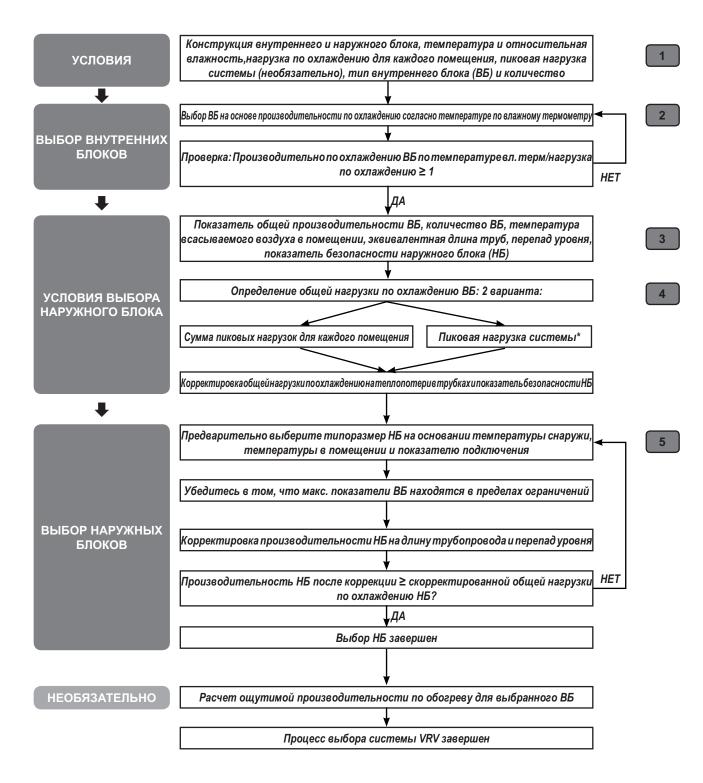


Кондиционеры

Технические Данные

Кондиционеры

Технические Данные



СОДЕРЖАНИЕ

Процедура выбора охлаждаемого воздухом оборудования

VRVПроцедура выбора системы VRV на	
основании нагрузки по охлаждению	2
Блок-схема	2
Пример	
Выбор в режиме обогрева	8
Блок-схема	8
Пошаговое выполнение	
Пример	11
Трубопроводная система Refnet	14
Трубопроводная система Refnet	14
Пример схем расположения трубопроводов Refnet	
Толщина трубопровода	
	основании нагрузки по охлаждению Блок-схема Пошаговое выполнение Пример Выбор в режиме обогрева Блок-схема Пошаговое выполнение Пример Трубопроводная система Refnet Трубопроводная система Refnet Пример схем расположения трубопроводов Refnet

1 - 1 Блок-схема

^{*} Пиковая нагрузка системы = Максимальная нагрузка, которую должны одновременно выдерживать все внутренние блоки, подключенные к одному наружному блоку

.

1 Процедура выбора системы VRV на основании нагрузки по охлаждению

1 - 2 Пошаговое выполнение

1 - 2 - 1 Проектные условия:

Для начала проектирования системы VRV в режиме охлаждения необходима следующая информация:

- Условия внутри помещения: Температура по влажному (°CWB/°C вл.т.) и сухому термометру (°CDB/°C сух.т.)
- Нагрузка по охлаждению в каждом помещении: общая нагрузка по охлаждению, нагрузка по ощутимому охлаждению (необязательно)
- Условия вне помещения: Температура по сухому термометру (°CDB/°C сух.т.)
- Система пиковой нагрузки: максимальная общая нагрузка по охлаждению, которая наблюдается в определенное время суток и которая должна быть выдержана всеми внутренними блоками, подключенными к одной и той же системе наружного блока

Пиковая нагрузка системы ≠ сумме пиковых нагрузок

Сумма пиковых нагрузок = сумма всех отдельных пиковых нагрузок каждого внутреннего блока/помещения, которые могут наблюдаться в разное время суток. Это зависит от влияния солнечных лучей и расположения помещения относительно сторон света. Пик нагрузки в помещении с окнами на восток, скорее всего, придется на утренние часы, а в помещении с окнами на запад – во второй половине дня.

1 - 2 - 2 Выбор внутреннего блока

Выберите внутренний блок на основании общей нагрузки по охлаждению при проектной температуре в помещении по влажному термометру (°CWB) и номинальной температурой снаружи по сухому термометру (35°CDB)

См. таблицу производительности по охлаждению для выбранного типа внутреннего блока

1 - 2 - 3 Проверка нагрузки по охлаждению

Убедитесь в том, что производительность по охлаждению внутреннего блока превышает нагрузку по охлаждению.

1 - 2 - 4 Условия для выбора наружного блока:

Для правильного выбора системы наружного блока необходимы следующие данные:

- Общий показатель производительности внутренних блоков (= сумме показателей производительности всех внутренних блоков)
- Общее количество подсоединенных внутренних блоков
- Температура всасываемого воздуха в помещении (°CWB/°CDB) и проектная температура наружного воздуха (°CDB)
- Эквивалентная длина трубопроводов между самым дальним внутренним блоком и наружным блоком
- Перепад уровня между внутренними блоками и наружным блоком

1 - 2 Пошаговое выполнение

1 - 2 - 5 Определение производительности по охлаждению, обеспечиваемой системой наружного блока:

Шаг 1: Определение общей нагрузки по охлаждению, которую должны выдерживать подключенные внутренние блоки: два варианта:

- Сумма пиковых нагрузок для каждого помещения
- Пиковая нагрузка системы

Шаг 2: Корректировка общей нагрузки по охлаждению внутренних блоков на теплопотери в трубках и (необязательно) показатель безопасности наружного блока

Производительность по охлаждению, обеспечиваемая системой наружного блока =

общая нагрузка по охлаждению х (1 + (показатель теплопотери х фактическая длина трубок))

Показатель теплопотери зависит от проектной температуры наружного воздуха (см. таблицу ниже)

Проектная температура наружного воздуха (°CDB)	Показатель теплопотерь в трубопроводах (%/м)
< 10	0%
15	0,004%
20	0,009%
25	0,014%
30	0,022%
35	0,030%
40	0,038%

Примечание

1 Таблица поправочных коэффициентов для охлаждения и обогрева содержит предельные значения температуры. Если температура окружающей среды выходит за пределы диапазона, указанного в таблице, необходимо принять ближайшее значение температуры.

1 - 2 - 6 Выбор наружного блока

• Предварительно выберите размер и тип наружного блока на основе температуры наружного воздуха (°CDB),температуры в помещении (°CWB) и показателя подключений

См. таблицу производительности по охлаждению для выбранного наружного блока в ED

- Убедитесь в том, что максимальное количество внутренних блоков и показатель подключений находятся в пределах ограничений
- Скорректируйте производительность наружного блока с использованием поправочный коэффициента на трубопроводы (α) с учетом длины трубок и разницы между уровнями внутреннего блока и наружного блока

См. схемы коррекции на трубопроводы в ED

- Проверьте, по-прежнему ли доступная производительность по охлаждению с учетом поправки на трубопроводы превышает производительность по охлаждению, которая должна обеспечиваться наружным блоком (см. главу 5).
- Размер наружного блока выбран.

Примечание

1 В программе выбора VRV поправочный коэффициент на теплопотери применяется к наружному блоку, а не к значению требуемой производительности. Это вызвано тем, что требуемая производительность известна пользователю и должна быть введена в предусмотренное для нее поле. Было бы странно, если бы в расчетах использовались значения, отличные от заданных пользователем.

1 - 2 - 7 Производительность по сухому теплу

Производительность по сухому теплу (ощутимая производительность по обогреву) – это производительность, необходимая для снижения температуры, а скрытая производительность – это производительность, необходимая для удаления влаги из воздуха. Ощутимое тепло может повлиять на выбор оборудования для помещений с высокой (тренажерный зал) или низкой (компьютерные залы) влажностью.

Если производительность по сухому теплу выше обычной, необходимо выбрать внутренний блок большего типоразмера, чтобы обеспечить необходимую полную производительность.

1-3 Пример

1 - 3 - 1 Проектные условия

• Определите проектную температуру в помещении / снаружи

В помещении: 20° CWB / 28° CDB

Снаружи: 33° CDB

• Определите пиковые нагрузки помещений (и, если возможно, пиковые нагрузки системы = необязательно)

Проектные нагрузки в кВт (общая производительность по охлаждению)

Время	А	В	С	D	Е	F	G	Н	Сумма
9:00	2,9	2	1,5	3,3	3	4	3	1,7	21,4 кВт
13:00	2	2,7	1	3,3	4	3,4	3,9	1,9	22,2 кВт
17:00	1,9	1,8	2,5	4,3	3,3	3	2,3	2,9	22 кВт

Сумма пиковых нагрузок помещений 27,2 кВт

Пиковая нагрузка системы 22,2 кВт

Макс. требуемая производительность наружного блока

1 - 3 - 2 Выбор внутреннего блока

Внутренний блок FXCQ

Α	В	С	D	Е	F	G	Н
25	25	25	40	40	40	40	25
3.0	3.0	3.0	4.8	4.8	4.8	4.8	3.0

^{*} производительность выбирается в соответствии с проектными условиями (в помещении 20°CWB / 28°CDB; снаружи 35°CDB)

Примечание

FXCQ

кВт


В новом методе выбора внутреннего блока данные о температуре снаружи не учитываются. Поэтому воспользуйтесь проектными значениями температур снаружи при работе с таблицей производительности внутреннего блока (35°CDB для охлаждения, 7°CDB для обогрева)

1 - 3 - 3 Проверка нагрузки по охлаждению

Общая производительность по охлаждению внутреннего блока > нагрузка по охлаждению 31,2>22,2 кВт

1 - 3 - 4 Условия для выбора наружного блока:

- Показатель общей производительности внутренних блоков = 260ОК
- Количество выбранных внутренних блоков = 8ОК
- Эквивалентная длина трубопроводов и перепад уровня

Эквивалентная длина трубопровода (*) = 43,5 м

(*) Длина до самого дальнего внутреннего блока, включая экв. длину трубок refnet (0,5 м на refnet)

Сумма

260

31,2

1-3 Пример

1 - 3 - 5 Определение производительности по охлаждению, обеспечиваемой системой наружного блока:

Общая нагрузка по охлаждению

- Сумма пиковых нагрузок = 27,2 кВт
- Пиковая нагрузка системы = 22,2 кВт

Скорректированная общая нагрузка по охлаждению

Таблица: Коэффициент потерь на метр трубы с изоляцией толщиной 10 мм

Поправочный коэффициент	HLC	HLH
	(%/M)	(%/м)
Температура снаружи	Охлаждение	Обогрев
-15		0,100
-10		0,093
-5		0,086
0		0,078
5	0,000	0,071
10	0,000	0,064
15	0,004	0,057
20	0,009	0,049
25	0,014	
30	0,022	
35	0,030	
40	0,038	

Для температуры снаружи 33°CDB коэффициент теплопотерь составляет 0,0268% (с интерполяцией).

При определении длины трубопроводов первые 7,5 м не учитываются

 \Rightarrow 43,5 M - 7,5 M = 36 M

Показатель теплопотерь * реальная длина трубопроводов

⇒ 0,0268% * 36 M = 0,009648

общая нагрузка по охлаждению х (1 + (показатель теплопотери х фактическая длина трубок))

⇒ 22,2*(1 + 0,009648) = 22,4

1-3 Пример

1 - 3 - 6 Выбор наружного блока

выберите тип наружного блока
 Наружный блок RXYQ8P

Таблица показателей общей производительности для сочетаний внутренних блоков

Наружный				Показатель по	дключений вну	тренних блокс)B		
блок	130 %	120 %	110 %	100 %	90 %	80 %	70%	60 %	50 %
4HP	130	120	110	100	90	80	70	60	50
5HP	162,5	150	137,5	125	112,5	100	87,5	75	62,5
6HP	182	168	154	140	126	112	98	84	70
8HP	260	240	220	200	180	160	140	120	100
10HP	325	300	275	250	225	200	175	150	125
12HP	390	360	330	300	270	240	210	180	150
14HP	455	420	385	350	315	280	245	210	175
16HP	520	480	440	400	360	320	280	240	200
18HP	585	540	495	450	405	360	315	270	225
20HP	650	600	550	500	450	400	350	300	250
22HP	715	660	605	550	495	440	385	330	275
24HP	780	720	660	600	540	480	420	360	300
26HP	845	780	715	650	585	520	455	390	325
28HP	910	840	770	700	630	560	490	420	350
30HP	975	900	825	750	675	600	525	450	375
32HP	1.040	960	880	800	720	640	560	480	400
34HP	1.105	1.020	935	850	765	680	595	510	425
36HP	1.170	1.080	990	900	810	720	630	540	450
38HP	1.235	1.140	1.045	950	855	760	665	570	475
40HP	1.300	1.200	1.100	1.000	900	800	700	600	500
42HP	1.365	1.260	1.155	1.050	945	840	735	630	525
44HP	1.430	1.320	1.210	1.100	990	880	770	660	550
46HP	1.495	1.380	1.265	1.150	1.035	920	805	690	575
48HP	1.560	1.440	1.320	1.200	1.080	960	840	720	600
50HP	1.625	1.500	1.375	1.250	1.125	1.000	875	750	625
52HP	1.690	1.560	1.430	1.300	1.170	1.040	910	780	650
54HP	1.755	1.620	1.485	1.350	1.215	1.080	945	810	675

[•] Определите макс. допустимый показатель подключений

Макс. 130% показатель подключений

При температуре снаружи 33°CDB и 20°CWB/28°CDB в помещении производительность по охлаждению наружного блока = 24,4 кВт (см. Таблица значений производительностей в справочнике)

При определении значения производительности, обеспечиваемой наружным блоком, необходимо учитывать следующие потери:

1 длина трубы / перепад уровня: поправочный коэффициент для указанной эквив. длины трубы (43,5 м) и разности уровней (5 м) = 0,925

2 потери из-за размораживания = неприменимо (режим охлаждения)

=> 24,4 кВт * 0,925 = 22,57 кВт

Наружный блок обеспечивает 22,57 кВт, в то время как требуемая мощность составляет 22,4 кВт

2 - 1 Блок-схема

Нагрузки по обогреву для каждого помещения согласно температуре в помещении по сухому термометру и температуре снаружи по влажному термометру **УСЛОВИЯ** Необязательно: Определение показателя безопасности (> 100%) для ВБ и НБ Выбор ВБ на основе температуры в помещении по сухому термометру и скорректированного значения производительности по обогреву согласно наружной температуре 7°С сух.т. ВЫБОР ВНУТРЕННИХ **БЛОКОВ** Проверка:ПроизводительностьпообогревуВБ,скорректированнаянатемпературу по сухому термометру/тепловая нагрузка≥1{или показатель безопасностидля ВБ **HET** (необязательно)? Определение общей тепловой нагрузки, обеспечиваемой ВБ = сумма тепловой нагрузки каждого помещения УСЛОВИЯ ВЫБОРА НАРУЖНОГО БЛОКА Необязательно: умножение общей тепловой нагрузки на показатель безопасности НБ = скорректированная общая тепловая нагрузка Предварительный выбор размера и типа НБ{на основе скорректированной 6 общей тепловой нагрузки, температуры наружного воздуха (°С вл.т.), температуры в помещении (°С сух.т.) и показателя подключений Убедитесь в том, что показатели ВБ и показатели подключения находятся в пределахограничений ВЫБОР НАРУЖНЫХ Корректировка производительности НБ на длину трубопровода и перепад уровня (α) **БЛОКОВ** КорректировкапроизводительностиНБсиспользованиемкоэффициентаинтегральнойпроизводительностипонагреву(β) Проверка:ПроизводительностьНБ послекоррекции≥скорректированной общей нагрузки по обогреву? ДА Выбор НБ завершен HET Процесс выбора системы VRV завершен

2 - 2 Пошаговое выполнение

2 - 2 - 1 Проектные условия:

Для начала проектирования системы VRV в режиме обогрева необходима следующая информация:

- Условия внутри помещения: Температура по сухому термометру (°CDB/°C сух.т.)
- Нагрузка по обогреву в каждом помещении: общая нагрузка по обогреву
- Условия вне помещения: Температура по влажному (°CWB/°C вл.т.) и сухому термометру (°CDB/°C сух.т.)

2 - 2 - 2 Показатель безопасности:

При желании можно увеличить расчетные нагрузки по обогреву, умножив на определенный коэффициент (>1), для обеспечения "запаса прочности" при выборе типоразмеров внутреннего и наружного блоков

2 - 2 - 3 Выбор внутреннего блока

Выберите внутренний блок на основании общей нагрузки по обогреву при проектной температуре в помещении по сухому термометру (°CDB) и номинальной температуре снаружи (6°CWB / 7°CDB)

См. таблицу производительности по обогреву для выбранного типа внутреннего блока

2 - 2 - 4 Проверка нагрузки по отоплению

При использовании коэффициента безопасности для обеспечения "запаса прочности" по тепловой нагрузке убедитесь в том, что производительность по обогреву внутреннего блока превышает скорректированную нагрузку по обогреву.

2 - 2 - 5 Условия для выбора наружного блока:

Для правильного выбора системы наружного блока необходимы следующие данные:

- Общий показатель производительности внутренних блоков (= сумме показателей производительности всех внутренних блоков)
- Общее количество подсоединенных внутренних блоков
- Температура всасываемого воздуха в помещении (°CDB) и проектная температура наружного воздуха (°CWB)
- Эквивалентная длина трубопроводов между самым дальним внутренним блоком и наружным блоком
- Перепад уровня между внутренними блоками и наружным блоком
- Коэффициент безопасности для наружного блока (необязательно)

2 - 2 - 6 Определение производительности по обогреву, обеспечиваемой системой наружного блока:

Общая производительность по обогреву, которую должна обеспечивать система наружного блока, определяется как сумма всех нагрузок по обогреву, которые должны выдерживать внутренние блоки, подключенные к выбранному наружному блоку

2

2 - 2 Пошаговое выполнение

2 - 2 - 7 Выбор наружного блока

• Предварительно выберите размер и тип наружного блока на основе температуры наружного воздуха (°CDB), температуры в помещении (°CDB) и показателя подключений

См. таблицу производительности по обогреву для выбранного наружного блока в ED

- Убедитесь в том, что максимальное количество внутренних блоков и показатель подключений находятся в пределах ограничений
- Скорректируйте производительность наружного блока с использованием поправочный коэффициента на трубопроводы (α) с учетом длины трубок и разницы между уровнями внутреннего блока и наружного блока

См. схемы коррекции на трубопроводы в ED

- Скорректируйте производительность наружного блока с использованием коэффициента интегрированной производительности по обогреву (β) (влияния операции размораживания на интегрированную производительность по обогреву)
- См. таблицу интегрированных значений производительности по обогреву в ED
- Проверьте, по-прежнему ли доступная производительность по обогреву с учетом поправки на трубопроводы и размораживание превышает производительность по обогреву, которая должна обеспечиваться наружным блоком
- Размер наружного блока выбран.

Примечание

Расчет НТ гидроблока:

- Доступная производительность по обогреву HXHD125 = 14 кВт
 эта производительность всегда доступна, независимо от температуры снаружи или температуры воды на выходе (LWT)
- Показатель производительности HXHD125 = 125
 должен использоваться для определения показателя общей производительности и показателя подключения REYAQ
- Потребляемая мощность HXHD125 зависит от температуры воды на выходе (LWT) (см. таблицу 1)
- Требуемая производительность по обогреву REYAQ зависит от температуры воды на выходе (LWT) (см. таблицу 1)

Таблица 1:

Температура воды на выходе [°C]	35	45	55	65	75
Требуемая производительность по обогреву REYAQ [кВт]	12,98	12,60	12,60	12,10	11,09
Потребляемая мощность HXHD125 [кВт]	1,50	1,79	1,83	2,33	3,25

В случае, если для получения горячей воды требуется менее 14 кВт мощности:

Если требуемая от гидроблока производительность по нагреву составляет менее 14 кВт, значения требуемой производительности наружного блока и потребляемой мощности корректируются пропорционально.

2-3 Пример

2 - 3 - 1 Проектные условия

• Определите проектную температуру в помещении / снаружи

В помещении: 18° CDB Снаружи: 2,2° CWB / 3° CDB

• Определите пиковые нагрузки помещений (и, если возможно, пиковые нагрузки системы = необязательно)

Проектные нагрузки в кВт (общая производительность по обогреву)

Время	Α	В	С	D	Е	F	G	Н	Сумма
9:00	3,1	2,3	1,9	3,8	3,2	4,1	3,5	2	23,9 кВт
13:00	2,8	2,9	1,5	3,7	4,1	3,7	4	2,2	24,9 кВт
17:00	2,2	2	2,7	4,5	3,6	3,3	2,7	3,2	24,2 кВт

Сумма пиковых нагрузок помещений 28,6 кВт

Пиковая нагрузка системы 24,9 кВт

Макс. требуемая производительность наружного блока

2 - 3 - 2 Показатель безопасности

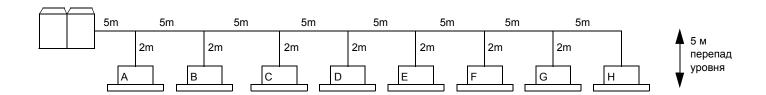
В этом примере "запас прочности" не используется.

2 - 3 - 3 Выбор внутреннего блока

Внутренний блок FXCQ

	Α	В	С	D	E	F	G	Н
FXCQ	25	25	25	40	40	40	40	25
кВт	3,4	3,4	3,4	5,2	5,2	5,2	5,2	3,4

Примечание


1 В новом методе выбора внутреннего блока данные о температуре снаружи не учитываются. Поэтому воспользуйтесь проектными значениями температур снаружи при работе с таблицей производительности внутреннего блока (35°CDB для охлаждения, 7°CDB для обогрева)

2 - 3 - 4 Проверка нагрузки по отоплению

Общая производительность по обогреву внутреннего блока > нагрузка по обогреву 33,4>24,9 кВт

2 - 3 - 5 Условия для выбора наружного блока:

- Показатель общей производительности внутренних блоков = 260ОК
- Количество выбранных внутренних блоков = 8ОК
- Эквивалентная длина трубопроводов и перепад уровня

Эквивалентная длина трубопровода (*) = 43,5 м

(*) Длина до самого дальнего внутреннего блока, включая экв. длину трубок refnet (0,5 м на refnet)

2

^{*} производительность выбирается в соответствии с проектными условиями (в помещении 18°CDB; снаружи 6°CWB / 7°CDB)

2-3 Пример

2 - 3 - 6 Определение производительности по обогреву, обеспечиваемой системой наружного блока:

Общая нагрузка по обогреву

- Сумма пиковых нагрузок = 28,6 кВт
- Пиковая нагрузка системы = 24,9 кВт

Скорректированная общая нагрузка по обогреву

Таблица: Коэффициент потерь на метр трубы с изоляцией толщиной 10 мм

Поправочный коэффициент	HLC	HLH
	(%/м)	(%/M)
Температура снаружи	Охлаждение	Обогрев
-15		0,100
-10		0,093
-5		0,086
0		0,078
5	0,000	0,071
10	0,000	0,064
15	0,004	0,057
20	0,009	0,049
25	0,014	
30	0,022	
35	0,030	
40	0,038	

Для температуры снаружи 3°CDB коэффициент теплопотерь составляет 0,0752% (с интерполяцией).

При определении длины трубопроводов первые 7,5 м не учитываются

⇒ 43,5 м - 7,5 м = 36 м

Показатель теплопотерь * реальная длина трубопроводов

⇒ 0,0752% * 36 м = 0,027072

общая нагрузка по охлаждению х (1 + (показатель теплопотери х фактическая длина трубок))

 \Rightarrow 24,9*(1 + 0,027072) = 25,6

2 - 3 Пример

2 - 3 - 7 Выбор наружного блока

выберите тип наружного блока

Наружный блок RXYQ8P

Таблица показателей общей производительности для сочетаний внутренних блоков

Наружный	Показатель подключений внутренних блоков											
блок	130 %	120 %	110 %	100 %	90 %	80 %	70%	60 %	50 %			
4HP	130	120	110	100	90	80	70	60	50			
5HP	162,5	150	137,5	125	112,5	100	87,5	75	62,5			
6HP	182	168	154	140	126	112	98	84	70			
8HP	260	240	220	200	180	160	140	120	100			
10HP	325	300	275	250	225	200	175	150	125			
12HP	390	360	330	300	270	240	210	180	150			
14HP	455	420	385	350	315	280	245	210	175			
16HP	520	480	440	400	360	320	280	240	200			
18HP	585	540	495	450	405	360	315	270	225			
20HP	650	600	550	500	450	400	350	300	250			
22HP	715	660	605	550	495	440	385	330	275			
24HP	780	720	660	600	540	480	420	360	300			
26HP	845	780	715	650	585	520	455	390	325			
28HP	910	840	770	700	630	560	490	420	350			
30HP	975	900	825	750	675	600	525	450	375			
32HP	1.040	960	880	800	720	640	560	480	400			
34HP	1.105	1.020	935	850	765	680	595	510	425			
36HP	1.170	1.080	990	900	810	720	630	540	450			
38HP	1.235	1.140	1.045	950	855	760	665	570	475			
40HP	1.300	1.200	1.100	1.000	900	800	700	600	500			
42HP	1.365	1.260	1.155	1.050	945	840	735	630	525			
44HP	1.430	1.320	1.210	1.100	990	880	770	660	550			
46HP	1.495	1.380	1.265	1.150	1.035	920	805	690	575			
48HP	1.560	1.440	1.320	1.200	1.080	960	840	720	600			
50HP	1.625	1.500	1.375	1.250	1.125	1.000	875	750	625			
52HP	1.690	1.560	1.430	1.300	1.170	1.040	910	780	650			
54HP	1.755	1.620	1.485	1.350	1.215	1.080	945	810	675			

Определите макс. допустимый показатель подключений

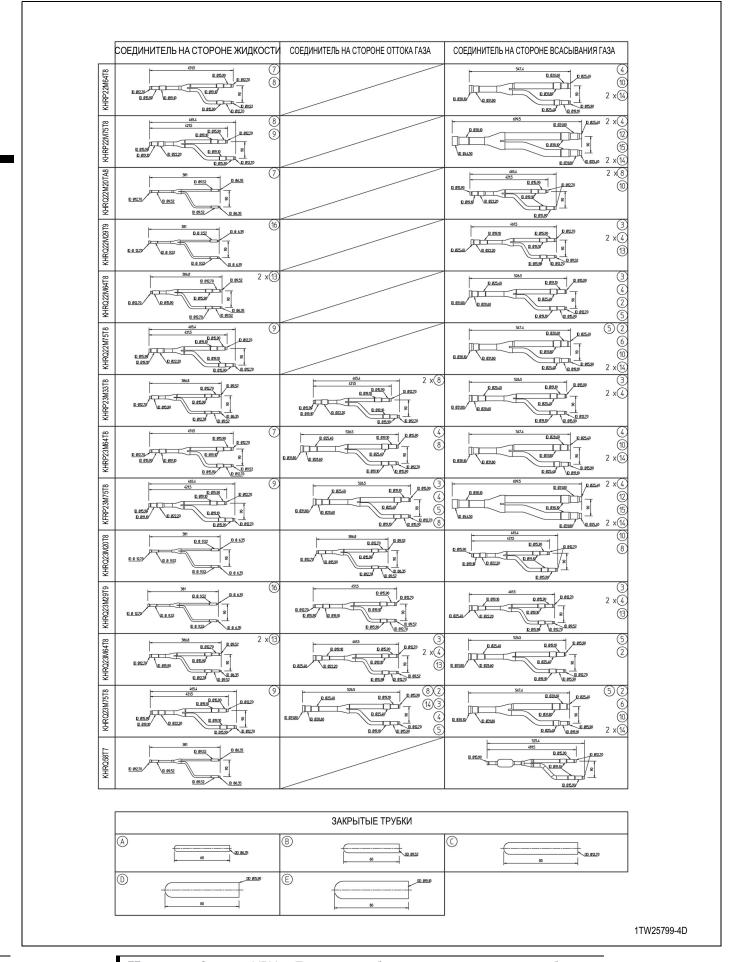
Макс. 130% показатель подключений

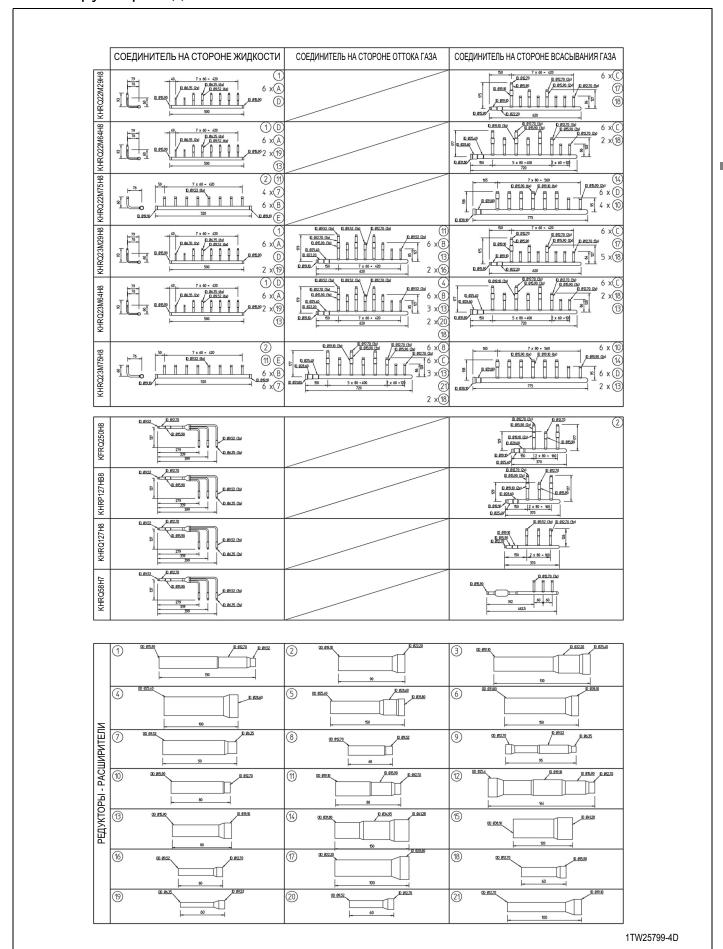
При температуре снаружи 2,2°CWB/3°CDB и 18°CDB в помещении производительность по обогреву наружного блока = 26,8 кВт (см. Таблица значений производительностей в справочнике)

Наружный блок обеспечивает 26,8 кВт, в то время как требуемая мощность составляет 25,6 кВт.

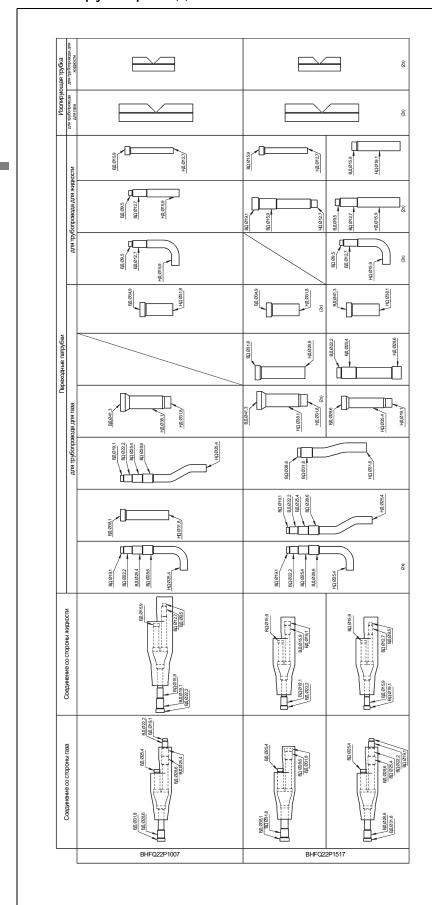
2 - 3 - 8 Показатель размораживания

Наружный блок обеспечивает 26,8 кВт, но необходимо учесть показатель размораживания.

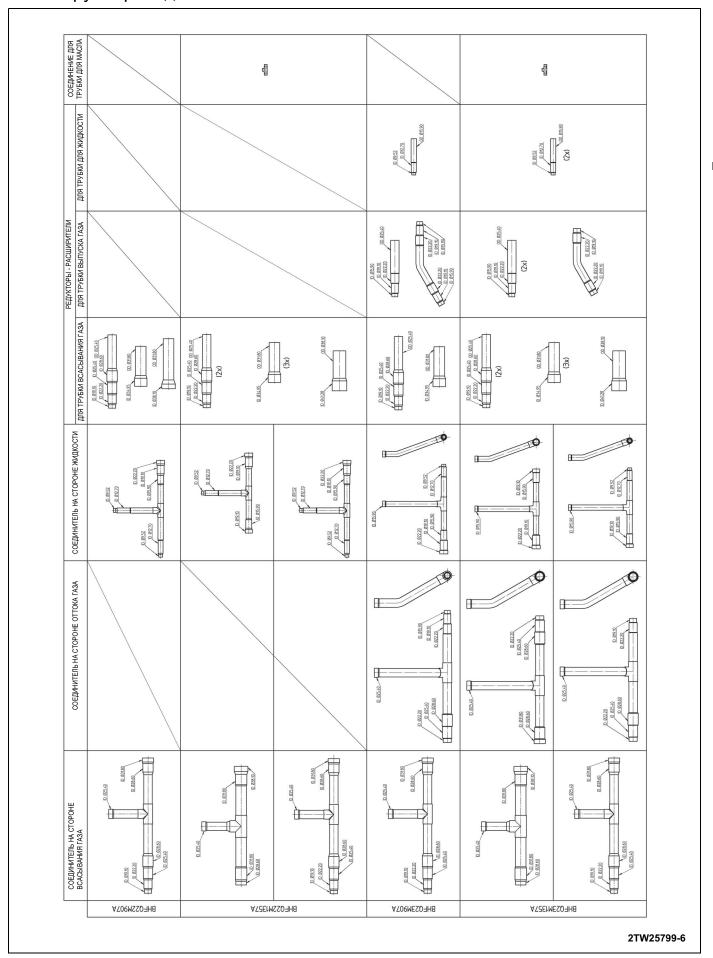

Показатель размораживания для 3°CDB составляет 0,83, поэтому этот показатель снижает общую производительность наружного блока.


26,8 кВт * 0,83 = 22,24 кВт.

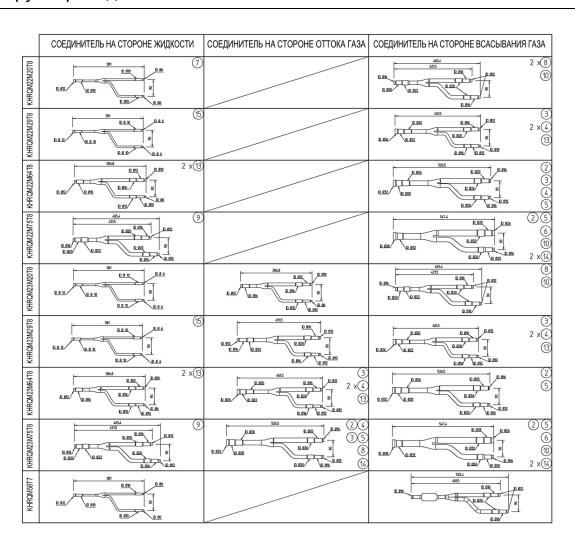
Это значит, что блок 8НР не сможет обеспечить требуемую производительность 25,6 кВт.

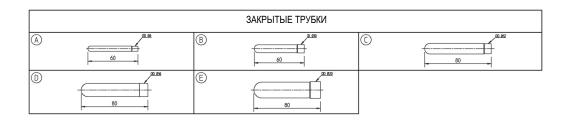

Выберите блок 10НР и повторно проверьте значения.

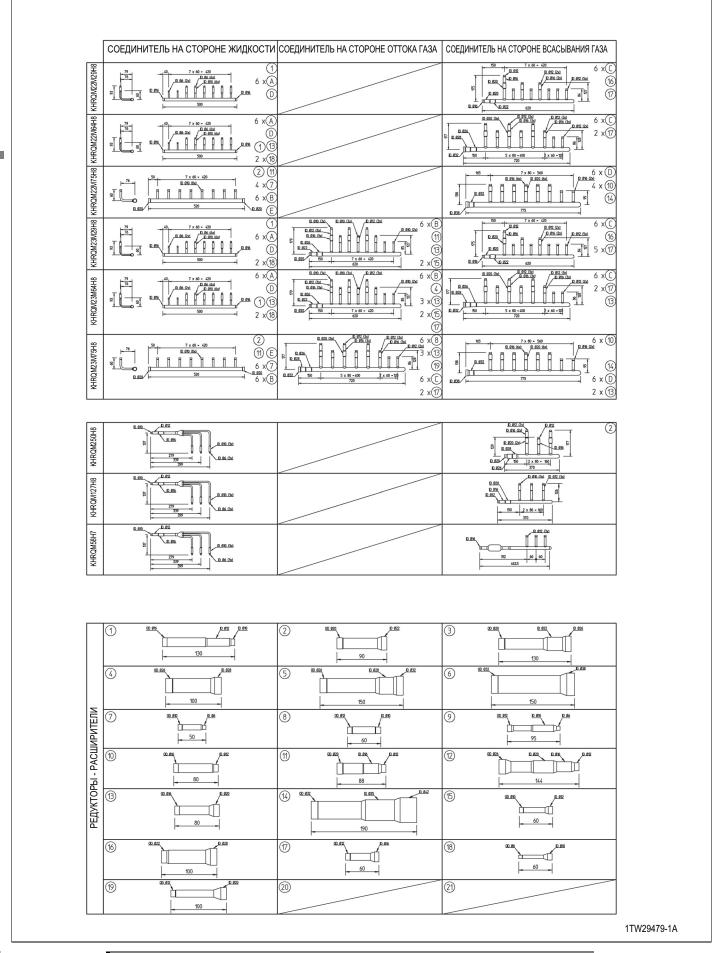
⇒ Производительность по обогреву наружного блока составляет 33,6 кВт, а после введения корректировки на размораживание – 27,9 кВт.



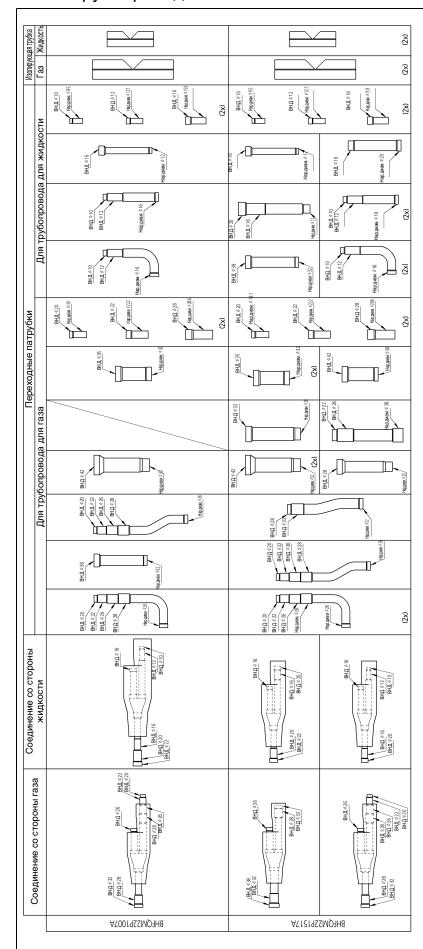
3 - 1 Трубопроводная система Refnet



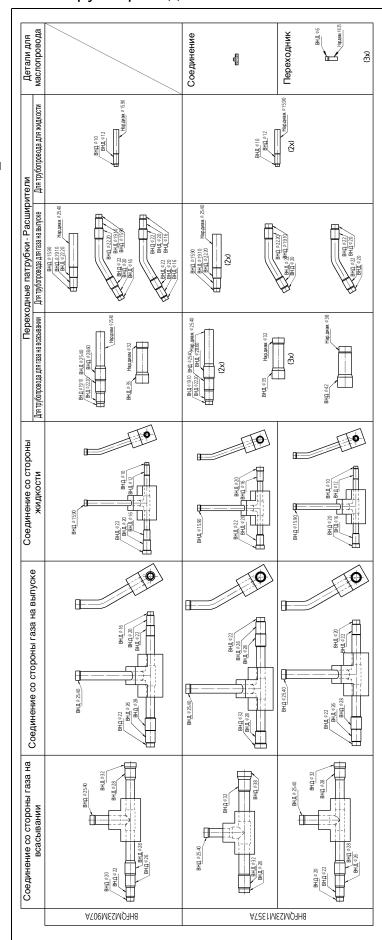

2TW27239-1


вода	M M M]
/бка Для трубопро	This wanted		(2)	
Изолирующая трубка та Дигтрубогровода Дигтрубопровода	ина давления		82	
Из Для трубопровода	API 1888		80	
Соединение для			1810 DHB 1181 THB	
Для трубопровода	ДЛЯ ЖИДКОСТИ ВНД 0.935 ВНД 0.127 Наводнам 0.159	видео5	Нардиям ¢15.9	
Переходные патрубки Для трубопровода для газа	HYCK6 BH.0.619.1 BH.0.622 Happan. 6.25.4	ВНД 0222 ВНД 0224 ВНД 0286 НВр. драма 0254	BHQ 6181 BHA 6222 HBD, pana 625.4	
Переходн Для трубопро	BHQ e254	BHI 6254	(2x)	
вода для газа	ВНД 0.922 ВНД 0.222 ВНД 0.226 НФДИММ 0.254 НФДИММ 0.254	BHA # 191 BHA # 222 BHA # 2286 BHA # 2286 BHA # 2286 C2x)	(3x) (3x) (3x) (3x) (4x) (4x) (4x) (4x) (5x)	
Для трубопровода для газа	BHQ 0191 BHQ 0222 BHQ 0224 BHQ 0236 BHQ 0236	BHQ 626 6	BH Q = 191 BH Q = 222 BH Q = 224 BH Q = 226 BH Q = 226	
е со стороны	BHQ 615 5 HDANAGE 615 5 HDANAGE 615 5	(55.9 THB) (55.9 THB) (55.9 THB)	BHI 0159	
Соединение со с	BHA 6322	(BHL) 6.81	BHI 6153	
гороны газа на же	BHL © EA	BHI 0-52.4 BHI 0-52.2 BHI 0-52.2 BHI 0-52.2	(18.9 THe (18.9 THE	
Соединение со стороны газа на выпуске	BH 0.22 2	BH1 6318	Bud 225 Bud	
	BHI 0.254 BHI 0.254 BHI 0.254	BHQ.025.4 BHQ.025.4	BH 222 BH 223 BH 223 BH 223	
Соединение со стороны газа	BHA 6286	8.1 (8.8) H.40 (8.1)	BH 16318	
	ВНЕQ23Р907	BHFQ23P1357		2TW29119-1

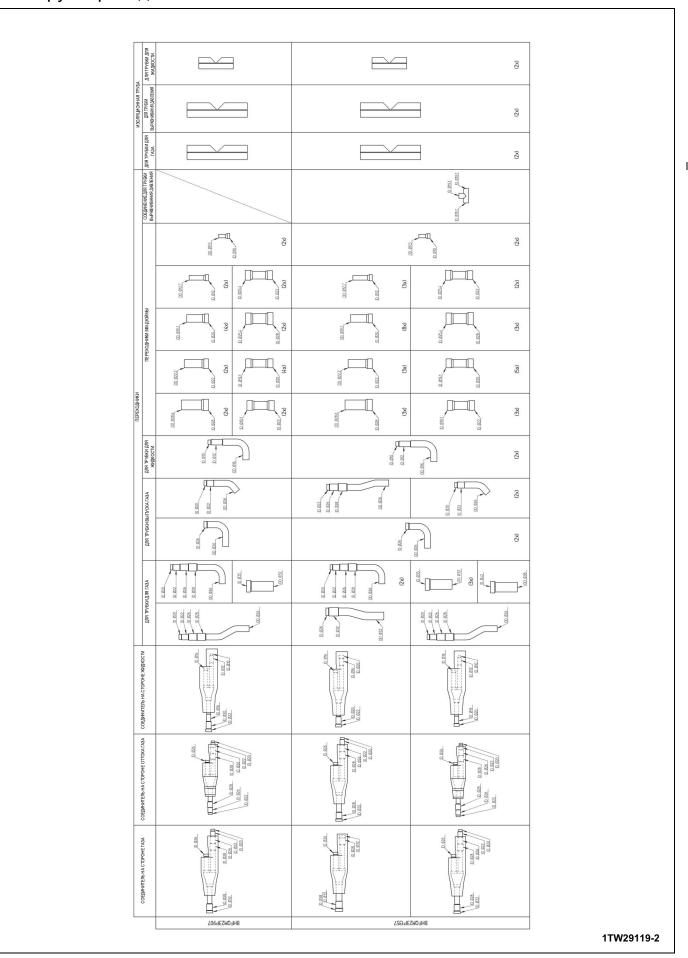
3 - 1 Трубопроводная система Refnet



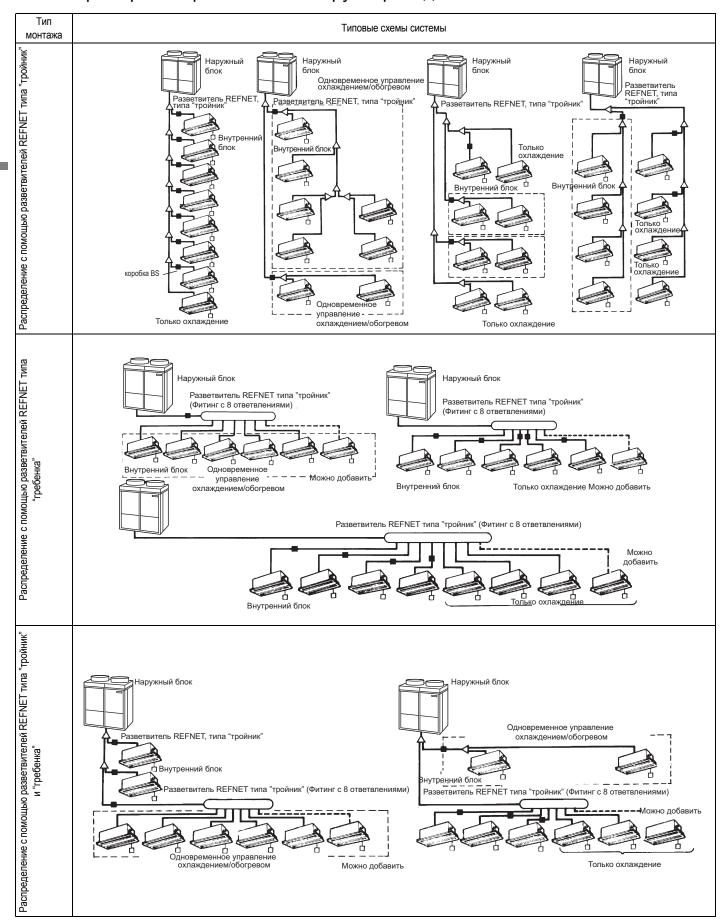
1TW29479-1A



3 - 1 Трубопроводная система Refnet



2TW29659-1


3 - 1 Трубопроводная система Refnet

2TW29679-1

3 - 2 Пример схем расположения трубопроводов Refnet

3 - 3 Толщина трубопровода

Диаметр трубопровода	Материал	Минимальная толщина [мм]	
6,4	0	0,8	
9,5	0	0,8	
12,7	0	0,8	
15,9	0	0,99	
19,1	1/2H	0,8	
22,2	1/2H	0,8	
25,4	1/2H	0,88	
28,6	1/2H	0,99	
31,8	1/2H	1,10	
34,9	1/2H	1,21	
38,1	1/2H	1,32	
41,3	1/2H	1,43	

О отожженный

1/2Н средней твердости

Для труб средней твердости максимально допустимое напряжение при растяжении равно 61 H/мм². В связи с этим технический предел прочности 0,2% полутвердой трубы должен составлять минимум 61 H/мм².

Радиус изгиба в 3 и более раз больше диаметра трубы.

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компрессоров и хладагентов. Это стало причиной ее активного участия в решении экологических проблем. В течение нескольких лет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени оказывает воздействие на окружающую среду. Эта задача требует, чтобы разработка и проектирование широкого спектра продуктов и систем правления выполнятьсь сучетом экологических требований и были направлены на сохранение энергии и снижение объема отходов.

Настоящий каталог составлен только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe NV. Его содержание составлено компанией Daikin Europe NV. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соятветствии конкретной цели содержания каталога, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe NV. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe NV.

Программа сертификации EUROVENT не распространяется на системы VRV.

Продукция компании Daikin распространяется компанией: