. Portata fluido all'evaporatione Lire (Δ15°C) Two: Température de l'eau à la sortie du condenseur (Δ15°C) Two: Température de l'eau à la sortie du condenseur (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie de l'évaporatieur (Δ15°C) Two: Température de l'eau à la sortie evurgeurence (Δ15°C) Lire (Δ15°C) Two: Température de l'eau à la sortie evurgeurence (Δ15°C) Two: Température de l'eau à l'eau inveau du condenseur Procoxin Transmepanypa eoqquya ea soque na exoque wrangencene Que Copocra norosa swqxocrn a sonque wrangencene (Δ15°C) Lire (Δ15°C) Two: Temmépanypa eoqque na exoque wrangencene (Δ15°C) Two: Temmépanypa eoqque na exoque wrangencene (Δ15°C) Two: Temmépanypa eoqque na exoque wrangencene (Δ15°C) Two: Tem	CC: Cooling capacity	CC: Puissance frigorifique	CC: Capacità di raffrescamento	CC: Koelcapaciteit
dow : Chute de pression du liquide au niveau de l'évaporaiteur que: Càtic de l'évaporaiteur (41,5°C) Twe: Température de l'évaporaiteur (41,5°C) Twe: Températ	qw: Fluid flow rate	qw: Débit du liquide	qw: Portata fluido	qw: Vloeistofdebiet
Dimensione qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Chule de pression du liquide au niveau de l'évaporateur qwe: Chule de pression du liquide au niveau du condenseur qwe: Debit du liquide au niveau du condenseur qwe: Chapacité taluido al condensatore qwe: Chapacité taluido al niveau du condenseur qwe: Chapacité taluido al niveau du condenseur qwe: Chapacité taluido al niveau du condenseur qwe: Deptat du liquide au niveau du condenseur qwe: Chapacité taluido al condensatore qwe: Chapacité taluido al condensatore qwe: Chapacité taluido al niveau du condenseur qwe: Chapacité taluido al niveau du condenseur qwe: Chapacité taluido al niveau du condenseur qwe: Chapacité taluido au niveau du condenseur qwe: Chapacité taluido au niveau du condenseur qwe: Chapacité taluido au niveau du condenseur qwe: Chapacité taluido al condensatore qwe: Chapacité taluido al condenseure qwe: Chapacité taluido au niveau du condenseure qwe: Chapacité taluido al niveau du condenseure qwe: Chapacité taluido al niveau du condenseure qwe: Chapacité taluido au niveau du condenseure qwe: Chapac	dpw: Fluid pressure drop	dpw : Chute de pression du liquide	dpw: Perdita di carico del fluido	dpw: Vloeistofdrukverlies
ave : Debit du liquide au niveau de l'évaporateur qwe: Portata fluido all'evaporatore dpwe : Chule de pression du liquide au niveau de l'évaporateur (ΔΔ°C) Twe: Température de leau à la sortie du condenseur (ΔΔ°C) Twe: Température de leau à la sortie du condenseur (ΔΔ°C) Twe: Température de leau à la sortie du condenseur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température de leau à la sortie de févaporateur (ΔΔ°C) Twe: Température (ΔΔ°C) Twe: Température (ΔΔ°C) Twe: Température (ΔΔ°C) Tractie de pression du liquide au niveau du condenseur dow: Perdita di carico del fluido al condensatore The capacità temica a	Size	Dimension	Dimensione	Afmeting
Late (Δ15°C) Though and person of billiquide au niveau de l'évaporateur (Δ15°C) Two: Température de leau à la sortie du condenseur (Δ15°C) Two: Temperatura acqua in uscita dall condensatore (Δ15°C) ure (Δ15°C) Twe: Température de leau à la sortie du condenseur (Δ15°C) Twe: Temperatura acqua in uscita dall evaporatore (Δ15°C) ure (Δ15°C) HO: Capacità e la sortie du condenseur que: Débt du liquide au niveau du condenseur de leau à la sortie du condenseur que: Débt du liquide au niveau du condenseur de procession du liquide au niveau du condenseur que: Débt du liquide au niveau du condenseur de procession du liquide au niveau du condenseur du condenseur du condenseur de liquide au niveau du condenseur du condenseur de liquide au niveau du condenseur du condenseur	qwe: Fluid flow rate at evaporator		qwe: Portata fluido all'evaporatore	qwe: Vloeistofdebiet bij verdamper
(A15°C) Twc: Temperature de l'eau à la sortie du condenseur (Δ15°C) Twc: Temperature acqua in uscita dall'evaporateur (Δ15°C) Twc: Temperature acqua in uscita dall'evaporateur (Δ15°C) Twe: Temperature acqua in uscita dall'evaporatore (Δ15°C) Twe: Temperature (Δ15°C)	dpwe. Fluid pressure drop at evaporator	dpwe : Chute de pression du liquide au niveau de l'évaporateur	dpwe: Perdita di carico del fluido all'evaporatore	dpwe: Vloeistofdrukverlies bij verdamper
Twe: Température de l'eau à la sortie de l'évaporateur (\(\delta\) 5°C) HC: Capacité calorifique au niveau du condenseur qwc: Debt du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur pyccavi Tex: Temmeparypa Boaqyxa на въходе конденсатора qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chute de pression du liquide au niveau du condenseur qwc: Chopocra norous avuquocru в испарителя qwc: Chopocra norous avuquocru в конденсаторе	Twc: Condenser leaving water temperature (Δt 5°C)	Twc : Température de l'eau à la sortie du condenseur (Δt 5°C)	Twc: Temperatura acqua in uscita dal condensatore ($\Delta T5^{\circ}C$)	Twc: Wateruittredetemperatuur condensor (At 5°C)
HC: Capacità et miveau du condenseur qwc: Debit du liquide au niveau du condenseur qwc: Debit du liquide au niveau du condenseur qwc: Portata fluido al condensatore qwc: Debit du liquide au niveau du condenseur qwc: Portata fluido al condensatore qwc: Chule de pression du liquide au niveau du condenseur qwc: Perdita di carico del fluido al condensatore qwc: Chule de pression du liquide au niveau du condenseur qwc: Perdita fluido al condensatore qwc: Chule de pression du liquide au niveau du condenseur qwc: Perdita fluido al condensatore qwc: Chule de pression du liquide au niveau du condenseur qwc: Chule de pression du liquide au niveau du condenseur qwc: Chule de pression du liquide au niveau du condenseur qwc: Chule de pression du liquide au niveau du condenseur quc: Tar. Tenmepartypa воды на вклоде испарителе dwc: Падение давления жидкости в конденсаторе qwc: Ckopocre noroxa жидкости в конденсаторе dwc: Chancepartypa en de pression du liquide au niveau du condenseur qwc: Chancepartypa en de pression du liquide au niveau du condenseur qwc: Chancepartypa en du liquide au niveau du condenseur que capacita di carico del fluido al condensatore dwc: Chancepartypa en du liquide au niveau du condenseur que capacita di carico del fluido al condensatore dwc: Chancepartypa en di qui di que carico del fluido al condensatore dwc: Chancepartypa en di qui di qui di que de capacita di que capacita di carico del fluido al condensatore de dwc: Chancepartypa en di que capacita de la condensatore de la condensatore de di que capacita de la condensatore de la condensatore de la condensatore de di di carico del fluido al condensatore de di capacita de la condensatore de la condensatore de la condensatore de la condensatore de la c	Twe: Evaporator leaving water temperature (Δt 5°C)	Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C)	Twe: Temperatura acqua in uscita dall'evaporatore ($\Delta t 5^{\circ}$ C)	Twe: Wateruittredetemperatuur verdamper (Δt5°C)
qwc: Debit du liquide au niveau du condenseur dpwc: Portata fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita di carico del fluido al condensatore Pyccxui Та: Teмпература воддуза на входе конденсатора Тwout Teмпература воддуза на входе конденнотом дет. Скорость потока жудкости в испарителе dpw: Падение давления жудкости в испарителе dpwe: Падение давления жудкости в испарителе dpwe: Скорость потока жудкости в испарителе dpwe: Тактература воды на выходе конденсатора (Δt 5°C) Тwe: Температура воды на выходе конденсаторе dt 5°C) Twe: Температура воды на выходе конденсаторе dt 5°C) Hc: Температура воды на выходе конденсаторе dpwc: Падение давления жудкости в конденсаторе dpwc: Падение давления жудкости в конденсаторе	HC: Heat capacity at condenser	HC : Capacité calorifique au niveau du condenseur	HC: Capacità termica al condensatore	HC: Warmtecapaciteit bij condensor
quec. Chute de pression du liquide au niveau du condenseur фwc. Perdita di carico del fluido al condensatore ature (Δ15°C) Ta: Tenmeparypa воды на выходе испарителе (Δ15°C) CC: Производительность потока жидкости фwr. Скорость потока жидкости в испарителе (Δ15°C) Perdita di carico del fluido al condensatore Ine (Δ15°C) Twout: Tenmeparypa воды на выходе испарителе (Δ15°C) Ine (Δ15°C) Twc: Tenmeparypa воды на выходе испарителя (Δ15°C) Ine (Δ15°C) Twc: Tenmeparypa воды на выходе испарителя (Δ15°C) HC: Tenmoeмкость конденсаторе фwc: Падение давления жидкости в конденсаторе фwc: Падение давления жидкости в конденсаторе	owc: Fluid flow rate at condenser	awc : Débit du liquide au niveau du condenseur	awc: Portata fluido al condensatore	awc: Vloeistofdebiet bij condensor
атите (Δt 5°C) Та: Температура воздуха на входе конденсатора Тwout: Температура воздуха на входе конденсатора Тwout: Температура воды на выкоде испарителя (Δt 5°C) СС: Производительность по охтаждению qw: Скорость потока жидкости фрw: Падение давления жидкости в испарителе dpwe: Скорость потока жидкости в испарителе dpwe: Скорость потока жидкости в испарителе dpwe: Скорость потока жидкости в испарителя (Δt 5°C) Two: Температура воды на выходе испарителя (Δt 5°C) HC: Температура воды на выходе испарителя (Δt 5°C) HC: Температура воды на выходе испарителя (Δt 5°C) HC: Температура воды на выходе испарителя (Δt 5°C) фрwe: Скорость потока жидкости в конденсаторе dpwc: Падение давления жидкости в конденсаторе	dpwc: Fluid pressure drop at condenser	dpwc: Chute de pression du liquide au niveau du condenseur	dpwc: Perdita di carico del fluido al condensatore	dpwc: Vloeistofdrukverlies bij condensor
ature (Δt 5°C) ure (Δt 5°C) ure (Δt 5°C)				
ature (Δt 5°C) ure (Δt 5°C) ure (Δt 5°C)	English - английский	Русский		
ature (Δt 5°C) ure (Δt 5°C) ure (Δt 5°C)	Ta: Condenser inlet air temperature	Та: Температура воздуха на входе конденсатора		
ure (Δt 5°C)	Twout: Evaporator leaving water temperature ($\Delta t5^{\circ}C$)	Тwout: Температура воды на выходе испарителя (∆t 5°C)		
ure (Δt 5°C) ure (Δt 5°C)	CC: Cooling capacity	СС: Производительность по охлаждению		
ure (Δt 5°C) ure (Δt 5°C)	qw. Fluid flow rate	qw: Скорость потока жидкости		
ure (Δt 5°C) ure (Δt 5°C)	dpw: Fluid pressure drop	dpw: Падение давления жидкости		
ure (Δt 5°C) ure (Δt 5°C)	Size	Размер		
ure (∆t 5°C) ure (∆t 5°C)	qwe: Fluid flow rate at evaporator	qwe: Скорость потока жидкости в испарителе		
ure (At 5°C)	dpwe: Fluid pressure drop at evaporator	фрме: Падение давления жидкости в испарителе		
ture (At 5°C)	Twc: Condenser leaving water temperature ($\Delta t 5^{\circ} C$)	Тwc: Температура воды на выходе конденсатора (∆t5°C)		
	Twe: Evaporator leaving water temperature ($\Delta t 5^{\circ} C$)	Тwe: Температура воды на выходе испарителя (∆t 5°C)		
	HC: Heat capacity at condenser	НС: Теплоемкость конденсатора		
	qwc: Fluid flow rate at condenser	qwc: Скорость потока жидкости в конденсаторе		
	dpwc: Fluid pressure drop at condenser	dpwc: Падение давления жидкости в конденсаторе		
				0001

6 - 2 Таблицы холодо-/теплопроизводительности

EWWD340-700I-SS

6

Twe: Evaporator leaving water temperature (Δ t 5°C); Twc: Condenser leaving water temperature (Δ t 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser											Twout										
	inlet air temperature	-00	l Di	l	5	110	T	l	00	l Di	T	7	110	T		00		l	9	110	l	
Size	Ta	CC kW	PI kW	qwe l/s	dpwe kPa	HC kW	qwc l/s	dpwc kPa	CC kW	PI kW	qwe I/s	dpwe kPa	HC kW	qwc l/s	dpwc kPa	CC kW	PI kW	qwe l/s	dpwe kPa	HC kW	qwc l/s	dpwc kPa
GIZO	30	324	65.4	15.5	35	389	18.7	24	347	67.1	16.6	40	413	19.9	27	371	68.8	17.8	45	439	21.1	30
	35	310	72	14.8	32	381	18.4	24	332	73.5	15.9	37	405	19.5	26	355	75.3	17.0	42	429	20.7	29
340	40	295	79.5	14.1	30	373	18	23	316	80.9	15.1	34	396	19.1	25	339	82.5	16.2	38	420	20.3	28
	45	279	88.1	13.3	27	366	17.7	22	300	89.3	14.3	31	388	18.8	25	322	90.6	15.4	35	411	19.9	27
	50	263	98.1	12.5	24	360	17.4	22	283	98.9	13.5	28	381	18.5	24	304	100	14.5	31	403	19.5	26
	55	246	110	11.7	21	355	17.2	21	265	110	12.7	25	374	18.2	23	285	111	13.7	28	395	19.2	26
	30	384	78.9	18.4	48	461	22.2	26	410	81.1	19.7	54	490	23.6	29	438	83.4	21.0	61	520	25	32
	35 40	367 349	86.5 94.9	17.5	44	452 443	21.8	25 24	392 374	88.6 96.9	18.8	50 46	480 470	23.1	28 27	419	90.8	19.2	56 52	509 498	24.5	31
400	45	331	104	15.8	37	434	21.4	23	355	106	17.9	42	460	22.7	26	380	108	18.2	47	487	23.6	29
	50	312	115	14.9	33	426	20.7	23	335	117	16.0	37	451	21.9	25	360	119	17.2	43	477	23.1	28
	55	292	128	14.0	29	419	20.3	22	314	129	15.0	33	443	21.5	24	338	131	16.2	38	467	22.7	27
	30	448	92.9	21.4	51	539	26	28	479	95.4	22.9	58	573	27.6	31	511	98.1	24.5	65	607	29.2	34
	35	428	102	20.5	47	529	25.5	27	458	104	21.9	54	561	27	30	489	107	23.5	60	595	28.7	33
460	40	407	112	19.5	43	518	25	26	437	114	20.9	49	549	26.5	29	467	117	22.4	56	582	28.1	32
400	45	386	123	18.5	39	508	24.6	25	414	125	19.8	45	538	26	28	444	127	21.3	51	570	27.6	31
	50	364	136	17.4	35	499	24.2	24	391	138	18.7	40	528	25.6	27	420	140	20.1	46	558	27	30
	55	341	150	16.3	31	490	23.8	24	367	152	17.6	36	518	25.1	26	394	154	18.9	41	547	26.6	29
	30	523	111	25.1	59	633	30.5	24	559	114	26.8	67	672	32.3	27	597	117	28.7	75	713	34.3	29
	35	500	121	23.9	54	620	29.9	23	536	124	25.7	62	658	31.7	26	572	128	27.5	70	698	33.6	28
550	40	476 452	131	22.8	50 45	593	29.3	22	511 485	135 146	24.5	57 51	644	31.1	25 24	546 519	138 150	26.2	64 58	683 667	33	27
	50	426	153	20.4	41	578	28	20	458	157	21.9	46	614	29.8	23	491	162	23.5	53	651	31.6	25
	55	399	165	19.1	36	563	27.4	20	430	169	20.6	41	598	29	22	462	174	22.1	47	634	30.8	24
	30	624	130	29.9	53	752	18.1 18.1	23 23	664	133	31.8	59	795	19.1 19.1	25 25	706	136	33.9	66	839	20.2 20.2	28 28
	35	598	143	28.6	49	739	17.8 17.8	22 22	637	146	30.5	55	781	18.8 18.8	25 25	678	149	32.5	62	825	19.9 19.9	27 27
650	40	571	158	27.3	45	727	17.6 17.6	22 22	609	161	29.2	51	768	18.5 18.5	24 24	649	163	31.1	57	811	19.6 19.6	27 27
030	45	542	175	25.9	41	716	17.3 17.3	21 21	580	178	27.8	46	756	18.3 18.3	23 23	619	180	29.7	52	797	19.3 19.3	26 26
	50	513	196	24.5	37	707	17.1 17.1	21 21	549	197	26.3	42	745	18.1 18.1	23 23	587	199	28.2	47	785	19.0 19.0	25 25
	55	481	219	23	33	699	17.0 17.0	21 21	517	220	24.7	38	735	17.9 17.9	22 22	554	221	26.5	43	773	18.8 18.8	25 25
	30	688	143	32.9	42	829	18.4 21.5	24 25 23	732	146	35.1	47	876	19.4 22.7	26 27 25	778	150	37.3	53	925	20.5 24.0	29 30 28
	35	659	157	31.5	39	815	18.1 21.2 17.8	23 24 22	703	160	33.6	44	861	19.1 22.4 18.8	25 26 25	747	164	35.8	49	909	20.2 23.6 19.9	28 29 27
700	40	629	173	30.1	36	801 788	20.9	22 23 22	672	176	32.2	41	846	18.8 22.1 18.5	25 26 24	716	180	34.3	46	893	19.9 23.3 19.5	27 28 26
	45 50	598 565	192 213	28.6	33	788 776	17.5 20.6 17.3 20.3	22 23 21 22	640	194 215	30.6	37 34	832 819	18.5 21.7 18.2	24 25 23 24	682 648	197 218	32.7	42 38	878 863	19.5 22.9 19.2 22.6	26 27 26 27
	55	531	237	25.3	26	766	17.1	22 21 22	570	239	27.3	30	807	21.4 18.0 21.2	24 23 24	611	241	29.2	34	849	22.6 19.0 22.3	27 25 26
L		001	201	20.0	20	100	20.1	22	0,0	200	27.0	"	007	21.2	24	011	271	20.2	"	040	22.3	26

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - ПРИМЕЧАНИЯ

 Fluid: Water Fluid: Wasser Υγρό: Νερό Líquido: agua Liquide: Eagua Fluido: Acqua Vloeistof: Water Жидкость: Вода For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC_1-2_Rev.02_1_(1-8)

6 - 2 Таблицы холодо-/теплопроизводительности

EWWD340-700I-SS

Twe: Evaporator leaving water temperature (Δ t 5°C); Twc: Condenser leaving water temperature (Δ t 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser							Tw	out						
	inlet air				11							13			
0:	temperature Ta	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc
Size	30	kW 396	70.7	l/s 19.0	kPa 51	kW 465	1/s 22.4	kPa 34	kW 422	72.6	l/s 20.3	kPa 57	kW 493	1/s 23.7	kPa 37
	35	379	77.1	18.2	47	455	21.9	33	405	79.1	19.4	53	482	23.3	36
	40	362	84.3	17.4	43	445	21.5	31	387	86.3	18.6	49	472	22.8	35
340	45	344	92.3	16.5	39	435	21.1	30	368	94.1	17.7	45	461	22.3	33
	50	326	101	15.6	36	426	20.6	29	349	103	16.7	40	450	21.8	32
	55	306	112	14.7	32	417	20.3	28	328	113	15.8	36	440	21.4	31
	30	467	85.8	22.4	68	551	26.5	36	497	88.4	23.9	77	583	28.1	40
	35	447	93.2	21.5	63	539	26	34	477	95.8	22.9	71	571	27.5	38
400	40	427	101	20.5	58	527	25.5	33	456	104	21.9	66	558	26.9	37
400	45	407	111	19.5	53	516	25	32	434	113	20.9	60	545	26.4	35
	50	385	121	18.5	48	505	24.5	31	412	123	19.8	55	533	25.8	34
	55	363	132	17.4	43	494	24	30	388	134	18.6	49	521	25.3	33
	30	544	101	26.2	73	643	31	38	579	104	27.9	82	681	32.8	42
	35	522	110	25.1	68	630	30.4	37	556	113	26.7	76	666	32.1	41
460	40	499	119	24.0	63	616	29.8	35	532	122	25.6	70	652	31.5	39
400	45	475	130	22.8	57	603	29.2	34	506	133	24.3	64	637	30.8	38
	50	449	142	21.6	52	590	28.6	33	480	145	23.1	59	623	30.2	36
	55	423	156	20.3	46	577	28	32	453	158	21.8	53	609	29.6	35
	30	636	120	30.6	84	755	36.3	33	676	124	32.6	94	798	38.4	36
	35	610	131	29.3	78	739	35.6	32	649	135	31.3	88	782	37.7	35
550	40	583	142	28.0	72	723	34.9	30	621	146	29.9	81	765	36.9	34
	45	555	154	26.7	66	707	34.2	29	592	158	28.5	74	748	36.2	32
	50	526	166	25.2	60	690	33.4	28	562	170	27.0	68	730	35.4	31
	55	495	178	23.8	54	672	32.6	27	530	183	25.5	61	711	34.5	30
	30	749	139	36.0	74	885	21.3 21.3	31 31	793	142	38.1	82	933	22.4 22.4	34 34
	35	720	152	34.6	69	870	21.0 21.0	30 30	763	156	36.7	76	916	22.1 22.1	33 33
650	40	690	167	33.1	64	855	20.6 20.6	29 29	733	170	35.2	71	900	21.7 21.7	32 32
	45	659	183	31.6	59	840	20.3 20.3	28 28	700	186	33.7	65	884	21.4 21.4	31 31
	50	627	202	30.1	53	826	20.0 20.0	28 28	667	204	32	60	869	21.1 21.1	30 30
	55	592	223	28.4	48	813	19.7 19.7	27 27	631	225	30.3	54	854	20.7 20.7	29 29
	30	825	153	39.6	59	976	21.7 25.3	32 33	874	157	42	65	1028	22.8 26.6	35 36
	35	794	168	38.1	55	959	21.3 24.9	31 32 30	841	171	40.4	61	1010	22.5 26.2	34 35 33
700	40	761	183	36.5	51	942	21.0 24.5	30 31	807	187	38.8	57	992	22.1 25.8	33 34
	45	727	201	34.9	47	925	20.6 24.1 20.3	29 30 28	772	204	37.1	52	974	21.7 25.4 21.4	32 33 31
	50	690	221	33.1	43	909	23.8	28 29 27	735	224	35.3	48	956	25.0	31 32 30
	55	653	243	31.3	39	894	23.4	27 28	696	246	33.4	43	939	21.0 24.6	30 31

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Υγρό: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Βοда

For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter visine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2 Rev.02 1 (2-8)

6 - 2 Таблицы холодо-/теплопроизводительности

EWWD800-C10I-SS

6

Twe: Evaporator leaving water temperature (Δt 5°C); Twc: Condenser leaving water temperature (Δt 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser											Twout										
	inlet air				5		,	,				7							9			
	temperature Ta	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc
Size	30	kW 760	kW 157	1/s 36.4	kPa 54	kW 915	22.0 22.0	kPa 25 25	kW 817	kW 162	1/s 39.1	kPa 62	kW 976	1/s 23.5 23.5	kPa 28 28	kW 876	kW 167	1/s 42.1	kPa 70	kW 1040	25.0 25.0 25.0	kPa 32 32
	35	726	172	34.7	50	896	21.6 21.6	25 24 24	779	176	37.3	57	953	23.5 23.0 23.0	28 27 27	837	181	40.1	65	1015	25.0 24.5 24.5	32 30 30
	40	690	189	33	46	878	21.6 21.2 21.2	23 23 23	741	193	35.5	52	932	23.0 22.5 22.5	27 26 26	795	198	38.1	59	991	23.9 23.9 23.9	29 29
800	45	652	208	31.2	41	859	21.2 20.8 20.8	23 23 23	702	212	33.6	47	912	22.5 22.1 22.1	25 25 25	754	216	36.1	54	967	23.4 23.4 23.4	29 28 28
	50	613	230	29.3	37	841	20.4	23 22 22	662	233	31.7	42	893	21.6 21.6 21.6	25 24 24	712	237	34.1	48	946	23.4 22.9 22.9	28 27 27
	55	572	255	27.3	32	826	20.4 20.1 20.1	21 21 21	619	258	29.6	37	875	21.6 21.2 21.2	24 24 24	668	261	32	43	926	22.5 22.5 22.5	26 26
	30	823	170	39.4	51	991	22.2 25.4	26 24	876	175	42	57	1049	23.6 26.9	29 27	932	179	44.7	64	1108	24.9 28.4	32 29
	35	788	187	37.7	47	973	21.9 25.0	25 24	841	191	40.3	53	1030	23.2 26.5	28 26	895	196	42.9	60	1088	24.5 27.9	31 29
	40	752	205	36	43	956	21.5 24.7	25 23	804	209	38.5	49	1011	22.7 26.1	27 25	856	214	41.1	55	1068	24.1 27.5	30 28
850	45	715	226	34.2	40	939	21.1 24.3	24 22	765	230	36.6	45	993	22.4 25.7	26 25	816	234	39.1	51	1048	23.6 27.1	29 27
	50	675	250	32.3	36	924	20.8 24.0	23 22	724	253	34.6	41	975	22.0 25.3	25 24	774	257	37.1	46	1029	23.2 26.7	28 26
	55	634	277	30.3	32	909	20.5 23.7	22 21	681	280	32.6	36	959	21.6 24.9	25 23	730	283	35	41	1011	22.8 26.3	27 26
	30	888	183	42.5	42	1069	25.7 25.7	24 24	945	187	45.2	47	1130	27.2 27.2	27 27	1004	192	48.1	53	1193	28.7 28.7	29 29
	35	851	201	40.7	39	1050	25.3 25.3	23 23	907	205	43.4	44	1110	26.8 26.8	26 26	965	210	46.2	49	1172	28.2 28.2	28 28
900	40	813	221	38.9	36	1032	24.9 24.9	23 23	868	225	41.5	40	1091	26.3 26.3	25 25	924	230	44.3	45	1151	27.8 27.8	28 28
300	45	773	244	36.9	33	1015	24.6 24.6	22 22	826	248	39.5	37	1072	25.9 25.9	24 24	881	252	42.2	42	1131	27.3 27.3	27 27
	50	730	270	34.9	29	998	24.2 24.2	22 22	783	273	37.5	33	1054	25.5 25.5	24 24	836	277	40.1	38	1111	26.9 26.9	26 26
	55	685	300	32.7	26	983	23.9 23.9	21 21	736	302	35.2	30	1037	25.2 25.2	23 23	789	305	37.8	34	1092	26.5 26.5	25 25
	30	962	200	46	51	1160	26.2 29.6	20 21	1023	205	49	58	1226	27.7 31.3	22 24	1085	210	52.1	64	1293	29.2 33.0	25 26
	35	922	220	44.1	48	1140	25.7 29.2	20 21	982	225	47	54	1205	27.2 30.8	22 23	1044	230	50.1	60	1271	28.8 32.5	24 25
950	40	881	240	42.1	44	1120	25.3 28.7	19 20	940	245	45	49	1183	26.8 30.3	21 22	1001	251	48	55	1249	28.3 32.0	23 25
	45	838	263	40.1	40	1099	24.9 28.2	19 20	896	268	42.9	45	1162	26.3 29.8	20 22	955	273	45.8	51	1226	27.8 31.5	23 24
	50	793	287	37.9	36	1079	24.6 27.7	18 19	849	292	40.6	41	1139	25.9 29.3	20 21	907	298	43.5	46	1202	27.4 30.9	22 23
	55	746	314	35.7	33	1058	24.3 27.1	18 18	800	319	38.3	37	1117	25.6 28.7 30.9	19 20	857	324	41	42	1179	26.9 30.3	21 22 26
	30	1003	217	47.9	38	1217	29.3 29.3 28.8	21 21 21	1066	222	51	42	1285	30.9	23 23 23	1132	227	54.2	47	1356	32.6 32.6 32.1	26 26 25
	35	962	237	46	35	1197	28.8	21	1024	243	49	39	1264	30.5	23 23 22	1088	248	52.1	44	1334	32.1 32.1 31.6	25 25 24
C10	40	920	258	43.9	32	1176	28.4 28.4 27.9	20 20 20	980	264	46.9	36	1242	30.0 30.0 29.5	22 22 22	1043	270	50	41	1311	31.6 31.6 31.1	24 24 24
	45	876	280	41.8	29	1154	27.9 27.9 27.4	20 20 19	935	287	44.7	33	1219	29.5 29.5 29.0	22 22 21	996	293	47.7	37	1286	31.1	24 24 23
	50	779	303	39.6 37.2	27	1130	27.4 27.4 26.8 26.8	19 18	887	310	42.4	30 27	1195	29.0 29.0 28.4 28.4	21 21 20 20	946 894	317	45.3 42.8	34	1261	30.6 30.6 30.0 30.0	23 23 22 22
	55	1/9	321	31.2	24	1104	26.8	18	030	JJ5	40	21	1109	28.4	20	094	343	42.8	37	1234	30.0	22

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Yypó: Nɛpó Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Вода For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC_1-2_Rev.02_1_(3-8)

6 - 2 Таблицы холодо-/теплопроизводительности

EWWD800-C10I-SS

Twe: Evaporator leaving water temperature (Δ t 5°C); Twc: Condenser leaving water temperature (Δ t 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser							Tw	out						
	inlet air				11		·					13			
	temperature	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc
Size	Та	kW	kW	l/s	kPa	kW	l/s 26.6	kPa	kW	kW	l/s	kPa	kW	l/s	kPa
	30	939	172	45.1	80	1107	26.6	35 35	1004	177	48.3	90	1178	28.3 28.3	39 39
	35	897	186	43.1	73	1080	26.0 26.0	34 34	960	192	46.2	83	1149	27.7 27.7	38 38
800	40	854	203	41	67	1054	25.4 25.4	32 32	915	208	44	76	1120	27.0 27.0	36 36
000	45	809	221	38.9	61	1027	24.8 24.8	31 31	868	226	41.7	69	1091	26.4 26.4	35 35
	50	763	241	36.6	55	1002	24.3 24.3	30 30	820	246	39.4	62	1063	25.8 25.8	35 35 33 33
	55	718	264	34.4	49	980	23.8 23.8	29 29	770	268	37	56	1035	25.1 25.1	32 32
	30	989	184	47.5	72	1170	26.3 30.0	35 32	1048	189	50.4	80	1233	27.8 31.6	39 36 38 35 36 34
	35	951	200	45.7	67	1148	25.9 29.5	34 31	1009	205	48.5	74	1210	27.3 31.1	38 35
050	40	911	218	43.7	62	1127	25.4 29.0	33 31	967	223	46.5	69	1187	26.8 30.5	36 34
850	45	870	239	41.7	57	1105	24.9 28.5	32 30	924	243	44.4	63	1165	26.3 30.0	35 32
	50	826	261	39.6	52	1084	24.5 28.1	31 29	879	266	42.2	58	1142	25.8 29.5	34 32
	55	780	287	37.4	47	1064	24.1 27.6	30 28	832	291	40	52	1120	25.3 29.1	35 32 34 32 33 31
	30	1065	197	51.1	59	1259	30.3 30.3	32 32	1128	202	54.2	65	1327	31.9 31.9	35 35
	35	1025	215	49.2	55	1236	29.8 29.8	31 31	1086	220	52.2	61	1303	31.4 31.4	34 34
000	40	982	235	47.1	51	1214	29.3 29.3	30 30	1042	240	50.1	56	1279	30.9 30.9	33 33
900	45	938	257	45	47	1191	28.8 28.8	30 30	996	261	47.8	52	1255	30.3 30.3	32 32
	50	892	281	42.7	42	1170	28.4 28.4	29 29	948	286	45.5	48	1231	29.8 29.8	31 31
	55	843	309	40.4	38	1149	27.9 27.9	28 28	898	313	43.1	43	1208	29.3 29.3	30 30
	30	1150	216	55.2	71	1363	30.8 34.7	27 28	1217	221	58.5	79	1434	32.5 36.5	30 31
	35	1107	235	53.2	67	1339	30.3 34.2	26 28	1172	241	56.4	74	1410	31.9 36.0	29 30
950	40	1062	256	51	62	1316	29.8 33.7	26 27	1126	262	54.1	69	1385	31.4 35.5	28 30
330	45	1016	279	48.7	57	1292	29.3 33.2	25 26	1078	285	51.8	64	1360	30.9 34.9	27 29
	50	966	303	46.4	52	1267	28.8 32.6	24 25	1027	310	49.3	58	1334	30.4 34.3	26 28
	55	915	330	43.9	47	1242	28.4 32.0	23 25	974	336	46.8	53	1307	29.8 33.6	26 27
	30	1200	232	57.5	52	1429	34.4 34.4	28 28	1270	238	61	58	1504	36.2 36.2	31 31
	35	1155	254	55.4	49	1405	33.9 33.9	28 28	1223	260	58.7	54	1479	35.7 35.7	30 30
C10	40	1108	277	53.1	45	1381	33.3 33.3	27 27	1174	283	56.4	50	1454	35.1 35.1	29 29
010	45	1059	300	50.8	42	1356	32.8 32.8	26 26	1124	307	53.9	46	1427	34.5 34.5	29 29 28 28
	50	1007	325	48.3	38	1329	32.2 32.2	25 25	1071	332	51.4	43	1400	33.9 33.9	28 28
	55	954	350	45.7	35	1301	31.6 31.6	24 24	1015	358	48.7	39	1370	33.3 33.3	27 27

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Yγρό: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жиμκοςτь: Βοда

For working conditions where dpw values are in italic, please contact factory.

Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.

Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.

Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.

Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter visine.

Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.

Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.

Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2 Rev.02 1 (4-8)

6 - 2 Таблицы холодо-/теплопроизводительности

	Condenser											Twout										
	inlet air	00	-		5	110					1	7		1					9		1	
Size	temperature Ta	CC kW	PI kW	qwe l/s	dpwe kPa	HC kW	qwc I/s	dpwc kPa	CC kW	PI kW	qwe I/s	dpwe kPa	HC kW	qwc I/s	dpwc kPa	CC kW	PI kW	qwe l/s	dpwe kPa	HC kW	qwc I/s	dpwc kPa
Size	30	1127	233	53.9	50	1357	21.8 21.8 21.8 21.8	22 22 22 22	1196	239	57.3	55	1432	23.0 23.0 23.0 23.0	25 25 25 25	1267	244	60.7	61	1507	24.2 24.2 24.2 24.2	27 27 27 27
	35	1081	256	51.7	46	1335	21.4 21.4 21.4	22 22 22	1151	262	55.1	52	1409	22.6 22.6 22.6	24 24 24	1220	267	58.5	57	1484	23.8 23.8 23.8	26 26 26
C12	40	1033	282	49.4	42	1312	21.1 21.1 21.1	21 21 21	1102	287	52.7	48	1386	22.3 22.3 22.3	23 23 23	1171	293	56.1	53	1460	23.5 23.5 23.5	26 26 26
	45	983	311	47	39	1291	20.8 20.8 20.8	21 21 21	1050	316	50.3	44	1363	22.0 22.0 22.0	23 23 23	1119	321	53.6	49	1436	23.2 23.2 23.2	25 25 25
	50	930	344	44.4	35	1271	20.5 20.5 20.5	20 20 20	996	348	47.6	40	1341	21.7 21.7 21.7	22 22 22	1063	353	50.9	45	1412	22.8 22.8 22.8	24 24 24
	55	874	381	41.8	31	1253	20.3 20.3 20.3	20 20 20	938	385	44.9	36	1320	21.4 21.4 21.4	22 22 22	1004	389	48.1	40	1389	22.5 22.5 22.5	24 24 24
	30	1175	245	56.2	53	1417	21.8 21.8 24.7	22 22 21	1246	251	59.7	59	1494	23.0 23.0 26.0	25 25 23	1319	257	63.3	66	1572	24.2 24.2 27.3	27 27 25
	35	1128	270	54	50	1395	21.4 21.4 24.4	22 22 20	1200	275	57.4	55	1472	22.6 22.6 25.6	24 24 22	1271	281	60.9	62	1548	23.8 23.8 26.9	26 26 24
C13	40	1080	297	51.6	46	1374	21.1 21.1 24.1	21 21 20	1149	302	55	51	1449	22.3 22.3 25.3	23 23 22	1220	308	58.5	57	1525	23.5 23.5 26.6	26 26 24
	45	1028	328	49.1	42	1353	20.8 20.8 23.8	21 21 20	1097	333	52.5	47	1426	22.0 22.0 25.0	23 23 21	1167	338	55.9	53	1501	23.2 23.2 26.3	25 25 23
	50	973	363	46.5	38	1334	20.5 20.5 23.6	20 20 19	1041	367	49.8	43	1405	21.7 21.7 24.8	22 22 21	1110	372	53.2	48	1478	22.8 22.8 26.0	24 24 23
	55	916	402	43.8	34	1316	20.3 20.3 23.3	20 20 19	982	406	47	39	1385	21.4 21.4 24.5	22 22 21	1050	410	50.3	44	1456	22.5 22.5 25.7	24 24 22
	30	1243	258	59.5	45	1499	22.0 25.1 25.1	23 21 21	1322	264	63.3	50	1583	23.3 26.4 26.4	25 24 24	1402	271	67.2	56	1669	24.6 27.9 27.9	28 26 26
	35	1193	284	57	41	1475	21.6 24.7 24.7 21.3	22 21 21	1270	290	60.8	46	1556	22.9 26.1 26.1	25 23 23	1349	296	64.6	52	1641	24.2 27.5 27.5	27 25 25 25
C14	40	1141	313	54.5	38	1451	24.4 24.4	22 20 20	1216	318	58.2	43	1531	22.5 25.7 25.7	24 22 22 23	1293	324	62	48	1614	23.8 27.1 27.1	26 25 25
	45	1085	345	51.9	35	1428	21.0 24.1 24.1 20.7	21 20 20	1159	350	55.5	39	1507	22.2 25.4 25.4 21.8	23 22 22 22	1235	356	59.1	44	1587	23.4 26.7 26.7	25 24 24 25
	50	1027	382	49.1	32	1406	23.8 23.8	20 19 19	1099	386	52.6	36	1483	21.8 25.0 25.0 21.5	22 21 21 22	1174	392	56.2	40	1562	23.0 26.3 26.3	25 23 23 24
	55	966	424	46.1	28	1387	20.4 23.5 23.5 25.4	20 19 19	1036	427	49.5	32	1461	21.5 24.7 24.7 26.8	22 21 21 25	1108	432	53.1	36	1537	22.7 26.0 26.0 28.3	24 23 23 27
	30	1312	274	62.8	55	1583	25.4 25.4 25.0	22 22 22	1396	280	66.9	62	1673	26.8 26.8 26.4	25 25 24	1483	287	71.2	69	1767	28.3 28.3 27.9	27 27 26
	35	1259	301	60.2	51	1556	25.0 25.0 25.0 24.6	22 22 22 21	1341	307	64.2	57	1644	26.4 26.4 26.4 26.0	24 24 24 23	1426	314	68.4	64	1736	27.9 27.9 27.9 27.4	26 26 26 26
C15	40	1202	331	57.5	47	1530	24.6 24.6 24.6 24.3	21 21	1283	337	61.4	53	1616	26.0 26.0	23 23	1366	343	65.5	59	1705	27.4 27.4	26 26
	45	1143	364	54.7	43	1505	24.3 24.3 24.3 23.9	20 20 20 20	1222	370	58.5	49	1589	25.6 25.6 25.6 25.2	23 23 23 22	1303	376	62.5	55	1676	27.0 27.0 27.0 26.6	25 25 25 24
	50	1081	403	51.7	39	1482	23.9 23.9 23.9 23.6	20 20 20 19	1158	408	55.4	44	1563	25.2 25.2 25.2 24.9	22 22 22 21	1237	414	59.3	50	1647	26.6 26.6 26.2	24 24 24 23
	55	1016	447	48.6	35	1460	23.6 23.6 23.6	19 19	1091	451	52.2	40	1539	24.9 24.9 24.9	21 21 21	1168	456	55.9	45	1620	26.2 26.2 26.2	23 23 23

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - ПРИМСЧАНИЯ

 Fluid: Water Fluid: Wasser Yypó: Nɛpó Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Вода For working conditions where dpw values are in italic, please contact factory.

Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.

Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.

Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.

Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.

Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.

Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.

Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2 Rev.02 1 (5-8)

EWWDC12-C15I-SS

6 - 2Таблицы холодо-/теплопроизводительности

Twe: Evaporator leaving water temperature (Δt 5°C); Twc: Condenser leaving water temperature (Δt 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser Twout emperature CC ΡI HC CC ΡI НС dpwc awe dpwe qwc qwe dpwe qwc dpwc Size Ta kW kW l/s kPa kW I/s kPa kW kW I/s kPa kW l/s kPa 30 30 32 32 64.3 32 32 31 31 C12 30 30 60.4 24.0 24.0 24.0 27 27 29 29 57 7 54.3 28 28 51.4 54.8 30 27 32 30 66.9 70.7 32 29 64.5 68.3 31 28 65.7 C13 30 28 59.4 62.9 29 27 56.6 60.1 28 26 53.6 57.1 25.9 29.3 29.3 31 31 71.3 75.5 25.5 28.9 28.9 30 30 68.6 72.7

25.1 28.5 28.5

24.7 28.1 28.1

24.3 27.7 27.7

26 26

69.8

66.8

60.4

80 1

77 1

70.8

67.4

63.8

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

Fluid: Water Fluid: Wasser Υγρό: Νερό Líquido: aqua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Вода

C14

C15

65.8

62.9

59.9

56.7

75.6

69 7

66.5

63.3

59.8

SRC 1-2 Rev.02 1 (6-8)

29 29

29 29

28 28

33 33

32 32

31 31

30 30

29 29

26.0 29.5 29.5

25.5 29.1 29.1

31.0 31.0 31.0

30.0 30.0 30.0

For working conditions where dpw values are in italic, please contact factory. Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller. Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο. Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica. Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine. Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore. Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek. Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

6 - 2 Таблицы холодо-/теплопроизводительности

EWWDC16-C18I-SS

Twe: Evaporator leaving water temperature (Δt 5°C); Twc: Condenser leaving water temperature (Δt 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser											Twout										
	inlet air				5							7							9			
	temperature	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc
Size	Та	kW	kW	l/s	kPa	kW	l/s	kPa	kW	kW	l/s	kPa	kW	l/s	kPa	kW	kW	l/s	kPa	kW	l/s	kPa
	30	1366	290	65.4	59	1653	25.4 25.4 28.8	22 22 22	1453	298	69.6	66	1747	26.8 26.8 30.4	25 25 24	1542	305	74	74	1843	28.3 28.3 32.0	27 27 26
	35	1310	318	62.7	55	1626	25.0 25.0 28.4	22 22 21	1395	325	66.8	62	1717	26.4 26.4 29.9	24 24 23	1483	333	71.1	69	1812	27.9 27.9 31.6	26 26 25
C16	40	1252	349	59.9	51	1598	24.6 24.6 27.9	21 21 20	1335	356	64	57	1688	26.0 26.0 29.5	23 23 22	1421	364	68.1	64	1781	27.4 27.4 31.1	26 26 25
010	45	1192	382	57	46	1571	24.3 24.3 27.5	20 20 20	1273	389	60.9	52	1659	25.6 25.6 29.0	23 23 22	1356	397	65	59	1749	27.0 27.0 30.6	25 25 24
	50	1128	419	53.9	42	1544	23.9 23.9 27.0	20 20 19	1207	426	57.8	47	1630	25.2 25.2 28.5	22 22 21	1288	433	61.8	53	1718	26.6 26.6 30.1	24 24 23
	55	1061	460	50.7	37	1518	23.6 23.6 26.5	19 19 18	1138	467	54.4	43	1601	24.9 24.9 28.0	21 21 20	1217	474	58.3	48	1687	26.2 26.2 29.5	23 23 22
	30	1419	308	67.9	64	1723	25.4 28.8 28.8	22 22 22	1508	315	72.3	71	1819	26.8 30.4 30.4	25 24 24	1600	323	76.8	79	1919	28.3 32.0 32.0	27 26 26
	35	1361	336	65.1	59	1695	25.0 28.3 28.3	22 21 21	1449	344	69.4	66	1789	26.4 29.9 29.9	24 23 23	1539	352	73.8	74	1888	27.9 31.5 31.5	26 25 25
C17	40	1302	367	62.3	54	1666	24.6 27.9 27.9	21 20 20	1387	375	66.4	61	1759	26.0 29.5 29.5	23 22 22	1475	384	70.8	68	1855	27.4 31.1 31.1	26 25 25
017	45	1239	400	59.3	50	1636	24.3 27.5 27.5	20 20 20	1323	409	63.3	56	1728	25.6 29.0 29.0	23 22 22	1409	418	67.5	63	1822	27.0 30.6 30.6	25 24 24
	50	1174	436	56.1	45	1607	23.9 27.0 27.0	20 19 19	1255	445	60.1	51	1696	25.2 28.5 28.5	22 21 21	1339	454	64.2	57	1789	26.6 30.0 30.0	24 23 23
	55	1104	474	52.8	40	1576	23.6 26.4 26.4	19 18 18	1184	483	56.7	46	1664	24.9 28.0 28.0	21 20 20	1265	493	60.6	52	1754	26.2 29.5 29.5	23 22 22
	30	1472	325	70.5	68	1793	28.8 28.8 28.8	22 22 22	1564	333	75	76	1893	30.4 30.4 30.4	24 24 24	1659	341	79.7	85	1996	32.0 32.0 32.0	26 26 26
	35	1413	355	67.6	63	1765	28.4 28.4 28.4	21 21 21	1503	363	72	71	1863	29.9 29.9 29.9	23 23 23	1596	372	76.6	79	1964	31.6 31.6 31.6	25 25 25
C18	40	1352	386	64.7	58	1735	27.9 27.9 27.9	20 20 20	1440	395	69	65	1831	29.5 29.5 29.5	22 22 22	1530	405	73.4	73	1931	31.1 31.1 31.1	25 25 25
010	45	1287	419	61.6	53	1703	27.5 27.5 27.5	20 20 20	1373	429	65.8	60	1798	29.0 29.0 29.0	22 22 22	1462	439	70.1	67	1897	30.6 30.6 30.6	24 24 24
	50	1220	453	58.3	48	1670	27.0 27.0 27.0	19 19 19	1304	463	62.4	55	1764	28.5 28.5 28.5	21 21 21	1390	474	66.6	61	1860	30.1 30.1 30.1	23 23 23
	55	1149	488	54.9	43	1634	26.5 26.5 26.5	18 18 18	1231	500	58.9	49	1727	28.0 28.0 28.0	20 20 20	1315	511	63	55	1822	29.5 29.5 29.5	22 22 22

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Yypó: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидκοсть: Βοда

For working conditions where dpw values are in italic, please contact factory.

Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.

Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.

Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.

Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.

Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.

Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.

Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2 Rev.02 1 (7-8)

6 - 2 Таблицы холодо-/теплопроизводительности

EWWDC16-C18I-SS

Twe: Evaporator leaving water temperature (Δt 5°C); Twc: Condenser leaving water temperature (Δt 5°C) qwe: Fluid flow rate at evaporator; dpwe: Fluid pressure drop at evaporator HC: Heat capacity at condenser; qwc: Fluid flow rate at condenser; dpwc: Fluid pressure drop at condenser

	Condenser							Tw	out						
	inlet air				11							13			
	temperature	CC	PI	qwe	dpwe	HC	qwc	dpwc	CC	PI	qwe	dpwe	HC	qwc	dpwc
Size	Та	kW	kW	l/s	kPa	kW	l/s	kPa	kW	kW	l/s	kPa	kW	l/s	kPa
	30	1635	313	78.6	82	1943	29.9 29.9 33.7	30 30 29	1731	321	83.3	92	2046	31.5 31.5 35.5	33 33 31
	35	1573	341	75.6	77	1910	29.4 29.4 33.2	29 29 28	1667	349	80.2	86	2011	31.0 31.0 35.0	32 32 31
C16	40	1509	371	72.5	71	1877	28.9 28.9 32.7	28 28 27	1601	380	77	79	1976	30.5 30.5 34.4	31 31 30
C16	45	1442	405	69.2	66	1843	28.5 28.5 32.2	27 27 26	1531	413	73.6	73	1940	30.0 30.0 33.9	30 30 29
	50	1372	441	65.9	60	1810	28.0 28.0 31.7	26 26 25	1459	450	70.1	67	1904	29.5 29.5 33.3	29 29 28
	55	1299	481	62.3	54	1776	27.6 27.6 31.1	26 26 25	1383	490	66.4	61	1868	29.0 29.0 32.7	28 28 27
	30	1696	331	81.5	88	2022	29.9 33.7 33.7	30 29 29	1794	339	86.3	98	2128	31.5 35.5 35.5	33 31 31
	35	1632	361	78.4	82	1989	29.4 33.2 33.2	29 28 28	1729	370	83.2	91	2093	31.0 35.0 35.0	32 31 31
C17	40	1566	393	75.2	76	1955	28.9 32.7 32.7	28 27 27	1660	402	79.8	85	2057	30.5 34.4 34.4	31 30 30
017	45	1497	427	71.9	70	1920	28.5 32.2 32.2	27 26 26	1589	436	76.4	78	2020	30.0 33.9 33.9	30 29 29
	50	1425	463	68.4	64	1884	28.0 31.7 31.7	26 25 25	1514	473	72.8	72	1983	29.5 33.3 33.3	29 28 28
	55	1349	502	64.8	58	1848	27.6 31.1 31.1	26 25 25	1436	512	69	65	1944	29.0 32.7 32.7	28 27 27
	30	1758	349	84.5	94	2102	33.7 33.7 33.7	29 29 29	1859	358	89.5	104	2211	35.5 35.5 35.5	31 31 31
	35	1692	381	81.3	88	2069	33.2 33.2 33.2	28 28 28	1791	390	86.2	97	2177	35.0 35.0 35.0	31 31 31
C18	40	1624	414	78	81	2034	32.7 32.7 32.7	27 27 27	1721	424	82.8	91	2140	34.4 34.4 34.4	30 30 30
010	45	1553	449	74.6	75	1998	32.2 32.2 32.2	26 26 26	1648	460	79.2	84	2102	33.9 33.9 33.9	29 29 29
	50	1479	485	71	69	1960	31.7 31.7 31.7	25 25 25	1571	497	75.5	77	2063	33.3 33.3 33.3	28 28 28
	55	1401	523	67.2	62	1920	31.1 31.1 31.1	25 25 25	1490	535	71.6	70	2021	32.7 32.7 32.7	27 27 27

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Yγρό: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жиμκοςτь: Βοда

For working conditions where dpw values are in italic, please contact factory.

Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.

Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.

Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.

Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter visine.

Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.

Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.

Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2 Rev.02 1 (8-8)

6 - 3 Частичная рекуперация теплоты Таблицы производительностей

Характеристики в режиме частичной рекуперации тепла EWWD~I-SS

	T	Темпе	ратура вытек	ающей воды и	из конденсато	pa (°C)
	Температура воды на выходе из испарителя (°C)	35	40	45	50	55
Размер		Нс (кВт)	Нс (кВт)	Нс (кВт)	Нс (кВт)	Нс (кВт
	40	33	45	57	57	58
340	45	25	36	48	61	56
	50	16	28	39	52	51
	40	37	50	62	68	68
400	45	28	40	53	65	67
	50	18	31	44	55	61
	40	48	62	77	79	80
460	45	36	51	66	83	78
	50	24	39	55	75	71
	40	55	73	91	94	95
550	45	40	59	78	91	92
	50	26	45	65	78	84
	40	65	86	107	111	111
650	45	48	70	92	107	108
	50	32	54	76	92	99
	40	68	93	118	122	123
700	45	51	76	101	118	119
700	50	34	59	84	101	109
	40	73	101	130	135	136
800	45	54	83	112	130	132
000	50	36	65	93	112	121
		-	-		-	-
050	40	83	112	141	146	147
850	45	62	91	121	141	143
	50	41	71	101	121	131
	40	93	123	152	157	158
900	45	70	100	130	152	154
	50	46	77	108	130	141
	40	99	132	165	171	172
950	45	73	107	141	165	167
	50	48	83	118	141	153
	40	103	138	174	180	182
C10	45	76	113	149	174	177
	50	50	87	124	149	162
	40	123	158	193	200	201
C12	45	92	128	165	193	195
	50	60	97	133	165	179
	40	127	164	201	208	210
C13	45	94	133	172	201	204
	50	62	101	139	172	187
	40	132	172	213	220	222
C14	45	98	140	182	213	216
	50	64	106	147	182	198
	40	138	182	227	235	236
C15	45	102	148	194	227	230
	50	67	108	148	194	210
	40	143	190	237	245	247
C16	45	105	154	203	237	240
	50	69	112	155	203	220
	40	149	198	247	255	257
C17	45	109	160	211	247	250
	50	71	117	162	211	229
	40	154	205	257	266	268
C18	45	126	173	220	257	260
0.0	50	73	117	161	220	238

ПРИМЕЧАНИЯ

Температура воды на выходе испарителя 7° C, Δ T 5° C; Δ T температуры воды в конденсаторе 5° C

OPT_1-2-3-4-5-6-7-8_Rev.00_4

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла

	Температура воды			TEM	 ПЕРАТУРА В	ОДЫ НА ВЫ	ХОДЕ КОНДЕ	НСАТОРА П	РИ РЕКУПЕР	————— АЦИИ ТЕПЛА	A, °C		
	на выходе из		40			45			50			 55	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	285	77,1	362	270	85,9	356	254	96,1	350	237	108	345
	5	295	77,7	373	280	86,3	366	263	96,4	359	247	108	355
1	6	306	78,3	384	290	86,8	377	273	96,7	370	256	108	364
İ	7	317	78,9	396	301	87,4	388	284	97,1	381	266	109	375
İ	8	328	79,6	408	311	88,0	399	294	97,6	392	276	109	385
l	9	340	80,3	420	322	88,6	411	305	98,1	403	286	109	395
340	10	341	81,0	422	324	89,3	413	306	98,7	405	288	110	398
İ	11	353	81,8	434	335	90,0	425	317	99,3	416	298	110	408
İ	12	365	82,6	447	347	90,7	437	328	99,9	428	309	111	420
İ	13	377	83,4	460	358	91,5	450	339	101	440	320	111	431
	14	389	84,3	473	370	92,4	463	351	101	452	331	112	443
	15	401	85,1	487	382	93,2	476	363	102	465	342	112	455
	4	338	92,0	430	320	102	422	301	113	414	282	126	408
İ	5	350	92,7	443	332	103	435	313	114	427	293	126	419
	6	363	93,6	457	344	103	447	324	114	438	304	127	431
	7	375	94,4	469	356	104	460	336	115	451	316	127	443
	8	388	95,3	483	369	105	474	348	116	464	327	128	455
1	9	402	96,2	498	382	106	488	361	116	477	339	128	467
400	10	403	97,2	500	383	107	490	363	117	480	341	129	470
	11	416	98,2	515	396	108	504	375	118	493	353	130	483
	12	430	99,2	529	409	109	518	388	119	507	366	131	496
	13	444	100	544	423	110	533	401	120	521	378	132	510
	14	458	101	560	437	111	547	414	121	535	391	133	524
	15	473	102	575	451	112	562	428	122	550	404	134	538
	4	395	108	503	374	120	494	352	133	485	329	148	477
	5	409	109	518	388	120	508	365	133	498	342	148	490
	6	423	110	533	402	121	523	379	134	513	355	149	504
	7	438	111	549	416	122	538	393	135	528	369	150	519
	8	453	112	565	431	123	554	407	136	543	382	150	532
460	9	469	113	582	446	124	570	421	137	558	396	151	547
460	10	471	114	585	447	125	573	423	138	561	398	152	550
	11	486	115	601	463	126	589	438	139	577	412	153	565
	12	502	117	618	478	128	606	453	140	593	427	154	580
	13	518	118	636	494	129	622	468	141	609	441	155	596
	14	535	119	654	510	130	640	483	142	626	456	156	612
	15	551	120	672	526	131	657	499	144	643	471	157	628

ПРИМЕЧАНИЯ

Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ С воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT_1-2-3-4-5-6-7-8_Rev.00_1 (1-2)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла EWWD550~700LSS

	Температура воды			TEM	ПЕРАТУРА В	ОДЫ НА ВЫ	ХОДЕ КОНДЕ	НСАТОРА П	РИ РЕКУПЕР	АЦИИ ТЕПЛ	A, °C		
	на выходе из		40			45			50			55	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	462	127	589	438	138	576	412	149	561	386	161	547
	5	478	128	606	454	139	593	428	151	579	401	163	564
	6	496	130	626	470	141	611	444	153	597	416	165	581
İ	7	513	131	644	487	143	630	460	155	615	432	167	599
İ	8	531	133	664	504	144	648	477	156	633	448	169	617
l	9	549	134	683	522	146	668	493	158	651	464	171	635
550	10	556	136	692	529	148	677	501	160	661	472	173	644
İ	11	575	138	712	547	150	696	518	162	680	488	175	663
İ	12	593	139	732	565	151	716	536	164	700	505	177	682
	13	612	141	753	584	153	737	554	166	719	523	179	701
	14	632	142	774	602	155	757	572	168	739	540	181	721
	15	652	144	795	622	156	778	591	169	760	558	183	741
	4	554	153	707	526	171	697	497	192	689	466	216	682
	5	573	154	727	545	172	717	515	193	708	483	216	699
	6	592	155	747	563	173	736	533	193	726	501	216	717
	7	612	157	769	583	174	757	552	194	746	519	217	736
	8	632	158	790	602	175	777	571	194	765	538	217	755
650	9	652	159	811	622	176	798	590	195	785	556	218	774
650	10	653	160	813	623	177	800	592	196	788	559	218	777
	11	673	161	834	643	178	821	611	197	808	577	219	796
	12	694	163	856	663	179	842	630	198	829	596	220	816
	13	714	164	879	683	181	864	650	200	850	616	221	836
	14	736	166	901	704	182	886	670	201	871	635	222	857
	15	757	167	924	725	184	908	691	202	893	655	223	878
	4	610	168	778	579	187	766	547	209	756	513	234	747
	5	631	170	801	600	188	788	567	210	777	532	234	766
	6	652	171	823	620	189	809	587	210	797	552	235	787
	7	674	172	846	641	191	832	607	211	818	572	235	807
	8	696	174	870	663	192	855	628	212	840	592	236	828
700	9	718	175	893	684	193	877	649	214	863	613	237	850
'**	10	719	176	895	686	194	880	651	215	866	615	238	853
	11	741	178	919	707	196	903	672	216	889	636	239	874
	12	763	180	943	729	197	927	694	217	911	656	240	897
	13	786	181	967	752	199	951	716	219	934	678	241	919
	14	809	183	992	774	201	975	738	220	958	699	243	942
	15	833	185	1017	797	202	999	760	222	982	721	244	965

ПРИМЕЧАНИЯ

Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ C воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT_1-2-3-4-5-6-7-8_Rev.00_1 (2-2)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла

	Температура воды			TEM	ПЕРАТУРА В	ОДЫ НА ВЫ	ХОДЕ КОНДЕ	НСАТОРА П	РИ РЕКУПЕР	АЦИИ ТЕПЛА	A, °C		
	на выходе из		35			40			45			50	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	677	184	861	642	204	846	606	226	832	568	252	820
	5	700	186	886	665	205	870	628	227	855	590	252	842
	6	723	187	910	688	207	895	651	228	879	612	253	865
	7	748	189	937	711	208	919	674	230	904	634	254	888
	8	772	190	962	735	210	945	697	231	928	656	256	912
	9	797	192	989	759	211	970	720	233	953	679	257	936
800	10	798	194	992	762	213	975	724	234	959	685	259	943
	11	823	196	1018	786	215	1001	747	236	983	707	260	967
	12	848	197	1045	810	217	1027	771	238	1009	730	262	991
	13	873	199	1072	835	218	1053	795	240	1034	753	263	1016
	14	899	201	1100	860	220	1080	819	241	1060	776	265	1041
	15	925	203	1128	885	222	1107	844	243	1087	800	267	1067
	4	730	199	929	693	221	914	655	245	900	614	273	887
	5	756	201	957	718	222	940	678	246	924	637	274	911
	6	781	203	984	743	224	967	702	248	950	660	275	935
	7	807	204	1011	768	225	993	727	249	976	684	276	960
	8	833	206	1039	794	227	1021	752	251	1003	708	277	985
050	9	860	208	1068	820	229	1049	778	252	1030	733	279	1012
850	10	862	210	1072	822	231	1052	780	254	1034	736	280	1016
	11	889	212	1100	848	233	1081	806	256	1061	761	282	1043
	12	916	214	1130	875	235	1109	831	258	1089	786	283	1070
	13	944	216	1159	902	237	1138	858	259	1117	812	285	1097
	14	972	218	1190	929	239	1168	884	261	1146	838	287	1125
	15	1000	220	1221	957	241	1198	912	264	1175	864	289	1153
	4	789	215	1004	750	238	988	708	264	972	665	294	959
	5	816	217	1033	776	240	1016	734	266	1000	689	295	984
	6	843	219	1062	802	241	1043	759	267	1026	714	296	1010
	7	871	220	1091	829	243	1072	786	269	1055	740	298	1038
	8	899	222	1121	857	245	1102	812	270	1082	766	299	1065
900	9	927	224	1151	885	247	1132	839	272	1111	792	300	1092
300	10	915	225	1140	873	248	1121	830	273	1103	784	301	1085
	11	943	227	1171	901	250	1150	856	275	1131	810	303	1113
	12	972	229	1202	929	252	1181	884	277	1160	836	305	1141
	13	1001	232	1233	957	254	1211	911	279	1190	863	306	1169
	14	1031	234	1265	986	256	1242	939	281	1220	890	308	1198
	15	1061	236	1297	1015	258	1274	968	283	1251	918	310	1228

ПРИМЕЧАНИЯ

Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ С воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT_1-2-3-4-5-6-7-8_Rev.00_2 (1-2)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла **FWWD950~C12LSS**

	Температура воды			TEM	ПЕРАТУРА В	ОДЫ НА ВЫ	ХОДЕ КОНДЕ	НСАТОРА П		АЦИИ ТЕПЛА	A, °C		
	на выходе из		35			40			45			50	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	855	233	1088	813	255	1068	768	280	1048	721	306	1027
	5	884	235	1119	841	258	1099	796	282	1078	748	309	1057
	6	914	237	1151	870	260	1130	824	284	1108	775	311	1086
	7	944	240	1184	899	262	1161	852	287	1139	803	314	1117
	8	974	242	1216	929	265	1194	881	289	1170	831	316	1147
	9	1005	244	1249	959	267	1226	910	292	1202	860	319	1179
950	10	978	244	1223	935	267	1202	889	292	1181	840	319	1159
	11	1008	247	1255	964	270	1233	917	295	1212	868	322	1189
	12	1038	249	1287	993	272	1265	946	297	1243	896	324	1220
	13	1069	252	1320	1023	275	1298	975	300	1275	924	327	1251
	14	1100	254	1354	1053	277	1330	1004	303	1307	953	330	1283
	15	1131	256	1388	1084	280	1364	1034	305	1339	982	332	1315
	4	889	251	1140	845	273	1118	798	295	1093	750	319	1069
	5	920	253	1173	875	276	1151	827	299	1126	778	323	1101
	6	951	256	1207	905	279	1184	856	302	1158	806	327	1133
	7	982	259	1241	935	282	1217	886	305	1191	835	330	1165
	8	1014	262	1276	966	285	1251	916	309	1225	864	334	1198
	9	1046	265	1311	998	288	1286	947	312	1259	894	338	1232
C10	10	1030	265	1295	984	288	1272	936	313	1249	885	339	1224
	11	1061	268	1329	1015	291	1306	965	316	1282	914	342	1256
	12	1093	270	1364	1046	294	1340	996	320	1315	943	346	1289
	13	1126	273	1399	1077	297	1374	1026	323	1349	973	349	1322
	14	1158	276	1434	1109	300	1409	1057	326	1383	1003	353	1356
	15	1192	279	1470	1142	303	1445	1089	329	1418	1034	357	1391
	4	1004	274	1278	954	304	1258	902	337	1239	847	375	1222
	5	1037	276	1313	987	305	1292	934	339	1273	878	376	1254
	6	1072	278	1350	1020	307	1327	966	340	1306	910	378	1288
	7	1106	280	1386	1054	309	1363	1000	342	1342	942	379	1321
	8	1141	283	1424	1089	312	1401	1033	344	1377	975	381	1356
040	9	1176	285	1461	1123	314	1437	1067	346	1413	1008	383	1391
C12	10	1093	271	1364	1045	298	1344	995	329	1324	942	365	1306
	11	1126	273	1399	1077	300	1377	1026	331	1357	972	366	1338
	12	1159	275	1434	1109	303	1412	1057	333	1391	1003	368	1371
	13	1192	277	1470	1142	305	1447	1089	336	1425	1034	370	1404
	14	1226	280	1506	1175	307	1482	1122	338	1459	1065	372	1437
	15	1261	282	1543	1209	310	1518	1154	340	1494	1097	374	1471

ПРИМЕЧАНИЯ

Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ C воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT 1-2-3-4-5-6-7-8 Rev.00 2 (2-2)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла

	Температура воды			TEM	ПЕРАТУРА В	 ВОДЫ НА ВЫХ	ХОДЕ КОНДЕ	НСАТОРА П	 РИ РЕКУПЕР	АЦИИ ТЕПЛА	A, °C		
	на выходе из		35			40			45			50	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	1049	289	1338	998	320	1318	944	356	1300	887	396	1283
	5	1084	291	1375	1032	322	1354	977	357	1334	920	398	1318
	6	1118	293	1411	1066	324	1390	1011	359	1370	953	399	1352
	7	1154	295	1449	1101	326	1427	1045	361	1406	986	400	1386
	8	1190	298	1488	1136	328	1464	1080	363	1443	1020	402	1422
	9	1225	300	1525	1171	331	1502	1114	365	1479	1054	404	1458
C13	10	1175	287	1463	1125	316	1441	1070	348	1418	1012	385	1396
	11	1210	290	1500	1158	319	1477	1104	351	1454	1045	387	1431
	12	1245	292	1537	1192	321	1513	1137	353	1490	1078	389	1467
	13	1280	295	1575	1227	324	1550	1171	355	1526	1112	391	1503
	14	1316	298	1613	1262	326	1588	1205	358	1563	1146	393	1539
	15	1352	300	1652	1297	329	1626	1240	361	1600	1179	396	1575
	4	1107	304	1411	1053	338	1391	995	375	1370	935	418	1353
	5	1144	307	1451	1089	340	1429	1031	377	1408	969	419	1388
	6	1182	309	1491	1126	342	1468	1067	379	1446	1004	420	1424
	7	1220	312	1532	1163	344	1507	1103	381	1484	1040	422	1462
	8	1258	314	1572	1201	346	1547	1140	383	1523	1076	424	1500
C14	9	1297	317	1614	1239	349	1588	1177	385	1562	1112	426	1538
614	10	1298	319	1617	1240	351	1592	1180	387	1567	1116	428	1544
	11	1337	322	1659	1279	354	1633	1217	390	1607	1152	430	1582
	12	1377	325	1702	1317	357	1674	1255	392	1647	1189	432	1622
	13	1417	328	1745	1356	360	1716	1293	395	1688	1226	435	1661
	14	1458	331	1789	1396	363	1759	1332	398	1730	1264	437	1702
	15	1499	334	1833	1437	366	1802	1371	401	1772	1303	440	1743
	4	1167	321	1488	1109	356	1465	1048	395	1443	984	439	1423
	5	1207	323	1530	1148	358	1506	1086	397	1483	1020	441	1461
	6	1247	326	1573	1187	360	1547	1124	399	1523	1058	442	1500
	7	1288	329	1617	1227	363	1590	1163	401	1564	1095	444	1539
	8	1329	331	1660	1267	365	1632	1202	403	1605	1134	446	1580
C15	9	1371	334	1705	1308	368	1676	1242	406	1648	1173	448	1621
"	10	1386	337	1724	1324	371	1694	1258	408	1666	1189	451	1639
	11	1429	340	1769	1365	374	1739	1298	411	1709	1228	453	1681
	12	1472	343	1816	1407	377	1784	1339	414	1753	1268	456	1724
	13	1516	347	1863	1450	380	1830	1381	417	1798	1308	458	1767
	14	1561	350	1911	1494	383	1877	1423	420	1843	1350	461	1811
	15	1607	353	1960	1538	386	1924	1466	423	1890	1391	464	1855

ПРИМЕЧАНИЯ

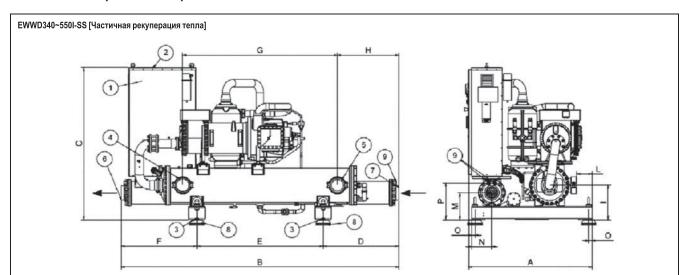
Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ С воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT_1-2-3-4-5-6-7-8_Rev.00_3 (1-2)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла FWWDC16~C18L-SS

	Температура воды			TEM	ПЕРАТУРА В	ОДЫ НА ВЫ	ХОДЕ КОНДЕ	НСАТОРА П	РИ РЕКУПЕР	АЦИИ ТЕПЛ	A, °C		
	на выходе из		35			40			45			50	
Размер	испарителя (°C)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
	4	1216	339	1555	1156	373	1529	1093	410	1503	1027	452	1479
	5	1257	342	1599	1196	376	1572	1132	413	1545	1065	455	1520
	6	1299	345	1644	1237	379	1616	1172	416	1588	1103	458	1561
	7	1341	348	1689	1278	382	1660	1212	419	1631	1142	461	1603
	8	1383	351	1734	1319	385	1704	1252	422	1674	1182	464	1646
	9	1427	354	1781	1362	388	1750	1294	426	1720	1222	467	1689
C16	10	1442	358	1800	1377	392	1769	1309	429	1738	1238	470	1708
	11	1486	361	1847	1420	395	1815	1351	432	1784	1279	474	1752
	12	1531	364	1895	1464	399	1862	1394	436	1830	1320	477	1797
	13	1576	368	1944	1508	402	1910	1437	440	1876	1362	481	1842
	14	1623	371	1994	1553	406	1959	1480	443	1924	1404	484	1888
	15	1670	375	2044	1599	410	2008	1525	447	1972	1447	488	1935
	4	1265	356	1621	1204	390	1594	1139	426	1565	1071	465	1536
	5	1307	360	1667	1245	394	1639	1179	430	1609	1109	469	1578
	6	1350	363	1713	1286	397	1683	1219	434	1653	1149	473	1622
	7	1393	367	1760	1329	401	1730	1261	438	1699	1189	477	1666
	8	1437	370	1807	1371	405	1776	1302	442	1744	1230	481	1711
C17	9	1482	374	1856	1415	409	1824	1345	446	1791	1271	485	1756
""	10	1498	378	1876	1431	413	1844	1361	450	1811	1288	490	1777
	11	1543	382	1925	1475	417	1892	1404	454	1858	1329	494	1823
	12	1589	385	1975	1520	421	1941	1448	458	1906	1372	498	1870
	13	1636	389	2025	1566	425	1990	1492	462	1954	1415	503	1918
	14	1684	393	2077	1612	429	2041	1537	467	2004	1459	507	1966
	15	1732	397	2129	1659	433	2092	1583	471	2054	1503	512	2015
	4	1314	374	1688	1251	407	1658	1184	441	1625	1114	477	1591
	5	1357	378	1735	1293	411	1704	1225	446	1671	1154	483	1637
	6	1401	382	1783	1336	416	1752	1267	451	1718	1195	488	1683
	7	1446	386	1832	1379	420	1799	1309	456	1765	1236	493	1729
	8	1491	390	1881	1424	425	1849	1353	461	1814	1278	499	1777
C18	9	1538	394	1932	1468	429	1897	1396	466	1862	1321	504	1825
""	10	1554	398	1952	1485	434	1918	1413	471	1883	1337	509	1846
	11	1600	402	2003	1530	438	1968	1457	475	1932	1380	514	1895
	12	1648	406	2054	1577	442	2019	1502	480	1982	1424	520	1944
	13	1696	410	2107	1624	447	2071	1548	485	2033	1468	525	1993
	14	1745	414	2160	1672	451	2123	1594	490	2084	1514	530	2044
	15	1795	418	2214	1720	456	2176	1642	495	2137	1559	536	2095

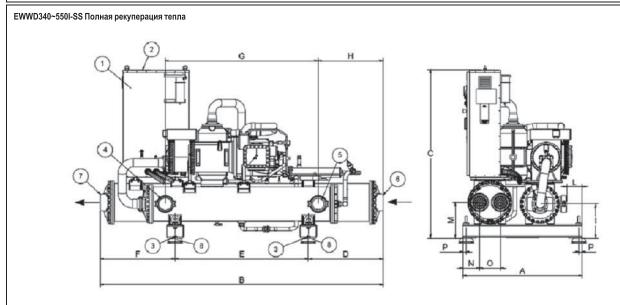

ПРИМЕЧАНИЯ

Номинальная охлаждающая способность и потребляемая мощность основаны на $\Delta T = 5^{\circ}$ C воды на входе/выходе испарителя и температуре воды в конденсаторе при полной рекуперации тепла; степень загрязнения испарителя = 0,0176 м² °С/кВт; степень загрязнения конденсатора = 0,0440 м² °С/кВт

OPT 1-2-3-4-5-6-7-8 Rev.00 3 (2-2)

7 Размерные чертежи

7-1 Размерные чертежи



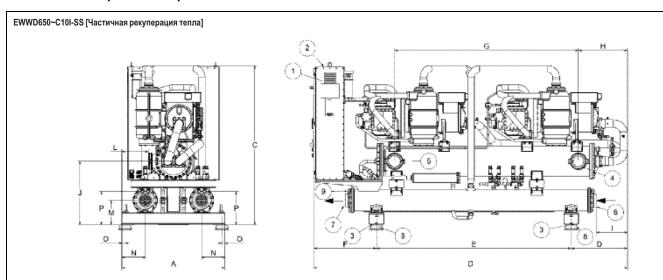
							Габаритнь	е размеры						
EWWD~I-	Α	В	С	D	E	F	G	Н	I	L	М	N	0	Р
340~550I-SS	1466	3298	1821	899	1500	899	1837	731	412	182	323	240	40	
340~550I-SS (PHR)	1466	3298	1821	899	1500	899	1837	731	412	182	323	240	40	437

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х200 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (виктаулическое соединение) [168,3 мм]
- 5 Выпускной клапан для воды испарителя (виктаулическое соединение) [168,3 мм]
- 6 Соединение для подачи воды в конденсатор [Ø5"]
- 7 Соединение для выхода воды из конденсатора [Ø5"]
- 8 Изоляторы (опция)
- 9 Подключение для частичной рекуперации тепла (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_1

							Габаритны	е размеры						
EWWD~I-	Α	В	С	D	E	F	G	Н	I	L	M	N	0	Р
340~550I-SS (THR)	1430	3455	2037	948	1600	907	1837	830	412	182	431	199	252	40

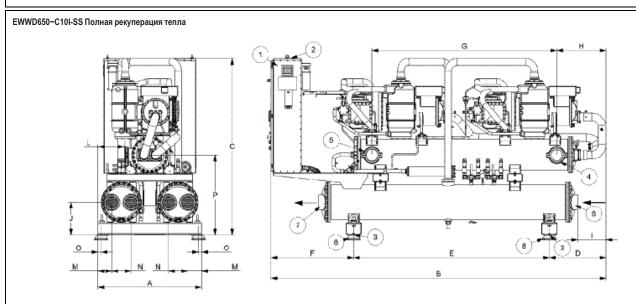

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х200 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (виктаулическое соединение) [168,3 мм]
- 5 Выпускной клапан для воды испарителя (виктаулическое соединение) [168,3 мм]
- 6 Соединение для подачи воды в конденсатор [Ø6"]
- 7 Соединение для выхода воды из конденсатора [Ø6"]
- 8 Изоляторы (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_2

7 Размерные чертежи

7 - 1 Размерные чертежи



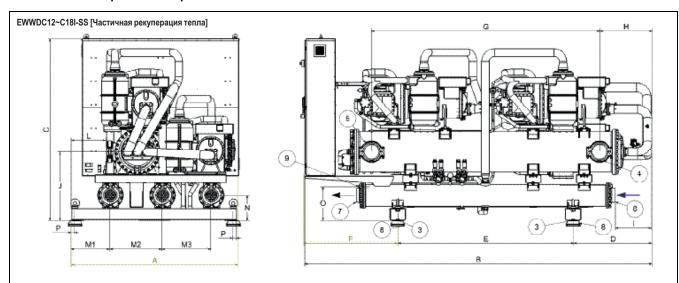
							Габар	итные раз	меры						
EWWD~I-	Α	В	С	D	Е	F	G	Н	I	J	L	M	N	0	Р
650~C10I-SS	1350	4116	2103	738	2555	827	2412	643	385	838	331	323	305	40	-
650~C10I-SS (PHR)	1350	4116	2103	738	2555	827	2412	643	385	838	331	323	305	40	437

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х200 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (соединение Victaulic)
- 5 Выпускной клапан для воды испарителя (соединение Victaulic)
- 6 Соединение для подачи воды в конденсатор
- 7 Соединение для выхода воды из конденсатора
- 8 Изоляторы (опция)
- 9 Подключение для частичной рекуперации тепла (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_3a

							Габар	итные раз	меры						
EWWD~I-	Α	В	С	D	E	F	G	Н	- 1	J	L	M	N	0	P
650~C10I-SS (THR)	1350	4371	2319	738	2555	1078	2412	643	310	431	345	179	252	40	1053

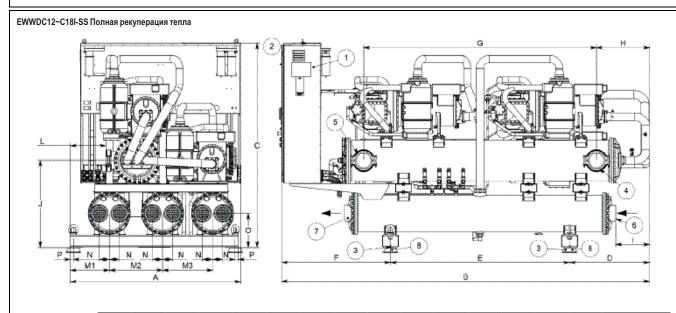

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х200 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (соединение Victaulic)
- 5 Выпускной клапан для воды испарителя (соединение Victaulic)
- 6 Соединение для подачи воды в конденсатор
- 7 Соединение для выхода воды из конденсатора
- 8 Изоляторы (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_4a

7 Размерные чертежи

7 - 1 Размерные чертежи



								Габарі	итные ра	змеры							
EWWD~I-	Α	В	С	D	E	F	G	Н	I	J	L	M1	M2	М3	N	0	P
C12~C18I-SS	2130	4439	2323	1041	2200	1198	2910	666	452	880	446	490	645	645	323		40
C12~C18I-SS (PHR)	2130	4439	2323	1041	2200	1198	2910	666	452	880	446	490	645	645	323	437	40

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х350 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (соединение Victaulic)
- 5 Выпускной клапан для воды испарителя (соединение Victaulic)
- 6 Соединение для подачи воды в конденсатор
- 7 Соединение для выхода воды из конденсатора
- 8 Изоляторы (опция)
- 9 Подключение для частичной рекуперации тепла (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_5a

								Габарі	итные ра	змеры							
EWWD~I-	Α	В	С	D	Е	F	G	Н	I	J	L	M1	M2	М3	N	0	P
C12~C18I-SS (THR)	2131	4610	2560	1001	2240	1369	2910	666	416	1095	446	490	665	625	126	431	40

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Электрическая панель
- 2 Слот 150х200 для подключения питания
- 3 4 отверстия Ø21 для крепления изолятора
- 4 Впускной клапан для воды испарителя (соединение Victaulic)
- 5 Выпускной клапан для воды испарителя (соединение Victaulic)
- 6 Соединение для подачи воды в конденсатор
- 7 Соединение для выхода воды из конденсатора
- 8 Изоляторы (опция)

DMN_1-2-3a-4a-5a-6a-7-8a_Rev.01_6a

8 Данные об уровне шума

8 - 1 Данные об уровне шума

Уровни шума

EWWD~I-SS

Размер		Уровен	нь звукового дан	вления в 1 м от 6	блока в полусфе	ерическом прос	транстве (rif. 2 х	10 ⁻⁵ Πa)		Мощность
блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
340	53,6	56,2	71,1	74,5	69,7	65,6	63,9	59,5	75,2	93,7
400	54,6	57,2	72,1	75,5	70,7	66,6	64,9	60,5	76,2	96,6
460	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	96,7
550	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	96,7
650	56,2	58,8	73,7	77,1	72,3	68,2	66,5	62,1	77,8	96,9
700	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	97,3
800	57,1	59,7	74,6	78,0	73,2	69,1	67,4	63,0	78,7	97,8
850	58,2	60,8	75,7	79,1	74,3	70,2	68,5	64,1	79,8	98,9
900	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8
950	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8
C10	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8
C12	58,8	61,4	76,3	79,7	74,9	70,8	69,1	64,7	80,4	100,4
C13	59,2	61,8	76,7	80,1	75,3	71,2	69,5	65,1	80,8	100,8
C14	59,6	62,2	77,1	80,5	75,7	71,6	69,9	65,5	81,2	101,2
C15	61,4	64,0	78,9	82,3	77,5	73,4	71,7	67,3	83,0	103,0
C16	61,4	64,0	78,9	82,3	77,5	73,4	71,7	67,3	83,0	103,0
C17	61,4	64,0	78,9	82,3	77,5	73,4	71,7	67,3	83,0	103,0
C18	61,4	64,0	78,9	82,3	77,5	73,4	71,7	67,3	83,0	103,0

ПРИМЕЧАНИЯ

Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°C, конденсатор 30/35°C, работа при полной нагрузке

EWWD~I-XS

Размер		Уровен	нь звукового да	вления в 1 м от	блока в полусфе	ерическом прос	транстве (rif. 2 x	10-5Па)		Мощность
блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
360	53,6	56,2	71,1	74,5	69,7	65,6	63,9	59,5	75,2	93,7
440	54,6	57,2	72,1	75,5	70,7	66,6	64,9	60,5	76,2	96,6
500	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	96,7
600	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	96,7
750	56,2	58,8	73,7	77,1	72,3	68,2	66,5	62,1	77,8	96,9
800	56,6	59,2	74,1	77,5	72,7	68,6	66,9	62,5	78,2	97,3
850	57,1	59,7	74,6	78,0	73,2	69,1	67,4	63,0	78,7	97,8
950	58,2	60,8	75,7	79,1	74,3	70,2	68,5	64,1	79,8	98,9
C10	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8
C11	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8
C12	59,1	61,7	76,6	80,0	75,2	71,1	69,4	65,0	80,7	99,8

ПРИМЕЧАНИЯ

Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°C, конденсатор 30/35°C, работа при полной нагрузке

8 Данные об уровне шума

8 - 1 Данные об уровне шума

Поправочные коэффициенты уровня звукового давления для различных расстояний

EWWD~I-SS

D	Расстояние										
Размер блока	1 м	5 м	10 м	15 м	20 м	25 м					
340	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
400	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
460	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
550	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
650	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
700	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
800	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
850	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
900	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
950	0,0	-7,9	-12,7	-15,8	-18,1	-19,8					
C10	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C12	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C13	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C14	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C15	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C16	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C17	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					
C18	0,0	-7,5	-12,2	-15,3	-17,5	-19,3					

EWWD-I-XS

	Расстояние											
Размер блока	1 м	5 м	10 м	15 м	20 м	25 м						
360	0,0 -7,9		-12,7	-15,8	-18,1	-19,8						
440	0,0	-7,9	-12,7	-15,8	-18,1	-19,8						
500	0,0	-7,9	-12,7	-15,8	-18,1	-19,8						
600	0,0	-7,9	-12,7	-15,8	-18,1	-19,8						
750	0,0 -7,9		-12,7	-15,8	-18,1	-19,8						
800	0,0	-7,5	-12,2	-15,3	-17,5	-19,3						
850	0,0	-7,9	-12,7	-15,8	-18,1	-19,8						
950	0,0	-7,5	-12,2	-15,3	-17,5	-19,3						
C10	0,0	-7,5	-12,2	-15,3	-17,5	-19,3						
C11	0,0	-7,9	-12,7	-15,8	-18,1	-19,8						
C12	0,0	-7,5	-12,2	-15,3	-17,5	-19,3						

NSL_1-2_Rev.00_2

9 - 1 Способ монтажа

Примечания по установке

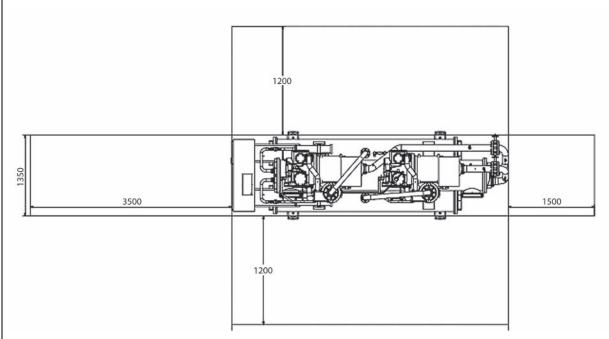
Предупреждение

Установка и техобслуживание производится только квалифицированным специалистом, который знаком с местными законами и правилами, а также имеет опыт работы с оборудованием. Нужно избегать установки блока в местах, которые могут считаться опасными для всех работ по техобслуживанию.

Обращение

Охладитель устанавливается на тяжелых деревянных брусьях, чтобы защитить блок от случайных повреждений и дать возможность легко его передвигать. Рекомендуется, чтобы все передвижения и транспортировка, когда это возможно, выполнялись с брусьями под блоком и они не убирались до того, пока блок не передвинут на новое место.

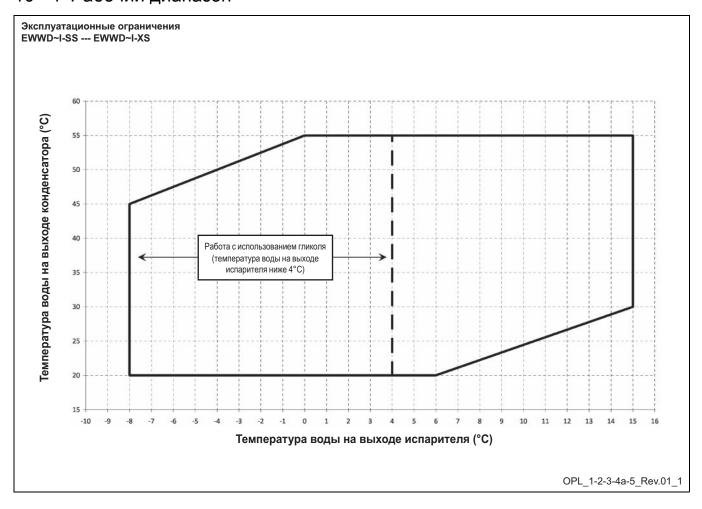
Если блок нужно поднять, то нужно это сделать кабелями или цепями прикрепленными к подъемным отверстиям в трубным решеткам испарителя. Для защиты блока управления и других частей охладителя должны использоваться широкозахватные траверсы.


Место установки

Требуется ровный и достаточно крепкий пол. При необходимости должны быть предоставлены дополнительные структурные элементы, чтобы перенести вес блока на ближайшие балки.

Резиновые изоляторы могут поставляться и устанавливаться на месте установки под каждым углом упаковки. Резиновая противоскользящая прокладка должна располагаться под изоляторами, если не применяются болты для крепления. Рекомендуем использовать виброизоляторы на всех трубах для воды, подсоединенных к охладителю, чтобы избежать натяжения труб и передачи вибрации и шума.

Минимальные требования к месту установки


После установки каждая из сторон оборудования должна быть доступна для технического обслуживания. Минимально необходимое место указано на следующем чертеже:

Минимальные установочные габариты для проведения техобслуживания машины

INN 1 Rev.00

10 - 1 Рабочий диапазон

10 - 1 Рабочий диапазон

Таблица 1 - Максимальное и минимальное значения **Δ**t воды для испарителя

Максимальный перепад температуры Δt воды в испарителе	°C	8
Минимальный перепад температуры Δt воды в испарителе	°C	4
Минимальный перепад температуры Δt воды в конденсаторе (1-проходный, 2 прохода, Δt 4÷8°C)	°C	4
Максимальный перепад температуры Δt воды в конденсаторе (1-проходный, 2 прохода, Δt 4÷8°C)	°C	8
Минимальный перепад температуры ΔtT воды в конденсаторе (2 прохода, Δt 9÷15°C)	°C	9
Максимальный перепад температуры ΔtT воды в конденсаторе (2 прохода, Δt 9÷15°C)	°C	15
Минимальный перепад температуры ΔtT воды в конденсаторе (4 прохода, Δt 9÷15°C)	°C	9
Максимальный перепад температуры ΔtT воды в конденсаторе (4 прохода, Δt 9÷15°C)	°C	15

Таблица 2 - Степени загрязнения испарителя

Степени загрязнения м²°С/кВт	Поправочный коэффициент производительности по охлаждению	Поправочный коэффициент потребляемой мощности	Поправочный коэффициент EER
0,0176	1,000	1,000	1,000
0,0440	0,978	0,986	0,992
0,0880	0,957	0,974	0,983
0,1320	0,938	0,962	0,975

Таблица 3 - Степени загрязнения конденсатора

Степени загрязнения м²°С/кВт	Поправочный коэффициент производительности по охлаждению	Поправочный коэффициент потребляемой мощности	Поправочный коэффициент EER
0,0176	1,000	1,000	1,000
0,0440	0,978	0,986	0,992
0,0880	0,957	0,974	0,983
0,1320	0,938	0,962	0,975

Таблица 4.1 - Минимальное процентное содержание гликоля при низкой температуре воды

Температура воды на выходе испарителя (°C)	2	0	-2	-4	-6	-8
Этиленгликоль (%)	10	20	20	20	30	30
Пропиленгликоль (%)	10	20	20	30	30	30

Примечание: Минимальное процентное содержание гликоля для использования при температуре воды на выходе из испарителя ниже 4°C для предотвращения замерзания системы циркуляции воды.

Таблица 4.2 - Минимальное процентное содержание гликоля при низкой температуре воздуха

Температура воздуха снаружи (°C) (2)	-3	-8	-15	-23	-35
Этиленгликоль (%) (1)	10%	20%	30%	40%	50%
Температура воздуха снаружи (°C) (2)	-3	-7	-12	-20	-32
Пропиленгликоль (%) (1)	10%	20%	30%	40%	50%

Примечание (1): Минимальное процентное содержание гликоля для предотвращения замерзания воды в контуре при указанной температуре окружающего воздуха.

Примечание (2): Температура наружного воздуха превышает эксплуатационные ограничения агрегата, поэтому в зимний период при простое может понадобится защита системы циркуляции воды.

Таблица 5 - Поправочные коэффициенты при низкой температуре воды на выходе испарителя

Температура воды на выходе испарителя (°C)	2	0	-2	-4	-6	-8
Производительность по охлаждению	0,842	0,785	0,725	0,670	0,613	0,562
Потребляемая мощность компрессора	0,950	0,940	0,920	0,890	0,870	0,840

Примечание: Поправочные коэффициенты, которые необходимо учитывать при эксплуатационных условиях: температура воды на выходе испарителя 7°C.

Таблица 6 - Поправочные коэффициенты для смеси воды и гликоля

	Этиленгликоль (%)	10%	20%	30%	40%	50%
	Производительность по охлаждению	0,991	0,982	0,972	0,961	0,946
Этиленгликоль	Потребляемая мощность компрессора	0,996	0,992	0,986	0,976	0,966
Этилентликоль	Скорость потока (Δt)	1,013	1,04	1,074	1,121	1,178
	Падение давления в испарителе	1,070	1,129	1,181	1,263	1,308
	Производительность по охлаждению	0,985	0,964	0,932	0,889	0,846
Пропилонению	Потребляемая мощность компрессора	0,993	0,983	0,969	0,948	0,929
Пропиленгликоль	Скорость потока (Δt)	1,017	1,032	1,056	1,092	1,139
	Падение давления в испарителе	1,120	1,272	1,496	1,792	2,128

OPL 1-2-3-4a-5 Rev.01 2

10 - 1 Рабочий диапазон

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

А) Смесь воды и гликоля - Температура воды на выходе испарителя > 4°C

- в зависимости от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.2 и 6)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблицы 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/с) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

Размер блока: **EWWD340I-SS**

Смесь: Вода

Эксплуатационные условия: ELWT 12/7°C - CLWT 30/35°C

- Производительность по охлаждению: 333 кВт - Потребляемая мощность: 71,5 кВт - Расход (∆t 5°C): 15,90 л/с - Падение давления в испарителе: 37 кПа

Смесь: Вода + 30% этиленгликоля (для зимней температуры воздуха до -15°C)

Эксплуатационные условия: ELWT 12/7°C – CLWT 30/35°C

- Производительность по охлаждению: $333 \times 0,972 = 324 \text{ кВт}$ - Потребляемая мощность: $71,5 \times 0,986 = 70,5 \text{ кВт}$

- Расход (Δ t 5°C): 15,48 (относится к 324 кВт) х 1,074 = 16,63 л/с - Падение давления в испарителе: 40 (относится к 16,63 л/с) х 1,181 = 47 кПа

В) Смесь воды и гликоля - Температура воды на выходе испарителя < 4°С

- в зависимости от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.1, 4.2 и Табл. 6)
- зависит от температуры воды на выходе из испарителя (см. таблицу 5)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблиц 5 и 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/с) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

Размер блока: **EWWD340I-SS**

Смесь: Вода

Стандартные условия работы ELWT 12/7°C - CLWT 35/40°C

- Производительность по охлаждению: 317 кВт - Потребляемая мощность: 78,9 кВт - Расход (Δt 5°C): 15,15 л/с - Падение давления в испарителе: 34 кПа

Смесь: Вода + 30% гликоль (для низкой температуры на выходе испарителя -1/-6°С)

Эксплуатационные условия: ELWT -1/-6°C - CLWT 35/40°C - Производительность по охлаждению: 317 x 0,613 x 0,972 = 189 кВт - Потребляемая мощность: 78,9 x 0,870 x 0,986 = 67,7 кВт

- Расход (Δ t 5°C): 9,03 л/с (относится к 189 кВт) х 1,074 = 9,70 л/с - Падение давления в испарителе: 15 кПа (относится к 9,70 л/с) х 1,181 = 18 кПа

OPL_1-2-3-4a-5_Rev.01_3

10 - 1 Рабочий диапазон

Объем, поток и качество воды

		Охі	таждающая в	ода	0			Нагрета	я вода (2)		Тенденция	
Пози	ІЦИИ (1) (6)		Циркуляцион	ная система	Однократный поток	Охлажде	нная вода	Низкая те	ипература	Высокая те	емпература	в случае
	(1)(0)		Циркулирующая вода	Поступающая вода ₍₄₎	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода ₍₄₎	Циркулирующая вода [20°C ~ 60°C]	Поступающая вода ₍₄₎	Цирхулирующая вода [60°C ~ 80°C]	Поступающая вода ₍₄₎	несоответствия критериям
4	pН	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,8 - 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
ова	Электропроводность	[мСм/м] при 25°С	Менее 80	Менее 30	Менее 40	Менее 80	Менее 80	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
контролировать	электропроводноств	(мкСм/см) при 25°С	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 800)	(Менее 800)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
율	Ионы хлоридов	[мгСl2-/л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
	Ионы сульфатов	[мгЅО2-4/л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
димо	М-щелочность (рН 4,8)	[мгСаСОЗ/л]	Менее 100	Менее 50	Менее 50	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
õ	Общая жесткость	[мгСаСОЗ/л]	Менее 200	Менее 70	Менее 70	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
которые необходимо	Кальциевая жесткость	[мгСаСОЗ/л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
g	Ионы силикатов	[мгSiO2/л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
	Кислород	(мг О2 /л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Коррозия
1	Размер частиц	(мм)	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Эрозия
Элементы,	Общее содержание растворенных твердых веществ	(мг/л)	Менее 1000	Менее 1000	Менее 1000	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Эрозия
હ	Этилен, пропиленглик	оль (мас. конц.)	Менее 60%	Менее 60%		Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	
	Ионы нитратов	(мг NO3- /л)	Менее 100	Менее 100	Менее 100	Менее 100	Менее 101	Менее 100	Менее 101	Менее 100	Менее 101	Коррозия
проверки	ТОС Общее содержание органического углерода	(мг/л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Накипь
e e	Железо	[мгFе/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
ᄚ	Медь	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
для	Ионы сульфитов	[мгS2-/л]	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Коррозия
Z Q	Ионы аммония	[мгNH+4/л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
Позиции,	Остаточные хлориды	[мгСL/л]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
<u>ا</u>	Свободный карбид	[мгСО2/л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
	Показатель устойчиво	сти	6,0 ~ 7,0			-						Коррозия + накипь

ПРИМЕЧАНИЯ

- Названия, определения и агрегаты соответствуют стандарту JIS К 0101. Значения и единицы измерения в скобках являются устаревшими и приводятся только для справки.
- Коррозия обычно значительна при использовании подогретой воды (более 40°C).
 - Желательно принять меры против коррозии, особенно в случае, когда железные детали пребывают в прямом контакте с водой, без защитных покрытий. Например, обработка химикатами. В системе охлаждающей воды с герметической охлаждающей башней вода в замкнутом контуре должна соответствовать стандартам для нагретой воды, а свободно протекающая вода - стандартам для охлаждающей воды.
- В качестве подаваемой воды рассматривается питьевая, техническая и грунтовая вода, за исключением естественной, нейтральной и мягкой воды. Указанные выше позиции следует рассматривать в рамках возможного действия коррозии и накипи.
- Указанные выше пределы должны рассматриваться в качестве общей рекомендации. Они не могут полностью гарантировать отсутствие коррозии и разрушения. Некоторые сочетания элементов, наличие компонентов, не указанных в таблице, или неучтенных факторов могут привести к возникновению коррозии. OPL_1-2-3-4a-5_Rev.01_4a

10 - 1 Рабочий диапазон

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

Фактически, каждый раз при запуске компрессора выделяется избыточное количество масла и одновременно повышается температура в статоре электродвигателя компрессора из-за бросков пускового тока при запуске.

Во избежание повреждения компрессоров компанией предусмотрено устройство, ограничивающее частые остановы и пуски.

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 1 компрессором

 $M(π) = (0.94 \times ΔT(°C) + 5.87) \times P(κBτ)$

Для агрегата с 2 компрессорами

 $M(π) = (0.1595 \times ΔT(°C) + 3.0825) \times P(κBτ)$

Для агрегата с 3 компрессорами

 $M(π) = (0.0443 \times ΔT(°C) + 1.6202) \times P(κBT)$

где:

М минимальное количество воды в одном агрегате, выраженное в литрах

Р Производительность по охлаждению блока, выраженная в кВт ΔT разность температур воды на входе/выходе испарителя в °C

Данная формула подходит для:

- стандартных параметров микропроцессора

Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

OPL_1-2-3-4a-5_Rev.01_5

11 Характеристика гидравлической системы

11 - 1 Кривая падения давления воды Испаритель/Конденсатор

Перепады давления

EWWD~I-SS

Размер	340	400	460	550	650	700	800	850	900	950	C10	C12	C13	C14	C15	C16	C17	C18
Охлаждающая способность (кВт)	333	394	460	538	640	705	782	844	910	986	1027	1155	1204	1274	1346	1401	1455	1510
Расход воды (л/с) - Испаритель	15,91	18,82	21,98	25,70	30,58	33,68	37,36	40,32	43,48	47,11	49,07	55,18	57,52	60,87	64,31	66,94	69,52	72,14
Падение давления в испарителе (кПа)	37	50	54	62	55	44	58	53	53	66	51	52	56	47	58	62	66	71
Поток воды (л/с) - Конденсатор	19,33	22,92	26,80	31,44	37,31	41,14	45,53	49,21	53,03	57,52	60,39	67,32	70,33	74,34	78,55	82,08	85,52	89,01
Падение давления в конденсаторе (кПа)	26	28	30	26	25	25	28	28	26	23	24	24	24	25	24	24	24	23

Поток воды и падение давления при нормальных условиях: вода в испарителе на входе/выходе: 12/7°С – вода в конденсаторе на входе/выходе: 30/35°С

EWWD~I-XS

Размер	360	440	500	600	750	800	850	950	C10	C11	C12
Охлаждающая способность (кВт)	362	433	506	573	720	795	866	933	976	1038	1134
Расход воды (л/с) - Испаритель	17,30	20,69	24,18	27,38	34,40	37,98	41,38	44,58	46,63	49,59	54,18
Падение давления в испарителе (кПа)	64	48	54	68	48	48	47	50	72	46	52
Расход воды (л/с) - Конденсатор	20,69	24,77	28,95	33,16	41,16	45,42	49,50	51,79	56,14	60,22	65,64
Падение давления в конденсаторе (кПа)	48	47	51	66	48	48	47	50	50	65	65

Поток воды и падение давления при нормальных условиях: вода в испарителе на входе/выходе: 12/7°C – вода в конденсаторе на входе/выходе: 30/35°C

EPD 1a-2 Rev.01 1

Падение давления в испарителе и конденсаторе

Чтобы определить падение давления в испарителе или конденсаторе при различных условиях, используйте данную формулу:

$$PD_{2}(\kappa \Pi a) = PD_{1}(\kappa \Pi a) \times \left[\frac{Q_{2}(\pi/c)}{Q_{1}(\pi/c)} \right]^{1,8}$$

- PD, Падение давления, которое необходимо определить (кПа)
- $PD_{_{1}}$ Падение давления при номинальных условиях (кПа)
- Q, расход воды при новых условиях эксплуатации (л/с)
- расход воды при номинальных условиях (л/с) Q_1

Как пользоваться формулой: Пример (испаритель)

Предположим, что блок EWWD340I-SS будет работать в следующих условиях:

- вода в испарителе на входе/выходе: 11/6°C
- вода в конденсаторе на входе/выходе: 30/35°C

Хладопроизводительность в заданных условиях: 322 кВт

Поток воды в испарителе при указанных условиях работы: 15,38 л/с

При нормальных условиях эксплуатации блок EWWD340I-SS имеет следующие характеристики:

- вода в испарителе на входе/выходе: 12/7°C
- вода в конденсаторе на входе/выходе: 30/35°C

Хладопроизводительность в заданных условиях: 333 кВт

Поток воды в испарителе при указанных условиях работы: 15,90 л/с Падение давления при этих условиях работы составит: 37 кПа

Падение давления при выбранных условиях работы составит:

$$\begin{split} & \text{PD}_2 \; (\text{K} \square \text{a}) = 37 \; (\text{K} \square \text{a}) \; \text{x} \quad \left[\begin{array}{c} 15,38 \; (\text{n/c}) \\ \\ \hline 15,90 \; (\text{n/c}) \end{array} \right]^{1,8} \\ & \text{PD}_2 \; (\text{K} \square \text{a}) = 35 \; (\text{K} \square \text{a}) \end{split}$$

ПРИМЕЧАНИЕ - Важно

Если расчетное значение падения давления воды в испарителе оказывается ниже 10 кПа или выше 100 кПа, обратитесь к изготовителю для заказа специального испарителя.

EPD_1a-2_Rev.01_2

11 Характеристика гидравлической системы

11 - 2 Падение давления для частичной рекуперации теплоты

Значения падения давления при частичной рекуперации тепла

EWWD~I-SS

Размер EWWD∼I-SS	340	400	460	550	650	700	800	850	900	950	C10	C12	C13	C14	C15	C16	C17	C18
Мощность подогрева (кВт)	24,5	27,5	35,5	40	48	51	54	62	70	73	76	92	94,3	97,9	102	105	109	126
Поток воды (л/с)	1,17	1,31	1,70	1,89	2,30	2,43	2,59	2,95	3,33	3,50	3,63	4,38	4,51	4,68	4,87	5,02	5,21	6,02
Падение давления в системе рекуперации тепла (кПа)	97	103	88	106	90	99	111	91	87	96	98	65	68	73	79	83	89	115

ПРИМЕЧАНИЯ

Поток воды и падение давления при нормальных условиях: вода в испарителе на входе/выходе: 12/7°C – вода в конденсаторе на входе/выходе: 30/35°C – водная рекуперация тепла на входе/выходе 40/45°C

EWWD~I-XS

Размер EWWD~I-XS	360	440	500	600	750	800	850	950	C10	C11	C12
Мощность подогрева (кВт)	23,8	29,2	33,7	40,2	47,8	52,9	58,3	61,6	66,4	73,4	79,6
Поток воды (л/с)	1,14	1,40	1,61	1,92	2,28	2,53	2,79	2,94	3,17	3,51	3,80
Падение давления в системе рекуперации тепла (кПа)	17	25	31	44	17	20	25	27	31	37	43

ПРИМЕЧАНИЯ

Поток воды и падение давления при нормальных условиях: вода в испарителе на входе/выходе: 12/7°C – вода в конденсаторе на входе/выходе: 30/35°C – водная рекуперация тепла на входе/выходе 40/45°C

OPT_1-2-3-4-5-6-7-8_Rev.00_7

11 Характеристика гидравлической системы

11 - 3 Падение давления для полной рекуперации теплоты

Значения падения давления при полной рекуперации тепла

EWWD~I-SS

Размер EWWD∼I-SS	340	400	460	550	650	700	800	850	900	950	C10	C12	C13	C14	C15	C16	C17	C18
Мощность нагрева (кВт)	388	460	538	630	756	832	919	993	1072	1161	1217	1364	1427	1507	1589	1659	1730	1800
Поток воды (л/с)	18,54	21,98	25,70	30,10	36,12	39,75	43,91	47,44	51,22	55,47	58,15	65,17	68,18	72,00	75,92	79,26	82,66	86
Падение давления в системе рекуперации тепла (кПа)	26	26	28	25	24	25	26	28	26	23	23	24	24	25	23	23	24	24

ПРИМЕЧАНИЯ

Поток воды и падение давления при нормальных условиях: вода в испарителе на входе/выходе: 12/7°C – вода в конденсаторе на входе/выходе: 30/35°C – водная рекуперация тепла на входе/выходе 40/45°C

OPT_1-2-3-4-5-6-7-8_Rev.00_6

Значения падения давления при полной и частичной рекуперации тепла

Для определения падения давления для различных вариантов или условий работы воспользуйтесь следующей формулой:

$$PD_{2}(\kappa \Pi a) = PD_{1}(\kappa \Pi a) \times \left(\frac{Q_{2}(\pi/c)}{Q_{1}(\pi/c)} \right)^{1,80}$$

где:

РД, Падение давления, которое необходимо определить (кПа)

РД Падение давления при номинальных условиях (кПа)

• расход воды при новых условиях эксплуатации (л/с)

Q, расход воды при номинальных условиях (л/с)

Как пользоваться формулой: Пример

Предположим, что блок EWWD360I-XS будет работать в следующих условиях:

- вода в испарителе на входе/выходе: 12/7°C

- вода в конденсаторе на входе/выходе: 30/35°C

-Температура на выходе в режиме частичной рекуперации тепла 45/50°C

Теплопроизводительность при заданных условиях: 13,2 кВт

Расход воды в заданных условиях: 0,63 л/с

При нормальных условиях эксплуатации блок EWWD360I-XS имеет следующие характеристики:

- вода в испарителе на входе/выходе: 12/7°C

- вода в конденсаторе на входе/выходе: 30/35°C

-Температура на выходе в режиме частичной рекуперации тепла 40/45°C

Теплопроизводительность при заданных условиях: 23,8 кВт

Расход воды в заданных условиях: 1,14 л/с

Падение давления в заданных условиях: 17 кПа

Падение давления при выбранных условиях работы составит:

$$PD_{2}(\kappa \Pi a) = 17 (\kappa \Pi a) x$$
 $\left(\frac{0.63 (\pi/c)}{1.14 (\pi/c)}\right)^{1.80}$
 $PD_{2}(\kappa \Pi a) = 6 (\kappa \Pi a)$

OPT_1-2-3-4-5-6-7-8_Rev.00_8

12 Описание технических характеристик

12 - 1 Описание технических характеристик

Технические характеристики винтового охладителя с воздушным охлаждением

ОБЩИЕ СВЕДЕНИЯ

Винтовой охладитель с воздушным охлаждением разработан и изготовлен в соответствии со следующими Европейскими директивами:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе при номинальных рабочих условиях и номинальной температуре воды. Перед отправкой заказчику проводится полная проверка для обеспечения отсутствия недостатков.

Охладитель доставляется на место эксплуатации полностью в сборе с необходимым количеством хладагента и масла. При монтаже и погрузочно-разгрузочных работах следуйте инструкциям производителя.

Устройство способно осуществлять пуск и работать при полной нагрузке и температуре жидкости на входе конденсатора от °C до °C при температуре жидкости на выходе испарителя между °C и °C.

Все заявленные характеристики агрегата должны быть сертифицированы Eurovent.

ХЛАДАГЕНТ

Допускается использование только R-134a.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

- ✓ Количество винтовых охладителей с водяным охлаждением:
- Охлаждающая способность одного винтового охладителя с водяным охлаждением: кВт
- 🖊 Потребляемая мощность одного винтового охладителя с водяным охлаждением в режиме охлаждения: кВт
- √ Температура воды на входе кожухотрубного испарителя в режиме охлаждения:°С
- ✓ Температура воды на выходе кожухотрубного испарителя в режиме охлаждения:°С
- ✓ Расход воды в кожухотрубном испарителе: л/с
- √ Температура воды на входе кожухотрубного конденсатора в режиме охлаждения:°С
- ✓ Температура воды на выходе кожухотрубного конденсатора в режиме охлаждения:°С
- ✓ Расход воды в конденсаторе: л/с
- ✓ Агрегат должен работать в диапазоне 400 B ±10%, 3 ф, частоте 50 Гц без нейтрали и иметь только одно подключение к электросети.

ОПИСАНИЕ БЛОКА

В стандартной конфигурации охладитель включает: 1, 2 или 3 независимых контура хладагента, полугерметические одновинтовые компрессоры, электронное расширительное устройство (EEXV), кожухотрубные теплообменники прямого расширения хладагента, хладагент R134a, система смазки, компоненты для пуска двигателя, система управления и все компоненты, необходимые для безопасной и стабильной работы аппарата.

Каждый охладитель будет собран на заводе-изготовителе на крепкой опорной раме сделанной из оцинкованной стали, покрытой эпоксидной краской.

УРОВЕНЬ ШУМА И ВИБРАЦИИ

Уровень звукового давления в свободном пространстве на расстоянии 1 м от агрегата, полусферические условия, не должен превышать......дБ(A). Уровни давления звука должны быть измерены в соответствии с ISO 3744. Другие способы измерений неприменимы. Уровень вибрации не должен превышать 2 мм/с.

ГАБАРИТНЫЕ РАЗМЕРЫ

Размеры блока не превышают следующих значений:

- ✓ длина блока ... мм,
- ✓ ширина блока ... мм,
- ✓ высота блока ... мм.

SPC_1-2-3_Rev.00_1

12 Описание технических характеристик

12 - 1 Описание технических характеристик

КОМПОНЕНТЫ ОХЛАДИТЕЛЯ

Компрессоры

- ✓ Полугерметические одновинтовые с одним главным винтовым ротором, взаимодействующим с ведомым ротором. Ведомый ротор изготовлен из композитного материала с углеродной пропиткой. Опоры ведомого ротора сделаны из чугуна.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- √ Перепад давления в системе хладагента создает течение масла через полностью заменяемый, 0,5 микронный внутренний масляной фильтр (картриджного типа) компрессора.
- √ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система подачи масла с использованием электронасоса не может использоваться.
- ✓ При необходимости, охлаждение масла может производится путем впрыска жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- ✓ Компрессор оснащен внешним высокоэффективным циклоническим масляным сепаратором и встроенным масляным фильтром картриджного типа.
- Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- ✓ Имеется два вида термозащиты, созданной термистором для защиты от высокой температуры: один температурный датчик для защиты электропривода и другой датчик для защиты агрегата и смазочного масла от высоких температур выходящего газа.
- Компрессоры снабжены электрическим масляным подогревателем картера.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления производительностью по охлаждению

- √ Каждый агрегат должен быть оборудован микропроцессором для регулировки положения задвижки и моментального значения частоты вращения двигателя.
- √ Управление производительностью блока должно быть бесступенчатым от 100% до 25% для каждого контура (от 100% до 12,5% полной нагрузки для блока с 2 компрессорами и до 8,3% для блоков с 3 компрессорами). Охладитель должен обеспечивать стабильную работу до минимум 12,5% полной нагрузки без вывода горячего газа.
- ✓ Разгрузка неприемлема из-за флуктуации температуры выходящей воды из испарителя и низкой эффективности компрессора при частичной загрузке.
- ✓ Система влияет на блок на основании температуры воды на выходе испарителя, которая контролируется контуром PID (пропорциональноинтегрированная производная).
- ✓ Логика управления блоком должна управлять оборотами электродвигателя компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке установки для поддержания постоянной установки температуры охлажденной воды. В таких условиях эксплуатации логические схемы управления агрегатом должны изменять уровень частоты электропитания в диапазоне выше или ниже номинального значения электросети, которое равно 50 Гц.
- ✓ Микропроцессорное управление блока должно обнаруживать состояния, близкие к защитным пределам, и принимать меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - о Высокое давление в конденсаторе
 - о Низкая температура испарения хладагента
 - о Высокий ток электродвигателя

Испаритель

- ✓ Агрегаты поставляются с кожухотрубным противоточным однопроходным теплообменником. Он относится к типу с непосредственным расширением хладагента, который находится внутри труб. Вода находится снаружи (сторона кожуха). Испаритель включает трубы из листовой углеродистой стали, медные трубы, свернутые спиралью для обеспечения более высокой эффективности, и пластины.
- ✓ Испаритель имеет 2 контура: по одному для каждого компрессора. Контуры предназначены для одного прохода хладагента.
- ✓ Фитинги типа VICTAULIC являются стандартными для быстрого механического отсоединения аппарата от гидронической сети.
- ✓ Испаритель изготовляется в соответствии с PED.

SPC_1-2-3_Rev.00_2

12 Описание технических характеристик

12 - 1 Описание технических характеристик

Конденсаторы

- ✓ Конденсаторы относятся к сквозному типу, имеют оболочку, их можно очищать.
- ✓ Аппарат имеет один конденсатор на контур.
- ✓ Каждый холодильник имеет покрытые углеродистой сталью, бесшовные, снабженные внутренними ребрами высокоэффективные медные трубы, окруженные массивными листовыми трубами из углеродистой стали.
- У Водоприемники могут сниматься и имеют вентиляционные и сливные пробки.
- √ Конденсаторы укомплектованы запорным вентилем для жидкости, подпружиненным предохранительным клапаном.

Контур хладагента

В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на выходной линии компрессора, запорный клапан на линии всасывания, фильтросушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированную линию всасывания.

Панель управления

- √ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Стандартное пусковое устройство относится к типу "звезда-треугольник" (Y-∆).
- ✓ Органы управления и средства защиты включают средства энергосбережения; кнопку аварийного останова; защиту на перегрузку для двигателя компрессора; выключатели высокого и низкого давления (для каждого контура хладагента); антифризный термостат; выключатель для каждого компрессора.
- ✓ Вся информация о работе аппарата выводится на дисплей и с учетом внутреннего календаря и часов переключает аппарат в положение ВКЛ/ВЫКЛ в зависимости от дня или ночи на протяжении всего года.
- ✓ Предусмотрены следующие функции:
 - <u>сброс установки температуры охлажденной воды</u> путем управления температурой воды в возвратном контуре с помощью сигнала ДУ 4-20 мА пост. тока или путем контроля внешней температуры окружающей среды:
 - функция плавной нагрузки для предотвращения работы системы при полной нагрузке в период понижения температуры охлаждающей жидкости;
 - защита паролем важнейших параметров управления;
 - <u>таймеры "пуск-пуск" и "останов-пуск"</u> для сведения к минимуму времени выключенного состояния компрессора при максимальной защите двигателя;
 - возможность подключения к ПК или устройству дистанционного мониторинга;
 - <u>управление давлением выпуска</u> посредством разумного определения циклов работы вентиляторов конденсатора;
 - выбор опережения/запаздывания вручную или автоматически на основании часов работы контура;
 - две установки для морского варианта блока;
 - <u>задание графика работы</u> при помощи внутренних часов, которые позволяют программировать на год запуски и остановки с учетом выходных и праздничных дней.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

Контроллер должен, как минимум, предоставлять данные, указанные в предыдущем списке, с использованием опций:

- Последовательная плата RS485
- Последовательная плата RS232
- Интерфейс LonWorks к приемопередатчику FTT10A.
- Совместимость с сетью Bacnet
- Опция Использование компасного румба (произведенного North Communications) для коммуникации с Honeywell, Satchwell, Johnson Controls, Trend и т.д..

SPC_1-2-3_Rev.00 3

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компрессоров и хладагентов. Это стало причиной ее активного участия в решении экологических проблем. В течение нескольких нет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по постаемам продукции, которая в минимальной степени оказывает воздействие на окружающую среду. Эта задача требует, чтобы разработка и проектирование широкого спектра продукции и систем управления выполнялись с учетом экологических требований и были направлены на сохранение энергии и снижение объема отходов.

Настоящий буклет составлен только для справочных целей и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели ее содержания, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.

Компания Daikin Europe N.V. принимает участие в Программе сертификации Eurovent для кондиционеров (АС), жидкостных холодильных установов (LCP) и фанкойлов (FCU). Проверьте текущий срок действия сертификата онлайн: www.eurovent-certification.com или перейдите к: www.certiflash.com*

R	٨	D	C(JI)E

Daikin products are distributed by: