

Чиллеры и фанкойлы

Технических данных

Инверторный чиллер с возд. охлажд., высокоэф., с пониж. уровнем шума

EEDRU13-415

СОДЕРЖАНИЕ

EWAD-CZXR

1	Характеристики2
2	Технические характеристики 3 Технические параметры 3 Технические параметры 4 Электрические параметры 5 Электрические параметры 6
3	Характеристики и преимущества
4	Общие характеристики 9 Общие характеристики 9
5	Обозначения 13 Обозначения 13
6	Таблицы производительности 14 Условные обозначения таблицы производительностей 14 Таблицы холодопроизводительности 15 Частичная рекуперация теплоты Таблицы производительностей 17 Таблицы производительности полной рекуперации теплоты 18
7	Размерные чертежи 19 Размерные чертежи 19
8	Данные об уровне шума 21 Данные об уровне шума 21
9	Установка 23 Способ монтажа 23 Заправка, расход и количество воды 25
10	Рабочий диапазон 27 Рабочий диапазон 27 Поправочный коэффициент 28
11	Характеристика гидравлической системы
12	Описание технических характеристик

1 Характеристики

- ESEER до 5,8
- Инверторный одновинтовой компрессор с бесступенчатым регулированием мощности
- Высокая эффективность, сниженный уровень звука
- Оптимизирован для работы с хладагентом R-134a
- Широкий рабочий диапазон
- Обширный список опций (доступна опция рекуперации тепла)
- Низкий пусковой ток
- Пульт MicroTech III

2

2 Технические характеристики

2-1 Технически	е параметры				EWAD640CZ XR	EWAD700CZ XR	EWAD790CZ XR	EWAD850CZ XR	EWAD980CZ XR	EWADC10CZ XR	EWADC11CZ XR
Холодопроизводите льность	Ном.			кВт	631 (1)	696 (1)	786 (1)	849 (1)	972 (1)	1.027 (1)	1.166 (1)
Регулирование	Способ				Бесст	упенч.	Stepless		Бесст	упенч.	
производительности	Минимальная моц	цность		%		,	'	20		•	
Входная мощность	Охлаждение	Ном.		кВт	264 (1)	246 (1)	274 (1)	318 (1)	351 (1)	393 (1)	412 (1)
EER				1	2,40 (1)	2,83 (1)	2,86 (1)	2,67 (1)	2,77 (1)	2,61 (1)	2,83 (1)
ESEER					5,04	5,23	5,39	5,36	5,41	5,11	5,15
IPLV					5,94	6,14	6,32	6,37	6,34	6,05	5,96
Корпус	Цвет				· ·	ЭЯ КОСТЬ_	Ivory white		Слонова		,
-1- 7-	Материал					ванный и	Galvanized	Оцинков		шенный сталь	ной лист
						ый стальной ист	and painted steel sheet				
Размеры	Блок	Высота		MM				2.540			
		Ширина		ММ				2.285			
		Глубина		MM	6.7	725	7.6	625	8.8	525	10.325
Bec	Блок	•		КГ	6.170	6.470	7.100	7.360	7.9	950	9.120
	Эксплуатационный	й вес		КГ	6.430	6.720	7.340	7.600	8.3	390	9.500
Вод. теплообменник	Тип					одовой трубный	Single pass shell & tube		Одноходовой	кожухотрубны	Й
	Объем воды			Л	263	248	2	41	4	41	383
	Номинальный расход воды	Охлажд	ение	л/сек	30,3	33,4	37,6	40,7	46,6	49,2	55,8
	Спад номинального	Охлаж дение	Теплоо бменни	кПа	79	76	54	59	58	64	43
	давления воды		К								
	Изоляционный ма-	териал			· ·	ая пора	Closed cell			ая пора	
Воздушный теплообменник	Тип				оребрение теплооби встро	фективное е и трубный менник со енным адителем	High efficiency fin and tube type with integral subcooler			оребрение и т енным переох	
Вентилятор	Количество				10	12		14	1	16	20
·	Тип					и ентилятор с передачей	Direct propeller	Осево	и ой вентилятор	с прямой пере	едачей
	Диаметр			MM	'			800			
	Расход воздуха	Ном.		л/сек	41.536	49.843	58.	.151	66.	458	83.072
Двигатель	Drive			ı		1		Direct on line			ı
вентилятора	Вход	Охлажд	ение	W	7.800	9.400	11.000	11	12.	500	15.700
	Скорость	Охлаж дение	Ном.	об/мин		I		700	l		I
Уровень акустической мощности	Охлаждение	Ном.		дБА	g	95		9	96		97
Уровень звукового давления	Охлаждение	Ном.		дБА				74			
Компрессор	Туре	•		•			asymmetri	c single screw	compressor		
	Количество_							2			
	Способ запуска				С приводом	и инвертора	Inverter driven		С приводог	и инвертора	
	Масло	Объем з	аправки	Л	3	32	35		38		44
Рабочий диапазон	Сторона воды	Охлаж дение	Мин.	°CDB				-8 15			1
	Сторона воздуха	Охлаж	Мин.	°CDB				-18			
	<u> </u>	дение	Макс.	°CDB				50			
Хладагент	Тип	1						R-134a			
	Контуры	Количес	ТВО					2	1		1
Контур охлаждения	Заправка			КГ	141	161		78	2	00	235
Piping connections	Evaporator water in	iet/outlet (C	ט)			168	,3mm			219,1	

2 Технические характеристики

2-1 Техничес	кие параметры		EWAD640CZ XR	EWAD700CZ XR	EWAD790CZ XR	EWAD850CZ XR	EWAD980CZ XR	EWADC10CZ XR	EWADC11CZ XR
Защитные устройства	Оборудование	01	нагнетан	давление ния (реле ения)	High discharge pressure (pressure switch)	Высокое ,	давление нагн	етания (реле <i>д</i>	давления)
		02	нагнетані	давление ия (датчик ения)	High discharge pressure (pressure transducer)	Высокое д	авление нагне	етания (датчик	давления)
		03	всасыван	давление ия (датчик ения)	Low suction pressure (pressure transducer)	Низкое да	вление всасы	вания (датчик	давления)
		04	· ·	цвигателя ессора	Compressor motor protection	3	ащита двигате	еля компрессор	oa
		05		емпература тания	High discharge temperature	Вь	ісокая темпер	атура нагнетан	RNH
		06	Низкое давл	пение масла	Low oil pressure		Низкое дав	пение масла	
		07	Соотношени давл	е для низкого вения	Low pressure ratio	Coo	тношение для	і низкого давлє	ения
		08	давлени	падение я масла в ьтре	High oil filter pressure drop	Сильное	падение давл	пения масла в	фильтре
		09	Фазоин	дикатор	Phase monitor		Фазоин	дикатор	
		10		варийного нова	Emergency stop button		Кнопка авариі	йного останова	ı
		11) защиты от ния воды	Water freeze protection controller	Контр	оллер защиты	от замерзания	я воды

2-2 Технически	е параметры				EWADC12CZXR	EWADC13CZXR	EWADC14CZXR	EWADC15CZXR	EWADC16CZXR	EWADC17CZXR
Холодопроизводите льность	Ном.			кВт	1.231 (1)	1.327 (1)	1.437 (1)	1.539 (1)	1.624 (1)	1.706 (1)
Регулирование	Способ					•	Бесст	упенч.	•	
производительности	Минимальная мощ	ность		%		20			13	
Входная мощность	Охлаждение	Ном.		кВт	459 (1)	493 (1)	523 (1)	585 (1)	617 (1)	638 (1)
EER					2,68 (1)	2,69 (1)	2,75 (1)	2,63	3 (1)	2,67 (1)
ESEER					4,80	5,12	5,22	5,18	4,98	4,88
IPLV					5,67	6,03	6,21	6,28	6,03	5,91
Корпус	Цвет						Слонова	я кость_		
	Материал					Оцинк	ованный и покра	шенный стально	рй лист	
Размеры	Блок	Высота		ММ			2.5	540		
		Ширина		ММ			2.2	285		
		Глубина	l	MM	10.325	11.625	12.	525	13.425	14.325
Bec	Блок			КГ	9.530	10.180	10.530	12.150	12.990	13.740
	Эксплуатационный	вес		КГ	9.920	10.550	10.910	13.000	13.840	14.610
Вод. теплообменник	Тип						Одноходовой	кожухотрубный		
	Объем воды			Л	383	3	74	8	50	871
	Номинальный расход воды	Охлажд	ение	л/сек	58,9	63,6	68,8	73,7	77,8	81,7
	Спад номинального давления воды	Охлаж дение	Теплоо бменни к	кПа	48	57	66	57	63	60
	Изоляционный мат	ериал		•			Закрыт	ая пора		
Воздушный теплообменник	Тип				Высокоэффе	ктивное оребрен	ие и трубный тег	плообменник со	встроенным пер	еохладителем

2 Технические характеристики

2-2 Технически	ие параметры				EWADC12CZXR	EWADC13CZXR	EWADC14CZXR	EWADC15CZXR	EWADC16CZXR	EWADC17CZXR
Вентилятор	Количество				20	22	2	4	26	28
	Тип					Oce	вой вентилятор	с прямой переда	ячей	
	Диаметр			MM			80	00		
	Расход воздуха	Ном.		л/сек	83.072	91.379	99.	687	107.994	116.301
Двигатель	Drive	•					Direct	on line		•
вентилятора	Вход	Охлажд	ение	W	15.700	17.300	18.	800	20.400	22.000
	Скорость	Охлаж дение	Ном.	об/мин			70	00		
Уровень акустической мощности	Охлаждение	Ном.		дБА		97			99	
Уровень звукового давления	Охлаждение	Ном.		дБА		74			76	
Компрессор	Туре					a	symmetric single	screw compresso	or	
	Количество_					2			3	
	Способ запуска						С приводом	и инвертора		
	Масло	Объем	заправки	Л		50		57	63	69
Рабочий диапазон	Сторона воды	Охлаж	Мин.	°CDB				8		
		дение	Макс.	°CDB				5		
	Сторона воздуха	Охлаж	Мин.	°CDB				18		
		дение	Макс.	°CDB				0		
Хладагент	Тип						R-1	34a		
	Контуры	Количес	тво			2			3	
Контур охлаждения	Заправка			КГ	235	275	320	327	343	361
Piping connections	Evaporator water in	let/outlet (C	DD)			219,1			273	
Защитные	Оборудование	01				Высоко	е давление нагн	етания (реле да	вления)	
устройства		02					е давление нагне			
		03				Низкое	давление всасы	вания (датчик да	вления)	
		04					Защита двигате	ля компрессора		
		05					Высокая темпера	атура нагнетания	Я	
		06					Низкое давл	пение масла		
		07				С	оотношение для	низкого давлен	Я	
		80				Сильн	ое падение давл	ения масла в ф	ильтре	
		09					Фазоин	дикатор		·
		10					Кнопка аварий	іного останова		
		11	_	_		Кон	троллер защиты	от замерзания в	воды	

2-3 Электрич	еские параметр	Ы		EWAD640CZ XR	EWAD700CZ XR	EWAD790CZ XR	EWAD850CZ XR	EWAD980CZ XR	EWADC10CZ XR	EWADC11C2 XR
Компрессор	Фаза			;	3	3~		•	3	•
	Напряжение		V			•	400			
	Диапазон	Мин.	%				-10			
	напряжений	Макс.	%				10			
	Максимальный р	абочий ток	Α	205	2:	21	28	83	3	44
	Способ запуска				е от привода FD	VFD driven		Управление о	т привода VF[)
Компрессор 2	Максимальный р	абочий ток	Α	205	221	2	83	3	44	404
Электропитание	Фаза						3~			
	Частота		Гц				50			
	Напряжение		V				400			
	Диапазон	Мин.	%				-10			
	напряжений	Макс.	%				10			
Блок	Максимальный с	гартовый ток	Α	315	340	393	434	485	526	580
	Номинальный рабочий ток	Охлаждение	А	383	360	405	466	516	574	608
	Максимальный р	абочий ток	Α	437	473	540	602	668	729	800
	Макс. ток блока д проводов	іля размеров	Α	480	520	594	663	735	803	881
Вентиляторы	Номинальный ра	бочий ток	Α	26	31,2	36	5,4	4	1,6	52

2 Технические характеристики

Примечания

2

- (1) Охлаждение: температура воды испарителя на входе 12°С; темп. воды испарителя на выходе 7°С; темп. наружного воздуха 35°С; работа в режиме полной нагрузки.
- (2) Уровни звукового давления измеряются при темп. воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; работа в режиме полной нагрузки; Стандарт: ISO3744
- (3) Допуск напряжения ± 10%. Разбаланс напряжений между фазами должен быть в пределах ± 3%.
- (4) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (5) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. наружного воздуха 35°C. Ток компрессора + вентиляторов.
- (6) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (7) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (8) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

2-4 Электрич	еские параметры	ol .		EWADC12CZXR	EWADC13CZXR	EWADC14CZXR	EWADC15CZXR	EWADC16CZXR	EWADC17CZXR
Компрессор	Фаза				•	•	3	•	•
	Напряжение		V			4	00		
	Диапазон	Мин.	%			-	10		
	напряжений	Макс.	%			1	10		
	Максимальный ра	абочий ток	Α	40	04	486	34	44	404
	Способ запуска					Управление о	т привода VFD		
Компрессор 2	Максимальный ра	абочий ток	Α	404	4	86	34	44	404
Электропитание	Фаза					3	3~		
	Частота		Гц			ţ	50		
	Напряжение		V			4	00		
	Диапазон	Мин.	%			-	10		
	напряжений	Макс.	%			1	10		
Блок	Максимальный ст	артовый ток	Α	621	686	740	822	876	929
	Номинальный рабочий ток	Охлаждение	А	674	771	864	856	902	936
	Максимальный ра	абочий ток	Α	861	942	1.024	1.093	1.159	1.225
	Макс. ток блока д проводов	ля размеров	А	948	1.039	1.129	1.204	1.277	1.350
Вентиляторы	Номинальный раб	бочий ток	Α		52		62	68	73

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°С; темп. воды испарителя на выходе 7°С; темп. наружного воздуха 35°С; работа в режиме полной нагрузки.
- (2) Уровни звукового давления измеряются при темп. воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; работа в режиме полной нагрузки; Стандарт: ISO3744
- (3) Допуск напряжения \pm 10%. Разбаланс напряжений между фазами должен быть в пределах \pm 3%.
- (4) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (5) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. наружного воздуха 35°C. Ток компрессора + вентиляторов.
- (6) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (7) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (8) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Высокая эффективность работы в режиме частичной нагрузки

Высокая эффективность при полной нагрузке и, особенно, максимальная эффективность в режиме неполной нагрузки, который составляет основную часть времени работы охладителя, - это факторы, обеспечивающие значительное сокращение затрат на электроэнергию.

При разработке данной группы инверторов ставилась цель снижения эксплуатационных расходов и улучшения экономического управления зданием. Это оборудование позволяет оптимизировать сезонную энергоэффективность (ESEER).

Периодическая бесшумная работа

При частичной нагрузке низкий уровень шума достигается за счет изменения скорости вентилятора, а также благодаря изменению частоты работы компрессора, которое обеспечивает минимальный уровень шума на протяжении всего времени работы.

Быстрое достижение комфортных условий

Возможность изменения генерируемой мощности в зависимости от потребностей системы дает возможность достичь комфортных климатических условий намного быстрее непосредственно после запуска.

Низкий пусковой ток

Никакого броска тока при запуске. Пусковой ток всегда ниже тока, потребляемого при максимальных рабочих условиях (FLA).

Коэффициент нагрузки всегда > 0,95

Инверторы этой серии могут всегда работать при коэффициенте нагрузки > 0,95, что позволяет владельцам зданий избежать штрафов, а также снижает электрические потери в кабеле и трансформаторах.

Избыточность

Блоки имеют два или три независимых контура хладагента (в зависимости от размера) для обеспечения гарантированного (частичного) охлаждающего "резерва" даже на время технического обслуживания

Бесступенчатое регулирование производительности

Холодопроизводительность регулируется при инвертора, изменяющего скорость вращения компрессора, которая контролируется микропроцессорной системой. Каждый блок оснащен бесступенчатым регулятором скорости в диапазоне от 100% до 13,5%. Эта регулировка позволяет привести производительность компрессора в соответствие с нагрузкой по охлаждению в здании без колебаний температуры воды на выходе испарителя. Колебание температуры охлажденной воды устраняется только при бесступенчатой регулировке.

При пошаговой регулировке нагрузки компрессора производительность компрессора будет слишком высокой или слишком низкой по сравнению с нагрузкой по охлаждению в здании. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Колебание ELWT (температура воды на выходе испарителя) при ступенчатом управлении производительностью

Изменение ELWT (температура воды на выходе испарителя) в зависимости от выбранного значения производительности (4 значения)

Блоки с бесступенчатой регулировкой обеспечивают преимущества по сравнению с блоками со ступенчатой регулировкой.

Только охладитель с бесступенчатой регулировкой способен в любой момент обеспечивать потребности системы в охлаждении и подавать охлажденную воду с заданной температурой.

FTA_1-2_Rev.00_1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Нормативные требования – Безопасность и соответствие положениям законодательства/директив

Данное оборудование спроектировано и изготовлено в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого	97/23/EC (PED)
давления	
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Сертификаты

Все оборудование имеет обозначение СЕ, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии с требованиями, действующими в странах вне ЕС (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Конфигурации с различным уровнем производительности и шума

Оборудование предлагается в вариантах исполнения с различным уровнем шума:

		Уров	ень шума	
Уровень	Стандартный	Низкий	Пониженный	Очень низкий
эффективности				
Высокая	EWAD~CZXS	EWAD~CZXL	EWAD~CZXR	-
эффективность				

Варианты исполнения

Оборудование предлагается в варианте с повышенной производительностью:

X: Высокая эффективность

13 типоразмеров для обеспечения различной производительности от 635 до 1802 кВт с коэффициентом ESEER до 5.8

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемую мощность компрессора, всех устройств управления, защитных устройств и потребляемую мощность вентиляторов.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воздуха на входе конденсатора.

ESEER = A x EER100% + B x EER75% + C x EER50% + D x EER25%

	Α	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе	35°C	30°C	25°C	20°C
конденсатора				

Уровни шума

Оборудование предлагается в трех конфигурациях с различным уровнем шума:

S: Стандартный уровень шума

Вентилятор конденсатора вращается со скоростью 900 об/мин

L: Низкий шум

Вентилятор конденсатора вращается со скоростью 900 об/мин, звукоизолирующий корпус компрессора, гибкие выходные трубки.

R: Пониженный шум

Вентилятор конденсатора вращается со скоростью 700 об/мин, звукоизолирующий корпус компрессора, гибкие выходные трубки.

FTA_1-2_Rev.00_2

4 Общие характеристики

4 - 1 Общие характеристики

Корпус и конструкция

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет Ivory White (Слоновая кость) (код Munsell 5Y7.5/1) (±RAL7044). На основной раме имеются крюки для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Винтовые компрессоры со встроенным маслоотделителем и инверторным приводом

Компрессор полугерметический, с одним винтом и селекторным ротором (с применением новейшего высокопрочного материала, усиленного волокнами). Каждый компрессор имеет один инвертор, управляемый микропроцессором для достижения необходимой производительности с бесступенчатой регулировкой. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск - инверторный.

Соответствующий экологическим требованиям хладагент R-134a

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления) т.е. низкое TEWI (Обще эквивалентное влияние нагревания).

Испаритель

Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Оба фактора влияют как на эффективность теплообменника, так и на общую эффективность работы агрегата. Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с комплектом быстросъемных соединений Victaulic (стандарт) Каждый испаритель имеет 2 или 3 контура (по одному для каждого компрессора) и изготавливается в соответствии с PED.

Змеевики конденсатора

Конденсатор изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями. Встроенный контур переохлаждения исключает испарение и способствует увеличению холодопроизводительности без увеличения потребляемой мощности.

Вентиляторы змеевика конденсатора

Вентиляторы конденсатора относятся к пропеллерному типу. Специальная конструкция лопастей обеспечивает максимальную производительность. Лопатки изготовлены из стеклопластика, и каждый вентилятор защищен кожухом. Моторы вентиляторов защищены автоматическими выключателями, установленными внутри панели управления (стандартное оборудование), и имеют класс защиты IP54.

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным.

Электронные расширительные клапаны обладают уникальными характеристиками: малое время открытия и закрытия, высокое разрешение, положительная функция выключения, устраняющая необходимость использования дополнительного электромагнитного клапана, непрерывная регулировка массового расхода без повышенной нагрузки на контур хладагента, устойчивый к коррозии корпус из нержавеющей стали.

Электронные расширительные клапаны обычно работают с меньшим значением ΔP между сторонами высокого и низкого давления, чем терморегулирующий вентиль. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

Контур хладагента

Каждый блок имеет 2 или 3 независимых контура хладагента, каждый из которых включает:

- Винтовые компрессоры со встроенным маслоотделителем и инверторным приводом
- Охлаждаемый воздухом конденсатор
- Электронный расширительный клапан
- Испаритель
- Запорный клапан в линии выпуска
- Запорный клапан в линии для жидкости
- Запорный клапан в линии всасывания (опция)
- Указатель уровня с индикатором влажности
- Фильтр-осушитель
- Загрузочные клапаны
- Переключатель высокого давления
- Датчики высокого и низкого давления

GNC 1-2-3-4 Rev.00 1

4

Панель управления электрическими системами

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу ІР54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Электропитание

Относящаяся к электропитанию часть панели включает инвертор компрессора, автоматический выключатель вентилятора, контакторы вентилятора и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается в стандартной конфигурации; его можно использовать для изменения значений установок и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды, хладагента и воздуха, программируемые значения, установки. Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров, EEXV и вентиляторы конденсатора, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы.

MicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от переключателя высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

Система управления - основные характеристики

- Управление производительностью компрессора, инвертора, регулировка работы вентиляторов
- Охладитель способен работать в состоянии частичного отказа
- Полная работоспособность в условиях:
 - высокой температуры окружающей среды
 - высокой тепловой нагрузки
 - высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя
- Вывод на дисплей температуры вне помещения
- Вывод на дисплей температуры конденсации-испарения и давления, перегрева на стороне всасывания и выпуска для каждого контура
- Регулировка температуры воды на выходе испарителя (допуск по температуре = 0,1°C)
- Счетчики часов работы компрессора и насосов испарителя
- Отображение состояния защитных устройств
- Количество пусков и часов работы компрессора
- Оптимизированное управление нагрузкой компрессора
- Управление вентиляторами в соответствии со значением давления конденсации
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной)
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска)
- Запуск при высокой температуре воды в испарителе
- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре)
- Сброс установки ОАТ (Температура окружающей среды вне помещения)
- Сброс установки значения (опция)
- Обновление приложения и системы с использованием обычных карт памяти SD
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления)
- Высокое давление (датчик)
- Низкое давление (датчик)
- Автоматический выключатель в цепи вентиляторов
- Высокая температура на выходе компрессора
- Высокая температура обмоток двигателя
- Фазоиндикатор
- Низкое отношение давлений
- Большое падение давления масла
- Низкое давление масла
- Отсутствие изменения давления при пуске

Безопасность системы

- Фазоиндикатор
- Блокировка при низкой температуре окружающего воздуха
- Защита от обмерзания

GNC 1-2-3-4 Rev.00 2

4 Общие характеристики

4 - 1 Общие характеристики

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики:

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков
- Клавиатура с 3 клавишами
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование
- Память для защиты информации
- Реле сигнализации о неисправностях
- Парольный доступ для изменения настроек
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный).
- Ethernet TCP/IP.

Стандартные принадлежности (входят в комплект базового блока)

Два установочных значения – Две установки температуры воды на выходе.

Реле тепловой перегрузки компрессора — Устройства защиты от перегрузки двигателя компрессора. Это устройство вместе с внутренней защитой двигателя (стандартное оборудование) обеспечивает наилучшую систему защиты для двигателя компрессора.

Фазоиндикатор – Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз.

Пусковое устройство инвертора компрессора

Набор соединений Victaulic для испарителя – Гидравлическое соединение с прокладкой для простого и быстрого подключения трубок подачи воды.

Теплоизоляция испарителя толщиной 20 мм – Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами.

Электронагреватель испарителя - Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C, при включенном питании.

Электронный расширительный клапан

Запорные клапаны в линии выпуска – Установлены на выходном отверстии компрессора для облегчения техобслуживания.

Датчик температуры окружающего воздуха и возможность сброса установки температуры воды на выходе

Счетчик часов работы – компрессора

Контактор общих неисправностей – Реле аварийного сигнала.

Сброс установки – Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); температура снаружи; разность температур воды в испарителе ∆t.

Ограничение нагрузки – Пользователь может ограничить нагрузку устройства с помощью сигнала 4 – 20 мА или по сети

Аварийный сигнал от внешнего устройства — Микропроцессор может получать аварийный сигнал от внешнего устройства (насос и т.д....). Пользователь может определить, будет ли этот сигнал приводить к останову блока или нет.

Автоматические выключатели вентилятора – Устройство защиты от перегрузки двигателя и короткого замыкания

Главная дверца с блокировкой

Аварийный останов

GNC_1-2-3-4_Rev.00_3

4 Общие характеристики

4 - 1 Общие характеристики

Опции (на заказ)

Полная рекуперация тепла – Происходит за счет теплообменников "пластинка-к-пластинке", используется для производства горячей воды.

Частичная рекуперация тепла – Происходит за счет теплообменников "пластинка-к-пластинке", используется для производства горячей воды.

Морской вариант -Позволяет агрегату работать при температуре жидкости на выходе до -8°С (необходим антифриз).

Контроль пониженного/повышенного напряжения – Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

Амперметр/вольтметр – Устройство установлено внутри блока управления, измеряет и отображает значения тока и напряжения

Дисплей ограничителя тока – Для ограничения (при необходимости) максимального потребляемого устройством тока

Набор фланцев для испарителя

Speedtrol (Управление скоростью) – Непрерывная модуляция скорости вентилятора на первом вентиляторе каждого контура. Это позволяет аппарату работать при температуре воздуха вплоть до -18°C.

Защита змеевика конденсатора

Защита испарителя

Медное оребрение конденсатора - Для обеспечения лучшей коррозийной устойчивости в агрессивной среде.

Оловянное покрытие меднооребренного конденсатора - Для обеспечения лучшей коррозийной устойчивости в агрессивной среде и соленом воздухе.

Покрытие Alucoat змеевиков конденсатора - Ребра защищены специальной антикоррозийной акриловой краской.

Реле потока испарителя - Поставляется отдельно, для подключения к трубопроводу испарителя (заказчиком).

Запорные клапаны в линии всасывания - Устанавливаются на всасывающее отверстие компрессора для облегчения проведения техобслуживания.

Манометры на стороне высокого давления

Набор контейнеров

Резиновые антивибрационные опоры – Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Пружинные антивибрационные опоры – Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Отлично подходят для снижения колебаний при установке на крыше или металлической конструкции.

Гидронный набор (один водяной насос) – Гидронный комплект включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насос защищены от замерзания дополнительным электрическим нагревателем.

Гидронный набор (два водяных насоса) — Гидронный комплект включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Двойной разгрузочный клапан с отводным устройством

Автоматические выключатели компрессоров

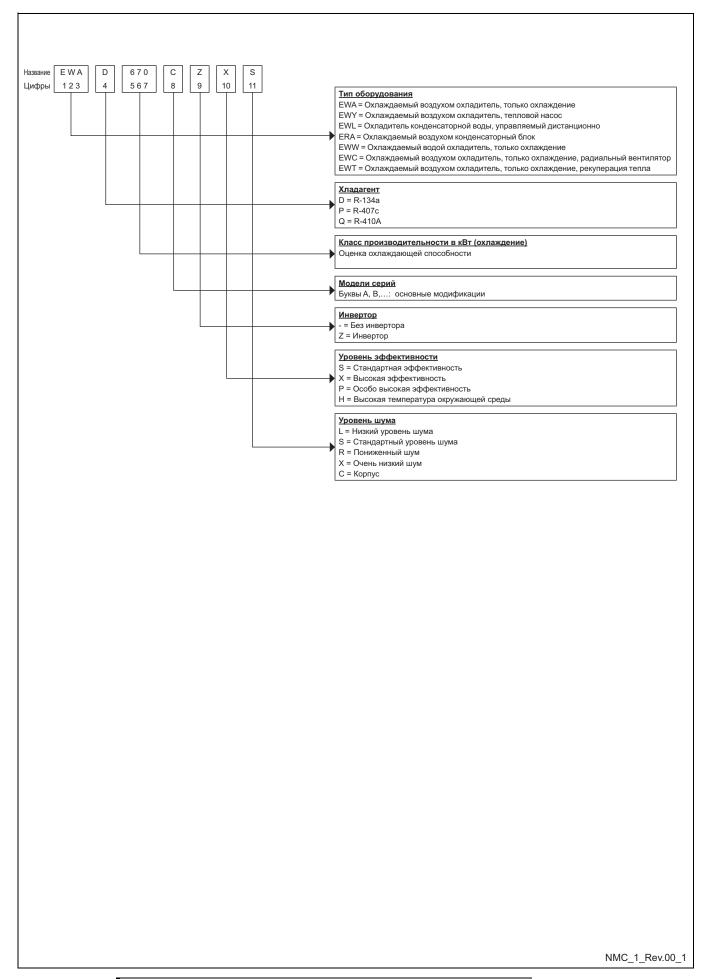
Регулировка скорости вентилятора (также обеспечивает тихий режим работы вентилятора) - Позволяет управлять скоростью вращения вентилятора для плавной работы агрегата. Эта опция снижает уровень шума при работе в условиях низких температур окружающей среды.

Емкость для сбора хладагента — Эта опция позволяет собирать и хранить хладагент, слитый из 1 контура для проведения технического обслуживания. Приемник для жидкости оснащен запорными клапанами на входе и выходе и предохранительным клапаном.

Соединения для подключения трубок для воды на правой стороне испарителя

Защита от замыканий на землю – Обеспечивает выключение всего блока при обнаружении замыкания на землю.

Быстрый перезапуск — Система позволяет включить блок всего лишь через 30 секунд после восстановления электропитания (в случае сбоя в сети электропитания).


Испытания в присутствии заказчика – Каждый блок испытывается на испытательном стенде перед отправкой клиенту. По желанию второй тест может быть выполнен в присутствии клиента, согласно списку процедур в тестформе. (Эта опция не доступна для агрегатов работающих на смеси гликоля).

Акустические испытания – По запросу могут проводиться испытания в присутствии клиента. (Не предлагается для аппаратов с гликолевой смесью).

GNC_1-2-3-4_Rev.00_4

5 Обозначения

5 - 1 Обозначения

0001

6 Таблицы производительности

6 - 1 Условные обозначения таблицы производительностей

Thou of by proposed and a contribute and a season of the present of the contribute and a season of the present	English - English - αγγλικά - Inglés	Deutsch	Ελληνικά	Español
raine (14.5°C) Concert Verdampfer Performance of the Concentration of the Full Activity of the Concentration of th	Ta: Condenser inlet air temperature	Ta: Verflüssiger-Einlasslufttemperatur	Τε: Θερμοκρασία αέρα εισαγωγής συμπυκνωτή	Ta: temperatura del aire de entrada al condensador
CC. Kandoorn uiting control and with tissing an Verdampler of the Find of the following an Verdampler of the Verdam	Twout: Evaporator leaving water temperature (Δt 5°C)	Twout: Verdampfer-Austrittswassertemperatur (Δt= 5 K)	Τwout: Θερμοκρασία νερού εξόδου στον εξατμιστή (Δt 5°C)	Twout: temperatura de agua de salida del evaporador (∆t 5 °C)
continued to the procession of the procession	CC: Cooling capacity	CC: Kühlleistung	CC: Απόδοση ψύξης	CC: capacidad de refrigeración
Gridea Continue	qw: Fluid flow rate	qw: Fluidvolumenstrom	αν: Ταχύτητα ροής υγρού	qw: caudal de líquido
Cobe Week Endoducianestorn an Verdenriple Week Endoducianestorn an Verdenriple Apper Endoducianestorn and Portable Apper Endoducianestorn and Portable Apper Endouce Apper Endoducianestorn and Portable Apper Endouce Apper Endoducianestorn and Portable Apper Endouce Apper Endouce Apper Endouce Apper Endouce Apper Endouce Apper Endouce	dpw: Fluid pressure drop	dpw: Fluiddruckabfall	dpw: Πτώση πίεσης υγρού	dpw: caída de presión de líquido
the (ALS*C) Twe: Verdampter and verdampter down: Third price or cycling only upon crow (strough down: Fluidoutunestronm and verdampter and well as the cycling of the Coppuration continue with (ALS*C) Twe: Verdampter Austritissessenemperatur (ALS*C) Twe: Optimize only report of the Coppuration of t	Size	Größe	Μέγεθος	Tamaño
true (Δ15°C) Two. Verlissinger-Austrikassessenergenatur (Δ1 = 5 K) Two. Opposed on two cytinum (Δ15°C) Two. Verlissinger-Austrikassessenergenatur (Δ1 = 5 K) Two. Opposed on two cytinum (Δ15°C) Two. Verlissinger-Austrikassessenergenatur (Δ1 = 5 K) Two. Opposed on two cytinum (Δ15°C) Two. Verlissinger-Austrikassessenergenatur (Δ1 = 5 K) Two. Opposed on two cytinum (Δ15°C) Two. Two. Opposed on two cytinum (Δ15°C) Two. Two. Two. Opposed on two cytinum (Δ15°C) Two. Two. Two. Two. Two. Two. Two. Two.	qwe: Fluid flow rate at evaporator	qwe: Fluidvolumenstrom am Verdampfer	qwe: Ταχύτητα ροής υγρού στον εξατμιστή	qwe: caudal de líquido en el evaporador
ture (ALS*C) Twe. Verflissiper-Austritswassereimperatur (ALS*C) Twe. Verflissiper-Austritswassereimperatur (ALS*C) Twe. Verflissiper-Austritswassereimperatur (ALS*C) Twe. Verflissiper-Austritswassereimperatur (ALS*C) Twe. Temperature an Verdampfer Two Twe. Temperature and the first of the f	dpwe: Fluid pressure drop at evaporator	dpwe: Fluiddruckabfall am Verdampfer	dpwe: Πτώση πίεσης υγρού στον εξατμιστή	dpwe: caída de presión de líquido en el evaporador
the (ALS*C) True 'Verdamplier-Austrithswassenfemperatur (Al=5 K) True 'Verdamplier-Austrithswassenfemperatur (Al=5 K) True 'Repeatement of the Publishing and Werlibsager Austrithswassenfemperatur (Al=5 K) True 'Repeatement of the Publishing and Werlibsager Austrith (Al=5 K) True 'Repeatement of the Publishing and Werlibsager Austrith (Al=5 K) True 'Repeatement of the Publishing Approximation (Al=5 K) True (Al=5 K) Tru	Twc: Condenser leaving water temperature (Δt 5°C)	Twc: Verflüssiger-Austrittswassertemperatur ($\Delta t = 5 \text{ K}$)	Τwc: Θερμοκρασία νερού εξόδου στο συμπυκνωτή (Δt 5°C)	Twc: temperatura de agua de salida del condensador (Δt 5 °C)
H.C. Heizbeistung am Verflüssiger H.C. depopromed introduction an Verflüssiger Fearcais Fearc	Twe: Evaporator leaving water temperature (Δt 5°C)	Twe: Verdampfer-Austrittswassertemperatur ($\Delta t = 5 \text{ K}$)	Τwe: Θερμοκρασία νερού εξόδου στον εξατμιστή (Δt 5°C)	Twe: temperatura de agua de salida del evaporador (Δt 5 °C)
qwc: Fluid-foulmens from an Verdampfer qwc: Trigory mission an Verdampfer qwc: Trigory mission and understanding and the frame part and the frameword of the first properties and in increases and the frameword of the first properties and in increases and the frameword of the first properties and increases and	HC: Heat capacity at condenser	HC: Heizleistung am Verflüssiger	ΗC: Θερμαντική ικανότητα στο συμπυκνωτή	HC: capacidad de calefacción en el condensador
Grower Fluidotuckabdall am Verflissiger Italiano	qwc: Fluid flow rate at condenser	qwc: Fluidvolumenstrom am Verdampfer	qwc: Ταχύτητα ροής υγρού στο συμπυκνωτή	qwc: caudal de líquido en el condensador
Français Français Italiano	dpwc: Fluid pressure drop at condenser	dpwc: Fluiddruckabfall am Verflüssiger	dpwc: Πτώση πίεσης υγρού στο συμπυκνωτή	dpwc: caída de presión de líquido en el condensador
Français Tearjas Te				
Tai. Temperature de l'air d'admission du condensatur rature (A15°C) Trout : Temperature de l'air d'admission du condensatur qui v. Definité de pression du liquide qui Definité de pression du liquide au niveau du condensatur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporateur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporateur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporateur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporateur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensatur (A15°C) Trout : Temperature de l'eau à la sortie du condensature d'exportation de l'airdide au niveau du condensatur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie du condensature d'exportation de l'eraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau à la sortie de l'éraporatieur (A15°C) Trout : Temperature de l'eau	English - Anglais - Inglese - Engels		Italiano	Nederlands
rature (M.15°C) Trivout, Temperature de l'eau à la sortie de l'évaporateur (M.15°C) CC apacité au d'a sortie de l'évaporateur (M.15°C) CC apacité au l'action de l'évaporateur (M.15°C) d'action	Ta: Condenser inlet air temperature	Ta : Température de l'air d'admission du condenseur	Ta: Temperatura aria in ingresso nel condensatore	Ta: Luchtinlaattemperatuur condensor
CC: Capacità di raffressamento qw: Debit du liquide qw: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau du condenseur qwe: Portata fluido all'evaporatore qwe: Debit du liquide au niveau du condenseur qwe: Condensatore qwe: Copocra norvae waptarorn qwe: Portat di carico del fuido alloraen qwe: Portat di carico del fuido qwe:	Twout: Evaporator leaving water temperature (Δt 5°C)	Twout: Température de l'eau à la sortie de l'évaporateur (∆t 5°C)	Twout: Temperatura acqua in uscita dall'evaporatore (Δt5°C)	Twout: Wateruittredetemperatuur verdamper (∆t5°C)
qw: Debit du liquide qw: Portata fluido dpw: Chute de pression du liquide qw: Perdita di carico del fluido Dimensione qwe: Debit du liquide au niveau de fevaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Perdita di carico del fluido all evaporatore ture (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) Twe: Température acqua in uscita dal Gevaporatore ture (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) Twe: Température acqua in uscita dall'evaporatore (Δt 5°C) ture (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C) HC: Capacité calorifique au niveau du condenseur qwe: Perdita di carico del fluido al condensatore (Δt 5°C) HC: Capacité calorifique au niveau du condenseur qwe: Perdita di carico del fluido al condensatore (Δt 5°C) True (Δt 5°C) Twout: Température de pression du liquide au niveau du condensatore qwe: Perdita di carico del fluido al condensatore qwe: Chopocris norona wagixocri in au niveau du condensatore qwe: Chopocris norona wagixocri in au diquide au niveau du condensatore rure (Δt 5°C)	CC: Cooling capacity	CC : Puissance frigorifique	CC: Capacità di raffrescamento	CC: Koelcapaciteit
dpw: Chulte de pression du liquide Dimension ywe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur Twe: Temperature acqua in uscita dall evaporatore Twe: Temperature acqua in uscita dall evaporatore Twe: Temperature acqua in uscita dall evaporatore Twe: Temperature de l'evaporateur qwe: Debit du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de pression du liquide au niveau du condenseur qwe: Departation de liquide au niveau du condenseur qwe: Departation au niveau du condenseur qwe: Departation au n	qw: Fluid flow rate	qw : Débit du liquide	qw: Portata fluido	qw: Vloeistofdebiet
Dimension qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur qwe: Debit du liquide au niveau de l'évaporateur (At 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (At 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (At 5°C) Twe: Température de l'eau à la sortie de l'évaporateur (At 5°C) HC: Capacité calorifique au niveau du condenseur qwc: Debit du liquide au niveau du condenseur qwc: Chapacite calorifique au niveau du condenseur qwc: Chapacite norous awapacorn qwc: Chapacite calorifique au niveau du condenseur qwc: Chapacite calorifique au niveau du condenseur qwc: Chapacite calorifique au niveau du condenseur qwc: Chapacite norous awapacorn qwc: Chapacite au niveau du condenseur qwc: Chapacite au niveau	dpw: Fluid pressure drop	dpw : Chute de pression du liquide	dpw: Perdita di carico del fluido	dpw: Vloeistofdrukverlies
qwe : Debit du liquide au niveau de l'évaporateur de pression du liquide au niveau de l'évaporateur d'Arc°C) Twe : Température de l'eau à la sortie de l'évaporateur (At 5°C) Twe : Température de l'eau à la sortie du condenseur (At 5°C) Twe : Température de l'eau à la sortie de l'évaporateur (At 5°C) Twe : Température acqua in uscita dall'evaporatore (At 5°C) HC : Capacité calorifique au niveau du condenseur d'Arc°C) Twe : Température de l'eau à la sortie de l'évaporateur (At 5°C) Twe : Température acqua in uscita dall'evaporatore (At 5°C) HC : Capacité calorifique au niveau du condenseur d'Arc°C) HC : Capacité calorifique au niveau du condenseur d'Arc°C) Twe : Température de pression du liquide au niveau du condenseur d'Arc°C) Twe : Temméparypa Bodgu Ha Baxoge wordencaropa (At 5°C) Twe : Temméparypa Bod	Size	Dimension	Dimensione	Afmeting
ture (At 5°C) Twe: Température de feau à la sortie du condenseur (At 5°C) Twe: Température de feau à la sortie du condenseur (At 5°C) Twe: Température de feau à la sortie du condenseur (At 5°C) Twe: Température de feau à la sortie du condenseur (At 5°C) Twe: Température de feau à la sortie de l'evaporateur (At 5°C) Twe: Température acqua in uscita dall'evaporatore (At 5°C) Twe: Température de feau à la sortie de fevaporateur (At 5°C) Twe: Temperatura acqua in uscita dall'evaporatore (At 5°C) Twe: Temperatura en univeau du condenseur de fevaporatore (At 5°C) Twe: Temperatura explaination de l'acqua in univeau du condenseur de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore worapivrene de fevaporatore worapivrene de fevaporatore worapivrene de fevaporatore morrore acqua in uscata de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore morrore acqua in uscata de fevaporatore (At 5°C) Twe: Temperatypa eogla Ha ebixoge worapivrene de fevaporatore de fevaporation en de fevaporatore de fevaporatore de fevaporatore de fevaporatore de fevap	qwe: Fluid flow rate at evaporator	qwe : Débit du liquide au niveau de l'évaporateur	qwe: Portata fluido all'evaporatore	qwe: Vloeistofdebiet bij verdamper
με (Δ15°C) Twe: Température de l'eau à la sortie du condenseur (Δ15°C) Twe: Température acqua in uscita dal condensatore (Δ15°C) ture (Δ15°C) Twe: Température de l'eau à la sortie de l'évaporateur (Δ15°C) Twe: Température acqua in uscita dall'evaporatore (Δ15°C) HC: Capacità femica al condensatore qwc: Dèbit du liquide au niveau du condenseur Qwc: Portata fluido al condensatore qwc: Débit du liquide au niveau du condenseur Qwc: Deporta fluido al condensatore qwc: Debit du liquide au niveau du condenseur Qwc: Deportata fluido al condensatore qwc: Debit du liquide au niveau du condenseur Qwc: Deportata fluido al condensatore qwc: Debit du liquide au niveau du condenseur Qwc: Deportata fluido al condensatore qwc: Deportata fluido al condensatore qwc: Chopocra novia жидкости Apwc: Perdita di carico del fluido al condensatore qwc: Chopocra novia жидкости Apwc: Perdita di carico del fluido al condensatore qwc: Chopocra novia жидкости Apwc: Perdita di carico del fluido al condensatore qwc: Chopocra novia жидкости Apwc: Chopocra novia жидкости Apwc: Chopocra novia wugecra novia moraphirene Apwc: Chopocra novia wugecra novia w	dpwe: Fluid pressure drop at evaporator	dpwe: Chute de pression du liquide au niveau de l'évaporateur	dpwe: Perdita di carico del fluido all'evaporatore	dpwe: Vloeistofdrukverlies bij verdamper
Aure (A15°C) Twe: Température de l'eau à la sortie de l'évaporateur (A15°C) Twe: Température acquain uscita dell'evaporatore (A15°C) HC: Capacità termica al condensatore qwc: Débit du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita fluido al condensatore dpwc: Chute de pression du liquide au niveau du condenseur (A15°C) CC: Производительность потока жидкости в конденсаторе (A15°C) Twe: Temmepartypa воды на выходе конденсаторе (A15°C) Twe: Temmepartypa воды на выходе конденсаторе (A15°C) Twe: Temmepartypa воды на выходе конденсаторе (A15°C) Twe: Temmepartypa воды на выходе конденсаторе (A15°C) Twe: Temmepartypa воды на выходе конденсаторе (A15°C)	Twc: Condenser leaving water temperature (Δt 5°C)	Twc: Température de l'eau à la sortie du condenseur (∆t 5°C)	Twc: Temperatura acqua in uscita dal condensatore (Δ T 5°C)	Twc: Wateruittredetemperatuur condensor (At 5°C)
HC: Capacità eminea ul nondenseur qwc: Debit du liquide au niveau du condenseur qwc: Debit du liquide au niveau du condenseur qwc: Debit du liquide au niveau du condenseur qwc: Perdita fluido al condensatore qwc: Chute de pression du liquide au niveau du condenseur dpwc: Perdita di carico del fluido al condensatore Pyccxui Ta: Temmeparypa Bogqbi Ha Buxogle wcnapurens (At 5°C) Twout: Temmeparypa Bogqbi Ha Buxogle wcnapurens (At 5°C) CC: Производительность по охлаждению qw: Cxopocrь потока жидкости в испарителе (At 5°C) Two: Temmeparypa Bogbi Ha Buxogle wcnapurense (At 5°C) Twe: Temmeparypa Bogbi Ha Buxogle wcnapurense (At 5°C) He: Tempeparypa Bogbi Ha Buxogle wcnapurense (At 5°C) He: Tempeparypa Bogbi Ha Buxogle wcnapurense (At 5	Twe: Evaporator leaving water temperature (∆t 5°C)	Twe : Température de l'eau à la sortie de l'évaporateur (Δt 5°C)	Twe: Temperatura acqua in uscita dall'evaporatore (Δt5°C)	Twe: Wateruitredetemperatuur verdamper ($\Delta t5^{\circ}$ C)
qwc: Debit du liquide au niveau du condenseur qwc: Portata fluido al condensatore dpwc: Chule de pression du liquide au niveau du condenseur dpwc: Perdita di carico del fluido al condensatore Pycoxwi	HC: Heat capacity at condenser	HC : Capacité calorifique au niveau du condenseur	HC: Capacità termica al condensatore	HC: Warmtecapaciteit bij condensor
dpwc: Chute de pression du liquide au niveau du condenseur dpwc. Perdita di carico del fluido al condensatore Pyccxий Ta: Tewnepartypa Bosguyza на въходе конденсатора rature (At 5°C) Twout: Tewnepartypa Bosguyza на въходе конденсатора cc: Производительность по охгаждению Que: Ckopocrь потока жидкости paswep Paswep qwe: Ckopocrь потока жидкости в испарителе r dpwe: Падение давления жидкости в испарителе r dpwe: Падение давления жидкости в испарителе r dpwe: Temnepartypa воды на выходе конденсатора qwe: Ckopocrь потока жидкости в конденсаторе At 5°C) ние (At 5°C) Twe: Temnepartypa воды на выходе конденсатора qwe: Ckopocrь потока жидкости в конденсаторе At 5°C)	qwc. Fluid flow rate at condenser	qwc : Débit du liquide au niveau du condenseur	qwc: Portata fluido al condensatore	qwc: Vloeistofdebiet bij condensor
rature ($\Delta t5^{\circ}$ C) ture ($\Delta t5^{\circ}$ C) ture ($\Delta t5^{\circ}$ C)	dpwc: Fluid pressure drop at condenser	dpwc : Chute de pression du liquide au niveau du condenseur	dpwc. Perdita di carico del fluido al condensatore	dpwc: Vloeistofdrukverlies bij condensor
rature (Δ15°C) ture (Δ15°C) ture (Δ15°C)				
rature (Δ15°C) ture (Δ15°C) ture (Δ15°C)	English - английский	Русский		
rature (Δ t 5°C) ture (Δ t 5°C)	Ta: Condenser inlet air temperature	Та: Температура воздуха на входе конденсатора		
r ure (Δt 5°C) ture (Δt 5°C)	Twout: Evaporator leaving water temperature (Δt5°C)	Тwout: Температура воды на выходе испарителя (∆t 5°C)		
r ure (Δt 5°C) ture (Δt 5°C)	CC: Cooling capacity	СС: Производительность по охлаждению		
r ure (Δt 5°C) ture (Δt 5°C)	qw. Fluid flow rate	qw: Скорость потока жидкости		
ure (Åt 5°C) ture (Åt 5°C)	dpw: Fluid pressure drop	dpw: Падение давления жидкости		
rure (At 5°C) ture (At 5°C)	Size	Размер		
r ture (At 5°C) ture (At 5°C)	qwe: Fluid flow rate at evaporator	qwe: Скорость потока жидкости в испарителе		
ture (At 5°C) ture (At 5°C)	dpwe: Fluid pressure drop at evaporator	dpwe: Падение давления жидкости в испарителе		
ture (Δt 5°C)	Twc: Condenser leaving water temperature (Δt 5°C)	Тwc: Температура воды на выходе конденсатора (Δt5°C)		
	Twe: Evaporator leaving water temperature (Δt 5°C)	Тwe: Температура воды на выходе испарителя (∆t 5°C)		
	HC: Heat capacity at condenser	НС: Теплоемкость конденсатора		
	qwc: Fluid flow rate at condenser	qwc: Скорость потока жидкости в конденсаторе		
	dpwc: Fluid pressure drop at condenser	фрис: Падение давления жидкости в конденсаторе		

6 Таблицы производительности

6 - 2 Таблицы холодопроизводительности

EWAD640-C11CZXR

Ta: Condenser inlet air temperature; Twout: Evaporator leaving water temperature (Δt 5°C); CC: Cooling capacity; PI: Power input; qw: Fluid flow rate; dpw: Fluid pressure drop

I	Condenser												Tw	out											
l	inlet air		į	5			7	7				9			1	1			1	3			1	5	\neg
l	temperature	CC	PI	gw	dpw	СС	PI	qw	dpw	СС	PI	qw	dpw	СС	PI	gw	dpw	СС	PI	qw	dpw	СС	PI	qw	dpw
Size	Та	kW	kW	l/s	kPa	kW	kW	I/s	kPa	kW	kW	I/s	kPa	kW	kW	l/s	kPa	kW	kW	I/s	kPa	kW	kW	I/s	kPa
	30	638	233	30.6	80	672	240	32.3	88	705	247	33.9	97	739	254	35.6	105	773	262	37.3	115	809	271	39.0	125
	35	599	257	28.7	72	631	264	30.3	79	664	271	31.9	87	696	279	33.5	95	729	287	35.1	103	762	297	36.8	112
	40	555	282	26.6	62	584	289	28.0	69	614	296	29.5	75	646	305	31.1	83	668	288	32.1	88	685	265	33.0	92
640	46	471	263	22.5	46	484	245	23.2	49	499	228	23.9	52	513	213	24.6	54	516	204	24.8	55	532	192	25.6	58
	48	421	219	20.1	38	435	209	20.8	40	440	206	21.1	41	454	192	21.8	44	467	179	22.4	46	480	168	23.1	48
	50	368	198	17.6	30	381	189	18.2	32	396	181	19.0	34	406	168	19.5	36	416	156	20.0	37	425	145	20.4	39
	30	696	218	33.4	76	739	224	35.5	85	786	232	37.8	95	832	240	40.0	105	876	249	42.2	116	923	258	44.5	127
	35	656	239	31.4	68	696	246	33.4	76	738	253	35.5	85	783	262	37.7	94	828	272	39.9	105	871	282	42.0	115
	40	610	262	29.2	60	647	269	31.0	66	685	276	32.9	74	726	285	34.9	82	769	295	37.0	91	815	307	39.3	102
700	46	549	293	26.2	49	575	291	27.6	54	595	273	28.5	57	616	258	29.6	61	631	236	30.3	64	653	223	31.4	68
	48	509	271	24.3	43	524	253	25.1	45	540	237	25.9	48	558	222	26.8	51	561	214	26.9	52	580	202	27.9	55
	50	453	228	21.7	35	470	219	22.5	37	476	215	22.8	38	491	202	23.6	41	500	183	24.0	42	515	172	24.7	44
	30	783	243	37.5	54	833	250	39.9	60	886	258	42.5	67	945	267	45.4	75	1006	278	48.4	85	1069	291	51.5	95
	35	741	268	35.5	48	786	274	37.6	54	834	282	40,0	60	886	292	42.5	67	943	303	45.3	75	1002	315	48.2	84
	40	693	295	33.1	43	734	301	35.1	48	777	309	37.3	53	824	318	39.6	59	873	329	42.0	65	928	342	44.7	73
790	46	624	330	29.8	35	655	326	31.4	39	687	318	32.9	42	721	313	34.6	46	746	296	35.8	49	765	272	36.8	52
	48	588	321	28.1	32	611	308	29.3	34	638	297	30.6	37	656	275	31.5	39	671	263	32.2	41	687	240	33.0	42
	50	538	291	25.7	27	550	267	26.3	28	562	257	26.9	30	581	240	27.8	31	600	225	28.8	33	611	215	29.3	34
	30	850	281	40.7	59	900	289	43.2	66	955	298	45.8	74	1014	309	48.7	82	1076	321	51.8	92	1140	335	55.0	102
	35	803	310	38.4	54	849	318	40.7	59	898	327	43.1	66	951	337	45.7	73	1008	350	48.5	81	1068	364	51.4	91
050	40	749	341	35.8	47	791	349	37.9	52	835	358	40.1	58	883	368	42.4	64	932	380	44.8	71	988	395	47.5	79
850	46	672	382	32.1	39	699	368	33.4	42	722	345	34.6	44	747	324	35.8	47	772	305	37.1	50	788	279	37.9	52
	48	623	353	29.8	34	635	319	30.4	35	657	303	31.5	37	674	279	32.3	39	686	276	32.9	41	701	252	33.6	42
	50	555	296	26.5	28	568	275	27.2	29	575	270	27.5	29	593	253	28.4	31	611	236	29.3	33	629	221	30.2	35
	30	973	311	46.5	58	1036	321	49.6	65	1102	332	52.9	73	1170	344	56.2	81	1241	358	59.7	90	1313	374	63.2	100
	35	914	342	43.7	52	972	351	46.6	58	1034	363	49.6	65	1098	375	52.8	72	1165	390	56.0	81	1233	406	59.4	89
000	40	849	375	40.6	45	901	385	43.2	50	957	396	45.9	56	1017	409	48.8	63	1079	424	51.9	70	1133	420	54.5	77
980	46	756	412	36.1	37	788	395	37.7	40	826	387	39.6	43	861	370	41.3	47	888	344	42.6	49	904	325	43.4	51
	48	701	383	33.5	32	730	368	34.9	34	754	345	36.1	37	769	328	36.9	38	793	304	38.0	40	820	286	39.4	43
	50	632	337	30.2	27	644	322	30.8	28	669	305	32,0	29	690	285	33.1	31	703	271	33.7	32	719	250	34.5	34
	30	1032	348	49.4	64	1095	359	52.5	72	1162	371	55.8	80	1230	385	59.1	89	1299	400	62.5	98	1371	417	66.1	109
	35	968	382	46.3	57	1027	393	49.2	64	1088	405	52.2	71	1152	419	55.4	79	1218	435	58.6	87	1285	453	61.9	96
040	40	896	419	42.9	50	949	430	45.4	55	1005	442	48.2	62	1064	456	51.1	68	1126	473	54.1	76	1168	451	56.2	81
C10	46	792	454	37.9	40	810	412	38.8	42	838	386	40.1	44	866	363	41.5	47	895	341	43.0	50	902	330	43.4	51
	48	711	382	34.0	33	739	367	35.4	35	762	342	36.5	37	764	327	36.6	38	790	308	37.9	40	817	289	39.2	42
'	50	635	329	30.3	27	640	322	30.6	27	667	309	31.9	29	688	289	32.9	31	708	270	34.0	33	715	243	34.3	33
	30	1166	365	55.7	43	1240	376	59.4	48	1318	388	63.2	54	1400	401	67.2	60	1486	416	71.4	67	1575	433	75.7	75
'	35	1098	401	52.5	39	1166	412	55.8	43	1240	424	59.4	48	1319	438	63.3	54	1401	454	67.3	61	1486	471	71.5	67
C11	40	1022	440	48.8	34	1085	451	51.9	38	1153	463	55.2	43	1227	477	58.9	48	1306	494	62.7	53	1384	504	66.5	59
C11	46	920	490	44.0	28	968	485	46.3	31	1016	475	48.6	34	1064	460	51.0	37	1101	429	52.8	39	1126	405	54.1	41
	48	864	471	41.3	25	903	459	43.2	27	939	437	45,0	29	970	405	46.5	31	994	386	47.7	33	1021	353	49.0	34
	50	789	428	37.7	21	813	399	38.9	23	833	383	39.9	24	858	353	41.1	25	876	335	42.0	26	901	310	43.2	27

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

1 Fluid: Water Fluid: Wasser Yγρό: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Вода

For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC_1-2-3_Rev.01_3_(1-2)

6 - 2 Таблицы холодопроизводительности

EWADC12-C17CZXR

6

Ta: Condenser inlet air temperature; Twout: Evaporator leaving water temperature (Δt 5°C); CC: Cooling capacity; PI: Power input; qw: Fluid flow rate; dpw: Fluid pressure drop

	Condenser												Tw	out											
	inlet air		į	5			7	7			ç	9			1	1			1	3			1	5	
	temperature	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw												
Size	Та	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa												
	30	1238	407	59.2	48	1313	419	62.9	54	1393	433	66.8	60	1474	448	70.7	66	1561	464	75.0	73	1653	482	79.5	82
	35	1164	447	55.6	43	1231	459	58.9	48	1307	473	62.6	53	1388	489	66.6	59	1471	505	70.7	66	1559	524	75.0	73
C12	40	1080	489	51.6	38	1144	502	54.7	42	1212	515	58.1	46	1289	531	61.8	52	1373	549	66.0	58	1449	552	69.7	64
012	46	969	543	46.3	31	1009	524	48.3	33	1047	493	50.1	36	1079	451	51.7	38	1111	411	53.3	40	1128	397	54.1	41
	48	890	488	42.5	26	917	456	43.9	28	949	426	45.4	30	984	399	47.2	32	997	384	47.8	33	1026	350	49.3	34
	50	791	409	37.8	21	822	392	39.3	23	835	387	40.0	24	856	351	41.0	25	889	328	42.6	27	906	296	43.5	28
	30	1334	437	63.8	57	1414	450	67.7	63	1499	465	71.9	71	1589	481	76.3	79	1683	499	80.9	87	1781	518	85.8	97
	35	1250	479	59.8	51	1327	493	63.6	57	1408	508	67.5	63	1494	525	71.7	70	1586	543	76.2	78	1681	564	80.9	87
C13	40	1155	524	55.2	44	1227	538	58.7	49	1306	554	62.6	55	1389	571	66.7	62	1477	590	71.0	69	1560	596	75.1	76
010	46	1026	581	49.0	35	1076	562	51.5	39	1119	523	53.6	42	1159	477	55.6	44	1198	436	57.5	47	1220	421	58.6	49
	48	949	538	45.3	31	978	489	46.8	33	1020	458	48.8	35	1052	416	50.4	37	1065	395	51.1	38	1104	365	53.0	41
	50	841	446	40.2	25	877	421	41.9	27	887	403	42.5	27	920	371	44.1	29	959	347	46.0	32	982	313	47.1	33
	30	1444	463	69.1	66	1529	477	73.3	74	1620	493	77.8	82	1716	510	82.5	91	1817	529	87.4	101	1922	549	92.6	112
	35	1353	508	64.7	59	1437	523	68.8	66	1523	539	73.1	73	1615	557	77.6	82	1712	576	82.4	91	1814	597	87.4	101
C14	40	1248	556	59.7	51	1327	571	63.6	57	1413	588	67.8	64	1502	607	72.1	72	1595	626	76.7	80	1693	648	81.5	89
014	46	1100	616	52.6	41	1161	598	55.6	45	1218	564	58.4	49	1256	502	60.3	52	1300	459	62.4	55	1327	443	63.8	57
	48	1025	586	49.0	36	1056	520	50.5	38	1108	488	53.1	41	1149	444	55.1	44	1161	416	55.7	45	1198	379	57.6	48
	50	908	480	43.4	29	948	448	45.3	31	966	430	46.3	32	1001	390	48.0	34	1046	365	50.2	37	1073	330	51.5	39
	30	1546	518	73.9	58	1636	533	78.4	64	1729	549	82.9	71	1824	568	87.6	78	1923	588	92.5	86	2026	611	97.5	95
	35	1453	570	69.5	52	1539	585	73.7	57	1626	602	78.0	63	1717	622	82.4	70	1809	643	86.9	77	1904	667	91.7	85
C15	40	1349	627	64.5	45	1425	641	68.2	50	1507	659	72.3	55	1592	679	76.4	61	1680	701	80.7	67	1750	686	84.2	73
0.10	46	1198	680	57.2	36	1224	617	58.6	38	1263	578	60.5	40	1304	542	62.5	43	1346	509	64.6	45	1356	492	65.1	46
	48	1087	591	51.9	31	1118	549	53.5	32	1152	512	55.1	34	1155	490	55.4	34	1195	460	57.3	36	1232	433	59.2	39
	50	961	493	45.9	24	969	483	46.3	25	1010	464	48.3	27	1041	433	49.8	28	1071	404	51.4	30	1101	377	52.8	31
	30	1633	546	78.1	64	1724	561	82.6	70	1819	578	87.3	78	1919	596	92.2	86	2023	617	97.3	95	2131	640	102.6	104
	35	1538	601	73.6	57	1624	617	77.8	63	1714	634	82.2	70	1809	653	86.9	77	1906	674	91.7	85	2009	698	96.7	93
C16	40	1430	660	68.4	50	1510	676	72.3	55	1594	693	76.4	61	1684	713	80.8	68	1777	736	85.4	75	1861	734	89.5	81
010	46	1278	724	61.1	41	1318	680	63.1	43	1361	637	65.2	46	1407	598	67.5	49	1450	555	69.6	52	1477	531	71.0	54
	48	1175	651	56.1	35	1204	600	57.6	37	1241	560	59.4	39	1260	531	60.4	40	1292	503	62.0	42	1331	467	63.9	44
	50	1039	539	49.6	28	1054	517	50.4	29	1087	502	52.0	31	1123	468	53.8	33	1159	437	55.6	35	1188	404	57.0	36
	30	1716	565	82.1	61	1803	579	86.4	67	1895	594	90.9	73	1992	611	95.7	80	2094	629	100.7	88	2201	649	106.0	96
	35	1624	624	77.7	55	1706	638	81.7	60	1793	654	86.0	66	1885	671	90.5	72	1983	689	95.3	79	2085	710	100.3	87
C17	40	1520	687	72.7	49	1596	701	76.4	53	1678	717	80.5	59	1766	734	84.8	64	1859	754	89.3	71	1957	776	94.1	78
	46	1375	768	65.7	41	1432	756	68.5	44	1476	709	70.7	46	1525	665	73.1	49	1575	624	75.6	52	1616	591	77.6	55
	48	1286	721	61.4	36	1311	659	62.7	37	1349	615	64.6	39	1395	579	66.9	42	1430	546	68.6	44	1456	522	69.9	45
	50	1140	594	54.5	29	1165	565	55.7	30	1185	547	56.7	31	1225	511	58.7	33	1266	477	60.7	35	1294	435	62.1	37

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - ПРИМЕЧАНИЯ

1 Fluid: Water Fluid: Wasser Yγρό: Νερό Líquido: agua Liquide: Bua Fluido: Acqua Vloeistof: Water Жидкость: Вода 2 For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC 1-2-3 Rev.01 3 (2-2)

Температура воды на выходе в режиме частичной рекуперации

Таблицы производительности 6

6 - 3 Частичная рекуперация теплоты Таблицы производительностей

Номинальные значения при частичной рекуперации тепла

Вариант	Размер	Вариант	Разме
	670		640
	740		700
	830		790
	900		850
ഗ ച	C10	<u>~</u>	980
XX	C11	X	C10
EWAD~CZXS EWAD~CZXL	C12	EWAD~CZXR	C11
WA WA	C13	MA!	C12
шШ	C14	Ш	C13
	C15		C14
	C16		C15
	C17		C16
	C18		C17

Вариант	Размер
	640
	700
	790
	850
œ	980
X	C10
EWAD~CZXR	C11
W.	C12
Ш	C13
	C14
	C15
	C16
	C17

		p o minio	тепла (°C)	.yepa
		45	50	55
		(∆t=5°C)	(∆t=5°C)	(∆t=5°C)
		Нс (кВт)	Нс (кВт)	Нс (кВт)
	ڻ	120	100	81,8
	a 35	127	106	86,6
	Тор	143	120	97,6
e ∪	енсе	157	132	108
lxo⊿	ОНД	179	151	123
та вн С - <i>1</i>	ден	192	161	131
Температура на выходе испарителя 7°С - ∆t 5°C	BX(213	179	146
рат.) ител	(a H	228	192	156
эмпе	эду)	253	212	173
≝ ≚	a BC	271	227	185
	атур	284	239	194
	Температура воздуха на входе конденсатора 35°С"	300	252	205
	Ē	314	264	215

LWT B	эежиме
части	1ЧНОЙ
рекупера	ции тепла
45	°C
Расход	Падение
воды	давления
л/с	кПа
5,71	24
6,05	26
6,82	33
7,52	40
8,57	51
9,16	39
10,17	48
10,90	33
12,07	41
12,92	46
13,59	39
14,31	42
15,02	46

cappart_1_Rev.00_1

6 Таблицы производительности

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла

Вариант	Размер	Вариант	Размер	EWC / LWC	Сс (кВт)	Рі (кВт)	Нс (кВт)	% Hc	COP Hc
	670		640		606	217	700	85%	6,01
	740		700		668	203	740	85%	6,94
	830		790		754	230	836	85%	6,91
ا س	900	l ~	850		817	267 295	922	85%	6,51
EWAD~CZXS EWAD~CZXL	C10	EWAD~CZXR	980		935	295	1046	85%	6,71
33	C11	1 12	C10	12	986	329	1118	85%	6,39
1 22	C12 C13		C11	40/45	1117	347	1244	85%	6,81
I	C13	₹	C12	4	1179	386	1331	85%	6,50
	C14	<u> </u>	C13		1307	426	1473	85%	6,52
	C15	-	C14		1393	465	1580	85%	6,39
	C16 C17		C15		1467	491	1664	85%	6,38
	C1/		C16		1547	517	1755	85%	6,38
	C18		C17		1640	537	1850	85%	6,50
Вариант	Размер	Вариант	Размер	EWC / LWC	Сс (кВт)	Рі (кВт)	Нс (кВт)	% Hc	COP Hc
	670		640		578	220	678	85%	5,72
	740		700		637	205	716	85%	6,59
1	830		790		719	233	809	85%	6.56
I	900	l ~	850		779	233 270	892	85%	6,19
EWAD~CZXS EWAD~CZXL	C10	EWAD~CZXR	980		891	298	1011	85%	6,38
722	C11	2	C10	0	940	333	1082	85%	6,07
ΙŽĬ	C12	~~~	C11	40/50	1064	351	1203	85%	6,47
1 84 1	C13	9	C12	40	1124	391	1288	85%	6,17
	I C14 I		C13	İ	1246	431	1425	85%	6,20
шш	C15	Ш	C14		1328	471	1529	85%	6,07
İ	C16		C15		1398	497	1611	85%	6,06
İ	C17		C16	İ	1475	523	1698	85%	6,06
	C18		C17		1563	543	1790	85%	6,18
Вариант									
	I Dogwood I	Rapidalit	Dagwon		Co (vB+)	Di (₁ /D+)	Ho (vP+)	0/. ∐ o	COD Ho
Бариапт	Размер	Вариант	Размер	EWC / LWC	Сс (кВт)	Рі (кВт)	Нс (кВт)	% Hc	COP Hc
Бариант	670	Вариант	640	EWC / LWC	578	222	480	60%	4,76
Бариапт	670 740	Вариант	640 700	EWC / LWC	578 637	222 208	480 507	60% 60%	4,76 5,50
	670 740 830		640 700 790	EWC / LWC	578 637 719	222 208 236	480 507 573	60% 60% 60%	4,76 5,50 5,48
	670 740 830 900		640 700 790 850	EWC / LWC	578 637 719 779	222 208 236 274	480 507 573 632	60% 60% 60% 60%	4,76 5,50 5,48 5.16
	670 740 830 900 C10		700 790 850 980		578 637 719 779 891	222 208 236 274 302	480 507 573 632 716	60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32
	670 740 830 900 C10		640 700 790 850 980 C10		578 637 719 779 891 940	222 208 236 274 302 337	480 507 573 632 716 767	60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06
	670 740 830 900 C10		640 700 790 850 980 C10		578 637 719 779 891 940 1064	222 208 236 274 302 337 355	480 507 573 632 716 767 852	60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40
	670 740 830 900 C10 C11 C12 C13		640 700 790 850 980 C10 C11	45/55 AMC	578 637 719 779 891 940 1064 1124	222 208 236 274 302 337 355 396	480 507 573 632 716 767 852 912	60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13	Вариант EWAD~CZXR	640 700 790 850 980 C10 C11		578 637 719 779 891 940 1064 1124	222 208 236 274 302 337 355 396 437	480 507 573 632 716 767 852 912 1009	60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15
	670 740 830 900 C10 C11 C12 C13 C14 C15		640 700 790 850 980 C10 C11 C12 C13 C14		578 637 719 779 891 940 1064 1124 1246 1328	222 208 236 274 302 337 355 396 437 477	480 507 573 632 716 767 852 912 1009 1083	60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06
	670 740 830 900 C10 C11 C12 C13 C14 C15 C16		640 700 790 850 980 C10 C11 C12 C13 C14 C15		578 637 719 779 891 940 1064 1124 1246 1328 1398	222 208 236 274 302 337 355 396 437 477 503	480 507 573 632 716 767 852 912 1009 1083 1141	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05
	670 740 830 900 C10 C11 C12 C13 C14 C15		640 700 790 850 980 C10 C11 C12 C13 C14		578 637 719 779 891 940 1064 1124 1246 1328	222 208 236 274 302 337 355 396 437 477	480 507 573 632 716 767 852 912 1009 1083	60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563	222 208 236 274 302 337 355 396 437 477 503 530 550	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15
	670 740 830 900 С10 С11 С12 С13 С14 С15 С16 С17 С18		640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17		578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563	222 208 236 274 302 337 355 396 437 477 503 530 550	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15
EWAD~CZXS EWAD~CZXL	670 740 830 900 С10 С11 С12 С13 С14 С15 С16 С17 С18	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ)	222 208 236 274 302 337 355 396 437 477 503 530 550	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (kBT) 280	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15
EWAD~CZXS EWAD~CZXL	670 740 830 900 С10 С11 С12 С13 С14 С15 С16 С17 С18	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15 COP Hc 3,86 4,48
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17 Pasmep 640 700 790	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637 719	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (kBt) 222 208 236	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 Pasmep 670 740 830 900	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17 Pasmep 640 700 790 850	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (кВт) 578 637 719 779	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (kBT) 222 208 236	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (kBT) 280 296 334 368	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47
EWAD~CZXS EWAD~CZXL	670 740 830 900 С10 С11 С12 С13 С14 С15 С16 С17 С18 Размер 670 740 830 900 С10	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17 Pasmep 640 700 790 850 980	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (кВт) 578 637 719 779 891	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (kBt) 222 208 236 274 302	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 Pasmep 670 740 830 900 C10 C11	EWAD~CZXR	640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17 Размер 640 700 790 850 980 С10	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637 719 779 891 940	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (kBt) 222 208 236 274 302 337	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418 447	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33 4,11
EWAD~CZXS EWAD~CZXL	670 740 830 900 С10 С11 С12 С13 С14 С15 С16 С17 С18 Размер 670 740 830 900 С10 С11 С12	EWAD~CZXR	640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637 719 779 891 940 1064	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (kBt) 280 296 334 368 418 447 497	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33 4,11 4,40
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C18 Pasmep 670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 C17 C18 C10 C10 C10 C11 C12 C13 C13 C10 C13 C13 C10 C11 C12 C13 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C11 C12 C13 C10 C10 C10 C11 C12 C13 C10 C10 C10 C10 C10 C11 C12 C13 C10 C	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17 Pasmep 640 700 790 850 980 C10 C11 C12	45/55	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637 719 779 891 940 1064 1124	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355 396	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418 447 497 532	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33 4,11 4,40 4,19
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C18 Pasmep 670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 C16 C17 C18 C10 C10 C10 C11 C12 C13 C14 C14 C14 C14 C15 C14 C14 C15 C16 C17 C18 C16 C17 C18 C17 C18 C	EWAD~CZXR	640 700 790 850 980 C10 C11 C12 C13 C14 C15 C16 C17 Pasmep 640 700 790 850 980 C10 C11 C12 C13	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (κΒτ) 578 637 719 779 891 940 1064 1124 1246	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355 396 437	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418 447 497 532 589	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33 4,11 4,40 4,19 4,20
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 C10 C11 C12 C13 C14 C15 C16 C17 C18 C10 C11 C12 C13 C14 C15 C15 C14 C15 C15 C14 C15 C15 C16 C17 C18 C17 C18	EWAD~CZXR	640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17 Размер 640 700 790 850 980 С10 С11 С11 С12	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (кВт) 578 637 719 779 891 940 1064 1124 1246 1328	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355 396 437 477	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418 447 497 532 589 632	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 4,44 4,47 4,20 4,33 4,11 4,40 4,19 4,20 4,11
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C15 C16 C11 C12 C13 S30 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 C16 C17 C18 C16 C17 C16 C17 C16 C17 C16 C17 C17 C18	EWAD~CZXR	640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17 Размер 640 700 790 850 980 С10 С11 С12 С13 С14 С15 С15 С16	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (кВт) 578 637 719 779 891 940 1064 1124 1246 1328 1328 1398	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355 396 437 477 503	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (кВт) 280 296 334 368 418 447 497 532 589 632 666	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,15 COP Hc 3,86 4,48 4,47 4,20 4,33 4,11 4,40 4,19 4,20 4,11 4,10
EWAD~CZXS EWAD~CZXL	670 740 830 900 C10 C11 C12 C13 C14 C15 C16 C17 C18 C10 C11 C12 C13 C14 C15 C16 C17 C18 C10 C11 C12 C13 C14 C15 C15 C14 C15 C15 C14 C15 C15 C16 C17 C18 C17 C18	EWAD~CZXR	640 700 790 850 980 С10 С11 С12 С13 С14 С15 С16 С17 Размер 640 700 790 850 980 С10 С11 С11 С12	EWC / LWC	578 637 719 779 891 940 1064 1124 1246 1328 1398 1475 1563 Cc (кВт) 578 637 719 779 891 940 1064 1124 1246 1328	222 208 236 274 302 337 355 396 437 477 503 530 550 Pi (кВт) 222 208 236 274 302 337 355 396 437 477	480 507 573 632 716 767 852 912 1009 1083 1141 1203 1268 Hc (κΒτ) 280 296 334 368 418 447 497 532 589 632	60% 60% 60% 60% 60% 60% 60% 60% 60% 60%	4,76 5,50 5,48 5,16 5,32 5,06 5,40 5,15 5,17 5,06 5,05 5,05 5,05 4,44 4,47 4,20 4,33 4,11 4,40 4,19 4,20 4,11

Примечания:

Сс (охлаждающая способность)

Данные относятся к следующим условиям:

LWE (Вода на выходе испарителя) = 7°C

Поток в испарителе такой же, как при номинальном режиме охлаждения

Температура воздуха на входе конденсатора = 35°C

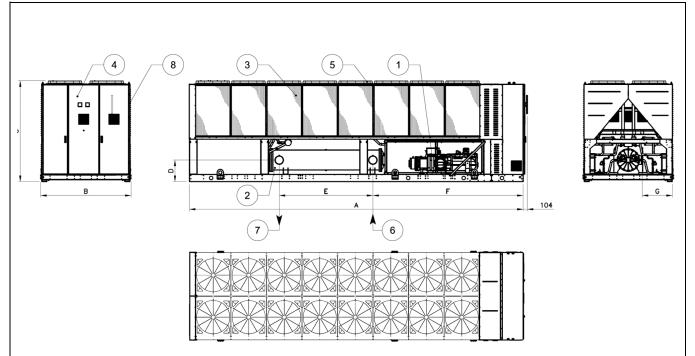
0,0176 м² °С/кВт степень загрязнения испарителя

captot_1_Rev.00_1

Рі (потребляемая блоком мощность)

Нс (рекуперация тепла при нагреве)

[%]Нс (процент рекуперации тепла)


СОР Нс (коэффициент производительности при рекуперации тепла = (производительность по охлаждению + нагреву) / потребляемая мощность)

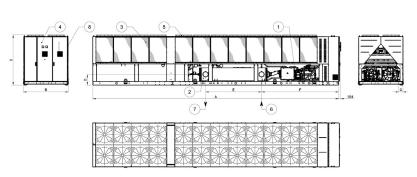
EWC (Рекуперация тепла воды на входе конденсатора)

LWC (Рекуперация тепла воды на выходе конденсатора)

7 Размерные чертежи

7 - 1 Размерные чертежи

Чертежи служат только для иллюстрации. Размеры блоков приведены в таблице ниже.


Мод	цели	Габариты (мм)											
EWAD~CZXS/XL	EWAD~CZXR	А	В	С	D	E	F	G	Вентиляторы				
670	640	6621	2285	2540	434	2412	3757	810	10				
740	700	6621	2285	2540	434	2412	3757	810	12				
830	790	7521	2285	2540	434	2412	3757	810	14				
900	850	7521	2285	2540	434	2412	3757	810	14				
C10	980	8421	2285	2540	542	2360	3794	758	16				
C11	C10	8421	2285	2540	542	2360	3794	758	16				
C12	C11	9321	2285	2540	542	2360	3794	758	20				
C13	C12	9321	2285	2540	542	2360	3794	758	20				

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1. Компрессор
- 2. Испаритель
- 3. Змеевик конденсатора
- 4. Электрическая панель
- 5. Вентилятор
- 6. Вход испарителя для воды
- 7. Выход испарителя для воды
- 8. Слот для подключения питания

DMN_1-2_Rev.00_1

7 - 1 Размерные чертежи

Чертежи служат только для иллюстрации. Размеры блоков приведены в таблице ниже.

Мод	ели	Габариты (мм)										
EWAD~CZXS/XL	EWAD~CZXR	А	В	С	D	Е	F	G	Вентиляторы			
C14	C13	11521	2285	2540	542	2360	3794	758	22			
C15	C14	12421	2285	2540	542	2360	3794	758	24			
C16	C15	12421	2285	2540	542	2830	3896	208	24			
C17	C16	13321	2285	2540	542	2830	3896	208	26			
C18	C17	14221	2285	2540	542	2830	3896	208	28			

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1. Компрессор
- 2. Испаритель
- 3. Змеевик конденсатора
- 4. Электрическая панель
- 5. Вентилятор
- 6. Вход испарителя для воды
- 7. Выход испарителя для воды
- 8. Слот для подключения питания

8 Данные об уровне шума

8 - 1 Данные об уровне шума

Уровни звукового давления

EWAD~CZXS

Размер		Уровень звук	ового давлен	ия в 1 м от бл	ока в полусф	ерическом п	ространстве (rif. 2 x 10 ⁻⁵ Πα)	Мощность
блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
670	64,1	65,4	72,2	76,8	78,5	72,3	68,1	59,0	102,1	81,0
740	64,2	65,5	72,2	76,8	78,5	72,4	68,2	59,0	102,2	81,0
830	64,2	65,5	72,2	76,8	78,5	72,4	68,2	59,1	102,5	81,1
900	64,2	65,5	72,2	76,8	78,5	72,4	68,2	59,1	102,5	81,1
C10	64,2	65,5	72,3	76,9	78,6	72,4	68,2	59,1	102,9	81,1
C11	64,2	65,5	72,3	76,9	78,6	72,4	68,2	59,1	102,9	81,1
C12	64,3	65,6	72,3	76,9	78,6	72,5	68,3	59,2	103,5	81,2
C13	64,3	65,6	72,3	76,9	78,6	72,5	68,3	59,2	103,5	81,2
C14	64,3	65,6	72,3	76,9	78,6	72,5	68,3	59,2	104,1	81,2
C15	64,3	65,7	72,4	77,0	78,7	72,5	68,3	59,2	104,1	81,2
C16	66,0	67,3	74,0	78,6	80,3	74,2	70,0	60,8	105,8	82,8
C17	66,0	67,3	74,0	78,6	80,3	74,2	70,0	60,9	106,0	82,9
C18	66,0	67,3	74,0	78,6	80,3	74,2	70,0	60,9	106,2	82,9

Значения соответствуют ISO 3744 и относятся к следующим условиям: испаритель 12/7° С, температура окружающего воздуха 35° С, работа при полной нагрузке

EWAD~CZXL

Размер		Уровень звук	ового давлен	ния в 1 м от бы	тока в полусф	рерическом п	ространстве	(rif. 2 x 10⁻⁵ Па)	Мощность
блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
670	60,6	61,9	68,7	73,3	75,0	68,8	64,6	55,5	98,6	77,5
740	61,2	62,5	69,2	73,8	75,5	69,4	65,2	56,0	99,2	78,0
830	61,2	62,5	69,2	73,8	75,5	69,4	65,2	56,1	99,5	78,1
900	61,2	62,5	69,2	73,8	75,5	69,4	65,2	56,1	99,5	78,1
C10	61,2	62,5	69,3	73,9	75,6	69,4	65,2	56,1	99,9	78,1
C11	61,2	62,5	69,3	73,9	75,6	69,4	65,2	56,1	99,9	78,1
C12	61,3	62,6	69,3	73,9	75,6	69,5	65,3	56,2	100,5	78,2
C13	61,3	62,6	69,3	73,9	75,6	69,5	65,3	56,2	100,5	78,2
C14	61,3	62,6	69,3	73,9	75,6	69,5	65,3	56,2	101,1	78,2
C15	61,3	62,7	69,4	74,0	75,7	69,5	65,3	56,2	101,1	78,2
C16	63,0	64,3	71,0	75,6	77,3	71,2	67,0	57,8	102,8	79,8
C17	63,0	64,3	71,0	75,6	77,3	71,2	67,0	57,9	103,0	79,9
C18	63,0	64,3	71,0	75,6	77,3	71,2	67,0	57,9	103,2	79,9

Значения соответствуют ISO 3744 и относятся к следующим условиям: испаритель $12/7^{\circ}$ C, температура окружающего воздуха 35° C, работа при полной нагрузке

EWAD~CZXR

Размер		Уровень звук	ового давлен	ия в 1 м от б	тока в полусф	рерическом п	ространстве	(rif. 2 x 10⁻⁵ Πa)	Мощность
блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
640	56,6	57,9	64,7	69,3	71,0	64,8	60,6	51,5	94,6	73,5
700	57,2	58,5	65,2	69,8	71,5	65,4	61,2	52,0	95,2	74,0
790	57,2	58,5	65,2	69,8	71,5	65,4	61,2	52,1	95,5	74,1
850	57,2	58,5	65,2	69,8	71,5	65,4	61,2	52,1	95,5	74,1
980	57,2	58,5	65,3	69,9	71,6	65,4	61,2	52,1	95,9	74,1
C10	57,2	58,5	65,3	69,9	71,6	65,4	61,2	52,1	95,9	74,1
C11	57,3	58,6	65,3	69,9	71,6	65,5	61,3	52,2	96,5	74,2
C12	57,3	58,6	65,3	69,9	71,6	65,5	61,3	52,2	96,5	74,2
C13	57,3	58,6	65,3	69,9	71,6	65,5	61,3	52,2	97,1	74,2
C14	57,3	58,7	65,4	70,0	71,7	65,5	61,3	52,2	97,1	74,2
C15	59,0	60,3	67,0	71,6	73,3	67,2	63,0	53,8	98,8	75,8
C16	59,0	60,3	67,0	71,6	73,3	67,2	63,0	53,9	99,0	75,9
C17	59,0	60,3	67,0	71,6	73,3	67,2	63,0	53,9	99,2	75,9

Значения соответствуют ISO 3744 и относятся к следующим условиям: испаритель 12/7° С, температура окружающего воздуха 35° С, работа при полной нагрузке

NSL_1-2_Rev.00_1

EWAD~CZXS / EWAD~CZXL / EWAD~CZXR

8

	Размер блока					Расстояние			
EWAD~CZ-XS	EWAD~CZ-XL	EWAD~CZ-XR	1 м	5 м	10 м	15 м	20 м	25 м	50 м
670	670	640	0,0	7,0	11,5	14,4	16,6	18,4	24,0
740	740	700	0,0	7,0	11,5	14,4	16,6	18,4	24,0
830	830	790	0,0	6,8	11,3	14,2	16,4	18,1	23,7
900	900	850	0,0	6,8	11,3	14,2	16,4	18,1	23,7
C10	C10	980	0,0	6,6	11,0	13,9	16,1	17,9	23,4
C11	C11	C10	0,0	6,6	11,0	13,9	16,1	17,9	23,4
C12	C12	C11	0,0	6,4	10,7	13,5	15,7	17,4	22,9
C13	C13	C12	0,0	6,4	10,7	13,5	15,7	17,4	22,9
C14	C14	C13	0,0	6,1	10,3	13,1	15,2	16,9	22,4
C15	C15	C14	0,0	6,1	10,3	13,1	15,2	16,9	22,4
C16	C16	C15	0,0	6,1	10,3	13,1	15,2	16,9	22,4
C17	C17	C16	0,0	6,0	10,2	12,9	15,0	16,7	22,2
C18	C18	C17	0,0	6,0	10,0	12,8	14,9	16,6	22,0

Значения приведены в дБ(А) (уровень давления)

Уменьшение для применения к стандартным, низким и пониженным уровням шума

NSL_1-2_Rev.00_2

9 - 1 Способ монтажа

Предупреждение

Установка и техобслуживание блока должны производиться только квалифицированными специалистами, знающими местные положения и правила и имеющими опыт работы с данным оборудованием. Необходимо избегать установки агрегата на местах, где проведение технического обслуживания может быть опасным.

Обращение

Необходимо избегать небрежного обращения с блоком или ударов при падении. Агрегат можно перемещать только за опорную раму. Не допускайте падения блока во время разгрузки или перемещения, поскольку это может привести к значительному повреждению. Для подъема агрегата используйте проушины на опорной раме. Траверсу и тросы следует расположить так, чтобы избежать повреждения змеевика конденсатора или корпуса блока.

Место установки

Блоки выпускаются для наружной установки на крыше, на полу или ниже уровня поверхности земли при условии, что в месте установки нет препятствий для циркуляции воздуха для конденсатора. Блок должен находиться на прочном и ровном основании; в случае установки на крыше или на полу рекомендуется использовать подходящие балки для распределения весовых нагрузок. В случае установки блоков на земле необходимо подготовить бетонное основание, ширина и длина которого превышает установочные размеры блока, по меньшей мере, на 250 мм. Более того, это основание должно выдерживать вес блока, указанный таблице технических данных.

Требования по размещению

Блоки охлаждаются воздухом, поэтому важно соблюдать минимальные расстояния, которые обеспечивают наилучшую вентиляцию змеевиков конденсаторов. Пространственные ограничения, снижающие поток воздуха, могут привести к значительному снижению охлаждающей способности и повышению потребления электроэнергии.

При определении места для блока нужно обеспечить достаточный воздушный поток через поверхность передачи тепла конденсатора. Для достижения наилучших эксплуатационных характеристик следует избегать двух условий: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

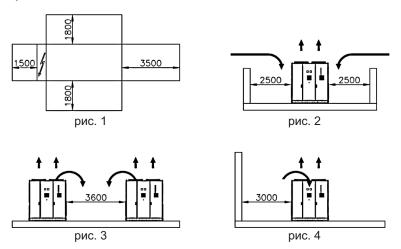
Оба эти условия приводят к увеличению давлений конденсации, которые уменьшают эффективность работы блока и его мошность.

Более того, уникальный микропроцессор способен определять параметры среды работы воздушно-охлаждаемого охладителя и оптимальную нагрузку в случае нестандартных условий.

После установки каждая из сторон блока должна быть доступна для периодического обслуживания. На рис.1 показаны минимальные рекомендуемые расстояния.

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если блоки располагаются в местах, окруженных стенками или препятствиями той же высоты, что и блоки, то блоки должны, по крайней мере, на 2500 мм отделяться от препятствий (рис. 2). В случае, если препятствия выше блоков, блоки должны быть, по меньшей мере, на 3000 мм выше (рис. 4). Блоки, установленные ближе к стене или к другой вертикальной конструкции, чем минимально рекомендуемое расстояние, могут испытывать ограниченную подачу воздуха к змеевику и рециркуляцию теплого воздуха, что снижает их производительность и эффективность. Микропроцессорное управление проактивно реагирует на "нештатное состояние". В случае наличия одного или нескольких видов влияния, ограничивающих поток воздуха, микропроцессор будет подавать команды таким образом, чтобы компрессор(ы) продолжал(и) работать (при пониженной мощности), вместо того, чтобы выключаться при высоком давлении на выходе.


Если два или более блока расположены рядом друг с другом, рекомендуем располагать змеевики конденсаторов на расстоянии, по меньшей мере, 3600 мм друг от друга (рис. 3); сильный ветер может быть причиной рециркуляции теплого воздуха.

Для получения информации о других решениях по установке просьба обращаться к нашим техническим специалистам.

INN 1-2 Rev.00 1

9 - 1 Способ монтажа

Приведенные выше рекомендации касаются общего случая установки. Специальная оценка выполняется подрядчиком на основании конкретной ситуации.

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение

9

Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная температура окружающей среды: -20°C Максимальная температура окружающей среды: +57°C

Максимальная относительная влажность: 95% без конденсации

INN_1-2_Rev.00_2

9 - 2 Заправка, расход и количество воды

			0)	лаждающая во	да				Нагрета	я вода ₍₂₎		
Позиі	ЦИИ (1) (5)		Циркуляцион	іная система	Однократный поток	Охлажден	ная вода	Низкая тег	мпература	Высокая те	емпература	Тенденция в случае
1103711	4**** (1) (5)		Циркулирующая вода	Поступающая вода (4)	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода (4)	Циркулирующая вода [20°C ~ 60°C]	Поступающая вода (4)	Циркулирующая вода [60°C ~ 80°C]	Поступающая вода (4)	несоответствия критериям
	pH	при 25°С	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,8 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
	Электропроводность	[мСм/м] при 25°С	Менее 80	Менее 30	Менее 40	Менее 80	Менее 80	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
Элементы, которые необходимо регулировать:		(мкСм/см) при 25°С	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 800)	(Менее 800)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
УП	Ионы хлоридов	[мгСl ²⁻ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
o per	Ионы сульфатов	[мгSO ²⁻ ₄ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
МР	М-щелочность (рН 4,8)	[мгСаСО₃/л]	Менее 100	Менее 50	Менее 50	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
eo	Общая жесткость	[мгСаСО₃/л]	Менее 200	Менее 70	Менее 70	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
PIE H	Кальциевая жесткость	[мгСаСО₃/л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
отор	Ионы силикатов	[мгSiO ₂ /л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
ĮĘ.	Кислород	(мг О2 /л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Коррозия
емен	Размер частиц	(мм)	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Эрозия
હ	Общее содержание растворенных твердых веществ	(мг/л)	Менее 1000	Менее 1000	Менее 1000	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Эрозия
	Этилен, пропиленгликоль	(мас. конц.)	Менее 60%	Менее 60%		Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	
	Ионы нитрата	(мг NO3- /л)	Менее 100	Менее 100	Менее 100	Менее 100	Менее 101	Менее 100	Менее 101	Менее 100	Менее 101	Коррозия
	ТОС Общее содержание органического углерода	(мг /1)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Накипь
рки	Железо	[мгFе/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
вод	Медь	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
Позиции для проверки:	Ионы сульфитов	[мгS²·/л]	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Коррозия
ОЗИП	Ионы аммония	[мгNН+4/л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
_	Остаточные хлориды	[мгСL/л]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
	Свободный карбид	[мгСО ₂ /л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
	Показатель устойчивости		6,0 ~ 7,0		-		-				-	Коррозия + накипь

- 1 Названия, определения и агрегаты соответствуют стандарту JIS K 0101. Значения и единицы измерения в скобках являются устаревшими и приводятся только для справки.
- 2 Коррозия обычно значительна при использовании подогретой воды (более 40°C). Желательно принять меры против коррозии, особенно в случае, когда железные детали пребывают в прямом контакте с водой, без защитных покрытий. Например, обрабатывать химикатами.
- 3 В системе охлаждающей воды с герметической охлаждающей башней вода в замкнутом контуре должна соответствовать стандартам для нагретой воды, а свободно протекающая вода стандартам для охлаждающей воды.
- 4 В качестве подаваемой воды рассматривается питьевая, техническая и грунтовая вода, за исключением естественной, нейтральной и мягкой воды.
- 5 Указанные выше позиции следует рассматривать в рамках возможного действия коррозии и накипи.
- 6 Указанные выше пределы должны рассматриваться как общая рекомендация. Они не могут полностью гарантировать отсутствие коррозии и разрушения. Некоторые сочетания элементов или наличие компонентов, не указанных в таблице, или неучтенных факторов могут привести к возникновению коррозии.

waflowqua 1-2 Rev.00 1

9 - 2 Заправка, расход и количество воды

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

Фактически, каждый раз при запуске компрессора выделяется избыточное количество масла и одновременно повышается температура в статоре электродвигателя компрессора из-за бросков пускового тока при запуске.

Для предотвращения повреждения компрессоров, предусмотрено использование устройства для ограничения частых остановок и запусков.

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 2-мя компрессорами $M(π) = (0.1595 \times ΔT(°C) + 3.0825) \times P(κΒτ)$

Для агрегата с 3-мя компрессорами $M(π) = (0.0443 \times ΔT(°C) + 1.6202) \times P(κΒτ)$

где:

M P минимальное количество воды в одном агрегате, выраженное в литрах

Охлаждающая способность блока, выраженная в кВт

ΔΤ разность температур воды на входе/выходе испарителя в °C


Данная формула подходит для:

- стандартных параметров микропроцессора

Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

10 Рабочий диапазон

10 - 1 Рабочий диапазон

10 Рабочий диапазон

10 - 2 Поправочный коэффициент

Таблица 1 - Максимальное и минимальное значения Δt воды для испарителя

Максимальный перепад температуры Δt воды в испарителе	°C	8
Минимальный перепад температуры Δt воды в испарителе	ů	4

Таблица 2 - Степени загрязнения испарителя

"Степени загрязнения м2 °С / кВт"	"Охлаждающая способность Поправочный коэффициент"	"Потребляемая мощность Поправочный коэффициент"	"EER Поправочный коэффициент"		
0,0176	1,000	1,000	1,000		
0,0440	0,978	0,986	0,992		
0,0880	0,957	0,974	0,983		
0,1320	0,938	0,962	0,975		

Таблица 3 - Поправочные коэффициенты на высоту над уровнем моря

Высота над уровнем моря (м)	0	300	600	900	1200	1500	1800
Барометрическое давление (мбар)	1013	977	942	908	875	843	812
Поправочный коэффициент мощности охлаждения	1,000	0,993	0,986	0,979	0,973	0,967	0,960
Поправочный коэффициент потребляемой мощности	1,000	1,005	1,009	1,015	1,021	1,026	1,031
Максимальная температура окружающей среды	1,000	1,000	1,000	1,000	0,992	0,980	0,968

Таблица 4.1 - Минимальное процентное содержание гликоля при низкой температуре воды

Температура воды на выходе из испарителя (°C)	2	0	-2	-4	-6	-8
Этиленгликоль (%)	10	20	20	20	30	30
Пропиленгликоль (%)	10	20	20	30	30	30

Примечание: Минимальное процентное содержание гликоля для использования при температуре воды на выходе из испарителя ниже 4°C для предотвращения замерзания системы циркуляции воды

Таблица 4.2 - Минимальное процентное содержание гликоля при низкой температуре воздуха снаружи

Температура окружающего воздуха (°C) (2)	-3	-8	-15	-23	-35
Этиленгликоль (%) (1)	10%	20%	30%	40%	50%
Температура окружающего воздуха (°C) (2)	-3	-7	-12	-20	-32
Пропиленгликоль (%) (1)	10%	20%	30%	40%	50%

Примечание (1): Минимальное процентное содержание гликоля для предотвращения замерзания системы циркуляции воды при указанной температуре наружного воздуха Примечание (2): Температура наружного воздуха превышает эксплуатационные ограничения блока, поэтому в зимний период при простое

может понадобится защита системы циркуляции воды

Таблица 5 - Поправочные коэффициенты при низкой температуре воды на выходе испарителя

	Температура воды на выходе из испарителя (°C)	2	0	-2	-4	-6	-8
(Охлаждающая способность	0,842	0,785	0,725	0,670	0,613	0,562
ı	Потребляемая мощность компрессора	0,950	0,940	0,920	0,890	0,870	0,840

Примечание: Поправочные коэффициенты, которые необходимо учитывать в эксплуатационных условиях: температура воды на выходе из

Таблица 6 - Поправочные коэффициенты для смеси воды и гликоля

	Этиленгликоль (%)	10%	20%	30%	40%	50%
	Охлаждающая способность	0,991	0,982	0,972	0,961	0,946
2	Потребляемая мощность компрессора		0,992	0,986	0,976	0,966
Этиленгликоль	Скорость потока (Δt)	1,013	1,04	1,074	1,121	1,178
	Падение давления в испарителе	1,070	1,129	1,181	1,263	1,308
	Охлаждающая способность	0,985	0,964	0,932	0,889	0,846
	Потребляемая мощность компрессора	0,993	0,983	0,969	0,948	0,929
Пропиленгликоль	Скорость потока (Δt)	1,017	1,032	1,056	1,092	1,139
	Падение давления в испарителе	1,120	1,272	1,496	1,792	2,128

operangecorr 1-2-3 Rev.00 1

10 Рабочий диапазон

10 - 2 Поправочный коэффициент

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

А) Смесь воды и гликоля --- Температура воды на выходе испарителя > 4°C

- зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.2 и 6)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблицы 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/с) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

FWAD670C7XS Размер блока:

Смесь:

Эксплуатационные условия:

Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура воздуха на входе в

конденсатор 35°С

672 кВт - Охлаждающая способность: - Потребляемая мощность: 245 кВт - Скорость потока (Δt 5°C): 32,00 л/с - Падение давления в испарителе: 80 кПа

Смесь: Вода + 30% этиленгликоля (для зимней температуры воздуха до -15°C)

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура воздуха на входе в

конденсатор 35°С

672 х 0,972 = 653 кВт - Охлаждающая способность: - Потребляемая мощность: 245 x 0.986 = 242 кВт

31,19 (относится к 653 кВт) х 1,074 = 33,50 л/с - Скорость потока (∆t 5°C): - Падение давления в испарителе: 76,25 (относится к 31,19 л/с) х 1,181 = 90,06 кПа

В) Смесь воды и гликоля --- Температура воды на выходе испарителя < 4°C

- зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.1, 4.2 и Табл.6)
- зависит от температуры воды на выходе из испарителя (см. таблицу 5)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблиц 5 и 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/с) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

EWAD670CZXS Размер блока:

Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура воздуха на входе в Стандартные условия работы

конденсатор 30°С

- Охлаждающая способность: 710 кВт - Потребляемая мощность: 219 кВт 33,90 л/с - Скорость потока (∆t 5°C): - Падение давления в испарителе: 88 кПа

Смесь: Вода + 30% этиленгликоль (для низкой температуры на выходе из испарителя -1/-6°C)

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) -1/-6°C- Температура воздуха на входе в

конденсатор 30°С

- Охлаждающая способность: 710 x 0,613 x 0,972 = 423 кВт - Потребляемая мощность: 219 x 0,870 x 0,986 = 188 кВт

20,22 л/с (относится к 423 кВт) х 1,074 = 21,72 л/с - Скорость потока (∆t 5°C): - Падение давления в испарителе: 38,28 кПа (относится к 20,00 л/с) х 1,181 = 45,21 кПа

operangecorr 1-2-3 Rev.00 2

10 - 2 Поправочный коэффициент

Таблица 7 - Поправочные коэффициенты для возможных значений статического давления вентилятора

Внешнее статическое давление (Па)	0	10	20	30	40	50	60	70	80	90	100
Мощность охлаждения (кВт) Поправочный коэффициент	1,000	0,998	0,996	0,995	0,993	0,992	0,991	0,989	0,986	0,985	0,982
Потребляемая компрессором мощность (кВт) Поправочный коэффициент	1,000	1,004	1,009	1,012	1,018	1,021	1,024	1,027	1,034	1,039	1,045
Уменьшение максимальной CIAT (°C)	1,000	-0,3	-0,5	-0,7	-1,0	-1,1	-1,3	-1,6	-1,8	2,1	-2,4

СІАТ: Температура воздуха на входе конденсатора

Внешнее статическое давление (Па)	0	10	20	30	40	50	60	70
Мощность охлаждения (кВт) Поправочный коэффициент	1,000	0,996	0,991	0,985	0,978	0,97	0,954	0,927
Потребляемая компрессором мощность (кВт) Поправочный коэффициент	1,000	1,005	1,012	1,02	1,028	1,039	1,058	1,092
Уменьшение максимальной CIAT (°C)	1,000	-0,3	-0,7	-1,1	-1,6	-2,2	-3,3	-5,1

СІАТ: Температура воздуха на входе конденсатора

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

Пример

Размер блока:

EWAD670CZXS

- Внешнее статическое давление

- Эксплуатационные условия:

- Охлаждающая способность:

- Потребляемая мощность:

- Максимальная СІАТ (Температура воздуха на входе конденсатора):

- Внешнее статическое давление

- Эксплуатационные условия:

Температура воздуха на входе в конденсатор 35°C

- Охлаждающая способность:

- Потребляемая мощность: Максимальная СІАТ

672 кВт 245 кВт 50°C (см. график предельных условий эксплуатации)

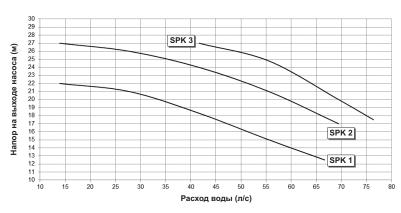
0 Па

Температура воды на выходе из испарителя (ELWT) 12/7°C-

Температура воды на выходе из испарителя (ELWT) 12/7°C-Температура воздуха на входе в конденсатор 35°C

672 х 0,978 = 657 кВт 245 x 1,028 = 252 кВт

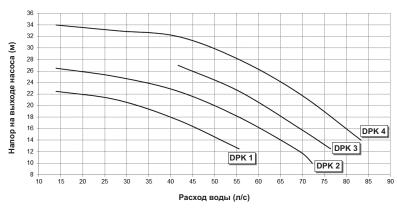
50 - 1,6 = 48,4°C


operangecorr 1-2-3 Rev.00 3

11 Характеристика гидравлической системы

11 - 1 Характеристики насоса

Набор для водяного насоса - Выходная сторона


Один насос (2 полюса) - выходная сторона

Примечание

- приведенные выше кривые относятся только к выходной стороне насоса
- при выборе насоса следует учитывать значения падение давления, связанные с установкой и испарением
- при использовании смеси воды и гликоля просьба обращаться на завод-изготовитель, поскольку характеристики могут отличаться от указанных выше

Двойной насос (2 полюса) - выходная сторона

Примечание

- приведенные выше кривые относятся только к выходной стороне насоса
- при выборе насоса следует учитывать значения падение давления, связанные с установкой и испарением
- при использовании смеси воды и гликоля просьба обращаться на завод-изготовитель, поскольку характеристики могут отличаться от указанных выше

pump_1-2_Rev.00_1

11 Характеристика гидравлической системы

11 - 1 Характеристики насоса

Набор для водяного насоса - Матрица сочетаний

Вариант	Размер
	670
	740
	830
	900
S	C10
XX	C11
)- - -	C12
EWAD~CZXS EWAD~CZXL	C13
шш	C14
	C15
	C16
	C17
	C18

11

Вариант	Размер
EWAD~CZXR	640
	700
	790
	850
	980
	C10
	C11
	C12
	C13
	C14
	C15
	C16
	C17

	Один насос			Сдвоенный насос			
SPK 1	SPK 2	SPK 3	DPK 1 DPK 2 DPK 3 DPK 4				
Х	Х		Х	Х			
Х	Х		Х	Х			
Х	Х		Х	Х			
Х	Х		Х	Х			
Х	Х	Х	Х	X	Х	X	
Х	Х	Х	Х	Х	Х	Х	
Х	Х	Х		Х	Х	Х	
Х	Х	Х		Х	Х	Х	
Х	Х	Х		Х	Х	Х	
		Х			X	Х	

Набор для водяного насоса - Техническая информация

		Мощность двигателя насоса (кВт)	Ток двигателя насоса (A)	Электропитание (В-ф-Гц)	PN	Двигатель Защита	Изоляция (Класс)	Рабочая температура (°C)
т 2	SPK 1	11,0	20,0	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
Один Насос	SPK 2	15,0	26,5	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
	SPK 3	18,5	32,5	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
, z	DPK 1	11,0	20,0	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
Двойной Насос	DPK 2	15,0	26,5	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
Boi	DPK 3	18,5	32,5	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140
	DPK 4	22,0	39,0	400 В-3 ф-50 Гц	16	IP55	Класс F	-20 +140

Примечание

pump_1-2_Rev.00_2

⁻ при использовании смеси воды и гликоля просьба обращаться на завод-изготовитель, поскольку характеристики могут отличаться от указанных выше

11 Характеристика гидравлической системы

11 - 2 Падение давления для полной рекуперации теплоты

Значения падения давления при полной и частичной рекуперации тепла

Для определения падения давления для различных вариантов или условий работы воспользуйтесь следующей формулой:

$$\mathbf{PD}_{2} (\mathsf{K} \mathsf{\Pi} \mathsf{a}) = \mathbf{PD}_{1} (\mathsf{K} \mathsf{\Pi} \mathsf{a}) \mathbf{x} \left(\frac{\mathsf{Q}_{2} (\mathsf{\Pi}/\mathsf{c})}{\mathsf{Q}_{1} (\mathsf{\Pi}/\mathsf{c})} \right)^{1,87}$$

где:

PD₂ Определяемое падение давления (кПа)

PD₁ Падение давления при номинальных условиях (кПа)

 ${f Q}_{2}$ расход воды при новых условиях эксплуатации (л/с)

Q, расход воды при номинальных условиях (л/с)

Как пользоваться формулой: Пример

Для работы агрегата EWAD670CZXS были выбраны следующие условия:

-Температура на выходе в режиме частичной рекуперации тепла 50/55°C

Теплопроизводительность при заданных условиях: 81,8 кВт

Расход воды в заданных условиях: 3,91 л/с

Arperat EWAD670CZXS при номинальных рабочих условиях имеет следующие характеристики:

- -Температура на выходе в режиме частичной рекуперации тепла 40/45°C
- воздух на входе конденсатора: 35°C

Теплопроизводительность при заданных условиях: 120 кВт

Расход воды в заданных условиях: 5,71 л/с

Падение давления в заданных условиях: 24 кПа

Падение давления при выбранных условиях работы составит:

$$PD_{2}(\kappa \Pi a) = 24 (\kappa \Pi a) x \left(\frac{3,91 (\pi/c)}{5,71 (\pi/c)}\right)^{1,87}$$

PD₂ (κ
$$\Pi$$
a) = **12** (κ Π a)

totheatpd_1_Rev.00_1

12 - 1 Описание технических характеристик

Технические характеристики винтового охладителя с воздушным охлаждением

ОБЩИЕ СВЕДЕНИЯ

Охладитель разработан и изготовлен в соответствии со следующими Европейскими директивами:

The state of the s	1 1 1 1
Конструкция аппарата высокого	97/23/EC (PED)
давления	
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI - EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе (при номинальных рабочих условиях и номинальной температуре воды). Охладитель будет доставлен на место работы полностью собранным и заправленным хладагентом и маслом. Установка охладителя должна выполняться в соответствии с инструкциями изготовителя по подъему оборудования и обращению с ним.

Устройство способно осуществлять пуск и работать при полной нагрузке:

-°С до°C - при температуре снаружи от
-°C - при температуре жидкости на выходе испарителя между°С и

Хладагент

Можно использовать только R-134a.

ЭКСПЛУАТАЦИОННЫЕ КАЧЕСТВА

- ✓ Количество охладителей : блоков ✓ Охлаждающая способность одного охладителя : кВт : кВт ✓ Потребляемая мощность одного охладителя в режиме охлаждения :°C ✓ Температура воды на входе теплообменника в режиме охлаждения
- ✓ Температура воды на выходе теплообменника в режиме охлаждения :°C
- ✓ Поток воды в теплообменнике : л/с
- ✓ Номинальная наружная рабочая температура окружающей среды в режиме охлаждения :°C Диапазон рабочего напряжения должен быть 400 B ±10%, 3 ф, 50 Гц, рассогласованность напряжения макс. 3%, без

нейтрали, одна точка подключения к электросети.

ОПИСАНИЕ БЛОКА

В стандартной конфигурации охладитель включает, по меньшей мере: два или три независимых контура хладагента (в зависимости от размера блока), полугерметичные ассиметричные ротационные одно-винтовые компрессоры, частотнорегулируемый электропривод воздушного охлаждения для каждого компрессора (VFD), электронное расширительное устройство (EEXV), кожухотрубный теплообменник с непосредственным испарением хладагента, секцию конденсатора воздушного охлаждения, хладагент R134a, систему смазки, компоненты запуска электродвигателя, запорный клапан линии выпуска, систему управления и все компоненты, необходимые для безопасной и стабильной работы агрегата. Охладители собирают на заводе-изготовителе на крепкой опорной раме, сделанной из оцинкованной стали и покрытой эпоксидной краской.

УРОВЕНЬ ШУМА И ВИБРАЦИИ

Уровень давления звука на расстоянии 1 м в открытом полусферическом пространстве не будет превышать ... дБ(А). Уровни давления звука должны быть измерены в соответствии с ISO 3744 (не допускается использование других

Уровень вибрации опорной рамы не должен превышать 2 мм/с.

ГАБАРИТНЫЕ РАЗМЕРЫ

Размеры блока не превышают следующих значений: - Длина блока мм

- Ширина блока мм
- Высота блока мм

SPC 1-2-3-4 Rev 00 1

12 - 1 Описание технических характеристик

КОМПОНЕНТЫ ОХЛАДИТЕЛЯ

Компрессоры

- ✓ Полугерметические, одновинтовые, ассиметричные, с одним главным винтовым ротором, взаимодействующим с двумя диаметрально противоположными ведомыми роторами. Контактные элементы ведомых роторов изготовляют из композитных материалов с длительным сроком службы. Электродвигатель: 2-полюсный, полугерметический, асинхронный, с короткозамкнутым ротором, охлаждаемый всасываемым газом.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- ✓ Компрессор имеет встроенный высокоэффективный масляной сепаратор сетчатого типа и масляный фильтр.
- ✓ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система смазки с электрическим масляным насосом недопустима.
- Охлаждение компрессора осуществляется путем подачи жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- ✓ Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- ✓ Корпус компрессора оснащается портами для возможности осуществления экономически выгодных циклов хладагента.
- ✓ Компрессор должен иметь защиту в виде датчика температуры (от высокой температуры на выходе) и термистора электродвигателя (от перегрева обмоток).
- ✓ Компрессор должен быть оборудован электрическим нагревателем для масла.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления производительностью по охлаждению

- ✓ Каждый охладитель должен быть оборудован микропроцессором для управления компрессором посредством инвертора и моментального значения частоты вращения двигателя.
- ✓ Управление производительностью блока должно быть бесступенчатым от 100% до 40% для каждого контура. Охладитель должен обеспечивать стабильную работу до минимум 13,5% полной нагрузки без вывода горячего газа.
- ✓ Система управляет блоком на основании температуры воды на выходе испарителя, которая контролируется PID (пропорционально-интегрально-дифференциальный) логикой.
- ✓ Логика управления блоком должна управлять оборотами электродвигателя компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке для поддержания постоянной установки температуры подаваемой охлажденной или горячей воды. В таких эксплуатационных условиях логические схемы управления агрегатом должны изменять уровень частоты электрического тока выше или ниже номинального значения электросети, которое равно 50 Гц.
- ✓ Микропроцессорное управление блока должно обнаруживать состояния, близкие к защитным пределам, и принимать меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - о Высокое давление в конденсаторе
 - о Низкая температура испарения хладагента

Частотный преобразователь, монтируемый на агрегат (VFD), и электротехнические требования

- ✓ Соединительная проводка между частотным преобразователем и охладителем должна быть установлена на заводе. Электрические соединения для питания электродвигателя ограничены сетевыми силовыми выводами и подключением питания на электрической панели.
- ✓ Частотный преобразователь должен быть с воздушным охлаждением. Водяное охлаждение и охлаждение хладагентом неприемлемо.
- ✓ КПД при полной нагрузке частотного преобразователя должно быть равно или превышать 97% при 100% номинальной производительности.
- ✓ Исходная частота работы двигателя должна позволять двигателю работать при указанном на табличке напряжением. Регулируемый частотный диапазон, контролируемый микропроцессором, должен обеспечивать стабильную регулировку производительности агрегата до 13,5% без повторного забора горячего газа.
- ✓ Пусковой ток компрессора не должен превышать номинальный ток нагрузки компрессора.
- ✓ Коэффициент удельной мощности не должен быть ниже 0,95 по всему диапазону производительности, от 100% до 13.5 %

Испаритель

- ✓ Блоки должны иметь оболочку непосредственного расширения и трубчатый испаритель с медными трубками, помещенными внутрь стальных оболочек. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента.
- ✓ Внешний слой соединен с электрообогревателем, управляемым термостатом, и покрыт изоляцией из полиуретанового материала с закрытыми порами (толщиной 20 мм) для предотвращения замораживания при температуре окружающей среды до -28°C.

SPC_1-2-3-4_Rev.00_2

12 - 1 Описание технических характеристик

- ✓ Испаритель должен иметь 2 или 3 контура, по одному для каждого компрессора, и должен относиться к однопроходному типу.
- ✓ Фитинги типа VICTAULIC являются стандартными для быстрого механического отсоединения аппарата от гидронической сети.
- ✓ Испаритель изготовлен в соответствии с директивой ЕС о напорном оборудовании (РЕD).

Змеевик конденсатора

12

- ✓ Змеевики конденсатора сконструированы из бесшовных медных трубок с внутренними ребрами, расположенных зигзагообразно, механически посаженных в рифленые алюминиевые оребрения и для большей эффективности скрепленных петлями. Пространство между оребрением создается втулкой, которая увеличивает поверхность соединения с трубами, защищая их от коррозии, вызванной воздействием факторов окружающей среды.
- ✓ Змеевики конденсатора имеет встроенный суб-охлаждающий контур, который обеспечивает достаточное субохлаждение для предотвращения неоднородного течения жидкости и увеличения эффективности работы аппарата на 5-7% без увеличения потребляемой мощности.
- ✓ Змеевики конденсатора необходимо проверять на герметичность, а также проверять под давлением сухого воздуха.

Вентиляторы конденсатора

- ✓ Вентиляторы конденсатора, используемые вместе с охлаждающими змеевиками, должны быть пропеллерными, с лопатками из усиленной стеклом смолы для обеспечения более высокой эффективности и снижения шума. Каждый вентилятор должен иметь защитное ограждение.
- ✓ Отвод воздуха должен осуществляться по вертикали, и каждый вентилятор должен быть соединен с электромотором, стандартно поставляемым с защитой IP54 и способным работать при внешней температуре от -20°C до +65°C.
- ✓ Защита вентиляторов конденсатора должна включать стандартную внутреннюю термозащиту двигателя и выключатель-автомат внутри электрической панели.

Контур хладагента

- ✓ Блоки имеют два или три полностью независимых контура хладагента (в зависимости от размера) и один частотнорегулируемый электропривод на каждый компрессор (VFD).
- ✓ В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на линии выпуска из компрессора, фильтр-осушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированную линию всасывания.

Управление конденсацией

- ✓ Блоки оснащаются автоматической системой контроля давления конденсации, которая обеспечивает работу при низких внешних температурах вплоть до -...°С при поддержании давления конденсации.
- ✓ Компрессор автоматически отключает нагрузку при обнаружении слишком высокого давления конденсации. Это предотвращает отключение контура хладагента (выключение блока) вследствие вызванного высоким давлением отказа.

Варианты исполнения блока с пониженным шумом (на заказ)

- ✓ Компрессор аппарата устанавливают на металлическую основу с применением антивибрационных резиновых опор, которые предотвращают передачу колебаний металлическим конструкциям и, таким образом, снижают шум.
- ✓ В охладителе для компрессора предусмотрен специальный акустический корпус. Эта герметичность достигается путем использования антикоррозийной алюминиевой структуры и металлического корпуса. Шумозащитный корпус компрессора должен быть покрыт изнутри гибкими, многослойными материалами высокой плотности.

Гидронный комплект (опция, на заказ)

- ✓ Гидронный модуль устанавливается на раму охладителя, не увеличивая его размеров. Комплект включает: центробежный водяной насос с трехфазным двигателем, оснащенным внутренней защитой от перегрева, предохранительный клапан, устройство для заполнения.
- ✓ Водяные трубы защищены от коррозии и имеют пробки для очистки и сушки. Соединения заказчика должны быть подключениями типа Victaulic. Трубопровод должен быть полностью изолирован во избежание конденсации (изоляция насоса осуществляется с применением полиуретановой пены).
- ✓ Возможны два вида насосов:
 - о один насос
 - о два насоса

SPC_1-2-3-4_Rev.00_3

12 - 1 Описание технических характеристик

Панель управления

- ✓ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска должны быть отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Запуск относится к инверторному типу.
- ✓ Средства управления работой и средства защиты включают устройства энергосбережения, аварийный выключатель, защиту от перегрузки для мотора компрессора, выключатель высокого и низкого давления (на каждый контур хладагента), антифризовый термостат, выключатель для каждого компрессора.
- ✓ Вся информация о работе аппарата выводится на дисплей и с учетом внутреннего календаря и часов переключает аппарат в положение ВКЛ/ВЫКЛ в зависимости от дня или ночи на протяжении всего года.
- ✓ Предусмотрены следующие функции:
 - о <u>сброс установки температуры воды на выходе</u> путем контроля ∆t температуры воды, сигналом дистанционного управления 4-20 мA пост. тока или путем контроля внешней температуры;
 - о <u>функция плавной загрузки</u> для защиты системы от работы при полной загрузке в период понижения температуры охлаждающей жидкости:
 - о защита критических параметров системы паролем;
 - о <u>таймеры запуска и остановки д</u>ля обеспечения минимального времени простоя компрессора с максимальной защитой двигателя;
 - о способность сообщения с ПК или дистанционным контролем;
 - о управление давлением на выходе путем задания цикла работы вентиляторов конденсатора;
 - о выбор опережения или задержки вручную или автоматически в зависимости от рабочих часов контура;
 - о двойная установка для морской версии агрегата;
 - о <u>программирование</u> годового расписания пусков и остановов при помощи внутреннего датчика времени, включая выходные и праздники.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

- ✓ Охладитель может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:
 - o ModbusRTU
 - о LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark
 - о Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
 - o Ethernet TCP/IP

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компрессоров и хладагентов. Это стало причиной е активного участия в решении экологических проблем. В течение нескольких лет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени оказывает воздействие на окружающую среду. Эта задача требует, чтобы разработка и проектирование широкого спектра продукции и систем управления выполнялись с учетом экологических требований и были направленым на сохранение знертии и были направлены на сохранение энергии и снижение объема отходов.

Настоящий буклет составлен только для справочных целей и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели ее содержания, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Еигоре N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.

Компания Daikin Europe N.V. принимает участие в Программе сертификации Eurovent для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FCU). Проверьте текущий срок действия сертификата онлайи: www.eurovent-certification.com ил перейдите к: www.certiflash.com"

D 4 3	_	~	\sim	<u> </u>
BA	ĸ	``(I)⊢

Daikin products are distributed by: