

Чиллеры и фанкойлы

Технических данных

Чиллер с возд. охлажд., для выс. темп. окр. ср.

EEDRU13-414

СОДЕРЖАНИЕ

EWAD-D-HS

1	Характеристики2
2	Технические характеристики 3 Технические параметры 3 Технические параметры 4 Электрические параметры 5 Электрические параметры 5
3	Характеристики и преимущества
4	Общие характеристики 10 Общие характеристики 10
5	Обозначения 16 Обозначения 16
6	Таблицы производительности 17 Условные обозначения таблицы производительностей 17 Таблицы холодопроизводительности 18 Частичная рекуперация теплоты Таблицы производительностей 20 Таблицы производительности полной рекуперации теплоты 21
7	Размерные чертежи 22 Размерные чертежи 22
8	Данные об уровне шума 24 Данные об уровне шума 24
9	Установка 26 Способ монтажа 26
10	Рабочий диапазон 29 Рабочий диапазон 29
11	Характеристика гидравлической системы 35 Характеристики насоса 35 Падение давления для частичной рекуперации теплоты 39 Падение давления для полной рекуперации теплоты 40
12	Описание технических характеристик41 Описание технических характеристик41

1 Характеристики

- Выс. темп. нар. возд.
- Конфигурация со стандартным уровнем шума: вентилятор конденсатора вращается на скорости 890 об/мин, резиновая антивибрационная опора под компрессором
- Одновинтовой компрессор с бесступенчатым регулированием мощности
- Оптимизирован для работы с хлада гентом R-134a
- Пульт MicroTech III
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

2

2 Технические характеристики

льность Регулирование производительности М Входная мощность С ЕЕR ESEER IPLV	Ном. Способ Иинималъная мощн Охлаждение			кВт	194 (1)	208 (1)	233 (1)	255 (1)	272 (1)	288 (1)	305 (1)	334 (1)				
производительности N Входная мощность C EER ESEER IPLV	Иинимальная мощн			I n/	Бесступенч. 13											
Входная мощность С EER ESEER IPLV	<u>`</u>			0/				Бесст	упенч.							
EER ESEER IPLV)хлаждение	111		%				1	3							
ESEER IPLV		Ном.		кВт	77,9 (1)	76,0 (1)	83,9 (1)	92,1(1)	98,9 (1)	105 (1)	114 (1)	122 (1)				
IPLV				•	2,49 (1)	2,73 (1)	2,77	7 (1)	2,75 (1)	2,73 (1)	2,68 (1)	2,75 (1)				
					3,01	3,17	3,21	3,08	3,16	3,13	3,	11				
Kongye Tii					3,56	3,74	3,77	3,66	3,74	3,73	3,72	3,64				
I wobiiyo I □	Цвет							Слонова	ЭЯ КОСТЬ_							
M	<i>М</i> атериал						Оцинкован	ный и покра	шенный стал	пьной лист						
Размеры Б.	Блок	Высота		ММ				2.:	223							
	ļ	Ширина		мм				2.:	234							
	ļ	Глубина		мм	2.2	239			3.339			4.040				
Вес Б	Блок	-		кг	2.475	2.470	2.8	365		2.870		3.185				
Э	Эксплуатационный в	вес		кг	2.5	500			2.960			3.300				
Вод. теплообменник Т	Гип					нчатый бменник		Oį	цнох одовой к	ожу хотрубн	ый					
[C	Объем воды			Л	25	30	9	95		90		115				
	Номинальный расход воды	Охлажде	ение	л/сек	9,3	9,9	11,1	12,2	13,1	13,8	14,6	16,0				
н	Спад номинального давления воды	Охлаж дение	Теплоо бменни к	кПа	32	24	46	52	54	59	64	58				
l <u>i i i i i i i i i i i i i i i i i i i</u>	130ляционный м <i>а</i> те		K	<u> </u>				Закоыт	I ая пора							
	Гип	prasi			Высокоэф	офективное о	оребрение и		плообменник	с со встроенн	ным переохл	адителем				
	(OFFICE OFFICE					1	I		6			8				
' ⊢	(оличество Гип				- '	+	Осовой	DOLEH DETON		рополой		0				
l –		I	Осевой в ентилятор с прямой передачей 800													
_	Диаметр Росков воспус	Ном.		MM	800 21.848 21.153 32.772 32.250 31.729 43.690											
	Расход воздуха Drive	пом.		л/сек	21.040	21.153 32.772 32.250 31.729 Direct on line										
l''' —	Вход	Охлажде	- LINE	Iw	7.0	000	I	Dilect	10.500			14.000				
l ' <u> </u>	Скорость	Охлаж	Ном.	об/мин	7.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		81	90			14.000				
		дение	T TO IVI.									0.7				
мощности	Охлаждение	Ном.		дБ(А)				96	_			97				
Уровень звукового С давления	Охлаждение	Ном.		дБ(А)				7	7							
l ' ' -	Гуре						(й компрессо	р						
l –	(оличество_				1				2							
h	Иас ло	Объем з		Л					16							
Рабочий диапазон С	Сторона воды		Мин.	°CDB	1				15							
		дение	Макс.	°CDB	1				5							
	Сторона воздуха	Охлаж дение	Мин. Макс.	°CDB					.8 .8							
VEG FORGUT		допис	IVI akc.	CDB												
l '''	Гип	Количес	TRO		1				34a 2							
	(онтуры Ваправка	Туоличес	IBU	кг	36	42	1 1	14	55	5	6	58				
	Evaporator water inle	t/autlet (O	ID)	L		<u>42</u> 8"	- 4	T		."	0	30				
	оборудование	01	D)		 	,	Высокое па	В ПОПИО ПОГ	етания (рел							
устройства	лофудование	02							етания (реле		\					
		03							вания (датчи вания (датчи							
1		04							ля компресс							
		05			 			·	атура нагнет	·						
	1				ļ		DBICC		пение масла							
		06			<u> </u>		Cooru		низкого лав	ления						
		06 07						юшение для	низкого дав							
		06						ошение для адение давл	низкого дав пения масла дикатор							

2 Технические характеристики

2-2 Технически	е параметры				EW AD380 D- HS	EWAD420 D- HS	EWAD450D- HS	EWAD480D- HS	EWA D510D- HS	EWA D550D- HS	EWAD 590D- HS				
Холодопроизводите льность	Ном.			кВт	379 (1)	413 (1)	446 (1)	476 (1)	512 (1)	545 (1)	585 (1)				
Регулирование	Способ			1			<u> </u>	Бесступенч.	<u> </u>	<u> </u>	<u> </u>				
производительности	Минимальная мош	ность		%				13							
Входная мощность	Охлаждение	Ном.		кВт	129 (1)	143 (1)	152 (1)	164 (1)	177 (1)	185 (1)	194 (1)				
EER	own House	1		1	2,93 (1)	2,90 (1)	2,93 (1)	2,90 (1)	2,89 (1)	2,95 (1)	3,02 (1)				
ESEER					3,38	3,47	3,52		51	3,54	3,63				
IPLV					3,99	4,00	4,05	3,99	4,10	4,18	4,50				
	Lunar				3,33	4,00				4,10	4,30				
Корпус	Цвет							Слоновая кост		-					
D	Материал	In		ı			цинкованный	и покрашеннь 2.223	ій стальной ли	CI					
Размеры	Блок	Высота		ММ											
		Ширина		ММ		4040		2.234		240					
		Глубина	1	ММ		4.040				940					
Bec	Блок			КГ	3.185	3.277	3.942	4.356		361	4.366				
	Эксплуатационный	вес		КГ	3.300	3.447	4.112			526					
Вод. теплообменник	Тип							одовой кожухо	.,						
	Объем воды			Л	115		170		16	35	160				
	Номинальный расходводы	Охлажд	ение	л/сек	18,2	19,8	21,4	22,8	24,5	26,1	28,0				
	Спад номинального давления воды	Охлаж дение	Теплоо бменни к	кПа	70	46	53	58	51	56	53				
	Изоляционный мат	гериал	<u> </u>			l	L	Закрытая пора	a	<u> </u>					
Воздушный теплообменник	Тип				Высокоэфф	рективное оре		<u> </u>	енник со встро	оенным перео	хладителем				
Вентилятор	Количество					8		T	1	0					
Ваниянор	Тип						Осерой вецт	<u>I</u> илятор с прям							
	Диаметр			Тим			OCCBON BCHI	800	ои поредалеи						
	Расход воздуха	Ном.		л/сек	13	60.6	12306	T 000	5.4	620					
Приготоп	Drive	T TOW.		11/Cek	43.696 42.306 54.620 Direct on line										
Двигатель вентилятора		I Overave		Iw		14.000		T Direct on line	17	F00					
Ванияннора	Вход	Охлажд				14.000 17.500									
	Скорость	Охлаж дение	Ном.	об/мин		890									
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)	99	97		98		99	100				
Уровень звукового давления	Охлаждение	Ном.		дБ(А)	79	77		78		79	80				
Компрессор	Туре					интовой рессор		asym metri	c single screw o	compress or					
	Количество_							2							
	Масло	Объема	заправки	Л	26			3	32						
Рабочий диапа зон	Сторона воды	Охлаж	Мин.	°CDB				-15							
		дение	Макс.	°CDB				15							
	Сторона воздуха	Охлаж	Мин.	°CDB				-18							
	1	дение	Макс.	°CDB				48							
Хладагент	Тип							R-134a							
	Контуры	Количес	тво					2							
Контур охлаждения	Заправка	•		КГ	66	70	90	95		100					
Подсоединения труб	Evaporator water in	let/outlet (C	D)	•	4"				5"						
Защитные	Оборудование	01				Вь	ісокое давлен	не нагнетания	(реле давлен	ия)					
устройства	''	02				Вы	сокое давлени	1е нагнетания	<u></u> (датчик давле	 ния)					
		03							<u></u> (датчик давлен						
		04													
		05			Защита двигателя компрессора Высокая температура нагнетания										
	1	06			Высокая температура нагнетания										
	1	07			Низкое давление масла Соотношение для низкого давления										
	1														
		08				C			асла в фильтр	Je					
	ĺ	09						Фазоиндикато	<u> </u>						
	I	10			I		контроллер	защиты от зам	ерзания воды						

2 Технические характеристики

2-3 Электрич	еские параметры	ы		EW AD20 0D -HS	EWA D210D -HS	EWAD23 0D -HS	EWAD260D -HS	EWAD270D +HS	EWAD290D -HS	EWAD3 10D -HS	EWAD340 D -HS				
Компрессор	Фаза							3							
	Напряжение		٧				4	00							
	Диапазон	Мин.	%				-1	0							
	напряжений	Макс.	%				1	0							
	Максимальный ра	абочий ток	Α		78		9	4	10	05	119				
	Способзапуска					Тро	йниковое со	единение - [Delta						
Компрессор 2	Максимальный ра	абочий ток	Α	7	8	9	94	10)5	1	19				
Электропитание	Фаза		•				3	~							
	Частота		Гц	50											
	Напряжение		V	400											
	Диапазон	Мин.	%				-1	0							
	напряжений	Макс.	%				1	0							
Блок	Максимальный ст	артовый ток	Α	2	22	23	39	282	291	303	307				
	Номинальный рабочий ток	Охлаждение	А	134	131	145	157	169	180	191	204				
	Максимальный ра	абочий ток	Α	1	72	196	213	223	234	248	271				
	Макс. ток блока д проводов	Лакс. ток блока для размеров			89	216	234	246	257	273	298				
Вентиляторы	Номинальный раб	очий ток	Α	1	6			24			32				

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°С; темп. воды испарителя на выходе 7°С; темп. наружного воздуха 35°С; работа в режиме полной нагрузки.
- (2) Уровни звуювого давления измеряются при темп. воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; работа в режиме полной нагрузки; Стандарт: ISO3744
- (3) Допуск напряжения \pm 10%. Разбаланс напряжений между фазами должен быть в пределах \pm 3%.
- (4) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (5) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12° С, температура воды испарителя на выходе 7° С; темп. наружного воздуха 35° С. Ток компрессора + вентиляторов.
- (6) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (7) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (8) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

2-4 Электричк	еские параметры			EWAD380D- HS	EWAD420D- HS	EWA D450D- HS	EWAD 480D- HS	EWAD 510D- HS	EWAD5 50D- HS	EWAD590D- HS					
Компрессор	Фаза					•	3								
	Напряжение		V				400								
	Диапазон	Мин.	%				-10								
	напряжений	Макс.	%				10								
	Максимальный раб	очий ток	Α	125	140	15	53	17	74	185					
	Способзапуска					Тройник	вое соединен	ие - Delta							
Компрессор 2	Максимальный раб	очий ток	Α	125	147	153	1	74	1	85					
Электропитание	Фаза						3~								
	Частота		Гц	50											
	Напряжение		V	400											
	Диапазон	Мин.	%				-10								
	напряжений	Макс.	%				10								
Блок	Максимальный стар	ОТОВЫЙ ТОК	Α	311	422	468	4	89	4	98					
	Номинальный рабочий ток	Охлаждение	A	214	239	258	275	295	306	320					
	Максимальный раб	очий ток	Α	283	320	337	366	387	398	409					
	Макс. ток блока дл проводов		A	311	352	371	403	426	438	450					
Вентиляторы	Номинальный рабо	чий ток	Α	32 40											

2 Технические характеристики

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C, темп. наружного воздух а 35°C; работа в режиме полной нагрузки.
- (2) Уровни звукового давления измеряются при темп. воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; работа в режиме полной нагрузки; Стандарт: ISO3744
- (3) Допуск напряжения ± 10%. Разбаланс напряжений между фазами должен быть в пределах ± 3%.
- (4) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (5) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°С; температура воды испарителя на выходе 7°С; темп. наружного воздуха 35°С. Ток юмпрессора + вентиляторов.
- (6) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (7) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (8) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

2

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Функции и преимущества

Невысокие эксплуатационные расходы

Данная линейка охладителей стала результатом тщательного проектирования, направленного на оптимизацию энергетической эффективности охладителей при снижении эксплуатационных расходов и повышении рентабельности, эффективности и управляемости установки.

В охладителях применяется высокоэффективное решение с одним винтовым компрессором, большой площадью поверхности змеевика конденсатора для обеспечения максимальной теплопередачи и малого давления выпуска, вентиляторами конденсатора современной конструкции, пластинчатым или кожухотрубным испарителем малыми показателями падения давления хладагента.

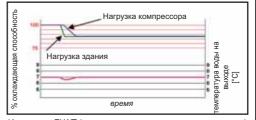
Малый шум в процессе работы

Очень низкий шум как при частичной, так и при полной нагрузке достигается благодаря использованию новейшей конструкции компрессора и вентилятора, способного перемещать большие объемы воздуха и, при этом, работать очень тихо и практически без вибрации.

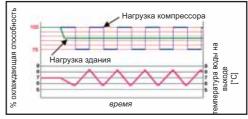
Удобство эксплуатации и обслуживания

При достижении высоких эксплуатационных характеристик не пришлось жертвовать удобством обслуживания на месте. Компрессор оснащен запорными клапанами на трубках выпуска, всасывания и трубках для жидкости. Компрессор и обслуживаемые компоненты, такие как фильтры-осушители, располагаются на внешних краях основания. Это вместе с особой формой змеевика облегчает доступ к ним для проверки и обслуживания. Кроме того, контроллер MicroTech III выдает подробную информацию о возникших неисправностях и, при необходимости, аварийные сигналы.

Подтвержденная на практике надежность


Полное тестирование каждого блока на заводе-изготовителе с подключением к водопроводу гарантирует беспроблемный

пуск. Тщательный контроль качества в процессе испытаний позволяет точно настроить все системы защиты и управления оборудованием и обеспечить его полную работоспособность при завершении изготовления на заводе.


Бесступенчатое управление производительностью

Управление охлаждающей способностью осуществляется бесступенчато с помощью одного винтового компрессора, которым управляет микропроцессорная система. Каждый блок оснащен бесступенчатым регулятором производительности в диапазоне от 100% до 12,5%. Эта регулировка позволяет привести производительность работы компрессора в точное соответствие с необходимой нагрузкой здания по охлаждению. Колебаний температуры охлажденной воды можно избежать только при плавной регулировке.

При пошаговой регулировке нагрузки компрессора производительность компрессора будет слишком высокой или слишком низкой по сравнению с нагрузкой по охлаждению в здании. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Изменение ELWT (температура воды на выходе испарителя) при бесступенчатом управлении производительностью

Изменение ELWT (температура воды на выходе испарителя) в зависимости от выбранного значения производительности (4 значения)

Блокисбесступенчатой регулировкой обеспечивают преимущества посравнению сблоками соступенчатой регулировкой. Только охладитель с бесступенчатой регулировкой способен в любой момент обеспечивать потребности системы в охлаждении и подавать охлажденную воду с заданной температурой.

Непревзойденная логика управления

Контроллер MicroTech III обеспечивает простую в использовании среду управления. Логика управления разработана таким образом, чтобы обеспечивать максимальную эффективность и сохранять хронологические данные работы оборудования. Одним из наиболее значительных преимуществ устройств является простой интерфейс с системами связи LonWorks, Bacnet, Ethernet TCP/IP и Modbus.

FTA_1-2-3a_Rev.01_1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Нормативные требования – Безопасность и соответствие положениям законодательства/директив

Данное оборудование спроектировано и изготовлено в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI - EN ISO 9001:2004

Сертификаты

Все изготовленное Daikin оборудование имеет обозначение CE, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии для требованиями, действующими в странах вне EC (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Конфигурации с различным уровнем производительности и шума

Оборудование предлагается в вариантах исполнения с различным уровнем производительности и шума:

		Уровен	ь шума	
Уровень эффективности	Стандартный	Низкий	Пониженный	Очень низкий
Стандартная	EWAD~D-SS	EWAD~D-SL	EWAD~D-SR	EWAD~D-SX
эффективность				
Высокая эффективность	EWAD~D-XS	-	EWAD~D-XR	-
Высокая температура окружающей среды	EWAD~D-HS	-	-	-

Варианты исполнения

Оборудование предлагается в трех вариантах:

S: Стандартная эффективность

7 типоразмеров в диапазоне от 389 до 578 кВт с EER до 2,03 и ESEER до 3,56 (данные относятся к конфигурации со стандартным уровнем шума)

Х: Высокая эффективность

11 типоразмеров в диапазоне от 247 до 622 кВт с EER до 3,20 и ESEER до 4,01 (данные относятся к конфигурации со стандартным уровнем шума)

Н: Высокая температура окружающей среды

15 типоразмеров в диапазоне от 195 до 587 кВт с EER до 3,07 и ESEER до 3,79 (данные относятся к конфигурации со стандартным уровнем шума)

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемую мощность компрессора, всех устройств управления, защитных устройств и потребляемую мощность вентиляторов.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воздуха на входе конденсатора.

ESEER = $(A \times EER100\%) + (B \times EER75\%) + (C \times EER50\%) + (D \times EER25\%)$

	А	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе	35°C	30°C	25°C	20°C
конденсатора				

FTA 1-2-3a Rev.01 2

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Уровни шума

Оборудование предлагается в четырех конфигурациях с различным уровнем шума:

S: Стандартный уровень шума

Вентилятор конденсатора вращается со скоростью 890 об/мин, с резиновыми антивибрационными опорами для компрессора

L: Низкий шум

Вентилятор конденсатора вращается со скоростью 900 об/мин (EWAD180~370D-SL) и 705 об/мин (EWAD400~530D-SL), с резиновыми антивибрационными опорами для компрессора.

R: Пониженный шум

Вентилятор конденсатора вращается со скоростью 680 об/мин (EWAD180~370D-SR) и 705 об/мин (EWAD400~530D-SR), с резиновыми антивибрационными опорами для компрессора, звукоизоляция компрессора.

Х: Очень низкий уровень шума

Вентилятор конденсатора вращается со скоростью 500 об/мин, резиновые противовибрационные опоры под компрессором, звукоизоляция компрессора и испарителя.

FTA_1-2-3a_Rev.01_3a

4 - 1 Общие характеристики

Общие характеристики

Корпус и конструкция

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет Ivory White (Слоновая кость) (код Munsell 5Y7.5/1) (±RAL7044). На основной раме имеются крюки для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Винтовые компрессоры со встроенным маслоотделителем

Линейка оборудования предлагается с двумя типами одновинтовых компрессоров:

А) Компрессоры полугерметические, с одним винтом и селекторным ротором (изготовлены из специального композитного материала с углеродной пропиткой. Компрессор имеет один регулятор (ползунок), которым управляет микропроцессор устройства. Благодаря этому обеспечивается бесступенчатая регулировка производительности в диапазоне между 100% до 25%. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск - звезда-треугольник(Y-Δ).

Предлагаются следующие модели компрессора: - EWAD180~370D-SL

- EWAD180~370D-SR
- EWAD210~310D-SX
- EWAD250~400D-XS
- EWAD240~390D-XR
- EWAD200~380D-HS
- В) Компрессор полугерметический, с один винтом и селекторным ротором (с применением новейшего высокопрочного материала, усиленного волокнами. Каждый компрессор имеет асимметричный регулятор (ползунок), обеспечивающий вместе с контроллером устройства бесступенчатую регулировку производительности в диапазоне от 100% до 25%. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск звезда-треугольник (Y- Δ).

Предлагаются следующиемодели компрессора: - EWAD390~580D-SS

- EWAD400~530D-SL
- EWAD400~530D-SE - EWAD400~530D-SR
- EWAD370~490D-SX
- EWAD470~620D-XS
- EWAD470~620D-XS
- EWAD420~590D-HS

Соответствующий экологическим требованиям хладагент R-134a

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления) т.е. низкое TEWI (Обще эквивалентное влияние нагревания).

Испаритель

<u>Для типоразмеров EWAD180~200D-SL, EWAD180~190D-SR и EWAD200~210D-HS</u>

Блоки имеют испаритель с испарителем пластинчатого типа с прямым расширением. Теплообменник изготовлен из спаянных пластин из нержавеющей стали и покрыт 20 мм изоляционным материалом с закрытыми порами. Обменник оснащен нагревателем для защиты от замораживания при температурах окружающей среды до -28°С и 3" соединениями для слива воды из испарителя. У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED). Дифференциальный переключатель давления воды на испарителе входит в стандартный комплект и устанавливается на заводе-изготовителе. Фильтр для воды входит в стандартный комплект.

Все другие блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Оба фактора влияют как на эффективность теплообменника, так и на общую эффективность работы агрегата.

Внешняя оболочка покрыта 10 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с комплектом быстросъемных соединений Victaulic (стандарт) У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED).

Змеевики конденсатора

Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Встроенный контур переохлаждения исключает испарение и способствует увеличению хладопроизводительности без увеличения потребляемой мощности.

4 - 1 Общие характеристики

Вентиляторы змеевика конденсатора

Диаметр вентилятора 710 мм

Вентиляторы конденсатора относятся к пропеллерному типу. Специальная крылообразная конструкция лопастей обеспечивает максимальную производительность. Каждый вентилятор защищен специальным защитным устройством.

Диаметр вентилятора 800 мм

Благодаря крылообразному профилю рабочих лопаток осевой вентилятор конденсатора обладает улучшенными эксплуатационными качествами. Лопатки изготовлены из стеклопластика, и каждый вентилятор защищен кожухом.

Моторы вентиляторов защищены автоматическими выключателями, установленными внутри панели управления (стандартное оборудование), и имеют класс защиты IP54.

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным.

Электронные расширительные клапаны обладают уникальными характеристиками: малое время открытия и закрытия, высокое разрешение, положительная функция выключения, устраняющая необходимость использования дополнительного электромагнитного клапана, непрерывная регулировка массового расхода без повышенной нагрузки на контур хладагента, устойчивый к коррозии корпус из нержавеющей стали.

Электронные расширительные клапаны обычно работают с меньшим значением ΔP между сторонами высокого и низкого давления, чем терморегулирующий вентиль. Электронный расширительный клапан позволяет системе работать при низком давлении в конденсаторе (зимой) без возникновения проблем с потоком хладагента и с прекрасно охлажденной водой на выходе блока управления температурой.

Контур хладагента

Каждый блок имеет 2 независимых контура хладагента, каждый из которых включает:

- Компрессор со встроенным маслоотделителем
- Конденсатор воздушного охлаждения
- Электронный расширительный клапан
- Испаритель
- Запорный клапан в линии выпуска
- Запорный клапан в линии для жидкости
- Запорный клапан в линии всасывания
- Указатель уровня с индикатором влажности
- Фильтр-осушитель
- Впускные клапаны
- Переключатель высокого давления
- Датчики высокого и низкого давления

Панель управления электрическими системами

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу IP54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Электропитание

Относящаяся к электропитанию часть панели включает предохранители компрессоров, автоматический выключатель вентилятора, контакторы вентилятора и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается в стандартной конфигурации; его можно использовать для изменения значений установок и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды, хладагента и воздуха, программируемые значения, установки.

Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров, EEXV и вентиляторы конденсатора, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы.

MicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от переключателя высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

GNC 1a-2-3-4-5-6 Ред.01 2

4 - 1 Общие характеристики

Система управления - основные характеристики

- Бесступенчатое управление производительностью компрессора и работой вентиляторов.
- Охладитель способен работать в состоянии частичного отказа.
- Полная работоспособность в условиях:
 - высокой температуры окружающей среды
 - высокой тепловой нагрузки
 - высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя.
- Вывод на дисплей температуры вне помещения.
- Вывод на дисплей температуры конденсации-испарения и давления, перегрева на стороне всасывания и выпуска для каждого контура.
- Регулировка температуры воды на выходе испарителя (допуск по температуре = 0,1°C)
- Счетчики часов работы компрессора и насосов испарителя.
- Отображение состояния защитных устройств.
- Количество пусков и часов работы компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Управление вентиляторами в соответствии со значением давления конденсирования.
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной).
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Запуск при высокой температуре воды в испарителе.
- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре).
- Сброс установки ОАТ (Температура окружающей среды вне помещения).
- Сброс установки значения (опция).
- Обновление приложения и системы с использованием обычных карт памяти SD.
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров.
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова.

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления).
- Высокое давление (датчик).
- Низкое давление (датчик).
- Автоматический выключатель в цепи вентиляторов.
- Высокая температура на выходе компрессора.
- Высокая температура обмоток двигателя.
- Фазоиндикатор.
- Низкое отношение давлений.
- Большое падение давления масла
- Низкое давление масла.
- Отсутствие изменения давления при пуске.

Безопасность системы

- Фазоиндикатор.
- Блокировка при низкой температуре окружающего воздуха.
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

4 - 1 Общие характеристики

Давление конденсации

Давлением конденсации можно управлять в соответствии с температурой воздуха, поступающего в змеевик конденсатора. Управление вентиляторами может быть ступенчатым, посредством модулирующего сигнала 0/10 В или смешанного сигнала 0/10 В + Ступени охватывают все возможные условия работы.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики:

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков.
- Клавиатура с 3 клавишами.
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением.
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
- · Ethernet TCP/IP.

Стандартные дополнительные функции (входят в комплект базового блока)

Набор соединений Victaulic для испарителя – Не предлагается для блоков EWAD180~200D-SL, EWAD180~190D-SR и EWAD200~210D-HS

Проектное давление воды в испарителе (10 бар)

Запорные клапаны в линии выпуска – Установлены на выходном отверстии компрессора для облегчения техобслуживания.

Запорный клапан в линии всасывания - Устанавливается на всасывающее отверстие компрессора для облегчения проведения техобслуживания.

Пусковое устройство компрессоров (Y-\Delta) – Для пониженного тока пуска и пускового вращающего момента.

Две установки – Две установки температуры воды на выходе.

 Φ азоиндикатор — Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз. **Дифференциальный переключатель давления воды на испарителе** — Не предлагается для блоков EWAD390~580D-SS, EWAD230~530D-SL, EWAD220~530D-SR, EWAD210~490D-SX, EWAD250~620D-XS, EWAD240~600D-XR, EWAD230~590D-HS

Электронагреватель испарителя - Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C, при включенном питании.

Электронное расширительное устройство

20 мм изоляция испарителя – Только для EWAD180~200D-SL, EWAD180~190D-SR, EWAD210D-SX и EWAD200~210D-HS

Датчик температуры воздуха снаружи и сброс установки

Счетчик часов работы

Контактор общих неисправностей – Реле аварийного сигнала.

Сброс установки – Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); температура снаружи; разность температур воды в испарителе ∆t.

Ограничение нагрузки – Пользователь может ограничить нагрузку устройства с помощью сигнала 4 – 20 мА или по сети

Аварийный сигнал от внешнего устройства — Микропроцессор может получать аварийный сигнал от внешнего устройства (насос и т.д....). Пользователь может определить, будет ли этот сигнал приводить к останову блока или нет. **Автоматические выключатели вентиляторов** — Устройство защиты от перегрузки двигателя и короткого замыкания **Главная дверца с блокировкой**

4 - 1 Общие характеристики

Опции (на заказ)

Полная рекуперация тепла — Происходит за счет теплообменников "пластинка-к-пластинке", используется для производства горячей воды.

Полная рекуперация тепла (1 контур)

Частичная рекуперация тепла — Теплообменники "пластинка-к-пластинке", установленные между выводом компрессора и охлаждающим змеевиком, обеспечивают получение горячей воды.

Морской вариант – Блок может работать при температуре жидкости на выходе до -15°C (необходим антифриз).

 Φ ланцевые соединения испарителя – Не предлагается для блоков EWAD180~200D-SL, EWAD180~190D-SR, EWAD210D-SX и EWAD200~210D-HS

Защита змеевика конденсатора

Медное оребрение конденсатора - Для обеспечения лучшей коррозийной устойчивости в агрессивной среде.

Оловянное покрытие меднооребренного конденсатора - Для обеспечения лучшей коррозийной устойчивости в агрессивной среде и соленом воздухе.

Покрытие Alucoat змеевиков конденсатора - Ребра защищены специальной антикоррозийной акриловой краской. Гидронный комплект (один водяной насос - низкий или высокий подъем) — (Не предлагается для EWAD210~490D-SX) Гидронический узел состоит из: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Гидронный комплект (два водяных насоса - низкий или высокий подъем) – (Не предлагается для EWAD180~190D-SR и EWAD210~490D-SX). Гидронный комплект включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от обмерзания при помощи дополнительного электронагревателя.

Двойной разгрузочный клапан с отводным устройством

Мягкий пуск – Электронное пусковое устройство снижает механическую нагрузку при пуске компрессора.

Реле тепловой перегрузки компрессора – Устройства защиты от перегрузки двигателя компрессора. Это устройство вместе с внутренней защитой двигателя (стандартное оборудование) обеспечивает наилучшую систему защиты для двигателя компрессора.

Защита от слишком низкого/высокого напряжения — Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

Электросчетчик – Это устройство определяет количество энергии, потребляемое охладителем в течение его срока службы. Оно установлено внутри блока управления на стойке DIN и выводит на цифровой дисплей следующие данные: междуфазное напряжение сети, фазный и средний ток, активная и реактивная мощность, активная энергия, частота.

Конденсаторы для компенсации коэффициента мощности – Для повышения коэффициента мощности устройства при работе в номинальном режиме. Конденсаторы относятся к "сухому", самовосстанавливающемуся типу, снабжены защитным устройством отключения при слишком высоком давлении, изоляция выполнена из нетоксичного диэлектрического материала, без РСВ или РСТ.

Ограничитель тока – Для ограничения (при необходимости) максимального потребляемого устройством тока.

Бесшумный режим вентилятора

Speedtrol (Управление скоростью)- (не предлагается для EWAD210~490D-SX) Непрерывная модуляция скорости вентилятора на первом вентиляторе каждого контура. Это позволяет аппарату работать при температуре воздуха вплоть до -18°C.

Реле потока испарителя - Поставляется отдельно, для подключения к трубопроводу испарителя (заказчиком).

Манометры на стороне высокого давления (один на контур)

Автоматические выключатели компрессоров

Регулировка скорости вентилятора – Стандартная опция для EWAD~D-SX

Управление оборотами вентилятора для повышения плавности управления блоком. При работе в условиях низких температур окружающей среды эта опция также снижает уровень шума блока. При наличии опции "Регулировка скорости вентилятора" можно выбрать конфигурацию "Тихий режим работы вентилятора", используя соответствующие установки микропроцессорного управления. При этом таймер микропроцессорной системы будет переключать вентилятор на низкую скорость согласно установкам клиента (т.е. ночь и день), если температура окружающей среды/ давление конденсации позволяют менять скорость. Это обеспечивает отличный контроль за конденсацией при температуре до –10°C.

4 - 1 Общие характеристики

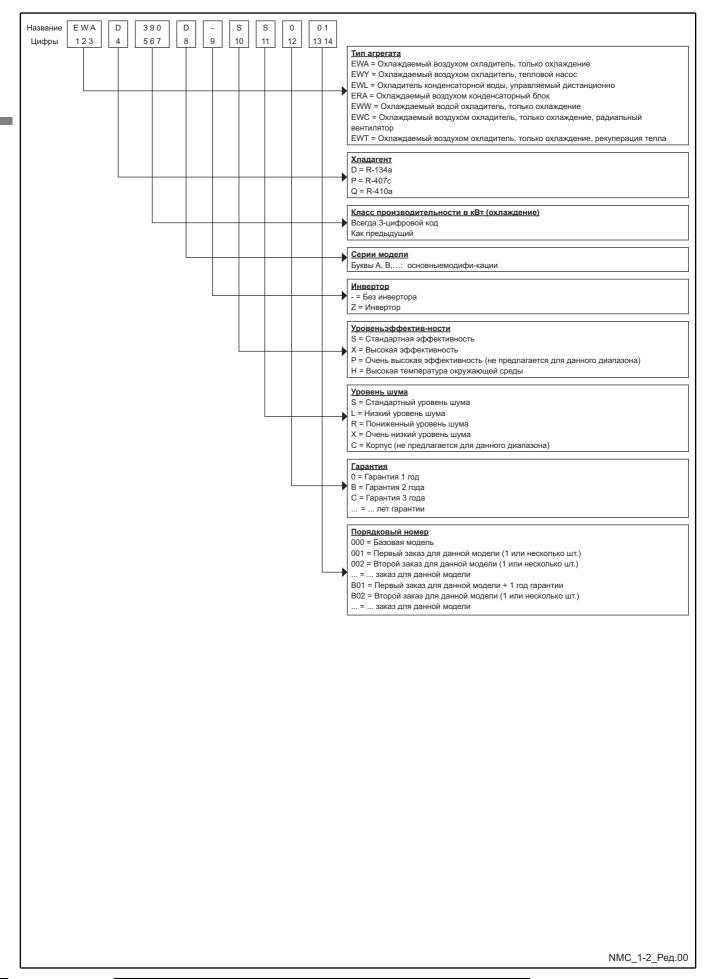
Резиновые противовибрационные опоры - Поставляются отдельно, предназначены для помещения под основание агрегата при установке для снижения вибрации.

Пружинные противовибрационные опоры - Поставляются отдельно, предназначены для помещения под основание агрегата при установке. Идеально подходят для подавления вибраций при монтаже на крышах и металлических конструкциях.

Внешний бак без корпуса (500 л/1000 л)

Внешний бак с корпусом (500 л/1000 л)

Набор контейнеров


Испытания в присутствии заказчика – Каждый блок испытывается на испытательном стенде перед отправкой клиенту. По запросу могут проводиться повторные испытания в присутствии клиента в соответствии с процедурами, указанными в форме запроса испытания (Просьба обратиться на завод). (Эта опция не доступна для агрегатов, работающих на смеси гликоля).

Акустические испытания – По запросу могут проводиться испытания в присутствии клиента. (Просьба обратиться на завод). (Не предлагается для аппаратов с гликолевой смесью).

GNC 1a-2-3-4-5-6 Ред.01 6

5 Обозначения

5 - 1 Обозначения

6 - 1 Условные обозначения таблицы производительностей

English - English - αγγλικά - Inglés	Deutsch	Ελληνικά	Español
Ta: Condenser inlet air temperature	Ta: Verflüssiger-Einlassluftfemperatur	Τα: Θεομοκρασία αέρα εισανωνής συμπυκνωτή	Ta: temperatura del aire de entrada al condensador
Twont: Evaporator leaving water temperature (At 5°C)	Twout: Verdampfer-Austrittswassertemperatur (At = 5 K)	Τωοιή: Θεοιοκοσισία νεοοί εξόδου στον εξατιματή (Δ†5°C)	Twout temperatura de agua de salida del evaporador (At5°C)
CC: Cooling capacity	CC: Kühlleistung	CC: Aπόδοση μιίξης	CC: capacidad de refrigeración
aw: Fluid flow rate	aw: Fluidvolumenstrom	αw: Τανύπητα ροής υνρού	aw: caudal de líauido
down Flind pressure drop	dow. Fluiddrickabfall	down Trivato Tiscato Livonii	dowr caida de presión de líquido
Sze	Größe	Mévs Ancel monto a procession and a proc	Tamaño
City	Company on Monday on Manday	Auto Tavitanta oobs mood attavis gan man	and character of a second seco
qwe. riulu ilow late at evapol atol	dwe. Trialavolumenski Omani vendani prei	dwe. IuXaiilia bails aybaa alaa ssaibia ii	qwe. caudai de liquido el el evapoladol
dpwe: Fluid pressure drop at evaporator	dpwe: Fluiddruckabtall am Verdampter	dpwe: Πτώση πίεσης υγρού στον εξατμιστή	dpwe: caida de presión de liquido en el evaporador
Twc: Condenser leaving water temperature (Δt 5°C)	Twc: Verflüssiger-Austriftswassertemperatur ($\Delta t = 5 \text{ K}$)	Twc: Θερμοκρασία νερού εξόδου στο συμπυκνωτή (Δt 5°C)	Twc: temperatura de agua de salida del condensador (Δt 5 °C)
Twe: Evaporator leaving water temperature (∆t 5°C)	Twe: Verdampfer-Austrittswassertemperatur ($\Delta t = 5 \text{ K}$)	Twe: Θερμοκρασία νερού εξόδου στον εξατμιστή (Δt 5°C)	Twe: temperatura de agua de salida del evaporador (Δt5°C)
HC: Heat capacity at condenser	HC: Heizleistung am Verflüssiger	ΗС: Θερμαντική ικανότητα στο συμπυκνωπή	HC: capacidad de calefacción en el condensador
qwc: Fluid flow rate at condenser	qwc: Fluidvolumenstrom am Verdampfer	qwc: Ταχύτητα ροής υγρού στο συμπυκνωπή	qwc: caudal de líquido en el condensador
dpwc: Fluid pressure drop at condenser	dpwc: Fluiddruckabfall am Verflüssiger	αρwc: Πτώση πίεσης υγρού στο συμπυκνωτή	dpwc: caída de presión de líquido en el condensador
English - Anglais - Inglese - Engels	Français	Italiano	Nederlands
Ta: Condenser inlet air temperature	Ta : Température de l'air d'admission du condenseur	Ta: Temperatura aria in ingresso nel condensatore	Ta: Luchtinlaattemperatuur condensor
Twout: Evaporator leaving water temperature (Δt5°C)	Twout: Température de l'eau à la sortie de l'évaporateur (∆t 5°C)	Twout: Temperatura acqua in uscita dall'evaporatore (Δt 5°C)	Twout: Wateruittredetemperatuur verdamper (At 5°C)
CC: Cooling capacity	CC : Puissance frigorifique	CC: Capacità di raffrescamento	CC: Koelcapaciteit
aw: Fluid flow rate	aw: Débit du liquide	aw: Portata fluido	aw: Vloeistofdebiet
dow: Fluid pressure drop	dow : Chute de pression du liquide	dow: Perdita di carico del fluido	dow: Vloeistofdrukverlies
Size	Dimension	Nimensione	Afmeting
OLCO	ourse islandi.	Differ a line of the constant	Amening Amening this wordsmoor
qwe. riuid ilow late at evapol atol	qwe . Debit du liquide au filveau de l'evaporateur	qwe. Poliata liuluo ali evapoliatole	dwe. vioeistoidebiet bij verdamper
dpwe: Fluid pressure drop at evaporator	dpwe: Chute de pression du liquide au niveau de l'évaporateur	dpwe: Perdita di carico del fluido all'evaporatore	dpwe: Vloeistofdrukverlies bij verdamper
Twc: Condenser leaving water temperature (Δt 5°C)	Twc: Température de l'eau à la sortie du condenseur (Δt5°C)	Twc: Temperatura acqua in uscita dal condensatore (∆T 5°C)	Twc: Wateruittredetemperatuur condensor ($\Delta t5^{\circ}C$)
Twe: Evaporator leaving water temperature ($\Delta t 5^{\circ} C$)	Twe: Température de l'eau à la sortie de l'évaporateur (Δt 5°C)	Twe: Temperatura acqua in uscita dall'evaporatore (Δt5°C)	Twe: Wateruittredetemperatuur verdamper (∆t 5°C)
HC: Heat capacity at condenser	HC: Capacité calorifique au niveau du condenseur	HC: Capacità termica al condensatore	HC: Warmtecapaciteit bij condensor
qwc: Fluid flow rate at condenser	qwc : Débit du liquide au niveau du condenseur	qwc: Portata fluido al condensatore	qwc: Vloeistofdebiet bij condensor
dpwc: Fluid pressure drop at condenser	dpwc: Chute de pression du liquide au niveau du condenseur	dpwc: Perdita di carico del fluido al condensatore	dpwc: Vloeistofdrukverlies bij condensor
English - английский	Русский		
Ta: Condenser inlet air temperature	Та: Температура воздуха на входе конденсатора		
Twout: Evaporator leaving water temperature (Δt5°C)	Тwout: Температура воды на выходе испарителя (∆t5°C)		
CC: Cooling capacity	СС: Производительность по охлаждению		
qw: Fluid flow rate	дм.: Скорость потока жидкости		
dow: Fluid pressure drop	иторущиж винеплает емнеплаетмор		
Size	Pasamen		
CALO	CHONICO -		
qwe. riuid ilow fate at evaporator	qwe: Скорость потока жидкости в истарителе		
dpwe: Fluid pressure drop at evaporator	dpwe: Падение давления жидкости в испарителе		
Twc: Condenser leaving water temperature (Δt 5°C)	Тwc: Температура воды на выходе конденсатора (Δt 5°C)		
Twe: Evaporator leaving water temperature ($\Delta t 5^{\circ} C$)	Тwe: Температура воды на выходе испарителя (∆t 5°C)		
HC: Heat capacity at condenser	НС: Теплоемкость конденсатора		
qwc: Fluid flow rate at condenser	qwc: Скорость потока жидкости в конденсаторе		
dpwc: Fluid pressure drop at condenser	dpwc: Падение давления жидкости в конденсаторе		
			5000

EWAD200-340D-HS

6

Ta: Condenser inlet air temperature; Twout: Evaporator leaving water temperature (Δt 5°C); CC: Cooling capacity; PI: Power input; qw: Fluid flow rate; dpw: Fluid pressure drop

	Condenser												Tw	out											
	inlet air			5			-	7			()			1	1			1	3			1	5	
	temperature	CC	PI	qw	dpw	СС	PI	qw	dpw	СС	PI	qw	dpw	CC	PI	qw	dpw	СС	PI	qw	dpw	СС	PI	qw	dpw
Size	Ta	kW	kW	I/s	kPa	kW	kW	I/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	I/s	kPa
0.20	25	201	64.3	9.6	34	213	66.2	10.2	37	225	68.1	10.8	41	238	70.1	11.4	46	251	72.2	12.1	50	264	74.5	12.7	55
	30	192	69.8	9.2	31	204	71.8	9.8	35	216	73.8	10.4	38	228	75.9	10.9	42	241	78.0	11.6	47	254	80.3	12.2	51
	35	182	75.8	8.7	28	194	77.9	9.3	32	206	80.0	9.9	35	218	82.1	10.4	39	230	84.3	11.0	43	242	86.6	11.6	47
200	40	172	82.3	8.2	25	183	84.4	8.8	28	195	86.6	9.3	32	207	88.8	9.9	35	218	91.1	10.5	39	230	93.5	11.1	43
	45	161	89.3	7.7	22	172	91.5	8.2	25	183	93.7	8.8	28	194	96.0	9.3	32	206	98.4	9.9	35	218	101.0	10.5	39
	48	154	93.7	7.3	21	165	96.0	7.9	23	176	98.2	8.4	26	184	98.9	8.8	29	187	94.9	9.0	30	191	92.6	9.2	31
	25	214	62.8	10.2	25	228	64.6	10.9	28	242	66.6	11.6	31	257	68.7	12.3	35	271	70.7	13.0	38	285	72.8	13.7	42
	30	206	68.3	9.8	23	217	70.0	10.4	26	231	72.1	11.1	29	246	74.2	11.8	32	260	76.4	12.5	36	274	78.5	13.2	39
	35	196	74.2	9.3	21	208	76.0	9.9	24	220	77.9	10.5	26	234	80.1	11.2	29	248	82.4	11.9	33	262	84.7	12.6	36
210	40	184	80.5	8.8	19	197	82.5	9.4	22	209	84.5	10.0	24	221	86.6	10.6	27	235	88.9	11.3	30	249	91.3	12.0	33
	45	173	87.3	8.3	17	185	89.4	8.8	19	197	91.5	9.4	22	209	93.7	10.0	24	221	95.8	10.6	27	235	98.3	11.3	30
	48	165	91.6	7.9	16	177	93.7	8.5	18	189	95.9	9.1	20	202	98.2	9.7	23	213	100.0	10.0	25	220	99.2	10.6	26
	25	239	70.0	11.4	48	253	71.7	12.1	54	268	73.6	12.9	60	283	75.5	13.6	66	298	77.5	14.3	73	314	79.7	15.1	80
	30	229	75.8	11.0	45	243	77.6	11.7	50	258	79.5	12.3	56	272	81.5	13.1	62	287	83.5	13.8	68	302	85.7	14.6	75
	35	219	82.1	10.5	41	233	83.9	11.1	46	247	85.9	11.8	51	261	87.9	12.5	57	276	90.1	13.0	63	290	92.3	14.0	69
230	40	207	88.9	9.9	38	221	90.9	10.6	42	235	92.9		47		95.0	12.0	52	263	90.1	12.7	58	278	92.3		64
	45	195	96.3		34	209	98.3	10.0	38	222	100.0	11.3	43	249	103		48	250	105	12.7	53	264	107	13.4 12.7	58
	45	187	101.0	9.3	31	209	103	9.6	35	214	100.0	10.7	40	238	103	11.3	45	242	110	11.6	50	256	112	12.7	55
		_				_									_		_		_	-			_		
	25	262	76.6	12.6	55	278	78.6	13.3	61	293	80.7	14.1	67	309	82.8	14.9	74	326	85.1	15.7	82	343	87.4	16.5	90
	30	252	83.1	12.1	51	267	85.1	12.8	57	282	87.2	13.5	63	298	89.4	14.3	69	314	91.7	15.1	76	330	94.1	15.9	84
260	35	240	90.1	11.5	47	255	92.1	12.2	52	270	94.3	13.0	58	285	96.6	13.7	64	301	99.0	14.5	71	317	101.0	15.3	78
	40	228	98	10.9	43	242	100	11.6	48	257	102	12.3	53	272	104.0	13.1	59	287	107	13.8	65	303	109	14.6	72
	45	214	106	10.2	38	229	108	11.0	43	243	110	11.7	48	258	113	12.4	53	273	115	13.1	59	288	118	13.9	65
	48	206	111	9.8	35	220	113	10.5	40	235	116	11.2	45	249	118	12.0	50	264	121	12.7	56	279	123	13.4	62
	25	281	82.2	13.4	57	297	84.5	14.3	63	314	86.8	15.1	70	332	89.2	16.0	77	350	91.7	16.8	85	368	94.4	17.7	93
	30	269	89.1	12.9	52	285	91.4	13.7	58	302	93.8	14.5	65	319	96.3	15.3	72	337	98.9	16.2	79	354	102.0	17.1	87
270	35	256	96.5	12.3	48	272	98.9	13.1	54	289	101.0	13.9	60	306	104	14.7	66	323	107.0	15.5	73	340	109.0	16.4	81
	40	243	105	11.6	44	259	107	12.4	49	275	110	13.2	55	291	112	14.0	61	308	115	14.8	67	325	118	15.6	74
	45	228	113	10.9	39	244	116	11.7	44	259	119	12.4	49	275	121	13.2	55	292	124	14.0	61	308	127	14.8	68
	48	219	119	10.5	36	234	122	11.2	41	250	124	12.0	46	266	127	12.8	52	282	130	13.5	57	298	133	14.3	64
	25	296	87.4	14.2	63	314	89.8	15.1	69	332	92.2	15.9	77	350	94.8	16.8	85	368	97.5	17.7	93	388	100.0	18.7	102
	30	284	94.8	13.6	58	301	97.3	14.4	64	319	99.8	15.3	71	336	102.0	16.2	79	355	105.0	17.1	87	373	108.0	18.0	96
290	35	271	103	13.0	53	288	105	13.8	59	305	108	14.6	66	322	111	15.5	73	340	114	16.4	81	358	117	17.3	89
	40	257	112	12.3	48	273	114	13.1	54	290	117	13.9	60	307	120	14.8	67	324	123	15.6	74	342	126	16.5	82
	45	242	121	11.6	43	258	124	12.3	49	274	127	13.2	54	291	129	14.0	61	308	132	14.8	67	325	136	15.6	74
	48	232	127	11.1	40	248	130	11.9	45	264	133	12.7	51	281	136	13.5	57	297	139	14.3	63	314	142	15.1	70
	25	314	94.1	15.1	68	333	96.7	16.0	75	351	99.4	16.9	83	370	102	17.8	92	390	105.0	18.8	101	410	108.0	19.8	111
	30	301	102	14.4	63	319	105	15.3	70	337	108	16.2	78	356	111	17.1	86	375	114	18.1	94	394	117	19.0	103
310	35	287	111	13.8	58	305	114	14.6	64	323	117	15.5	72	341	120	16.4	79	359	123	17.3	87	378	126	18.2	96
"."	40	272	120	13.0	52	289	123	13.9	59	307	126	14.7	65	324	129	15.6	72	343	133	16.5	80	361	136	17.4	88
	45	256	131	12.2	47	273	134	13.1	53	290	137	13.9	59	307	140	14.8	66	325	143	15.6	73	343	147	16.5	80
	48	245	137	11.7	43	262	140	12.6	49	279	143	13.4	55	296	147	14.2	61	312	149	15.0	68	324	149	15.6	72
	25	343	101	16.4	61	361	103	17.3	67	379	106	18.2	73	398	108	19.1	80	417	111	20.1	88	436	114	21.0	95
	30	330	110	15.8	57	348	112	16.7	63	366	115	17.6	69	384	117	18.5	75	403	120	19.4	82	422	123	20.3	90
340	35	316	119	15.1	53	334	122	16.0	58	352	124	16.9	64	370	127	17.8	70	388	130	18.7	77	407	133	19.6	84
040	40	301	129	14.4	48	319	132	15.3	54	337	135	16.2	59	354	137	17.0	65	372	140	17.9	71	391	143	18.8	78
	45	284	140	13.6	43	302	143	14.5	49	320	146	15.4	54	338	149	16.2	60	355	152	17.1	66	373	155	18.0	72
	48	273	147	13.1	40	291	150	13.9	45	309	153	14.8	51	327	156	15.7	56	344	159	16.6	62	362	162	17.4	68

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - ПРИМЕЧАНИЯ

1 Fluid: Water Fluid: Wasser Yypó: Nεpó Líquido: agua Liquide: Buido: Acqua Fluido: Acqua Vloeistof: Water Жидкость: Вода For working conditions where dpw values are in italic, please contact factory.
Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller.
Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο.
Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, ongase en contacto con la fábrica.
Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine.
Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore.
Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek.
Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC_1-2-3-4-5-6-7_Rev.01_7_(1-2)

6 - 2 Таблицы холодопроизводительности

EWAD380-590D-HS

Ta: Condenser inlet air temperature; Twout: Evaporator leaving water temperature ($\Delta t \, 5^{\circ} C$); CC: Cooling capacity; Pl: Power input; qw: Fluid flow rate; dpw: Fluid pressure drop

	Condenser												Tw	out			• •					, ,		•	— i
	inlet air			5			-	7				9	. **		1	1			1	3			1	5	
	temperature	CC	PI	gw	dpw	СС	PI	gw	dpw	CC	PI	qw	dpw	CC	PI .	qw	dpw	CC	PI .	gw	dpw	CC	PI .	gw	dpw
Size	Ta	kW	kW	I/s	kPa	kW	kW	I/s	kPa	kW	kW	I/s	kPa	kW	kW	l/s	kPa	kW	kW	I/s	kPa	kW	kW	I/s	kPa
	25	377	105	18.0	69	395	107	18.9	75	413	110	19.8	82	432	112	20.8	89	450	114	21.7	96	470	117	22.7	104
	30	370	116	17.7	67	388	118	18.6	73	406	120	19.5	79	425	123	20.4	86	443	125	21.4	93	463	128	22.3	101
	35	361	127	17.3	64	379	129	18.2	70	397	132	19.1	76	416	134	20.0	83	435	137	20.9	90	454	140	21.9	97
380	40	351	139	16.8	61	369	142	17.7	67	387	144	18.6	73	406	147	19.5	79	424	150	20.4	86	443	153	21.4	93
	45	338	152	16.2	57	356	155	17.1	63	375	158	18.0	69	393	160	18.9	75	412	163	19.8	82	431	167	20.8	89
	48	330	160	15.8	54	348	163	16.7	60	366	166	17.6	66	385	169	18.5	72	403	172	19.4	79	422	175	20.3	85
	25	420	117	20.1	47	442	120	21.2	52	465	123	22.3	57	487	126	23.4	62	510	129	24.5	67	533	132	25.7	73
	30	407	128	19.5	44	430	131	20.6	49	452	134	21.7	54	475	137	22.8	59	497	141	23.9	64	519	144	25.0	70
400	35	391	139	18.7	41	413	143	19.8	46	436	146	20.9	50	457	150	22.0	55	479	153	23.0	60	501	157	24.1	65
420	40	371	153	17.7	38	392	156	18.8	42	414	160	19.8	46	435	164	20.9	50	456	168	21.9	55	477	172	22.9	60
	45	344	168	16.4	33	365	172	17.4	36	385	176	18.5	40	406	180	19.5	44	426	184	20.5	49	446	189	21.5	53
	48	325	178	15.5	30	344	182	16.5	33	364	186	17.5	37	380	187	18.2	39	394	186	18.9	42	407	186	19.5	45
	25	460	126	22.0	55	484	129	23.2	61	509	133	24.4	67	533	136	25.6	73	559	140	26.9	79	585	144	28.2	86
	30	442	137	21.2	52	466	140	22.4	57	490	143	23.5	62	514	147	24.7	68	539	151	25.9	74	564	155	27.2	81
450	35	422	149	20.2	48	446	152	21.4	53	470	156	22.5	58	493	159	23.7	63	517	163	24.9	69	541	167	26.1	75
450	40	399	163	19.1	43	422	166	20.2	48	446	170	21.4	53	469	174	22.5	58	492	177	23.6	63	515	181	24.8	69
	45	371	179	17.7	38	394	183	18.9	42	417	186	20.0	47	439	190	21.1	51	462	194	22.2	56	485	198	23.3	61
	48	352	190	16.8	34	374	194	17.9	38	397	197	19.0	43	419	201	20.1	47	442	205	21.2	52	464	209	22.3	57
	25	489	136	23.4	61	514	140	24.7	67	540	143	25.9	73	566	147	27.2	80	593	151	28.6	87	620	155	29.9	94
	30	471	148	22.6	57	496	151	23.8	63	521	155	25.0	69	547	158	26.3	75	573	162	27.6	82	600	166	28.9	89
480	35	451	161	21.6	53	476	164	22.8	58	500	168	24.0	64	525	171	25.2	70	551	175	26.5	76	576	179	27.8	83
400	40	428	176	20.5	48	452	179	21.7	53	476	183	22.8	58	500	187	24.0	64	525	191	25.2	70	550	195	26.5	76
	45	400	194	19.1	42	424	197	20.3	47	447	201	21.5	52	471	204	22.6	57	495	208	23.8	63	519	212	25.0	68
	48	380	206	18.2	39	403	209	19.3	43	427	212	20.5	48	451	216	21.6	53	474	220	22.8	58	497	224	23.9	63
	25	529	147	25.3	54	557	151	26.7	59	587	155	28.2	65	617	159	29.6	72	647	164	31.1	78	678	168	32.7	85
	30	508	159	24.3	50	536	163	25.7	55	564	167	27.1	61	594	171	28.5	67	623	176	30.0	73	653	181	31.5	80
510	35	484	173	23.2	46	512	177	24.5	51	540	181	25.9	56	568	185	27.3	62	596	190	28.7	67	625	195	30.1	74
	40	457	189	21.9	41	484	193	23.2	46	511	197	24.5	51	538	202	25.8	56	565	206	27.2	61	593	211	28.5	67
	45	424	208	20.3	36	451	212	21.6	40	477	216	22.9	45	503	221	24.2	50	530	225	25.4	54	556	230	26.8	59
	48	402	221	19.2	33	427	224	20.4	37	453	229	21.7	41	479	233	23.0	45	505	238	24.3	50	514	232	24.7	52
	25	554	150	26.5	57	583	154	27.9	63	612	158	29.4	69	642	162	30.9	75	673	166	32.4	82	705	171	33.9	89
	30	537	165	25.7	54	565	169	27.1	60	594	173	28.5	65	623	177	29.9	71	653	181	31.4	78	683	186	32.9	85
550	35	517	181	24.7	51	545	185	26.1	56	573	189	27.5	61	601	193	28.9	67	630	198	30.3	73	659	202	31.7	79
	40	493	200	23.6	47	520	203	24.9	51	547	207	26.2	56	574	212	27.6	62	602	216	28.9	67	630	221	30.3	73
	45	463	222	22.1	41	489	226	23.4	46	515	230	24.7	50	542	234	26.0	55	568	238	27.3	60	595	243	28.6	66
	48	430	231	20.6	36	460	238	22.0	41	485	240	23.2	45	501	236	24.0	48	514	231	24.7	50	520	232	25.0	52
	25	586	155	28.1	53	616	158	29.5	58	647	162	31.1	63	679	166	32.6	69	711	170	34.2	75	743	174	35.8	82
	30	572	172	27.4	51	602	176	28.8	55	632	180	30.3	61	662	184	31.8	66	693	188	33.3	72	725	193	34.9	78
590	35	556	190	26.6	48	585	194	28.0	53	614	198	29.4	57	643	202	30.9	63	673	207	32.3	68	703	212	33.8	74
	40	534	211	25.6	45	562	214	26.9	49	590	219	28.3	54	618	223	29.7	58	647	227	31.1	63	676	232	32.5	69
	45	505	237	24.1	40	532	240	25.5	44	559	244	26.8	49	586	248	28.1	53	614	252	29.5	58	634	253	30.5	61
	48	463	243	22.1	35	499	253	23.9	40	513	247	24.6	42	518	235	24.9	42	512	218	24.6	42	514	223	24.7	42

NOTES - ANMERKUNGEN - Σημειώσεις - NOTAS - REMARQUES - NOTE - OPMERKINGEN - Примечания

 Fluid: Water Fluid: Wasser Υγρό: Νερό Líquido: agua Liquide: Eau Fluido: Acqua Vloeistof: Water Жидкость: Вода

2 For working conditions where dpw values are in italic, please contact factory. Für Arbeitsbedingungen mit kursiv gedruckten dpw-Werten, wenden Sie sich bitte an den Hersteller. Για τις συνθήκες εργασίας όπου οι τιμές dpw είναι σε πλάγια γραφή, παρακαλούμε επικοινωνήστε με το εργοστάσιο. Para las condiciones de funcionamiento en las que los valores dpw están en cursiva, póngase en contacto con la fábrica. Pour les conditions de travail lorsque les valeurs dpw sont en italique, veuillez contacter l'usine. Per le condizioni d'esercizio in cui i valori dpw sono riportati in corsivo, contattare il produttore. Voor bedrijfsomstandigheden met schuingedrukte dpw-waarden, gelieve contact op te nemen met de fabriek. Если условия работы соответствуют значениям dpw, указанным курсивом, обратитесь на завод-изготовитель.

SRC_1-2-3-4-5-6-7_Rev.01_7_(2-2)

6 - 3 Частичная рекуперация теплоты Таблицы производительностей

Номинальные значения при частичной рекуперации тепла FWAD~D-HS

EWC / LWC	"Модель EWAD~D-HS"	Сс (кВт)	Рі (кВт)	Нс (кВт)	% Hc	EER Hc
	200	159	80,0	84	35%	3,03
	210	171	78,4	87	35%	3,30
	230	196	83,3	98	35%	3,52
	260	213	92,2	107	35%	3,48
	270	227	105	116	35%	3,28
	290	240	112	123	35%	3,23
	310	259	124	134	35%	3,18
50/60	340	281	128	123	30%	3,15
	380	329	141	122	26%	3,20
	420	332	161	173	35%	3,13
	450	373	172	191	35%	3,27
	480	403	189	207	35%	3,24
	510	432	206	223	35%	3,18
1	550	461	219	238	35%	3,19
	590	508	225	191	26%	3,10

ПРИМЕЧАНИЯ

Сс (охлаждающая способность

Рі (потребляемая блоком мощность)

Нс (рекуперация тепла при нагреве)

%Нс (процент рекуперации тепла)

EER Hc (коэффициент производительности при рекуперации тепла = (производительность по охлаждению + нагреву) / потребляемая мощность)

EWC (Рекуперация тепла воды на входе конденсатора)

LWC (Рекуперация тепла воды на выходе конденсатора)

Данные относятся к следующим условиям: LWE (Вода на выходе испарителя) = 7° C

Поток в испарителе такой же, как при номинальном режиме охлаждения Температура воздуха на входе конденсатора = 35°C 0,0176 м² °C/кВт степень загрязнения испарителя

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_2 (3/3)

6 - 4 Таблицы производительности полной рекуперации теплоты

Номинальные значения при полной рекуперации тепла

EWC / LWC	"Модель EWAD~D-HS"	Сс (кВт)	Рі (кВт)	Нс (кВт)	% Hc	EER Hc
	200	167	76,7	207	85%	4,88
	210	179	75,1	216	85%	5,27
	230	205	80,0	243	85%	5,60
	260	224	88,4	265	85%	5,54
	270	238	102	289	85%	5,19
	290	251	109	306	85%	5,12
	310	272	120	333	85%	5,04
40/45	340	294	124	314	75%	4,89
	380	345	137	314	65%	4,81
	420	348	154	427	85%	5,02
	450	391	165	473	85%	5,23
	480	423	183	515	85%	5,13
	510	453	200	555	85%	5,05
	550	484	213	592	85%	5,06
	590	533	219	488	65%	4,67
	200	159	77,5	201	85%	4,65
	210	171	75,9	210	85%	5,02
	230	196	80,8	235	85%	5,33
	260	213	89,3	257	85%	5,27
	270	227	103	281	85%	4,94
	290	240	110	297	85%	4,88
	310	259	121	323	85%	4,81
40/50	340	281	125	305	75%	4,66
	380	329	138	304	65%	4,58
	420	332	156	415	85%	4,79
	450	373	167	459	85%	4,99
	480	403	185	500	85%	4,89
	510	432	202	539	85%	4.81
	550	461	215	575	85%	4,82
	590	508	221	474	65%	4,44
	200	159	78,4	143	60%	3,85
	210	171	76,8	149	60%	4,16
	230	196	81,7	167	60%	4,43
	260	213	90,4	182	60%	4,38
	270	227	104	199	60%	4,11
	290	240	111	210	60%	4,05
	310	259	122	229	60%	3,99
45/55	340	281	127	204	50%	3,82
	380	329	140	202	43%	3,80
	420	332	158	294	60%	3,97
	450	373	169	325	60%	4,13
	480	403	187	354	60%	4,06
	510	432	204	382	60%	3,99
	550	461	217	407	60%	4,00
	590	508	223	314	43%	3,68

ПРИМЕЧАНИЯ

Сс (охлаждающая способность

Рі (потребляемая блоком мощность)

Нс (рекуперация тепла при нагреве)

%Нс (процент рекуперации тепла)

EER Hc (коэффициент производительности при рекуперации тепла = (производительность по

охлаждению + нагреву) / потребляемая мощность)

EWC (Рекуперация тепла воды на входе конденсатора)

LWC (Рекуперация тепла воды на выходе конденсатора)

Данные относятся к следующим условиям: LWE (Вода на выходе испарителя) = 7°C

Поток в испарителе такой же, как при номинальном режиме охлаждения

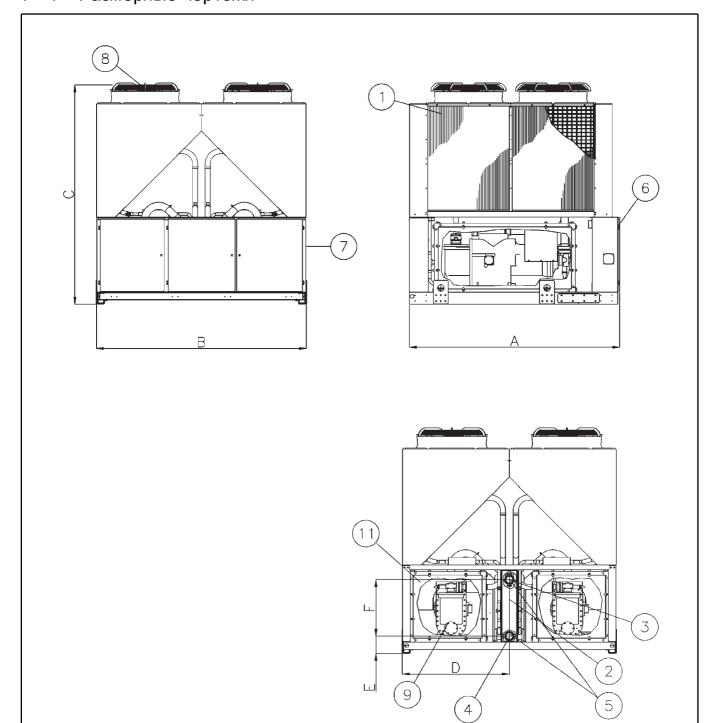
Температура воздуха на входе конденсатора = 35°C 0,0176 м² °С/кВт степень загрязнения испарителя

ОРТ 1-2-3-4-5a-6-7-8 Ред.01 1 (3/3)

7 Размерные чертежи

7 - 1 Размерные чертежи

Модели				Габариты (мм)			
EWAD	Α	В	С	D	E	F	G
EWAD390D-SS	3139	2234	2223	392	1875	339	873
EWAD440~580D-SS	4040	2234	2223	392	2450	339	855
EWAD230~300D-SL	3139	2234	2355	374	1911	339	873
EWAD320D-SL	4040	2234	2355	374	2486	339	873
EWAD400~530D-SL	4040	2234	2223	392	2450	339	855
EWAD220~280D-SR	3139	2234	2355	374	1911	339	873
EWAD310D-SR	4040	2234	2355	374	2486	339	873
EWAD400~530D-SR	4040	2234	2223	392	2450	339	855
EWAD210D-SX	3139	2234	2420	374	1911	339	873
EWAD230~310D-SX	4040	2234	2420	374	2486	339	873
EWAD370~490D-SX	4040	2234	2420	392	2450	339	873
EWAD250D-XS	3138	2234	2355	374	1911	339	873
EWAD280~400D-XS	4040	2234	2355	374	2486	339	873
EWAD470D-XS	4040	2234	2223	414	2412	379	873
EWAD520~620D-XS	4940	2234	2223	414	2412	379	815
EWAD240D-XR	3138	2234	2355	374	1911	339	873
EWAD270~390D-XR	4040	2234	2355	374	2486	339	873
EWAD460D-XR	4040	2234	2223	414	2412	379	873
EWAD510~600D-XR	4940	2234	2223	414	2412	379	815
EWAD230~310D-HS	3339	2234	2223	374	1911	339	873
EWAD340~380D-HS	4040	2234	2223	374	2486	339	873
EWAD420~590D-HS	4040	2234	2223	392	2450	339	873


УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Змеевик конденсатора
- 2 Теплообменник для воды (испаритель)
- 3 Патрубок подвода воды в испаритель
- 4 Патрубок слива воды из испарителя
- 5 Соединение Victaulic
- 6 Панель управления и контроля
- 7 Разъем для подсоединения к сети и панели управления
- 8 Вентилятор
- 9 Компрессор

DMN_1a-2a_Ред01_1

7 Размерные чертежи

7 - 1 Размерные чертежи

Модели		Габариты (мм)								
EWAD	A	В	С	D	E	F				
EWAD180~200D-SL	2239	2234	2355	1117	181	590				
EWAD180~190D-SR	2239	2234	2355	1117	181	590				
EWAD200~210D-HS	2223	2234	2223	1117	181	590				

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Змеевик конденсатора
- 2 Теплообменник для воды (испаритель)
- 3 Патрубок подвода воды в испаритель
- 4 Патрубок слива воды из испарителя
- 5 Соединение Victaulic
- 6 Панель управления и контроля
- 7 Разъем для подсоединения к сети и панели управления
- 8 Вентилятор
- 9 Компрессор

DMN_1a-2a_Peд.01_2

8 Данные об уровне шума

8 - 1 Данные об уровне шума

E١				

Danuar Kanya		Уровен	ь звукового дав	вления в 1 м от 6	блока в полусф	ерическом прос	транстве (rif. 2 х	: 10-⁵ Па)		Мощность
Размер блока	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
200	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	95,7
210	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	95,7
230	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,3
260	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,3
270	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,3
290	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,3
310	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,3
340	79,0	74,3	72,4	78,8	67,8	65,2	56,5	50,8	77,0	96,7
380	81,0	76,4	74,4	80,7	70,2	67,4	58,8	52,9	79,0	98,7
420	63,0	72,0	70,5	77,0	68,5	71,0	58,5	50,4	77,0	96,7
450	63,0	72,0	71,5	77,0	70,0	71,5	58,5	51,5	77,5	97,7
480	63,0	72,0	71,5	77,0	70,0	71,5	58,5	51,5	77,5	97,7
510	63,0	72,0	71,5	77,0	70,0	71,5	58,5	51,5	77,5	97,7
550	64,5	73,5	73,5	78,5	71,5	73,0	60,0	53,0	79,0	99,2
590	65,0	74,0	74,0	79,0	72,1	73,6	60,5	53,5	79,5	99,7

ПРИМЕЧАНИЯ

Значения соответствуют ISO 3744 и относятся к следующим условиям: испаритель 12/7° С, температура окружающего воздуха 35° С, работа при полной нагрузке

NSL_1-2-3-4-5-6_Ред.00_3

8 Данные об уровне шума

8 - 1 Данные об уровне шума

EWA	D~D-ŀ	۱
-----	-------	---

Deeven 6-aug				Расстояние			
Размер блока	1 м	5 м	10 м	15 м	20 м	25 м	50 м
200	0,0	-8,4	-13,4	-16,5	-18,8	-20,6	-26,4
210	0,0	-8,4	-13,4	-16,5	-18,8	-20,6	-26,4
230	0,0	-8,0	-12,9	-16,0	-18,2	-20,1	-25,8
260	0,0	-8,0	-12,9	-16,0	-18,2	-20,1	-25,8
270	0,0	-8,0	-12,9	-16,0	-18,2	-20,1	-25,8
290	0,0	-8,0	-12,9	-16,0	-18,2	-20,1	-25,8
310	0,0	-8,0	-12,9	-16,0	-18,2	-20,1	-25,8
340	0,0	-7,8	-12,6	-15,7	-17,9	-19,7	-25,4
380	0,0	-7,8	-12,6	-15,7	-17,9	-19,7	-25,4
420	0,0	-7,8	-12,6	-15,7	-17,9	-19,7	-25,4
450	0,0	-7,8	-12,6	-15,7	-17,9	-19,7	-25,4
480	0,0	-7,5	-12,3	-15,3	-17,6	-19,3	-25,0
510	0,0	-7,5	-12,3	-15,3	-17,6	-19,3	-25,0
550	0,0	-7,5	-12,3	-15,3	-17,6	-19,3	-25,0
590	0,0	-7,5	-12,3	-15,3	-17,6	-19,3	-25,0

ПРИМЕЧАНИЯ

Значения приведены в дБ(А) (уровень давления)

NSL_1-2-3-4-5-6_Ред.00_6

9 Установка

9 - 1 Способ монтажа

Примечания по установке

Предупреждение

Установка и техобслуживание блока должны производиться только квалифицированными специалистами, знающими местные положения и правила и имеющими опыт работы с данным оборудованием. Блок нужно установить таким образом, чтобы обеспечить возможность его технического обслуживания.

Обращение

Необходимо избегать небрежного обращения с блоком или ударов при падении. Агрегат можно перемещать только за опорную раму. Не допускайте падения блока во время разгрузки или перемещения, поскольку это может привести к значительному повреждению. Для подъема агрегата используйте проушины на опорной раме. Траверсу и тросы следует расположить так, чтобы избежать повреждения змеевика конденсатора или корпуса блока.

Место установки

Блоки выпускаются для наружной установки на крыше, на полу или ниже уровня поверхности земли при условии, что в месте установки нет препятствий для циркулирования воздуха для конденсатора. Блок должен находиться на прочном и ровном основании; в случае установки на крышах или этажных площадках, рекомендуется использовать специальные подставки для правильного распределения нагрузки. В случае установки блоков на земле необходимо подготовить бетонное основание, ширина и длина которого превышает установочные размеры блока, по меньшей мере, на 250 мм. Более того, это основание должно выдерживать вес блока, указанный таблице технических данных.

Требования по размещению

Блоки охлаждаются воздухом, поэтому важно соблюдать минимальные расстояния, которые обеспечивают наилучшую вентиляцию змеевиков конденсаторов. Пространственные ограничения, снижающие поток воздуха, могут привести к значительному снижению охлаждающей способности и повышению потребления электроэнергии.

При определении места для блока нужно обеспечить достаточный воздушный поток через поверхность передачи тепла конденсатора. Для достижения наилучших эксплуатационных характеристик следует избегать двух условий: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

Оба эти условия приводят к увеличению давлений конденсации, которые уменьшают эффективность работы блока и его мощность.

Более того, уникальный микропроцессор способен определять параметры среды работы воздушно-охлаждаемого охладителя и оптимальную нагрузку в случае нестандартных условий.

После установки каждая из сторон блока должна быть доступна для периодического обслуживания. На рис.1 показаны минимальные рекомендуемые расстояния.

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если блоки располагаются в местах, окруженных стенками или препятствиями той же высоты, что и блоки, то блоки должны, по крайней мере, на 2500 мм отделяться от препятствий (рис. 2). В случае, если препятствия выше блоков, блоки должны быть, по меньшей мере, на 3000 мм выше (рис. 3). Блоки, установленные ближе к стене или к другой вертикальной конструкции, чем минимально рекомендуемое расстояние, могут испытывать ограниченную подачу воздуха к змеевику и рециркуляцию теплого воздуха, что снижает их производительность и эффективность. Микропроцессорное управление проактивно реагирует на "нештатное состояние". В случае наличия одного или нескольких видов влияния, ограничивающих поток воздуха, микропроцессор будет подавать команды таким образом, чтобы компрессор продолжал работать (при пониженной мощности), вместо того, чтобы выключаться при высоком давлении на выходе.

Если два или более блока расположены рядом друг с другом, рекомендуем располагать змеевики конденсаторов на расстоянии, по меньшей мере 3600 мм друг от друга (рис. 4); сильный ветер может быть причиной рециркуляции теплого воздуха.

Для получения информации о других решениях по установке просьба обращаться к нашим техническим специалистам.

INN 1-2-3 Ред.00 1

9 Установка

9 - 1 Способ монтажа

Приведенные выше рекомендации касаются общего случая установки. Специальная оценка выполняется подрядчиком на основании конкретной ситуации.

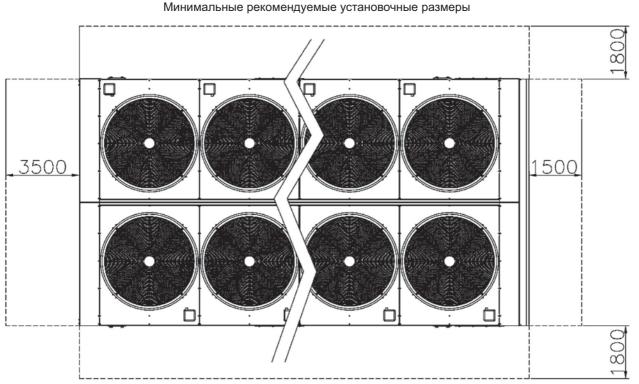


Рис. 1

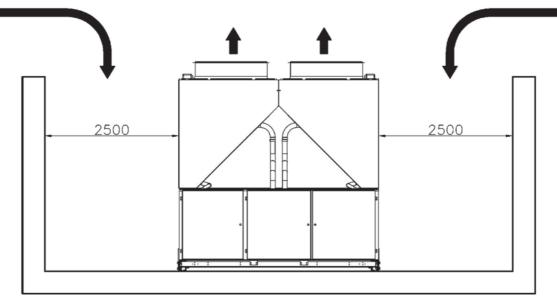


Рис. 2

INN_1-2-3_Ред.00_2

9 Установка

9 - 1 Способ монтажа

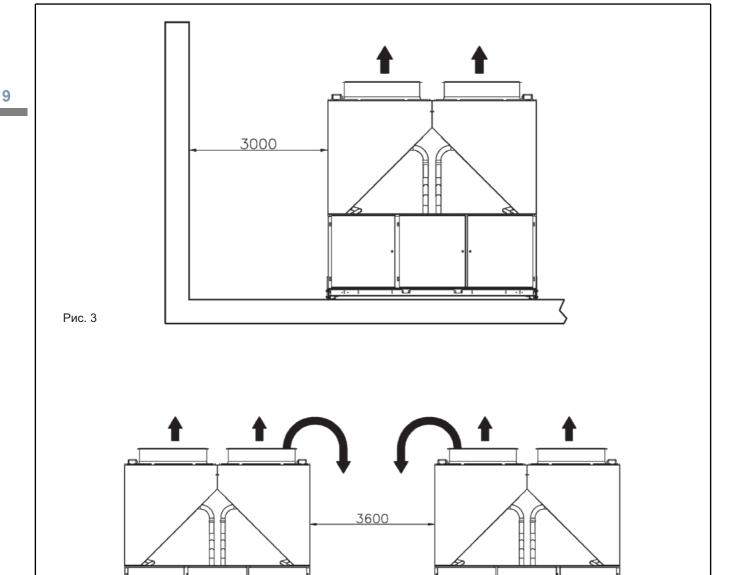
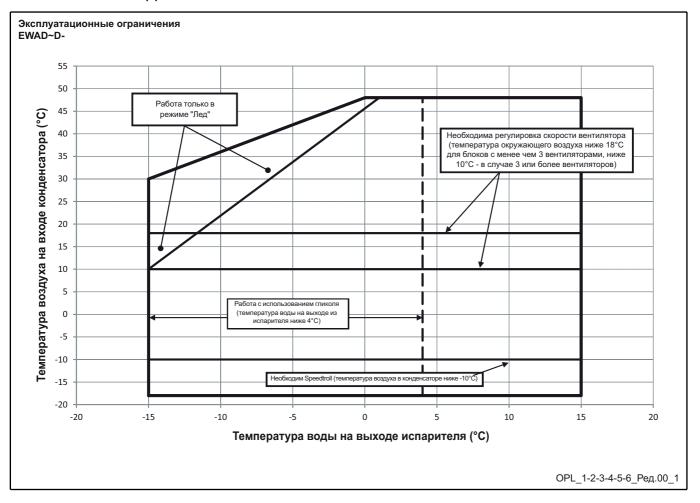


Рис. 4

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение


Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная температура окружающей среды: -20°C Максимальная температура окружающей среды: +57°C

Максимальная относительная влажность.: 95% без конденсации

INN_1-2-3_Ред.00_3

10 - 1 Рабочий диапазон

10 - 1 Рабочий диапазон

Таблица 1 - Максимальное и минимальное значения ∆t воды для испарителя

Максимальный перепад температуры Δt воды в испарителе	°C	8
Минимальный перепад температуры Δt воды в испарителе	°C	4

Таблица 2 - Степени загрязнения испарителя

10

Степени загрязнения м²°С / кВт	Охлаждающая способность поправочный коэффициент	Потребляемая мощность поправочный коэффициент	EER поправочный коэффициент		
0,0176	1,000	1,000	1,000		
0,0440	0,978	0,986	0,992		
0,0880	0,957	0,974	0,983		
0,1320	0,938	0,962	0,975		

Таблица 3 - Воздушный теплообменник - Поправочный коэффициент на высоту

l	Высота над уровнем моря (м)	0	300	600	900	1200	1500	1800
l	Барометрическое давление (мбар)	1013	977	942	908	875	843	812
l	Поправочный коэффициент мощности охлаждения	1,000	0,993	0,986	0,979	0,973	0,967	0,960
l	Поправочный коэффициент потребляемой мощности	1,000	1,005	1,009	1,015	1,021	1,026	1,031

⁻ Максимальная высота над уровнем моря - 2000 м (при эксплуатации).

Таблица 4.1 - Минимальное процентное содержание гликоля при низкой температуре воды

EWLT (°C)	2	0	-2	-4	-6	-8	-10	-12	-15
Этиленгликоль (%)	10	20	20	20	30	30	30	40	40
Пропиленгликоль (%)	10	20	20	30	30	30	40	40	40

⁻ ELWT (Температура воды на выходе испарителя, °C).

Таблица 4.2 - Минимальное процентное содержание гликоля при низкой температуре воздуха

Температура окружающего воздуха (°С) (2)	-3	-8	-15	-20
Этиленгликоль (%) (1)	10%	20%	30%	40%
Температура окружающего воздуха (°C) (2)	-3	-7	-12	-20
Пропиленгликоль (%) (1)	10%	20%	30%	40%

⁻ Минимальное процентное содержание гликоля для предотвращения замерзания воды в контуре при указанной температуре окружающего воздуха.

Таблица 5 - Поправочные коэффициенты при низкой температуре воды на выходе испарителя (EWLT < 4°C)

EWLT (°C)	-4	-6	-8	-10	-12	-15
Охлаждающая способность	0,670	0,613	0,562	0,510	0,455	0,375
Потребляемая мощность компрессора	0,890	0,870	0,840	0,798	0,755	0,680

⁻ ELWT (Температура воды на выходе испарителя, °C).

Таблица 6 - Поправочные коэффициенты для смеси воды и гликоля

	Этиленгликоль (%)	10%	20%	30%	40%	50%
	Охлаждающая способность	0,991	0,982	0,972	0,961	0,946
Этиленгликоль	Потребляемая мощность компрессора	0,996	0,992	0,986	0,976	0,966
Этилентликоль	Скорость потока (Δt)	1,013	1,04	1,074	1,121	1,178
	Падение давления в испарителе	1,070	1,129	1,181	1,263	1,308
	Охлаждающая способность	0,985	0,964	0,932	0,889	0,846
D	Потребляемая мощность компрессора	0,993	0,983	0,969	0,948	0,929
Пропиленгликоль	Скорость потока (Δt)	1,017	1,032	1,056	1,092	1,139
	Падение давления в испарителе	1,120	1,272	1,496	1,792	2,128

⁻ Обратитесь к изготовителю в случае, если температура воды выходит за пределы рабочего диапазона.

OPL 1-2-3-4-5-6 Ред.00 1

⁻ Обратитесь к изготовителю в случае установки оборудования в месте с высотой над уровнем моря от 1000 до 2000 м.

⁻ Минимальный процент содержания гликоля, необходимый для предотвращения замерзания воды в контуре в случае, если температура воды на выходе испарителя ниже 4°С.

⁻ Температура окружающего воздуха превышает рабочие пределы блока, поэтому может потребоваться защита водного контура зимой в условиях, отличных от эксплуатационных.

⁻ Поправочные коэффициенты для эксплуатационных условий: температура воды на выходе испарителя 7°C.

10 - 1 Рабочий диапазон

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

А) Смесь воды и гликоля --- Температура воды на выходе испарителя > 4°C

- зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.2 и 6)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблицы 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/c) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

Размер блока: **EWAD390D-SS**

Смесь: Вода

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура

воздуха на входе в конденсатор 35°C

Охлаждающая способность: 389 кВт
 Потребляемая мощность: 152 кВт
 Скорость потока (Δt 5°C): 18,60 л/с
 Падение давления в испарителе: 46 кПа

Смесь: Вода + 30% этиленгликоля (для зимней температуры воздуха до -15°C)

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура

воздуха на входе в конденсатор 35°C

- Охлаждающая способность: 389 х 0,972 = 378 кВт - Потребляемая мощность: 152 х 0,986 = 150 кВт

- Скорость потока (Δt 5°C): 18 (относится к 378 кВт) х 1,074 = 19,33 л/с - Падение давления в испарителе: 49 (относится к 19,33 л/с) х 1,181 = 58 кПа

В) Смесь воды и гликоля --- Температура воды на выходе испарителя < 4°C

- зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.1, 4.2 и Табл.6)
- зависит от температуры воды на выходе из испарителя (см. таблицу 5)
- умножьте значения охлаждающей способности, потребляемой мощности компрессора на поправочный коэффициент из таблиц 5 и 6
- на основании нового значения охлаждающей способности рассчитайте скорость потока (л/c) и падение давления в испарителе (кПа)
- затем умножьте новое значение скорости потока и новое значение падения давления в испарителе на поправочные коэффициенты из таблицы 6

Пример

Размер блока: **EWAD390D-SS**

Смесь: Вода

Стандартные условия работы Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура

воздуха на входе в конденсатор 30°С

Охлаждающая способность: 412 кВт
 Потребляемая мощность: 139 кВт
 Скорость потока (Δt 5°C): 19,7 л/с
 Падение давления в испарителе: 51 кПа

Смесь: Вода + 30% этиленгликоль (для низкой температуры на выходе из испарителя

-1/-6°C)

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) -1/-6°C- Температура

воздуха на входе в конденсатор 30°С

- Охлаждающая способность: 412 x 0,613 x 0,972 = 245 кВт - Потребляемая мощность: 139 x 0,870 x 0,986 = 119 кВт

- Скорость потока (Δ t 5°C): 11,71 л/с (относится к 245 кВт) х 1,074 = 12,58 л/с - Падение давления в испарителе: 23 кПа (относится к 12,58 л/с) х 1,181 = 27 кПа

OPL_1-2-3-4-5-6_Ред.00_2

10

10 - 1 Рабочий диапазон

Рабочий диапазон

Таблица 7.1 - Поправочные коэффициенты для возможных значений статического давления вентилятора

"Внешнее статическое давление (Па)"	0	10	20	30	40	50	60	70	80	90	100
"Мощность охлаждения (кВт) Поправочный коэффициент"	1,000	0,998	0,996	0,995	0,993	0,992	0,991	0,989	0,986	0,985	0,982
"Компрессор, Входная мощность (кВт) Поправочный коэффициент"	1,000	1,004	1,009	1,012	1,018	1,021	1,024	1,027	1,034	1,039	1,045
Уменьшение максимальной CIAT (°C)	1,000	-0,3	-0,5	-0,7	-1,0	-1,1	-1,3	-1,6	-1,8	2,1	-2,4

СІАТ: Температура воздуха на входе конденсатора

Таблица ESP составлена для диаметра вентилятора Ø800, доступен для следующих блоков:

EWAD390~580D-SS EWAD470~620D-XS EWAD420~590D-HS

Таблица 7.2 - Поправочные коэффициенты для возможных значений статического давления вентилятора

"Внешнее статическое давление (Па)"	0	10	20	30	40	50	60	70
"Мощность охлаждения (кВт) Поправочный коэффициент"	1,000	0,996	0,991	0,985	0,978	0,97	0,954	0,927
"Компрессор, Входная мощность (кВт) Поправочный коэффициент"	1,000	1,005	1,012	1,02	1,028	1,039	1,058	1,092
Уменьшение максимальной CIAT (°C)	1,000	-0,3	-0,7	-1,1	-1,6	-2,2	-3,3	-5,1

СІАТ: Температура воздуха на входе конденсатора

Таблица ESP составлена для диаметра вентилятора Ø800, доступен для следующих блоков:

EWAD320~530D-SL/SR EWAD460~600D-XR

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

Пример

Размер блока: EWAD390D-SS

0 Па - Внешнее статическое давление

- Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура

воздуха на входе в конденсатор 35°C

- Охлаждающая способность: 389 кВт - Потребляемая мощность: 152 кВт

- Максимальная CIAT (Температура воздуха на входе конденсатора): 48°C (см. график предельных условий эксплуатации)

- Внешнее статическое давление 40 Па

Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура - Эксплуатационные условия:

воздуха на входе в конденсатор 35°C

389 x 0,993 = 386 кВт - Охлаждающая способность: 152 х 1,018= 155 кВт - Потребляемая мощность:

- Максимальная CIAT (Температура воздуха на входе конденсатора): 48 - 1,0 = 47°C

OPL 1-2-3-4-5-6 Ред.00 3

10 - 1 Рабочий диапазон

Объем, поток и качество воды

			Охл	аждающая в	ода							
Позиции _{(1) (5)}		Циркуляционн система				іная вода	Низкая температура		Высокая температура		Тенденция в случае несо-	
		Циркулирующая вода	Поступающая вода ₍₄₎	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода ₍₄₎	Циркулирующая вода [20°C ~ 60°C]	Поступающая вода ₍₄₎	Циркулирующая вода [60°С ~ 80°С]	Поступающая вода ₍₄₎	ответствия критериям	
+	pH	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,0 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
необходи- ать:	Электрическая	[мСм/м] при 25°C	Менее 80	Менее 30	Менее 40	Менее 40	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
	проводимость	(мкСм/см) при 25°C	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 400)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
которые егулиров	Ионы хлоридов	[мгСl ²⁻ /л]	Менее 200	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
용론	Ионы сульфатов	[мгSO ²⁻ ₄ /л]	Менее 200	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
	М-щелочность (рН 4,8)	[MrCaCO ₃ /л]	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
불월	Общая жесткость	[мгСаСО ₃ /л]	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
Элементы, мо р	Кальциевая жесткость	[мгСаСО₃/л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
(G)	Ионы силикатов	[мгЅіО²/л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
z	Железо	[мгFе/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
ğ	Медь	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
рове	Ионы сульфитов	[мгS²-/л]	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Не обнаружи- вается	Коррозия
	Ионы аммония	[мгNH+,/л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
Позиции для проверки	Остаточные хлориды	[мгСL/л]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
озиц	Свободный карбид	[мгСО ₂ /л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
	Показатель устойчи	ІВОСТИ	6,0 ~ 7,0									Коррозия + накипь

ПРИМЕЧАНИЯ

- 1. Названия, определения и агрегаты соответствуют стандарту JIS К 0101. Значения и единицы измерения в скобках являются устаревшими и приводятся только для справки.
- Коррозия обычно значительна при использовании подогретой воды (более 40°С).
 Желательно принять меры против коррозии, особенно в случае, когда железные детали пребывают в прямом контакте с водой, без защитных покрытий. Например, обрабатывать химикатами.
- 3. В системе охлаждающей воды с герметической охлаждающей башней вода в замкнутом контуре должна соответствовать стандартам для нагретой воды, а свободно протекающая вода стандартам для охлаждающей воды.
- 4. В качестве подаваемой воды рассматривается питьевая, техническая и грунтовая вода, за исключением естественной, нейтральной и мягкой воды.
- 5. Указанные выше позиции следует рассматривать в рамках возможного действия коррозии и накипи.

OPL_1-2-3-4-5-6_Ред.00_4

10 - 1 Рабочий диапазон

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

Фактически, каждый раз при запуске компрессора выделяется избыточное количество масла и одновременно повышается температура в статоре электродвигателя компрессора из-за бросков пускового тока при запуске.

Для предотвращения повреждения компрессоров, предусмотрено использование устройства для ограничения частых остановок и запусков.

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 2-мя компрессорами

 $M (π) = (0.1595 \times ΔT(^{\circ}C) + 3.0825) \times P (κBτ)$

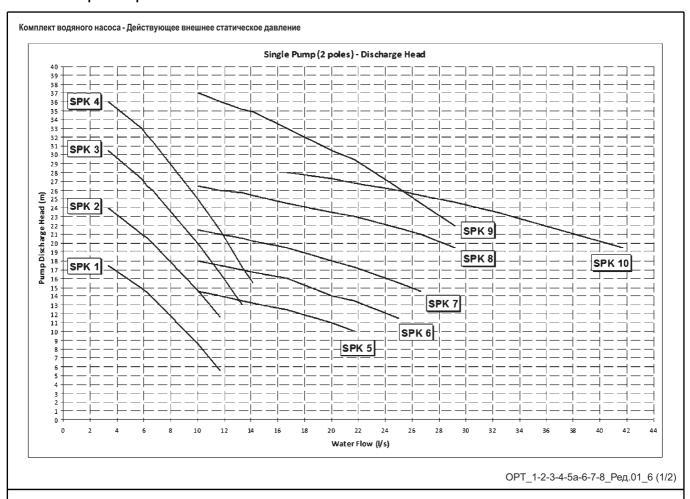
где:

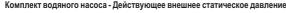
10

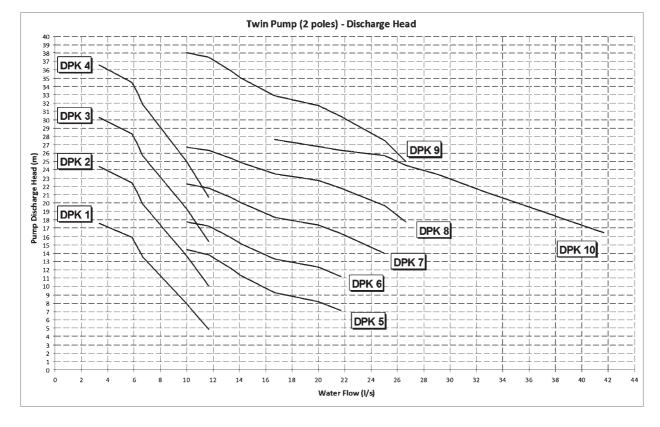
М минимальное количество воды в одном агрегате, выраженное в литрах

Р Охлаждающая способность блока, выраженная в кВт

ΔТ разность температур воды на входе/выходе испарителя в °C


Данная формула подходит для:


- стандартных параметров микропроцессора


Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

OPL_1-2-3-4-5-6_Ред.00_5

11 - 1 Характеристики насоса

ОРТ_1-2-3-4-5a-6-7-8_Ред.01_6 (2/2)

11 - 1 Характеристики насоса

Набор для водяного насоса - Техническая информация

		Мощность двигателя насоса (кВт)	Ток двигателя насоса (A)	Электропитание (В-ф-Гц)	PN	Двигатель Защита	Изоляция (Класс)	Рабочая температура (°C)
	SPK 1	1,5	3,5	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	SPK 2	2,2	5,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	SPK 3	3,0	6,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
ဗ	SPK 4	4,0	8,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
Один насос	SPK 5	3,0	6,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
Ē	SPK 6	4,0	8,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
8	SPK 7	5,5	10,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	SPK 8	7,5	13,7	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	SPK 9	11,0	20,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	SPK 10	11,0	20,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	DPK 1	1,5	3,5	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	DPK 2	2,2	5,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
၂ ဗ	DPK 3	3,0	6,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
Fac.	DPK 4	4,0	8,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
×Ξ	DPK 5	3,0	6,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
\(\bar{\pi} \)	DPK 6	4,0	8,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
Сдвоенный насос	DPK 7	5,5	10,1	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
3	DPK 8	7,5	13,7	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	DPK 9	11,0	20,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130
	DPK 10	11,0	20,0	400 В-3 ф-50 Гц	PN10	IP55	F	-10 ~ 130

ПРИМЕЧАНИЯ

- при использовании смеси воды и гликоля просьба обращаться на завод-изготовитель, поскольку характеристики могут отличаться от указанных выше

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_7

11 - 1 Характеристики насоса

					Один	насос				
Размер	SPK1	SPK 2	SPK 3	SPK 4	SPK 5	SPK 6	SPK 7	SPK 8	SPK 9	SPI
390						X	X	X	X)
440 470						X	X	X	X)
510						x	x	X	X)
530							X	X	X)
560							X	X	X)
560 580 180 200	X	X	Y	X				Х	X)
200	X	X	X	X						
230		Х	X	X		X	X	X	X	
250			X	X		X	X	X	X	
280			X	X	Х	x	x	X	X	
260 280 300					X	X	Х	X	X	
320 370					- X	X	X	X	X	
400					X	X	X	X	X	
400 440					^	1 x	x	X	X	
480						X	X	Х	Х	
510						X	X	X	X	
530 180	X	X	X	X		1	Х	Х	X	
190	X	X	Х	X						
220 240 250 270		X	X	X		X	X	X	X	
240	-	X	X	X		X	X	X	X	-
270			X	X		X	X	X	X	
280			X	X		X	X	X	Х	
310					X	X	X	X	X	
370 400					X	X	X	X	X	
440					^	x	X	X	X	
480						X	Х	X	Х	
510						X	X	X	X	
510 530 210 230		X	X	X			Х	^	X	<u> </u>
230		X	Х	X	Х	X	Х	Х	Х	
250 270			X	X	X	X	X	X	X	
270			X	X	X	X	X	X	X	
290 300				X	X	X	X	X	X	
310 370 410					X	X	Х	X	X	
370					X	X	X	X	X	
410 450					X	X	X	X	X	
490					x	x	x	X	X	
250			Х	X	X	X	X	X	X	
280			Х	X	X	X	X	X	X	
300					X	X	X	X	X	
280 300 330 350 380 400 470					x	x	x	X	X	
380					X	X	X	X	X	
400					X	X	X	X	X	
520						X	X	X	X	
580						_ ^	^	X	X	
620							1			
240 270	<u> </u>	Х	X	X	X	X	X	X	X	
300	<u> </u>			^	X	X	X	X	X	
320				<u> </u>	Х	X	Х	X	Х	
300 320 350 370					X	X	X	X	X	
370 390	-			1	X X	X	X	X	X	
460				1	^	X	X	X	X	
510						X	X	X	Х	
560								X	X	
600		v	V	v	<u> </u>	1	1	Х	X	
200 210 230	<u> </u>	X	X	X		<u> </u>	 	 		
230		X	X	X	Х	Х	Х	Х	X	
260 270			Х	X	X	X	X	X	X	
2/0	-		X	X	X	X	X	X	X	1
290 310				X .	X	X	X	X	X	
340					X	X	X	X	X	
380					X	X	X	X	X	
420					Х	X	X	X	X	
450 480	-			-		X X X	X	X	X	
480 510	<u> </u>			<u> </u>		Ŷ	X	X	X	
550				1		· `	X	X	X	

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_8 (1/2)

11 - 1 Характеристики насоса

						Сдвоен	ный насос				
нт	Размер	DPK 1	DPK 2	DPK3	DPK 4	DPK 5	DPK 6	DPK 7	DPK 8	DPK 9	DPK
	390						X	X	X	X	X
H	440 470						^	X	X	X	X
	510							Х	Х	Х	X
-	530								X	X X	X
ŀ	510 530 560 580 180 200 230 250 260 280 300 320 370								^	^	X
T	180	X	Х	Х	Х						
-	200	X	X	X	X				,	V	
ŀ	250		^	^	^		X	X	X	X	
İ	260							X	X	X	
-	280					X	X	X	X	X	
ŀ	300					Х	X	X	X	X	
t	370						X	X	X	X	Х
	400						X	X	X	X	X
ŀ	440 480 510 530 180						X	X	X	X	X
ŀ	510							X	x		
_[530								Х	X	X
ŀ	180	X	X	X	X						
1	220	^	X X	X X	X		X	X	X	X	1
İ	190 220 240 250 270		X	X	X		X	X	X	Х	
ŀ	250						Х	X	X	X	
ŀ	280							X	X	X	
t	280 310 370 400 440							X	X	X	
F	370							X	X	X	Х
ŀ	400							X	X	X X	X
ŀ	480 510 530							X	X	X	X
	510							Х	X	Х	X
4	530				V				Х	Х	X
ŀ	210		X	X	X	X	X	X	X	Х	
t	250		^	X	X	X	Х	X	Х	X	
L	270			Х	X	X	X	X	X	X	
EWAD~D-SX	210 230 250 270 290 300 310 370				X	X	X	X	X	X	
ŀ	310					X	X	X	X	X	
	370					X	X	X	X	X	Х
ŀ	410 450					X	X	X	X	X	X
ŀ	490					^	X	X	X	X	X
T	250 280						X	X X	X X	l X	
ŀ	280					X	X	X	X	X	
ŀ	300 330 350 380 400					X	X	X	x	X	
	350						X	X	Х	X	Х
ŀ	380						X	X	X	X	X
ŀ	4/0						^	x	X	x	X
İ	520 580							Х	Х	Х	Х
ŀ	580										X
†	620 240 270 300 320 350 370 390		X	Х	X		X	X	X	X	X
ļ	270					X	Х	X	Х	Х	
-	300		-			X	X	X	X	X	-
1	350					^	X	X	X	x	
Į	370						X	X	X	X	Х
F	390						Х	X	X	X	X
+	510						1	X	X	X	X
t	560							^	^	~	X
_[600										Х
ŀ	200	X	X	X	X						
H	230	^	X	X	X		X	X	X	Х	
İ	260							X	X	X	
F	270					X	X	X	X	X	
+	310		 		1	Х	X	X	X	X	_
t	340						X	X	X	X	
ļ	460 510 560 600 200 210 230 260 270 290 310 340 380 420						X	X	Х	X	X
ŀ	420						X	X	X	X	X
1	450 480 510 550 590						, x	X	X	X	X
l	510							X	X	X	X
Г	550								X	X	X

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_8 (2/2)

11 - 2 Падение давления для частичной рекуперации теплоты

Значения падения давления при частичной рекуперации тепла

EWAD~D-HS	200	210	230	260	270	290	310	340	380	420	450	480	510	550	590
Мощность нагрева (кВт)	84	87	98	107	116	123	134	123	122	173	191	207	223	238	191
Расход воды (л/с)	4,00	4,17	4,67	5,11	5,55	5,88	6,40	5,86	5,84	8,25	9,12	9,90	10,67	11,38	9,11
Падение давления в системе рекуперации тепла (кПа)	4	5	5	6	6	6	7	5	4	7	2	3	3	3	2

ПРИМЕЧАНИЯ

Поток воды и падение давления при нормальных условиях: температура воды на входе/выходе испарителя: 12/7°C – воздух на входе конденсатора: 35°C – вода на входе/выходе системы рекуперации тепла 50/60°C

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_4 (3/3)

11 - 3 Падение давления для полной рекуперации теплоты

Значения падения давления при частичной рекуперации тепла

EWAD~D-HS	200	210	230	260	270	290	310	340	380	420	450	480	510	550	590
Мощность нагрева (кВт)	207	216	243	265	289	306	333	314	314	427	473	515	555	592	488
Расход воды (л/с)	9,89	10,34	11,59	12,68	13,82	14,63	15,91	15,00	14,98	20,41	22,59	24,61	26,52	28,28	23,33
Падение давления в системе рекуперации тепла (кПа)	23	25	28	28	31	31	35	26	23	37	13	15	17	19	11

ПРИМЕЧАНИЯ

11

Поток воды и падение давления при нормальных условиях: температура воды на входе/выходе испарителя: 12/7°C – температура насыщения на выходе: 45°C – вода на входе/выходе системы рекуперации тепла 40/45°C

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_3 (3/3)

Значения падения давления при полной и частичной рекуперации тепла

Для определения падения давления для различных вариантов или условий работы воспользуйтесь следующей формулой:

$$PD_{2}(\kappa \Pi a) = PD_{1}(\kappa \Pi a) \times \left(\frac{Q_{2}(\pi/c)}{Q_{1}(\pi/c)} \right)^{1,80}$$

где:

РО, Определяемое падение давления (кПа)

РО Падение давления при номинальных условиях (кПа)

расход воды при новых условиях эксплуатации (л/с)

Q₁ расход воды при номинальных условиях (л/с)

Как пользоваться формулой: Пример

Предположим, что блок EWAD390D-SS будет работать в следующих условиях:

- Температура воды на выходе при полной рекуперации тепла 40/50°C

Теплопроизводительность при заданных условиях: 415 кВт

Расход воды в заданных условиях: 9,91 л/с

При нормальных условиях эксплуатации блок EWAD390D-SS имеет следующие характеристики:

- Температура воды на выходе при полной рекуперации тепла 40/45°C

- воздух на входе конденсатора: 35°C

Теплопроизводительность при заданных условиях: 427 кВт

Расход воды в заданных условиях: 20,41 л/с

Падение давления в заданных условиях: 37 кПа

Падение давления при выбранных условиях работы составит:

PD₂ (κΠα) = 37 (κΠα) x
$$\left[\frac{9,91 (π/c)}{20,41 (π/c)}\right]^{1,80}$$

PD₂ (κΠα) = 10 (κΠα)

ОРТ_1-2-3-4-5а-6-7-8_Ред.01_5

12 - 1 Описание технических характеристик

Технические характеристики винтового охладителя с воздушным охлаждением

ОБЩИЕ СВЕДЕНИЯ

Винтовой охладитель с воздушным охлаждением разработан и изготовлен в соответствии со следующими Европейскими директивами:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе (при номинальных рабочих условиях и номинальной температуре воды). Охладитель будет доставлен на место работы полностью собранным и заправленным хладагентом и маслом. Установка охладителя должна выполняться в соответствии с инструкциями изготовителя по подъему оборудования и обращению с ним.

Устройство способно осуществлять пуск и работать при полной нагрузке:

- при температуре снаружи от°С до°С
- при температуре жидкости на выходе испарителя между°С и°С

ХЛАДАГЕНТ

Можно использовать только R-134a.

ЭКСПЛУАЦИОННЫЕ КАЧЕСТВА

- ✓ Количество винтовых охладителей с воздушным охлаждением:
 блок(и)
- ✓ Охлаждающая способность одного винтового охладителя с воздушным охлаждением:кВт
- √ Потребляемая мощность одного винтового охладителя с воздушным охлаждением в режиме охлаждения:кВт
- ✓ Температура воды на входе теплообменника в режиме охлаждения:°С
- ✓ Поток воды в теплообменнике:л/с
- ✓ Номинальная наружная рабочая температура окружающей среды в режиме охлаждения:°С

Диапазон рабочего напряжения должен быть 400 В ±10%, 3 ф, 50 Гц, рассогласованность напряжения макс. 3%, без нейтрали, одна точка подключения к электросети.

ОПИСАНИЕ БЛОКА

В стандартной конфигурации охладитель включает, по меньшей мере: два независимых контура хладагента, полугерметический ротационный одновинтовой компрессор, электронное расширительное устройство (EEXV), пластинчатый или кожухотрубный теплообменник прямого расширения для хладагента (в зависимости от типоразмера), охлаждаемый воздухом конденсатор, хладагент R-134a, система смазки, пусковое устройство для двигателя, запорный клапан на сливной линии, запорный клапан на линии всасывания, система управления и все компоненты, необходимые для безопасной и стабильной работы аппарата.

Охладители собирают на заводе-изготовителе на крепкой опорной раме, сделанной из оцинкованной стали и покрытой эпоксидной краской.

УРОВЕНЬ ШУМА И ВИБРАЦИИ

Уровень звукового давления в свободном пространстве на расстоянии 1 м от агрегата, полусферические условия, не должен превышать дБ(A). Уровни давления звука должны быть измерены в соответствии с ISO 3744 (не допускается использование других стандартов).

Уровень вибрации опорной рамы не должен превышать 2 мм/с.

SPC 1-2-3-4 Ред.00 1

12 - 1 Описание технических характеристик

ГАБАРИТНЫЕ РАЗМЕРЫ

Размеры блока не превышают следующих значений: - Длина блока мм - Ширина блока мм - Высота блока мм

КОМПОНЕНТЫ ОХЛАДИТЕЛЯ

Компрессоры

12

- ✓ Компрессор полугерметический, с один винтом и селекторным ротором, изготовленный из специального композитного материала с углеродной пропиткой или с применением новейшего высокопрочного материала, усиленного волокнами (в зависимости от типоразмера). Опоры ведомого ротора сделаны из чугуна.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- √ Компрессор имеет встроенный высокоэффективный масляной сепаратор сетчатого типа и масляный фильтр.
- √ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система смазки с электрическим масляным насосом недопустима.
- ✓ Охлаждение компрессора осуществляется путем подачи жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- √ Корпус компрессора оснащается портами для возможности осуществления экономически выгодных циклов хладагента.
- ✓ Компрессор должен иметь защиту в виде датчика температуры (от высокой температуры на выходе) и термистора электродвигателя (от перегрева обмоток).
- ✓ Компрессор должен быть оборудован электрическим нагревателем для масла.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления производительностью по охлаждению

- √ Каждый охладитель имеет микропроцессор для регулирования положения вентиля-задвижки компрессора.
- ✓ Управление производительностью блока должно быть бесступенчатым от 100% до 25% для каждого контура. Охладитель должен обеспечивать стабильную работу до минимум 12,5% полной нагрузки без вывода горячего газа.
- ✓ Система управляет блоком на основании температуры воды на выходе испарителя, которая контролируется PID (пропорционально-интегрально-дифференциальный) логикой.
- √ Логика управления блоком должна управлять задвижками компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке установки для поддержания постоянной установки температуры охлажденной воды.
- ✓ Микропроцессорное управление блока должно обнаруживать состояния, близкие к защитным пределам, и принимать меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - Высокое давление в конденсаторе
 - о Низкая температура испарения хладагента

Испаритель

- ✓ Этиблоки оснащаются (в зависимости от типоразмера) пластинчатым или кожухотрубным испарителем:
 - Пластинчатый испаритель изготовлен из спаянных пластин из нержавеющей стали и покрыт 20 мм изоляционным материалом с закрытыми порами. Обменник оснащен нагревателем для защиты от замораживания при температурах окружающей среды до -28°C и 3" соединениями для слива воды из испарителя. В стандартной конфигурации каждый испаритель имеет 1 контур (один компрессор) и водный фильтр.
 - Кожухотрубный испаритель изготовлен из медных трубок, помещенных внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Внешняя оболочка покрыта 10 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с комплектом быстросъемных соединений Victaulic (стандарт) В стандартной конфигурации каждый испаритель имеет 2 контура (по одному для каждого компрессора) и водный фильтр.
- ✓ Испаритель изготовляется в соответствии с PED.

SPC_1-2-3-4_Ред.00_2

12 - 1 Описание технических характеристик

Змеевик конденсатора

- ✓ Змеевики конденсатора сконструированы из бесшовных медных трубок с внутренними ребрами, расположенных зигзагообразно, механически посаженных в рифленые алюминиевые оребрения и для большей эффективности скрепленных петлями. Пространство между оребрением создается втулкой, которая увеличивает поверхность соединения с трубами, защищая их от коррозии, вызванной воздействием факторов окружающей среды.
- ✓ Змеевики конденсатора имеет встроенный суб-охлаждающий контур, который обеспечивает достаточное субохлаждение для предотвращения неоднородного течения жидкости и увеличения эффективности работы аппарата на 5-7% без увеличения потребляемой мощности.
- ✓ Змеевики конденсатора необходимо проверять на герметичность, а также проверять под давлением сухого воздуха.

Вентиляторы конденсатора

- ✓ Вентиляторы конденсатора, используемые вместе с охлаждающими змеевиками, должны быть пропеллерными, с лопатками из усиленной стеклом смолы для обеспечения более высокой эффективности и снижения шума. Каждый вентилятор должен иметь защитное ограждение.
- ✓ Отвод воздуха должен осуществляться по вертикали, и каждый вентилятор должен быть соединен с электромотором, стандартно поставляемым с защитой IP54 и способным работать при внешней температуре от -20°C до +65°C.
- √ Защита вентиляторов конденсатора должна включать стандартную внутреннюю термозащиту двигателя и выключатель-автомат внутри электрической панели.

Контур хладагента

- ✓ Блок имеет два независимых контура хладагента.
- ✓ В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на выходной линии компрессора, запорный клапан на линии всасывания, фильтр-осушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированная линия всасывания.

Управление конденсацией

- ✓ Блоки оснащаются автоматической системой контроля давления конденсации, которая обеспечивает работу при низких внешних температурах вплоть до -... °С при поддержании давления конденсации.
- ✓ Компрессор автоматически отключает нагрузку при обнаружении слишком высокого давления конденсации. Это предотвращает отключение контура хладагента (выключение блока) вследствие вызванного высоким давлением отказа.

Варианты исполнения блока с пониженным шумом (на заказ)

- ✓ Компрессор аппарата устанавливают на металлическую основу с применением антивибрационных резиновых опор, которые предотвращают передачу колебаний металлическим конструкциям и, таким образом, снижают шум.
- ✓ Кондиционер обеспечивается акустически защищенным компрессором. Эта герметичность достигается путем использования антикоррозийной алюминиевой структуры и металлического корпуса. Шумозащитный корпус компрессора должен быть покрыт изнутри гибкими, многослойными материалами высокой плотности.

Гидронный комплект (опция, на заказ)

- ✓ Гидронный модуль устанавливается на раму охладителя, не увеличивая его размеров. Комплект включает: центробежный водяной насос с трехфазным двигателем, оснащенным внутренней защитой от перегрева, предохранительный клапан, устройство для заполнения.
- ✓ Водяные трубы защищены от коррозии и имеют пробки для очистки и сушки. Соединения заказчика должны быть подключениями типа Victaulic. Трубопровод должен быть полностью изолирован во избежание конденсации (изоляция насоса осуществляется с применением полиуретановой пены).
- ✓ Возможны два вида насосов:
 - о один насос в линии для малой или большой высоты подъема
 - о два насоса в линии для малой или большой высоты подъема

SPC 1-2-3-4 Ред.00 3

12 - 1 Описание технических характеристик

Панель управления

- √ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска должны быть отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Пусковое устройство относится к типу "звезда-треугольник" (Y-∆).
- ✓ Средства управления работой и средства защиты включают устройства энергосбережения, аварийный выключатель, защиту от перегрузки для мотора компрессора, выключатель высокого и низкого давления (на каждый контур хладагента), антифризовый термостат, выключатель для каждого компрессора.
- ✓ Вся информация о работе аппарата выводится на дисплей и с учетом внутреннего календаря и часов переключает аппарат в положение ВКЛ/ВЫКЛ в зависимости от дня или ночи на протяжении всего года.
- ✓ Предусмотрены следующие функции:
 - изменение установки температуры воды на выходе путем контроля Δt температуры воды, сигналом дистанционного управления 4-20 мА пост. тока или путем контроля внешней температуры;
 - функция плавной нагрузки для предотвращения работы системы при полной нагрузке в период понижения температуры охлаждающей жидкости;
 - защита паролем важнейших параметров управления;
 - таймеры "пуск-пуск" и "останов-пуск" для сведения к минимуму времени выключенного состояния компрессора при максимальной защите двигателя;
 - о возможность подключения к ПК или устройству дистанционного мониторинга;
 - <u>управление давлением выпуска</u> посредством разумного определения циклов работы вентиляторов конденсатора;
 - выбор опережения/запаздывания вручную или автоматически на основании часов работы контура;
 - две установки для морского варианта блока;
 - <u>задание графика работы</u> при помощи внутренних часов, которые позволяют программировать на год запуски и остановки с учетом выходных и праздничных дней.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

- ✓ Охладитель может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:
 - o ModbusRTU
 - o LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
 - Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
 - Ethernet TCP/IP

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, ком пресоров и хладагентов. Это стапо причиной ее активного участия в решении экологических проблем. В течение некомпьких пет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по положения положения метоложе направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени оказывает воздействие на окружающую среду. Эта задана требует, чтобы разработка и проектирование широк ото спектра продукции и систем управления выголнятись с учегом экопогических требований и были направленын на энергии и снижение объема отходов.

Настоящий буклет составлен только для сгравонных целей и не является предложением, обязательным для выполнения компанией Dalkin Europe N.V. Его сдержание составлено компанией Dalkin Europe N.V. на основаниисведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, тонности, надежности или соответствия конкретной цели ее содержания, а такие гродуктов и услуг, представленных в нем. Технические характеристи и могут быть изменены без предварительного уведомления. Компания Dalkin Europe N.V. октазывается откакой-пибо ответственности за пряжье или косвенные убытки, понимаемые в самом широком омьсле, вытекающие из прямою или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Dalkin Europe N.V. Настоящий буклет составлен только для справочных целей и не

Компания Daikin Europe N.V. принимает компания Latikin Europe i N. принимает участие в Грограмме сертификации Eurovert для кондиционеров (АС), жидкостных холодильных установов (LCP) и фанкойлов (FCU). Проверьте текущий срок действия сертификата оннайн: www.eurovert-certification.cm или перейдите к: www.certiflash.com."

BARCODE										
DARCODE	Daikin products are distributed by:									

DAIKIN EUROPE N.V. Naamloze Vennootschap - Zandvoordestraat 30 0, B-8400 Oostende - Belgium - www.daikin.eu - BE 0412 120 336 - RPR Oostende