

Кондиционирование воздуха

Технических данных

EEDRU13-100

СОДЕРЖАНИЕ

RXS-K

1	Характеристики	2
2	Технические характеристики Номинальная производительность и потребляемая мощнос Технические параметры Электрические параметры	ть . 3
3	Электрические параметрыЭлектрические данные	
4	Таблицы производительностиТаблицы холодо-/теплопроизводительности	
5	Размерные чертежи Размерные чертежи	
6	Центр тяжести Центр тяжести	
7	Схемы трубопроводов	
8	Монтажные схемы	
9	Данные об уровне шума Спектр звукового давления - Охлаждение Спектр звукового давления - Нагрев	48
10	Рабочий диапазон Рабочий диапазон	

1 Характеристики

- Наружные блоки для парных конфигураций
- Наружные блоки Daikin аккуратные и прочные, их можно легко установить на крыше или террасе, либо просто разместить на наружной стене дома.
- Тихая работа наружного блока: кнопка "Тишина" на пульте дистанционного управления снижает шум при работе наружного блока на 3 дБА, что обеспечивает тишину для соседей.
- Наружные блоки имеют роторный компрессор, который славится низким уровнем шума и высокими показателями энергосбережения
- Антикоррозионная обработка оребрения теплообменника наружного блока

2-1 Номинальн потребляемая м		NBNOOTE N		FTXS20K/RXS20K	FTXS25K/RXS25K	FTXS35K/RXS35K	FTXS42K/RXS42K	FTXS50K/RXS50K	
Холодопроизводите	Мин.		кВт	1	,3	1,4	1	,7	
льность			Бте/ч	4.4	100	4.800	5.8	300	
	ккал/ч				-	1.200	1.4		
	Ном.		кВт	2,0 (2)	2,5 (2)	3,50 (2)	4,20 (2)	5,00 (2)	
			Бте/ч	6.800 (2)	8.500 (2)	11.900 (2)	14.300 (2)	17.100 (2)	
			ккал/ч		-	3.010 (2)	3.610 (2)	4.300 (2)	
	Макс.		кВт	2,8	3,2	4,0	5,0	5,3	
			Бте/ч	9.600	10.900	13.600	17.100	18.100	
			ккал/ч		-	3.440	4.300	4.560	
Теплопроизводитель	Мин.		кВт	1	,3	1,4	1	,7	
ность			Бте/ч	4.4	100	4.800	5.8	800	
			ккал/ч		-	1.200	1.4	60	
	Ном.		кВт	2,5 (3)	2,8 (3)	4,00(3)	5,40(3)	5,8 (3)	
			Бте/ч	8.500 (3)	9.600 (3)	13.600 (3)	18.400 (3)	19.800 (3)	
			ккал/ч		-	3.440 (3)	4.640 (3)	4.990(3)	
	Макс.		кВт	4,3	4,7	5,2	6,0	6,5	
			Бте/ч	14.700	16.000	17.700	20.500	22.200	
			ккал/ч		-	4.470	5.160	5.590	
Сезонная эффективность	Охлаждение	Класс эне ргоэ ффектив	ности	A+		A	A++		
(согласно ЕN14825)		Pdesign	кВт	2,00	2,50	3,50	4,20	5,00	
(SEER	INDI	5,71	6,37	6,97		60	
		Годовое	кВтч	123	137	176	223	265	
		потребление энергии	KD19	125	137	170	223	203	
	Отопление (умеренный	Класс эне ргоэ ффектив	RHOCTU		A++		A+		
	климат)	Pdesign	кВт	2,30	2,50	3,60	4.00	4,60	
	'	SCOP	INDI	4,75	4,63	4,71	4,09	4,10	
		Годовое потребление	кВтч	678	756	1.071	1.371	1.571	
Harring advaluation	LED	энергии		4.05	4.20	4 47	2.50	2.55	
Номин.эфф-сть (охл.при 35°/27°	EER			4,65	4,39	4,17	3,56	3,55	
ном.нагрузке,	СОР		Lo	4,55	4,52	4,76	4,12	4,00	
отопление при 7°/	Годовое потреблени		кВтч	215	285	420	590	705	
20° ном.нагрузке)	Класс энерг∞ффективно сти	Охлаждение Отопление				A A			
Подсоединение труб	Жидкость	НД	ММ	 		6,35			
подсоединение груо	Газ	НД	MM	 	a	,5		12,7	
	Drain	OD	MM	 	<u> </u>	18,0		12,1	
	Heat insulation		INIM		Trufor	оводы для жидкост	IN N LSSS		
Current	Номинальный	Охлаждение	A	2,4 (4) / 2,3 (5) /	3,2 (4) / 3,1 (5) /	4,3 (4) / 4,1 (5) /	6,0 (4) / 5,7 (5) /	6,6 (4) / 6,3 (5)	
Guilait	рабочий ток - 50 Гц			2,2 (6)	3,0 (6)	3,9 (6)	5,5 (6)	6,0 (6)	
		Нагрев	A	2,8 (4) /2,7 (5) / 2,6 (6)	3,3 (4) / 3,2 (5) / 3,1 (6)	4,3 (4) / 4,1 (5) / 3,9 (6)	6,6 (4) / 6,3 (5) / 6,0 (6)	6,8 (4) / 6,5 (5) / 6,2 (6)	

Примечания

⁽¹⁾ EER/COP согласно Eurovent 2012

⁽²⁾ Охлаждение: темп. в помещении: 27°CDB, 19,0°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 5 м

⁽³⁾ Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 5 м

^{(4) 220} B

^{(5) 230} B

^{(6) 240}B

2-2 Номинальн		пьность и						
потребляемая м	•			FVXS25F/RXS25K	FVXS35F/RXS35K	FVXS50F/RXS50K		
Холодопроизводите	Мин.		кВт	1,3	1			
1ьность	Бте/ч			4.400		4.800		
			ккал <i>l</i> ч	1.120	1.2			
	Ном.		кВт	2,5 (2)	3,5 (2)	5,0 (2)		
			Бте/ч	8.500 (2)	11.900 (2)	17.100 (2)		
			ккал <i>l</i> ч	2.150 (2)	3.010 (2)	4.300 (2)		
	Макс.		кВт	3,0	3,8	5,6		
			Бте/ч	10.200	13.000	19.100		
			ккал <i>l</i> ч	2.580	3.270	4.820		
	Мин.		кВт	1,3	1	,4		
ОСТЬ			Бте/ч	4.400	4.8	300		
			ккал/ч	1.120	1.2	200		
	Ном.		кВт	3,4 (3)	4,5 (3)	5,8 (3)		
			Бте/ч	11.600 (3)	15.400 (3)	19.800 (3)		
			ккал <i>l</i> ч	2.920 (3)	3.870 (3)	4.990 (3)		
	Макс.		кВт	4,5	5,0	8,1		
			Бте/ч	15.400	17.100	27.600		
			ккал <i>l</i> ч	3.870	4.300	6.970		
Сезонная эффективность	Охлаждение	Класс энергоэффектив	вности	Ē	3	A		
согласно EN14825)		Pdesign	кВт	2,50	3,50	5,00		
		SEER	•	4,71	4,93	5,53		
		Годовое потребление энергии	кВтч	186	248	317		
	Отопление (умеренный	Класс энергоэффектив	вности	A+	,	A		
	климат)	Pdesign	кВт	2,60	2,90	4,80		
		SCOP		4,38	3,83	3,62		
		Годовое потребление энергии	кВтч	830	1.060	1.853		
Юмин.эфф-сть	EER			4,39	3,43	3,23		
эхл.при 35°/27°	COP			4,30	3,69	3,63		
юм.нагрузке,	Годовое потреблени	ие энергии	кВтч	285	510	775		
топление при 7°/	Класс	Охлаждение			A			
20° ном.нагрузке)	энергоэффективно сти				Α			
lодсоединение труб	Жидкость	НД	мм		6,35			
	Газ	НД	мм	9,	5	12,7		
	Drain	OD	мм		20,0			
	Heat insulation			Т	рубопроводы для жидкости и газ	a		
Current	Номинальный	Охлаждение	Α	3,5 (4) / 3,3 (5) / 3,2 (6)	4,9 (4) /4,7 (5) / 4,5 (6)	7,2(4) / 6,8(5) / 6,6(6)		
	рабочий ток - 50 Гц	Нагрев	Α	4,5 (4) / 4,3 (5) / 4,1 (6)	5,9 (4) / 5,6 (5) / 5,4 (6)	7,3(4)/7,0(5)/6,7(6)		

Примечания

- (1) EER/COP согласно Eurovent 2012
- (2) Охлаждение: темп. в помещении: 27°CDB, 19,0°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 5м; перепад у ровня: 0 м
- (3) Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 5м; перепад уровня: 0 м
- (4) 220 B
- (5) 230 B
- (6) 240B

2

Технические характеристики

2-3 Номинальна потребляемая м		пвпостви		FLXS25B/RXS25K	FLXS35B/RXS35K	FLXS50B/RXS50K	
Холодопроизводите	Мин.		кВт	1,	.2	0,9	
ьность			Бте/ч	4.1	100	3.070	
			ккал/ч	1.0)30	770	
	Ном.		кВт	2,5 (2)	3,5 (2)	4,9 (2)	
			Бте/ч	8.500 (2)	11.900 (2)	16.730 (2)	
	ккал/ч			2.150 (2)	3.010 (2)	4.210 (2)	
	Макс.		кВт	3,0	3,8	5,3	
			Бте/ч	10.200	13.000	18.090	
			ккал/ч	2.580	3.270	4.560	
Теплопроизводитель	Мин.		кВт	1,2	1,4	0,9	
ОСТЬ			Бте/ч	4.1	100	3.070	
			ккал/ч	1.0)30	770	
	Ном.		кВт	3,4(3)	4,0 (3)	6,1(3)	
			Бте/ч	11.600 (3)	13.600 (3)	20.830 (3)	
			ккал/ч	2.920 (3)	3.440 (3)	5.250 (3)	
	Макс.		кВт	4,5	5,0	7,5	
			Бте/ч	15.400	17.100	25.610	
			ккал/ч	3.870	4.300	6.450	
Сезонная эффективность	Охлаждение Класс энергоэффективности		вности	C	Ċ B		
согласно EN14825)		Pdesign	кВт	2,50	3,50	4,90	
		SEER	1	4,46	4,49	5,09	
		Годовое потребление энергии	кВтч	196	273	337	
	Отопление (умеренный	Класс энергоэффектив	вности		Α		
	климат)	Pdesign	кВт	2,80	2,90	4,50	
		SCOP		3,63	3,42	3,68	
		Годовое потребление энергии	кВтч	1.080	1.186	1.708	
Іомин.эфф-сть	EER	•	'	3,85	3,10	2,85	
эхл.при 35°/27°	COP			3,47	3,25	3,35	
ом.нагрузке,	Годовое потреблени	ие энергии	кВтч	325	565	860	
топление при 7°/	Класс	Охлаждение			A		
0° ном.нагрузке)	энергоэффективно сти	Отопление			Α		
Іодсоединение труб	Жидкость	НД	мм		6,35		
	Газ	НД	ММ	9,	5	12,7	
	Drain	OD	мм		18,0		
	Heat insulation		•	Tı	ру бопроводы для жидкости и газ	a	
Current	Номинальный	Охлаждение	Α	3,7 (4) / 3,6 (5) / 3,4 (6)	5,3 (4) / 5,1 (5) / 4,9 (6)	8,0 (4) /7,6 (5) / 7,3 (6)	
	рабочий ток - 50 Гц	Нагрев	Α	4,7 (4) / 4,5 (5) / 4,3 (6)	5,8 (4) / 5,5 (5) / 5,3 (6)	8,4 (4) / 8,0 (5) / 7,7 (6)	

Примечания

⁽¹⁾ EER/COP согласно Eurovent 2012

⁽²⁾ Охлаждение: темп. в помещении: 27°CDB, 19,0°CWB; темп. наружного воздуха 35°CDB; эквивалентная длина трубопроводов: 5м; перепад уровня: 0 м

⁽³⁾ Нагрев: темп. в помещении: 20°CDB; темп. наружного воздуха 7°CDB, 6°CWB; эквивалентная длина труб с хладагентом: 5м; перепад уровня: 0 м

^{(4) 220} B

^{(5) 230} B

^{(6) 240}B

2-4 Номинальн	ая производите	пьность и						
потребляемая м	бляемая мощность			FDXS25F/RXS25K	F DXS35F/RXS35K	FDXS50F/RXS50K		
Холодопроизводите	Мин.		кВт	1,3	1,4	1,7		
ПЬНОСТЬ			Бте/ч	4.400	4.800	5.800		
	кка.			1.110	1.200	1.460		
	Ном.		кВт	2,4 (2)	3,4 (2)	5,0 (2)		
			Бте/ч	8.150 (2)	11.600 (2)	17.100 (2)		
			ккал/ч	2.060 (2)	2.920 (2)	4.300 (2)		
	Макс.		кВт	3,0	3,8	5,3		
			Бте/ч	10.200	13.000	18.100		
			ккал/ч	2.580	3.260	4.560		
еплопроизводитель	Мин.		кВт	1,3	1,4	1,7		
ОСТЬ			Бте/ч	4.400	4.800	5.800		
			ккал/ч	1.110	1.200	1.460		
	Ном.		кВт	3,2(3)	4,0 (3)	5,8 (3)		
			Бте/ч	10.900 (3)	13.600 (3)	19.800 (3)		
			ккал/ч	2.750 (3)	3.440 (3)	4 990 (3)		
	Макс.		кВт	4,5	5,0	6,0		
			Бте/ч	15.350	17.100	20.500		
			ккал/ч	3.870	4.300	5.160		
Сезонная	Охлаждение Класс				В	A		
ффективность		э не рго эффектив	ности					
согласно EN14825)		Pdesign	кВт	2,40	3,40	5,00		
		SEER		5,08	4,82	5,12		
		Годовое потребление энергии	кВтч	165	247	342		
	Отопление (умеренный	Класс энергоэффектив	ности	A+	,	A		
	климат)	Pdesign	кВт	2,60	2,90	3,50		
		SCOP		4,19	3,81	3,41		
		Годовое потребление энергии	кВтч	869	1.066	1.438		
Іомин.эфф-сть	EER		' 	3,72(1)	3,21 (1)	3,03 (1)		
эхл.при 35°/27°	COP		<u> </u>	3,90 (1)	3,39 (1)	3,10 (1)		
ом.нагрузке,	Годовое потреблени	ие энергии	кВтч	323	530	825		
топление при 7°/	Класс	Охлаждение	+ +		A	l		
20° ном.нагрузке)	энергоэ ффективно сти				A			
одсоединение труб	Жидкость	нд	ММ		6,35			
	Газ	НД	ММ	9),5	12,7		
	Drain	OD	ММ	VP2	20 (внешний диам. 26 / внутр диам	1. 20)		
	Heat insulation		•		Грубопроводы для жидкости и газ	•		
Current	Номинальный	Охлаждение	TA	3,9	4,9	7,1		
		Нагрев	Α	4,2	5,4	8,3		

Примечания

- (1) EER/COP согласно Eurovent 2012
- (2) Охлаждение: темп. в помещении: 27°CDB, 19,0°CWB; темп. наружного воздуха 35°CDB, 24°CWB; эквивалентная длина трубопроводов: 5 м
- (3) Нагрев: темп. в помещении: 20° CDB; темп. наружного воздуха 7° CDB, 6° CWB; эквивалентная длина труб с хладагентом: 5 м

	ая производительность и			
потребляемая м	ощность		FHQ35C/RXS35K	FHQ50C/RXS50K
Холодопроизводите	Ном.	кВт	3,4	5,0
льность				
Теплопроизводитель	Ном.	кВт	4,0	6,0
ность				

2-5 Номинальн потребляемая м		пьность и		FHQ3 5C/RXS35 K	FHQ50C/RXS50K		
Сезонная эффективность	Охлаждение	Класс энергоэффекти	вности	В	А		
(согласно EN14825)		Pdesign	кВт	3,40	5,00		
		SEER	-	4,89	5,48		
		Годовое потребление энергии	кВтч	243	320		
	Отопление (умеренный	Класс энергоэффективности		À	Ä		
	климат)	Pdesign кВт		3,10	4,35		
		SCOP		3,98	3,74		
		Годовое потребление энергии	кВтч	1.090	1.627		
Номин.эфф-сть	EER			3,58	3,18		
(охл.при 35°/27°	COP			3,96	3,35		
ном.нагрузке,	Годовое потреблени	ие энергии	кВтч	475	785		
отопление при 7°/ 20° но м.нагрузке)	Класс	Охлаждение	•	A	В		
20 Howard pyono)	энергоэффективно сти	Отопление		A	С		

Примечания

(1) EER/COP согласно Eurovent 2012

2-6 Номинальн потребляемая м		пьность и		FFQ25B9V/RXS25K	FFQ35B9V/RXS35K	FFQ50B9 V/RXS50K		
•	•		In_					
Холодопроизводите пьность	Ном. кВт		KBT	2,50 (3)	3,4 (3)	4,7 (3)		
Теплопроизводитель ность	Ном.		кВт	3,20 (4)	4,5 (4)	5,5 (4)		
Сезонная эффективность	Охлаждение	Класс энергоэффекти	вности	C		A		
(согласно ЕN 14825)		Pdesign	кВт	2,50	3,50	4,90		
		SEER		4,36	4,53	5,14		
		Годовое потребление энергии	кВтч	201	270	334		
	Отопление (умеренный	Класс энергоэффекти	вности		А			
	климат)	Pdesign	кВт	2,80	2,90	4,50		
		SCOP		3,75	3,49	3,41		
		Годовое потребление энергии	кВтч	1.046	1.162	1.847		
Номин.эфф-сть	EER			3,43	2,62	2,61		
охл.при 35°/27°	COP			3,48	2,	2,81		
ном.нагрузке, этопление при 7°/	Годовое потреблени	ие энергии	кВтч	365	650	900		
этопление при <i>т. т</i> 20° ном.нагрузке)	Класс	Охлаждение		A	1	D		
- · · · · · · · · · · · · · · · · · · ·	энергоэффективно сти	Отопление		В	1	D		
Подсоединение труб	Жидкость	нд	мм	-	6,	35		
	Газ	нд	мм	-	9,5	12,7		
	Drain	OD	мм	-	VP20 (внешний диал	и.26 / внутр диам. 20)		
	Heat insulation			-	Трубопроводы дл	Трубопроводы для жидкости и газа		
Current	Номинальный	Охлаждение	А	-	6,0	8,1		
	рабочий ток - 50 Гц	Нагрев	Α	-	7,3	8,8		

Примечания

(1) EER/COP согласно Eurovent 2012

2-7 Номинальн	ая производите	пьность и				
потребляемая м	ощность			FCQG35 F/RXS3 5K	FCQG50F/RXS50K	
Холодопроизводите льность	Ном.		кВт	3,40	5,00	
Теплопроизводитель ность	Ном.		кВт	4,20	6,00	
Сезонная эффективность	Охлаждение	Класс энергоэффектив	ности	A	A+	
(согласно EN14825)		Pdesign	кВт	3,50	5,00	
		SEER		5,34	5,89	
		Годовое потребление энергии	кВтч	230	297	
	Отопление (умеренный климат)	Класс энергоэффектив	ности	A++	A+	
		Pdesign	кВт	3,32	4,36	
		SCOP		4,74	4,24	
		Годовое потребление энергии	кВтч	981	1.442	
Номин.эфф-сть	EER			3,58	3,55	
(охл.при 35°/27°	COP			3,41	3,70	
ном.нагрузке, отопление при 7°/	Годовое потреблен	ие энергии	кВтч	475	705	
20° ном.нагрузке)	Класс	Охлаждение		1	A	
25 Notificial py onco)	эне ргоэ ффективно сти	Отопление		В	А	
Подсоединение труб	Жидкость	НД	мм	6,	35	
	Газ	НД	мм	9,5	12,7	

Примечания

(1) EER/COP согласно Eurovent 2012

2-8 Номинальна потребляемая м		пьность и		FB Q35C 8/RXS35K	FBQ50 C8/RXS50 K
Холодопроизводите льность	Ном.		кВт	3,40	5,00
Теплопроизводитель ность	Ном.		кВт	4,00	5,50
Сезонная эффективность	Охлаждение	Класс энергоэффектив	вности	С	В
(согласно EN14825)		Pdesign	кВт	3,50	4,90
		SEER		4,33	4,96
		Годовое потребление энергии	кВтч	283	346
	Отопление (умеренный	Класс энергоэффектив	вности	À	
	климат)	Pdesign	кВт	2,90	4,50
		SCOP		3,56	3,53
		Годовое потребление энергии	кВтч	1.141	1.782
Номин.эфф-сть	EER			3,21	3,03
(охл.при 35°/27° ном.нагрузке,	COP			3,51	3,42
	Годовое потреблен	ие энергии	кВтч	530	825
отопление при 7°/ 20° ном.нагрузке)	Класс	Охлаждение	•	A	В
20 Hollistical pytolog	эне ргоэ ффективно сти	Отопление		В	

Примечания

(1) EER/COP согласно Eurovent 2012

2-9 Техническ	ие параметры				RXS20K	RXS25K	RXS35K	RXS42K	RXS50K	
Регулирование	Способ				С инверторным у правлением					
мощности	To the second se				Continue to the					
Корпус	Colour	I s			Слоновая кость_ 550				T 705	
Размеры	Блок	Высота		ММ					735	
		Ширина		ММ			765		825	
	, , ,	Глубина	l	ММ	285			300		
	Упакованный блок	Высота		ММ			612		797	
		Ширина		ММ			906		992	
	-	Глубина	1	ММ			364		390	
Bec	Блок			КГ		34		39	47	
T	Упакованный блок			КГ		38		45	52	
L	Длина	11/		ММ		805	2	810	845	
	Ряды	Количес	тво	I		4.4	Z	4.5	1.0	
	Шаг ребер	1/		ММ		1,4	24	1,5	1,8 32	
	Ступени	Количес	тво				24	11:		
Pourungton	Tube type	Т			Ono 50 01-1-2 - 1-1-1	Hi-XA (7)	Ппоотиль МЛГ		XA (8)	
	Ребро Тип	Тип			Оребрение ваф	еленого типа	Пластина WF		покрытием	
Вентилятор	Расход воздуха	Охлаж	Выс.	м ³ /мин	33,5	<u> </u>	Осевой вентилятор 36,0	37,3	50,9	
	гаслод воздуха	дение	DBC.	м - / мин фт3/	1.18		1.271	1.317	1.797	
				мин Мин	1.10	J	1.2/1	1.31/	1.737	
			Ном.	м ³ /мин	33,5	5	36,0	37,3	50,9	
				фт3/	1.18		1.271	1.317	1.797	
				мин		-				
			Низк	м ³ /мин	30,1			-		
				фт3/	1.06	3		-		
				МИН						
			Сверхн	м ³ /мин	-		30,1	30,6	48,9	
			изкий	фт3/	-		1.063	1.080	1.727	
				МИН						
			Нагрев Вы	Выс.	м ³ /мин	28,3			31,3	45,0
				фт3/		999		1.105	1.589	
			ļ	MNH	0.5.0					
			Низк	M3/MNH	25,6			-		
				фт3/ мин	904			-		
			CBANYU	M ³ /MИH	-		25,6	27,2	43,1	
			изкий	фт3/			904	960	1.522	
				мин			304	300	1.522	
Двигатель	Model			'		D23H-28	1	D50R-28	KFD-380-50-8D	
вентилятора	Output			W		23		50	53	
	Скорость	Охлаж	Выс.	об <i>І</i> мин	860		920	890	780	
		дение	Самый	об/мин		780	•	790	670	
			низкий						<u> </u>	
		Нагрев	Выс.	об/мин		860		890	720	
		ание	Самый	об <i>І</i> мин		740		780	670	
			низкий				_			
Уровень звуковой	Охлаждение	Ном.		дБ(А)	61	62		-		
мощности		Выс.		дБ(А)	-			63		
Уровень звукового	Охлаждение	Выс.		дБ(А)	46			48		
давления		Тихая ра	абота	дБ(А)	43			44		
	Нагрев	Выс.		дБ(А)	47			48		
		Тихая р	абота	дБ(А)	44			45		
Компрессор	Модель				1Y C23A		1YC23AEXDC		6BXD#C	
	Туре						ый юмпрессорротаці			
	Выход			W		600			.100	

2-9 Технически	е параметры				RXS20 K	RXS25K	RXS3 5K	RXS42K	RXS50K
Рабочий диапа зон	Охлаждение	Темп.	Мин.	°CDB			-10		
		нар.	Макс.	°CDB			46		
		возд.							
	Нагрев	Темп.	Мин.	°CWB			-15		
		нар. возд.	Макс.	°CWB			18		
Хладагент	Тип						R-410A		
	Заправка			кг	1	,0	1,2	1,3	1,7
	GWP			•			1.975		•
Масло хладагента	Тип						FVC50K		
	Объем заправки			Л		0,375		0,6	350
Подсоединение труб	Жидкость	НД		мм			6,35		
	Газ	НД		мм		9	,5		12,7
	Drain	Ид-р		мм			-		•
		OD		мм			18,0		
	Длина трубы	Макс.	НБ - ВБ	М		2	0		30
		Систем	Без	М			10		•
		а	заправ						
			ки						
	Дополнительная за	аправка хла	адагента	кг/м		0.02 (дл	тя длины трубсвы <u>ц</u>	ie 10 м)	
	перепадуровня	IU - OU	Макс.	М		1	5		20
	Heat insulation	•				Трубопр	оводы для жидкост	иигаза	•

2-10 Электриче	еские параметры			RXS20 K	RXS25K	RXS3 5K	RXS42K	RXS50K			
Электропитание	Наименование				-		V1	•			
	Фаза					1~					
	Частота		Гц			50					
	Voltage		V			220-240					
Current	Номинальный рабочий ток (RLA)	Охлаждение	A	2,21 (1)/ 2,12 (2)/ 2,03 (3)	3,01 (1)/ 2,92 (2) / 2,83 (3)	4,18 (1) /3,98 (2) / 3,79 (3)	5,89 (1) / 5,59 (2) / 5,39 (3)	6,48 (1) / 6,18 (2) / 5,89 (3)			
		Нагрев	А	2,61 (1)/ 2,52 (2)/ 2,43 (3)	3,11(1)/3,02(2)/ 2,93(3)	4,17 (1) /3,97 (2) / 3,78 (3)	6,46 (1) / 6,16 (2) / 5,87 (3)	6,65 (1) / 6,36 (2) / 6,06 (3)			
	Пусковой ток	Охлаждение	Α	2,8	3,3	4,3	6,6	6,8			
		Нагрев	Α	2,8	3,3	4,3	6,6	6,8			
Ток - 50 Гц	Макс. ток предохран	нителя (МFA)	Α		-	10	2	20			
Ток - 60 Гц	Макс. ток предохран	нителя (МFA)	Α	-							
Wiring connections	Для электропитания	Примечание	•	3 для питания. 4 для междублочной проводии (включая заземляющий провод)							

Примечания

(1) 220 B

(2) 230 B

(3) 240B

(4) SL: Тих ий уровень работы вентилятора в установке расхода воздуха

3

3 Электрические параметры

3 - 1 Электрические данные

RXS20-25K

Комбинац	ия блоков		Электропитание			Компр.	OF	M	IF	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	W	FLA	W	FLA
		50 - 220	M 505 2604			2.4		0.24		0.19
FTXS20K	RXS20K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	8.0	10	2.2	23	0.23	16	0.18
		50 - 240	МИН. 301 Ц 1301			2.1		0.22		0.17
		50 - 220	Mana 505 260V			2.8		0.24		0.19
FTXS25K	RXS25K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	8.0	10	2.7	23	0.23	16	0.18
		50 - 240	141411. 501 LJ 150V			2.6		0.22		0.17

3D074810A

ОБОЗНАЧЕНИЯ

MCA Мин. ток цепи (А)

MFA Макс. ток предохранителя (А) RLA Ток номинальной нагрузки (А) **OFM**

Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока IFM

FLA Ток полной нагрузки (А)

W Номинальная мощность двигателя вентилятора (Вт)

ПРИМЕЧАНИЯ

- Максимально допустимое изменение напряжения между фазами составляет 2%.
- Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

RXS25K

Комбинац	ия блоков		Электропитание			COI	MP	OF	M	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
		50 - 220					3.0				
FVXS25F	RXS25K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	46	2.8	23	0.23	48	0.05
		50 - 240	- Willia 301 H 130V				2.7				
		50 - 220					2.4				
FFQ25B9V	RXS25K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	46	2.3	23	0.23	55	0.60
		50 - 240	- Willia 301 H 130V				2.1				
		50 - 220					2.7				
FLXS25B	RXS25K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	46	2.5	23	0.23	34	0.34
		50 - 240	- Willia 301 E 130V				2.4				

3D070944B

ОБОЗНАЧЕНИЯ

MCA : Мин. ток цепи. (А)

W

MFA : Макс. ток предохранителя (А) RI A

: Ток номинальной нагрузки. (А)

OFM : Двигатель вентилятора наружного блока. : Двигатель вентилятора внутреннего блока.

IFM

FLA : Ток полной нагрузки. (А)

: Номинальная мощность двигателя

вентилятора (W)

RHz : Номинальная рабочая частота(Гц)

ПРИМЕЧАНИЯ

RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19.0°CWB

Температура наружного воздуха: 35°CDB

- Максимально допустимое изменение напряжения между фазами составляет 2%
- Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

3 - 1 Электрические данные

RXS25-35K

Комбинац	ия блоков		Электропитание			CO	MP	OF	М	IF	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
FDXS25F	RXS25K	50 - 230	Макс. 50Гц 253V Мин. 50Гц 207V	12	16	54	4.1	31	0.20	34	0.3
FDXS35F	RXS35K	50 - 230	Макс. 50Гц 253V Мин. 50Гц 207V	12	16	90	5.5	35	0.22	34	0.3

3D081369

ОБОЗНАЧЕНИЯ

MCA : Мин. ток цепи. (А)

MFA : Макс. ток предохранителя (А) RHz : Номинальная рабочая частота(Гц) RLA : Ток номинальной нагрузки. (А)

OFM : Двигатель вентилятора наружного блока. IFM : Двигатель вентилятора внутреннего блока.

FLA : Ток полной нагрузки. (А)

W : Номинальная мощность двигателя вентилятора (W)

ПРИМЕЧАНИЯ

RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19°CWB

Температура наружного воздуха: 35°CDB

- Максимально допустимое изменение напряжения между фазами составляет 2%
- Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

RXS35K

Комбинац	ия блоков		Электропитание			Ког	ипр.	OF	M	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
FVXS35F	RXS35K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	66	4.8 4.6 4.4	23	0.23	48	0.05
FLXS35B	RXS35K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	66	4.5 4.3 4.1	23	0.23	34	0.38
FTXS35K	RXS35K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	8.8	10	68	3.8 3.6 3.4	23	0.23	23	0.15
FFQ35B9V	RXS35K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	66	4.3 4.1 3.9	23	0.23	55	0.60

3D070943E

ОБОЗНАЧЕНИЯ

MCA Мин. ток цепи (А)

MFA Макс. ток предохранителя (А) RLA OFM

Ток номинальной нагрузки (A) Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока

FLA Ток полной нагрузки (А)

Номин. вых. мощность двигателя вентилятора (Вт) Номинальная рабочая частота (Гц)

RHz

ПРИМЕЧАНИЯ

RLA основан на следующих условиях:

Темп. в пом.: 27°CDB/19°CWB

Температура наружного воздуха: 35°CDB

- Максимально допустимое изменение напряжения между фазами
- Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

3 - 1 Электрические данные

RXS35K

Комбинац	ия блоков		Электропитание			Компр.	OF	M	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	W	FLA	W	FLA
		50 - 220				4.1				
FBQ35C8	RXS35K	50 - 230	макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	3.9	23	0.23	56	0.30
		50 - 240	1414111. 301 Eq. 1304			3.7				

3D072981

ОБОЗНАЧЕНИЯ

MCA : Мин. ток цепи (А)

MFA : Макс. ток предохранителя (А) RLA : Ток номинальной нагрузки (А)

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки (А)

W : Номин. вых. мощность двигателя вентилятора (Вт)

ПРИМЕЧАНИЯ

- RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19.0°CWB Температура наружного воздуха: 35°CDB
- 2 Максимально допустимое изменение напряжения между фазами составляет 2%.
- 3 Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

RXS35,50K

Комбинац	ия блоков		Электропитание			Компр.	OF	M	IF.	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	kW	FLA	kW	FLA
FCQG35F	RXS35K	50 - 220 50 - 230 50 - 240	Макс. 50Гц 253V Мин. 50Гц 207V	9.75	10	7.1 3.9 3.7	0.023	0.23	0.048	0.30
FCQG50F	RXS50K	50 - 220 50 - 230 50 - 240	Макс. 50Гц 253V Мин. 50Гц 207V	19.75	20	6.0 5.7 3.4	0.053	0.27	0.048	0.30

3D077408B

MCA ОБОЗНАЧЕНИЯ

Мин. ток цепи

OFM

IFM

MFA Макс. ток предохранителя (См. Прим. 6) RLA

Ток номинальной нагрузки

Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока

... Ток полной нагрузки

kW Номинальная мощность двигателя вентилятора

ПРИМЕЧАНИЯ

RLA основан на следующих условиях:

Темп. в пом.: 27°CDB/19.0°CWB

Температура наружного воздуха: 35°CDB

2. Диапазон напряжений

Блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клеммы блока, находится в пределах указанного диапазона.

- 3. Максимально допустимое изменение напряжения между фазами составляет 2%.
- 4. MCA/MFA
 - $MCA = 1.25 \times RLA + BCE FLA$, $MFA = < 2.25 \times RLA + BCE FLA$ (следующий более низкий стандартный номинальный ток предохранителя мин. 16 А)
- 5. Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем

3 - 1 Электрические данные

RXS35,50K

Комбинац	ция блоков		Электропитание			Компр.	OF	M	IF	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	W	FLA	W	FLA
FHQ35C	RXS35K	50 - 220 50 - 230 50 - 240	Макс. 50Гц 264V Мин. 50Гц 198V	9.75	10	4.3 4.1 3.9	23	0.23	60	0.60
FHQ50C	RXS50K	50 - 220 50 - 230 50 - 240	Макс. 50Гц 264V Мин. 50Гц 198V	19.75	20	7.5	53	0.27	60	0.60

3D080360

ОБОЗНАЧЕНИЯ

MCA Мин. ток цепи (А)

MFA Макс. ток предохранителя (А) RLA OFM Ток номинальной нагрузки (А)

Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока Ток полной нагрузки (A) IFM

Номинальная мощность двигателя вентилятора (Вт)

ПРИМЕЧАНИЯ

RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19.0°CWB Температура наружного воздуха: 35°CDB

- 2. Максимально допустимое изменение напряжения между фазами составляет 2%.
- Диаметр проводов выбирается по большему значению МСА.
- 4. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

RXS42K

Комбинац	ия блоков		Электропитание			Ком	ипр.	OF	M	IFI	М
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
FTXS42K	RXS42K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	11.0	20	62	6.0 5.7 5.4	50	0.23	23	0.15

3D059709D

ОБОЗНАЧЕНИЯ

MCA Мин. ток цепи (А)

MFA Макс. ток предохранителя (А) RLA OFM

Ток номинальной нагрузки (A) Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока IFM

FLA Ток полной нагрузки (А)

Номин. вых. мощность двигателя вентилятора (Вт) Номинальная рабочая частота (Гц)

RHz

ПРИМЕЧАНИЯ

RLA основан на следующих условиях:

Темп. в пом.: 27°CDB/19°CWB

Температура наружного воздуха: 35°CDB

- Максимально допустимое изменение напряжения между фазами
- Диаметр проводов выбирается по большему значению МСА.
- 4. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

3 - 1 Электрические данные

RXS50K

Комбинац	ия блоков		Электропитание			CO	MP	OF	M	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
		50 - 220					6.7				
FVXS50F	RXS50K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V		20	69	6.3	53	0.27	48	0.10
		50 - 240	1 WWW. 301 Et 1300				6.1				
		50 - 220					6.3				
FTXS50K	RXS50K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	15.5	20	65	6.0	53	0.27	23	0.15
		50 - 240	1 1000 H 1500				5.7				

3D070939B

ОБОЗНАЧЕНИЯ

MCA : Мин. ток цепи. (А)

MFA : Макс. ток предохранителя (А) RI A : Ток номинальной нагрузки. (А)

OFM : Двигатель вентилятора наружного блока.

: Двигатель вентилятора внутреннего блока. IFM FLA : Ток полной нагрузки. (А)

: Номинальная мощность двигателя

вентилятора (W)

RHz : Номинальная рабочая частота(Гц)

ПРИМЕЧАНИЯ

- RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19°CWB Температура наружного воздуха: 35°CDB
- Максимально допустимое изменение напряжения между фазами составляет 2%
- 3 Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем

RXS50K

W

Комбинац	ия блоков		Электропитание			Кол	ипр.	OF	М	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
FLXS50B	RXS50K	50 - 220 50 - 230 50 - 240	макс. 50Гц 264V Мин. 50Гц 198V	19.75	20	73	7.1	53	0.27	34	0.54

3D070940B

ОБОЗНАЧЕНИЯ Мин. ток цепи (А)

MCA MFA Макс. ток предохранителя (А) RLA OFM Ток номинальной нагрузки (А)

Двигатель вентилятора наружного блока Двигатель вентилятора внутреннего блока IFM

FLA Ток полной нагрузки (А)

Номин. вых. мощность двигателя вентилятора (Вт) Номинальная рабочая частота (Гц) RHz

- RLA основан на следующих условиях:
 - Темп. в пом.: 27°CDB/19°CWB
 - Температура наружного воздуха: 35°CDB
- 2. Максимально допустимое изменение напряжения между фазами составляет 2%
- Диаметр проводов выбирается по большему значению МСА.
- Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

3 - 1 Электрические данные

RXS50K

Комбинац	ия блоков		Электропитание			Компр.	OF	M	IF	М
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	W	FLA	W	FLA
		50 - 220								
FFQ50B9V	RXS50K	50 - 230	Макс. 50Гц 264V Мин. 50Гц 198V	19.75	20	7.43	53	0.27	55	0.70
		50 - 240	1414111. 301 14 1304							

3D070949A

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи (А)

MFA : Макс. ток предохранителя (A) RLA : Ток номинальной нагрузки (A)

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки (A)

W : Номин. вых. мощность двигателя вентилятора (Вт)

ПРИМЕЧАНИЯ

- 1 RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19.0°CWB Температура наружного воздуха: 35°CDB
- 2 Максимально допустимое изменение напряжения между фазами составляет 2%.
- 3 Диаметр проводов выбирается по большему значению МСА.
- 4 Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

RXS50K

Комбинац	ия блоков		Электропитание			Компр.	0F	М	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RLA	W	FLA	W	FLA
FBQ50C8	RXS50K	50 - 230	Макс. 50Гц 253V Мин. 50Гц 207V	19.75	20	7	53	0.27	140	1.2

3D070950A

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи (А)

MFA : Макс. ток предохранителя (A) RLA : Ток номинальной нагрузки (A)

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки (A)

W : Номин. вых. мощность двигателя вентилятора (Вт)

- 1 RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19.0°CWB
 - Температура наружного воздуха: 35°CDB
- 2 Максимально допустимое изменение напряжения между фазами составляет 2%.
- 3 Диаметр проводов выбирается по большему значению МСА.
- 4 Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

3 - 1 Электрические данные

RXS50K

Комбинац	ия блоков		Электропитание			COI	MP	OF	M	IFI	M
Внутренний блок	Наружный блок	Гц-вольт	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
FDXS50F	RXS50K	50 - 220 50 - 230 50 - 240	Макс. 50Гц 264V Мин. 50Гц 198V	19.75	20	74	6.8	53	0.27	36	0.4

3D081370

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи. (А)

MFA : Макс. ток предохранителя (A)
RHz : Номинальная рабочая частота(Гц)
RLA : Ток номинальной нагрузки. (A)

OFM : Двигатель вентилятора наружного блока. IFM : Двигатель вентилятора внутреннего блока.

FLA : Ток полной нагрузки. (A)

W : Номинальная мощность двигателя вентилятора (W)

- 1 RLA основан на следующих условиях: Темп. в пом.: 27°CDB/19°CWB Температура наружного воздуха: 35°CDB
- 2 Максимально допустимое изменение напряжения между фазами составляет 2%.
- 3 Диаметр проводов выбирается по большему значению МСА.
- 4 Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.
- 5 Не забудьте установить определитель утечек на землю. (В данном блоке используется инвертор, поэтому во избежание неправильного функционирования необходимо установить датчик утечки на землю, способный работать с высшими гармониками).

4 - 1 Таблицы холодо-/теплопроизводительности

FTXS20K + RXS20K

Охлаждение 50Гц 220-240V

AFR 8.8
BF 0.16

Темп.: Цельсия / TC, SHC, PI: kW

Вну	тр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20.0	2.05	1.76	0.33	1.96	1.72	0.36	1.86	1.68	0.39	1.83	1.66	0.41	1.77	1.64	0.43	1.68	1.59	0.46
16.0	22.0	2.14	1.73	0.33	2.05	1.69	0.36	1.95	1.65	0.40	1.92	1.64	0.41	1.86	1.62	0.43	1.77	1.58	0.46
18.0	25.0	2.23	1.85	0.33	2.14	1.81	0.37	2.05	1.78	0.40	2.01	1.76	0.41	1.95	1.74	0.43	1.86	1.70	0.46
19.0	27.0	2.28	1.98	0.33	2.19	1.95	0.37	2.09	1.91	0.40	2.06	1.90	0.41	2.00	1.88	0.43	1.91	1.84	0.46
22.0	30.0	2.42	1.92	0.34	2.32	1.89	0.37	2.23	1.86	0.40	2.19	1.85	0.41	2.14	1.83	0.43	2.05	1.80	0.46
24.0	32.0	2.51	1.88	0.34	2.42	1.86	0.37	2.32	1.83	0.40	2.29	1.82	0.42	2.23	1.80	0.43	2.14	1.77	0.47

Обогрев 50Гц 220-240V AFR 9.5

Темп.: **Цельсия** / TC, PI: kW

Внутр.				Тем	ператур	а нарух	кного во	здуха (°CWB)					
EDB		15	-1		-	5	()	(ĵ	1	0		
(°C)	TC	PI	TC	PI	TC	Pl	TC	PI	TC	Pl	TC	PI		
15.0	1.19	0.35	1.43	0.37	1.67	0.39	2.25	0.51	2.59	0.54	2.81	0.56		
20.0	1.12	0.36	1.36	0.38	1.60	0.40	2.16	0.52	2.50	0.55	2.73	0.57		
22.0	1.09	0.37	1.33	0.39	1.57	0.40	2.13	0.53	2.47	0.55	2.69	0.57		
24.0	1.06	0.37	1.30	0.39	1.54	0.41	2.09	0.53	2.43	0.56	2.66	0.58		
25.0	1.04	0.37	1.28	0.39	1.52	0.41	2.07	0.54	2.41	0.56	2.64	0.58		
27.0	1.01	0.38	1.25	0.40	1.49	0.41	2.04	0.54	2.38	0.57	2.61	0.59		

3D074718B

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (ĸĎt) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

 FTXS25K + RXS25K

 Охлаждение
 50Гц 220-240V
 AFR
 9.1

 ВБ
 0.24

Вну	/тр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI
14.0	20.0	2.28	1.82	0.41	2.28	1.82	0.46	2.28	1.82	0.52	2.28	1.82	0.54	2.21	1.79	0.56	2.10	1.73	0.61
16.0	22.0	2.68	1.92	0.44	2.56	1.87	0.48	2.44	1.82	0.52	2.40	1.80	0.54	2.33	1.76	0.57	2.21	1.71	0.61
18.0	25.0	2.79	2.02	0.44	2.68	1.97	0.48	2.56	1.92	0.53	2.51	1.90	0.54	2.44	1.88	0.57	2.33	1.83	0.61
19.0	27.0	2.85	2.14	0.44	2.73	2.09	0.49	2.62	2.05	0.53	2.57	2.03	0.54	2.50	2.00	0.57	2.38	1.95	0.61
22.0	30.0	3.02	2.07	0.45	2.91	2.03	0.49	2.79	1.98	0.53	2.74	1.97	0.55	2.67	1.94	0.57	2.56	1.90	0.62
24.0	32.0	3.14	2.02	0.45	3.02	1.98	0.49	2.90	1.94	0.53	2.86	1.92	0.55	2.79	1.90	0.58	2.67	1.87	0.62

Обогрев 50Гц 220-240V AFR 10.0

Те<mark>мп.: Цельсия</mark> / TC, PI: kW

Внутр.				Тем	ператур	а нарух	кного во	здуха (CWB)			
EDB	-1	15	-1		-	5	()	(5	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	Pl	TC	Pl
15.0	1.33	0.40	1.60	0.42	1.87	0.44	2.52	0.58	2.90	0.61	3.15	0.63
20.0	1.25	0.41	1.52	0.43	1.79	0.45	2.42	0.59	2.80	0.62	3.05	0.64
22.0	1.22	0.41	1.49	0.44	1.76	0.46	2.38	0.59	2.76	0.63	3.01	0.65
24.0	1.19	0.42	1.45	0.44	1.72	0.46	2.34	0.60	2.72	0.63	2.98	0.65
25.0	1.17	0.42	1.44	0.44	1.71	0.46	2.32	0.60	2.70	0.63	2.96	0.65
27.0	1.14	0.43	1.41	0.45	1.67	0.47	2.29	0.61	2.66	0.64	2.92	0.66

3D074719B

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (кВт) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

FTXS35K + RXS35K

Охлаждение 50Гц 220-240V

AFR 11.2 BF 0.12

Темп.: Цельсия / TC, SHC, PI: kW

Вну	тр.							Тем	ператур	а нарух	кного во	здуха (°	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20.0	3.24	2.59	0.62	3.24	2.59	0.70	3.24	2.59	0.77	3.19	2.57	0.79	3.10	2.52	0.83	2.93	2.44	0.89
16.0	22.0	3.75	2.71	0.65	3.58	2.64	0.71	3.42	2.56	0.77	3.36	2.53	0.80	3.26	2.49	0.83	3.10	2.42	0.90
18.0	25.0	3.91	2.85	0.65	3.75	2.78	0.71	3.58	2.72	0.78	3.52	2.69	0.80	3.42	2.65	0.84	3.26	2.58	0.90
19.0	27.0	3.99	3.02	0.65	3.83	2.96	0.72	3.66	2.89	0.78	3.60	2.86	0.80	3.50	2.82	0.84	3.34	2.76	0.90
22.0	30.0	4.23	2.92	0.66	4.07	2.86	0.72	3.90	2.80	0.78	3.84	2.78	0.81	3.74	2.75	0.85	3.58	2.69	0.91
24.0	32.0	4.39	2.85	0.66	4.23	2.79	0.73	4.07	2.74	0.79	4.00	2.72	0.81	3.90	2.69	0.85	3.74	2.64	0.91

Обогрев 50Гц 220-240V AFR 12.1

Темп.: **Цельсия** / TC, PI: kW

		Температура наружного воздуха (°CWB)												
Внутр.				Тем	ператур	а нарух	кного во	оздуха (CWB)					
EDB		15	-1		-	5	()	(õ	1	0		
(°C)	TC	PI	TC	Pl	TC	Pl	TC	Pl	TC	Pl	TC	PI		
15.0	1.90	0.54	2.29	0.57	2.67	0.60	3.60	0.78	4.14	0.82	4.50	0.85		
20.0	1.79	0.56	2.17	0.58	2.56	0.61	3.46	0.80	4.00	0.84	4.36	0.87		
22.0	1.74	0.56	2.12	0.59	2.51	0.62	3.40	0.81	3.94	0.85	4.31	0.88		
24.0	1.69	0.57	2.08	0.60	2.46	0.62	3.35	0.81	3.89	0.86	4.25	0.88		
25.0	1.67	0.57	2.05	0.60	2.44	0.63	3.32	0.82	3.86	0.86	4.22	0.89		
27.0	1.62	0.58	2.01	0.60	2.39	0.63	3.26	0.82	3.81	0.87	4.17	0.89		

3D080613

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (ĸĎt) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

 FTXS42K + RXS42K

 Охлаждение
 50Гц 220-240V
 AFR
 11.2
 BF
 0.15

 Темп:: Цельсия / ТС, SHC, PI: kW

Вну	тр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20.0	3.13	2.50	0.84	3.13	2.50	0.95	3.13	2.50	1.07	3.13	2.50	1.11	3.13	2.50	1.17	3.13	2.50	1.25
16.0	22.0	4.19	2.89	0.90	4.19	2.89	0.99	4.11	2.85	1.08	4.03	2.81	1.12	3.91	2.75	1.17	3.71	2.66	1.26
18.0	25.0	4.69	3.16	0.92	4.49	3.07	1.00	4.30	2.98	1.09	4.22	2.95	1.13	4.10	2.90	1.18	3.91	2.81	1.26
19.0	27.0	4.79	3.32	0.92	4.59	3.23	1.01	4.40	3.15	1.09	4.32	3.11	1.13	4.20	3.06	1.18	4.00	2.98	1.27
22.0	30.0	5.08	3.19	0.93	4.88	3.12	1.01	4.69	3.04	1.10	4.61	3.01	1.14	4.49	2.97	1.19	4.29	2.90	1.28
24.0	32.0	5.27	3.10	0.93	5.07	3.03	1.02	4.88	2.97	1.11	4.80	2.94	1.14	4.68	2.90	1.19	4.49	2.83	1.28

Обогрев 50Гц 220-240V AFR 12.4

Темп.: Цельсия / TC, PI: kW

Внутр.				Тем	ператур	а нарух	кного вс	здуха (°	CWB)			
EDB	-1	5	-1		-	Г	()	(5	1	0
(°C)	TC	Pl	TC	PI	TC	PI	TC	PI	TC	Pl	TC	Pl
15.0	2.57	0.84	3.09	0.89	3.61	0.93	4.85	1.22	5.59	1.28	6.07	1.32
20.0	2.41	0.87	2.93	0.91	3.45	0.95	4.67	1.25	5.40	1.31	5.89	1.35
22.0	2.35	0.88	2.87	0.92	3.39	0.96	4.59	1.26	5.33	1.32	5.81	1.36
24.0	2.29	0.89	2.80	0.93	3.32	0.97	4.52	1.27	5.25	1.33	5.74	1.38
25.0	2.25	0.89	2.77	0.93	3.29	0.98	4.48	1.27	5.21	1.34	5.65	1.38
27.0	2.19	0.90	2.71	0.94	3.23	0.99	4.41	1.29	5.14	1.35	5.23	1.35

3D080615

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе EDB: (°C) Темп. сух. термом. на входе (кВт) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

FTXS50K + RXS50K

Охлаждение 50Гц 220-240V

AFR 11.9 BF 0.13

Темп.: Цельсия / TC, SHC, PI: kW

Вну	тр.							Тем	ператур	а нарух	кного вс	здуха (°	'CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20.0	3.41	2.72	0.98	3.41	2.72	1.13	3.41	2.72	1.27	3.41	2.72	1.33	3.41	2.72	1.39	3.41	2.72	1.50
16.0	22.0	4.56	3.14	1.05	4.56	3.14	1.18	4.56	3.14	1.29	4.56	3.14	1.34	4.56	3.14	1.40	4.42	3.07	1.50
18.0	25.0	5.58	3.66	1.09	5.35	3.55	1.20	5.12	3.45	1.30	5.02	3.40	1.34	4.88	3.34	1.41	4.65	3.24	1.51
19.0	27.0	5.70	3.83	1.10	5.47	3.72	1.20	5.23	3.62	1.31	5.14	3.58	1.35	5.00	3.52	1.41	4.77	3.42	1.51
22.0	30.0	6.04	3.68	1.11	5.81	3.59	1.21	5.58	3.50	1.32	5.49	3.46	1.36	5.35	3.40	1.42	5.11	3.32	1.52
24.0	32.0	6.27	3.57	1.11	6.04	3.49	1.22	5.81	3.40	1.32	5.72	3.37	1.36	5.58	3.32	1.43	5.34	3.24	1.53

Обогрев 50Гц 220-240V AFR 13.3

Те**мп.: Цельсия** / TC, PI: kW

Внутр.				Тем	ператур	а нарух	кного во	оздуха (^с	°CWB)			
EDB		15	-1	0	-	5	()	(ĵ	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	Pl	TC	PI
15.0	2.76	0.93	3.32	0.98	3.88	1.03	5.21	1.35	6.00	1.42	6.52	1.47
20.0	2.59	0.96	3.15	1.01	3.71	1.05	5.01	1.38	5.80	1.45	6.32	1.50
22.0	2.52	0.97	3.08	1.02	3.64	1.07	4.93	1.39	5.72	1.46	6.24	1.51
24.0	2.46	0.98	3.01	1.03	3.57	1.08	4.85	1.40	5.64	1.48	6.16	1.52
25.0	2.42	0.99	2.98	1.03	3.54	1.08	4.81	1.41	5.60	1.48	6.12	1.53
27.0	2.35	1.00	2.91	1.04	3.47	1.09	4.73	1.42	5.52	1.50	6.04	1.54

3D080616

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (ĸĎt) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

AFR

(м3/мин)

4 Таблицы производительности

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	дение			50Гц	220-24	IOV										AFR BF		_	3.2
Вну	тр.		Температура наружного воздуха (°ССВ)																
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	2.56	2.00	0.44	2.44	1.95	0.48	2.33	1.89	0.52	2.28	1.87	0.54	2.21	1.84	0.56	2.10	1.78	0.61
16.0	22	2.68	1.97	0.44	2.56	1.92	0.48	2.44	1.87	0.52	2.40	1.84	0.54	2.33	1.81	0.57	2.21	1.76	0.61
18.0	25	2.79	2.08	0.44	2.68	2.03	0.48	2.56	1.98	0.53	2.51	1.96	0.54	2.44	1.93	0.57	2.33	1.89	0.61
19.0	27	2.85	2.21	0.44	2.73	2.16	0.49	2.62	2.11	0.53	2.57	2.09	0.54	2.50	2.07	0.57	2.38	2.02	0.61
22.0	30	3.02	2.13	0.45	2.91	2.09	0.49	2.79	2.05	0.53	2.74	2.03	0.55	2.67	2.01	0.57	2.56	1.97	0.62
24.0	32	3.14	2.08	0.45	3.02	2.04	0.49	2.90	2.01	0.53	2.86	1.99	0.55	2.79	1.97	0.58	2.67	1.93	0.62

8.8

Внутр.			Тем	иперату	ра нарух	кного вс	здуха (°	'CWB)		
EDB		10	-	5)	(5	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	Pl	TC	PI
15.0	2.29	0.67	2.67	0.70	3.06	0.73	3.52	0.77	3.82	0.80
20.0	2.17	0.69	2.56	0.72	2.94	0.75	3.40	0.79	3.71	0.82
22.0	2.12	0.69	2.51	0.73	2.89	0.76	3.35	0.80	3.66	0.82
24.0	2.08	0.70	2.46	0.73	2.85	0.77	3.31	0.80	3.61	0.83
25.0	2.05	0.70	2.44	0.74	2.82	0.77	3.28	0.81	3.59	0.83
27.0	2.01	0.71	2.39	0.74	2.77	0.78	3.24	0.81	3.54	0.84

50Гц 220-240V

3D056491F

ОБОЗНАЧЕНИЯ Расход воздуха

FVXS25F + RXS25K

Обогрев

AFR:

BF: Коэффициент байпаса EWB: Темп. смоч. термом. на входе EDB: Темп. сух. термом. на входе (°C) TC: SHC: (ĸBт) Общая мощность Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5m
 - (2) Перепад уровня: 0m
- показывает номинальную и входную мощность.

4 - 1 Таблицы холодо-/теплопроизводительности

FVXS35F + RXS35K

Охлаждение 50Гц 220-240V

AFR 8.5

Вну	тр.							Тел	иперату	ра нарух	кного во	оздуха (^с	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	3.59	2.54	0.78	3.42	2.46	0.86	3.26	2.37	0.93	3.19	2.34	0.96	3.10	2.29	1.01	2.93	2.21	1.08
16.0	22	3.75	2.50	0.79	3.58	2.42	0.86	3.42	2.34	0.94	3.36	2.31	0.97	3.26	2.26	1.01	3.10	2.18	1.09
18.0	25	3.91	2.60	0.79	3.75	2.52	0.87	3.58	2.45	0.94	3.52	2.42	0.97	3.42	2.37	1.02	3.26	2.30	1.09
19.0	27	3.99	2.72	0.79	3.83	2.65	0.87	3.66	2.57	0.94	3.60	2.55	0.97	3.50	2.50	1.02	3.34	2.43	1.10
22.0	30	4.23	2.61	0.80	4.07	2.55	0.88	3.90	2.49	0.95	3.84	2.46	0.98	3.74	2.43	1.03	3.58	2.36	1.10
24.0	32	4.39	2.54	0.81	4 23	2 48	0.88	4.07	2 42	0.96	4.00	240	0.99	3.90	2.37	1.03	3.74	2.31	1 11

Обогрев 50Гц 220-240V AFR 9.4

Внутр.			Тем	перату	ра нарух	кного во	оздуха (°	'CWB)		
EDB	-	10	-	5		0		ŝ	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	Pl	TC	PI
15.0	3.03	1.03	3.54	1.08	4.05	1.13	4.66	1.19	5.06	1.23
20.0	2.87	1.06	3.38	1.11	3.89	1.16	4.50	1.22	4.91	1.26
22.0	2.81	1.07	3.32	1.12	3.83	1.17	4.44	1.23	4.84	1.27
24.0	2.75	1.08	3.26	1.13	3.77	1.18	4.38	1.24	4.78	1.28
25.0	2.72	1.09	3.23	1.14	3.73	1.19	4.34	1.25	4.75	1.29
27.0	2.66	1.10	3.16	1.15	3.67	1.20	4.28	1.26	4.69	1.30

3D056492E

ОБОЗНАЧЕНИЯ

 AFR:
 Расход воздуха
 (м3/мин)

 BF:
 Коэффициент байпаса

 EWB:
 Темп. смоч. термом. на входе
 (°C)

 EDB:
 Темп. сух. термом. на входе
 (°C)

 TC:
 Общая мощность
 (кВт)

 SHC:
 Чувствительная теплопроизводительностьа (кВт)

 PI:
 Входная мощность
 (кВт)

ПРИМЕЧАНИЯ

- Мощности основаны на следующих условиях:
 (1) Соответствующая длина труб с хладагентом: 5m
 - (2) Перепад уровня: 0m
- 2. _____ показывает номинальную и входную мощность.

-4

4 - 1 Таблицы холодо-/теплопроизводительности

FVXS50F + RX	550K		
Охлаждение	•	AFR 3F	0.13
Внутр.	Температура наружного воздуха (°СОВ)		

Вну	тр.							Тем	ператур	ра нарух	кного во	здуха (°	'CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	4.53	3.19	1.13	4.53	3.19	1.27	4.53	3.19	1.41	4.53	3.19	1.46	4.42	3.13	1.53	4.19	3.01	1.65
16.0	22	5.35	3.45	1.20	5.12	3.33	1.31	4.89	3.21	1.43	4.79	3.16	1.47	4.65	3.09	1.54	4.42	2.98	1.65
18.0	25	5.58	3.56	1.20	5.35	3.45	1.32	5.12	3.34	1.43	5.02	3.29	1.48	4.88	3.23	1.55	4.65	3.12	1.66
19.0	27	5.70	3.71	1.21	5.47	3.60	1.32	5.23	3.49	1.44	5.14	3.45	1.48	5.00	3.39	1.55	4.77	3.28	1.66
22.0	30	6.04	3.56	1.22	5.81	3.46	1.33	5.58	3.37	1.45	5.49	3.33	1.49	5.35	3.27	1.56	5.11	3.18	1.67
24.0	32	6.27	3.45	1.22	6.04	3.36	1.34	5.81	3.27	1.45	5.72	3.24	1.50	5.58	3.19	1.57	5.34	3.10	1.68

AFR 11.8 Обогрев 50Гц 220-240V

Внутр.			Т	емперату	/ра нарух	кного воз	духа (°СМ	/B)		
EDB	-	10	-	-5	()	(5	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15.0	3.90	1.35	4.56	1.42	5.21	1.48	6.00	1.56	6.52	1.62
20.0	3.70	1.39	4.36	1.46	5.01	1.52	5.80	1.60	6.32	1.65
22.0	3.62	1.40	4.28	1.47	4.93	1.54	5.72	1.61	6.24	1.67
24.0	3.54	1.42	4.20	1.48	4.85	1.55	5.64	1.63	6.16	1.68
25.0	3.50	1.43	4.16	1.49	4.81	1.56	5.60	1.64	6.03	1.68
27.0	3.42	1.44	4.08	1.51	4.73	1.57	5.52	1.65	5.64	1.68

3D079452A

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе EDB: Темп. сух. термом. на входе (°C) TC: SHC: (ĸBт) Общая мощность (кВт)

Чувствительная теплопроизводительностьа PI: Входная мощность (кВт)

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5,0m
 - (2) Перепад уровня: 0m
- показывает номинальную и входную мощность.

4 - 1 Таблицы холодо-/теплопроизводительности

 FLXS25B + RXS25K

 Охлаждение
 50Гц 220-240V
 AFR 7.6 BF 0.32

Вну	гр.							Тем	ператур	а нарух	кного во	оздуха (^с	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI
14.0	20	2.52	1.77	0.49	2.44	1.73	0.55	2.33	1.67	0.59	2.28	1.65	0.61	2.21	1.61	0.64	2.10	1.55	0.69
16.0	22	2.68	1.76	0.50	2.56	1.71	0.55	2.44	1.65	0.60	2.40	1.63	0.62	2.33	1.59	0.65	2.21	1.54	0.69
18.0	25	2.79	1.83	0.50	2.68	1.78	0.55	2.56	1.72	0.60	2.51	1.70	0.62	2.44	1.67	0.65	2.33	1.62	0.70
19.0	27	2.85	1.91	0.51	2.73	1.86	0.55	2.62	1.81	0.60	2.57	1.79	0.62	2.50	1.76	0.65	2.38	1.71	0.70
22.0	30	3.02	1.84	0.51	2.91	1.79	0.56	2.79	1.75	0.61	2.74	1.73	0.63	2.67	1.70	0.65	2.56	1.66	0.70
24.0	32	3.14	1.79	0.51	3.02	1.74	0.56	2.90	1.70	0.61	2.86	1.68	0.63	2.79	1.66	0.66	2.67	1.62	0.71

Обогрев	50Гц 220-240V	AFR	9.2
Внутр.	Температура наружного во	злуха (°CWB)	

Внутр.			lew	іперату	оа нарух	кного вс	оздуха (°	(CMR)		
EDB	-	10	-	5	()	(ŝ	1	0
(°C)	TC	PI	TC	Pl	TC	Pl	TC	Pl	TC	PI
15.0	2.29	0.83	2.67	0.87	3.06	0.91	3.52	0.96	3.82	0.99
20.0	2.17	0.85	2.56	0.89	2.94	0.93	3.40	0.98	3.71	1.01
22.0	2.12	0.86	2.51	0.90	2.89	0.94	3.35	0.99	3.66	1.02
24.0	2.08	0.87	2.46	0.91	2.85	0.95	3.31	1.00	3.61	1.03
25.0	2.05	0.87	2.44	0.91	2.82	0.95	3.28	1.00	3.59	1.03
27.0	2.01	0.88	2.39	0.92	2.77	0.96	3.24	1.01	3.54	1.04

3D055037E

ОБОЗНАЧЕНИЯ

АFR: Расход воздуха (м3/мин)
ВF: Коэффициент байпаса

EWB: Темп. смоч. термом. на входе (°C)

EDB: Темп. сух. термом. на входе (°C)

TC: Общая мощность (кВт)

SHC: Чувствительная теплопроизводительностьа (кВт)

PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Мощности основаны на следующих условиях:
 (1) Соответствующая длина труб с хладагентом: 5m
 - (2) Перепад уровня: 0m
- 2. показывает номинальную и входную мощность.

4 - 1 Таблицы холодо-/теплопроизводительности

FLXS35	B + RX	(S35K																	
Охлаж	сдение	•		50Гц	220-24	IOV										AFR BF		_	3.6
Вну	/тр.							Тел	перату	ра нарух	кного во	эдуха (°	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	2.72	1.92	0.87	2.72	1.92	0.95	2.72	1.92	1.03	2.72	1.92	1.07	2.72	1.92	1.12	2.72	1.92	1.20
16.0	22	3.34	2.14	0.87	3.34	2.14	0.96	3.34	2.14	1.04	3.34	2.14	1.07	3.26	2.10	1.12	3.10	2.01	1.21

EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI															
14.0	20	2.72	1.92	0.87	2.72	1.92	0.95	2.72	1.92	1.03	2.72	1.92	1.07	2.72	1.92	1.12	2.72	1.92	1.20
16.0	22	3.34	2.14	0.87	3.34	2.14	0.96	3.34	2.14	1.04	3.34	2.14	1.07	3.26	2.10	1.12	3.10	2.01	1.21
18.0	25	3.91	2.42	0.88	3.75	2.34	0.96	3.58	2.26	1.04	3.52	2.22	1.08	3.42	2.17	1.13	3.26	2.09	1.21
19.0	27	3.99	2.51	0.88	3.83	2.43	0.96	3.66	2.34	1.05	3.60	2.31	1.08	3.50	2.27	1.13	3.34	2.19	1.21
22.0	30	4.23	2.40	0.89	4.07	2.33	0.97	3.90	2.26	1.05	3.84	2.23	1.09	3.74	2.19	1.14	3.58	2.12	1.22
24.0	32	4.39	2.32	0.89	4.23	2.26	0.98	4.07	2.19	1.06	4.00	2.16	1.09	3.90	2.13	1.14	3.74	2.06	1.23
													•						

9.8

AFR

(м3/мин)

Внутр.			Тем	перату	оа нарух	кного вс	здуха (°	CWB)		
EDB	-	10	-	5	(0	(6	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15.0	2.69	1.04	3.14	1.09	3.60	1.14	4.14	1.20	4.50	1.24
20.0	2.55	1.07	3.01	1.12	3.46	1.17	4.00	1.23	4.36	1.27
22.0	2.50	1.08	2.95	1.13	3.40	1.18	3.94	1.24	4.31	1.28
24.0	2.44	1.09	2.90	1.14	3.35	1.19	3.89	1.25	4.25	1.29
25.0	2.42	1.10	2.87	1.15	3.32	1.20	3.86	1.26	4.18	1.30
27.0	2.36	1.11	2.81	1.16	3.26	1.21	3.81	1.27	3.91	1.30

50Гц 220-240V

3D055039D

ОБОЗНАЧЕНИЯ

Расход воздуха

Обогрев

AFR:

 BF:
 Коэффициент байпаса

 EWB:
 Темп. смоч. термом. на входе
 (°C)

 EDB:
 Темп. сух. термом. на входе
 (°C)

 TC:
 Общая мощность
 (кВт)

 SHC:
 Чувствительная теплопроизводительностьа (кВт)

 PI:
 Входная мощность
 (кВт)

- Мощности основаны на следующих условиях:
 (1) Соответствующая длина труб с хладагентом: 5m
 - (2) Перепад уровня: 0m
- 2. показывает номинальную и входную мощность.

4 - 1 Таблицы холодо-/теплопроизводительности

FLXS50B + RXS50K

Охлаждение 50Гц 220-240V

AFR	11.4
BF	0.18

Вну	p.							Тем	ператур	а нарух	кного во	здуха (°	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	TC SHC PI			SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	4.96	3.26	1.37	4.81	3.19	1.47	4.66	3,12	1.56	4.60	3.09	1.60	4,51	3.05	1.66	4.36	2.98	1.75
16.0	22	5.12	3.30	1.40	4.97	3.23	1.49	4.82	3.16	1.59	4.76	3.13	1.62	4.67	3,09	1.68	4.52	3.02	1.78
18.0	25	5.27	3.33	1.42	5.12	3.26	1.52	4.97	3.19	1.61	4.91	3.16	1.65	4.82	3.12	1.71	4.67	3.05	1.80
19.0	27	5.35	3.35	1.44	5.20	3.28	1.53	5.05	3.21	1.63	4.99	3.18	1.66	4,90	3.14	1.72	4.75	3.07	1.82
22.0	30	5.58	3.40	1.47	5.43	3.33	1.57	5.28	3.26	1.66	5.22	3.23	1.70	5.13	3.19	1.76	4.98	3.12	1.85
24.0	32	5.74	3.43	1.50	5.59	3.36	1.60	5.44	3.29	1.69	5.38	3.26	1.73	5.29	3.22	1.79	5.14	3.15	1.88

Обогрев

50Гц 220-240V

-R	12.1

Внутр.				Ten	иператур	ра наруж	кного вс	здуха (°	CWB)			
EDB	-1	15	-1	10	-	5		0		5	1	10
(°C)	TC	Pl	TC	Pl	TC	Pl	TC	PI	TC	Pl	TC	PI
16.0	3.06	1.31	3.80	1.40	4.54	1.49	5.28	1.58	6.16	1.69	6.75	1.76
18.0	3.03	1.37	3.77	1.46	4,51	1.55	5.24	1.65	6.13	1.75	6.72	1.83
20.0	3.00	1.44	3.74	1,53	4.48	1.62	5.21	1.71	6.10	1.82	6.69	1.89
21.0	2.98	1.47	3.72	1.56	4.46	1.65	5.20	1.74	6.08	1.85	6.68	1.93
22.0	2.97	1.50	3.71	1.59	4.45	1.69	5.18	1.78	6.07	1.89	6.66	1.96
24.0	2.94	1.57	3.68	1.66	4.42	1.75	5.15	1.84	6.04	1.95	6,63	2.02

3D079441A

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (ĸBT) Общая мощность TC: SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- Расход воздуха (АFR) и коэффициент байпаса (ВF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

 FDXS25F + RXS25K

 Охлаждение
 50Гц 230V

 АFR
 8.7

 BF
 0.17

Вну	тр.							Тем	ператур	а нарух	кного во	здуха (°	CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	2.46	1.94	0.53	2.35	1.89	0.58	2.24	1.83	0.63	2.19	1.81	0.65	2.12	1.78	0.68	2.01	1.73	0.73
16.0	22	2.57	1.91	0.53	2.46	1.86	0.58	2.35	1.81	0.63	2.30	1.79	0.65	2.23	1.76	0.69	2.12	1.71	0.74
18.0	25	2.68	2.01	0.54	2.57	1.97	0.59	2.46	1,92	0.64	2.41	1.90	0,66	2.34	1.88	0.69	2.23	1.83	0.74
19.0	27	2.74	2.14	0.54	2.62	2.10	0.59	2.51	2.05	0.64	2.47	2.03	0.66	2.40	2.01	0.69	2.29	1.96	0.74
22.0	30	2.90	2.07	0.54	2.79	2.03	0.59	2.68	1,99	0.64	2.63	1.98	0.66	2.57	1.95	0.69	2.45	1.91	0.75
24.0	32	3.01	2.02	0.54	2.90	1.99	0,60	2.79	1,95	0.65	2.74	1.94	0.67	2.68	1.91	0.70	2.56	1.88	0.75

Обогрев 50Гц 230V AFR 8.7

Внутр.			Т	емперату	ура нарух	кного воз	вдуха (°СИ	/B)	-	
EDB	-1	10	-	5)	(5	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15.0	2.15	0.77	2.52	0.81	2.88	0.84	3.31	0.89	3.60	0.92
20.0	2.04	0.79	2.41	0.83	2.77	0.87	3.20	0.91	3.49	0.94
22.0	2.00	0.80	2.36	0.84	2.72	0.87	3.16	0.92	3.44	0.95
24.0	1.96	0.81	2.32	0.84	2.68	0.88	3.11	0.93	3.40	0.96
25.0	1.93	0.81	2.29	0.85	2.66	0.89	3.09	0.93	3.38	0.96
27.0	1.89	0.82	2.25	0.86	2.61	0.89	3.05	0.94	3.33	0.97

3D081498

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе EDB: (°C) Темп. сух. термом. на входе (кВт) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 7.5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

FDXS35F + RXS35K

Охлаждение 50Гц 230V

AFR 8.7
BF 0.17

Вну	тр.							Тем	ператур	а наруж	кного во	здуха (°	CDB)						
EWB	EDB		20																
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl
14.0	20	3.48	2.46	0.84	3.33	2.38	0.92	3.17	2.30	1.00	3.10	2.26	1.03	3.01	2.21	1.08	2.85	2.13	1.16
16.0	22	3.64	2.42	0.84	3.48	2.34	0.92	3.32	2.26	1.00	3.26	2.23	1.03	3.17	2.19	1.08	3.01	2.11	1.16
***************************************	***************************************	****	,	*****************	***************************************			***************************************			***************************************	*****************				***************************************			•

14.0	20	3.40	4.40	V.04	3.33	200	0.02	3 , 17	4.30	1.00	J. 1V	4.40	1.03	3.01	4.4	1.00	4.00	4.13	1.10
16.0	22	3.64	2.42	0.84	3.48	2.34	0.92	3.32	2.26	1,00	3.26	2.23	1.03	3,17	2.19	1.08	3.01	2.11	1.16
18.0	25	3.80	2.51	0.85	3.64	2.44	0.93	3.48	2.37	1.01	3,42	2.34	1.04	3,32	2.30	1,09	3.16	2.23	1.17
19.0	27	3.87	2.63	0.85	3.72	2.56	0.93	3.56	2.49	1,01	3.49	2.46	1.04	3.40	2.42	1.09	3.24	2.35	1.17
22.0	30	4.11	2.53	0.86	3.95	2.47	0.94	3.79	2.40	1.02	3.73	2.38	1.05	3,63	2.34	1.10	3.48	2.28	1.18
24.0	32	4.27	2.46	0.86	4.11	2.40	0.94	3.95	2.34	1.02	3,89	2.32	1.05	3.79	2.29	1,10	3,63	2.23	1,18

Обогрев 50Гц 230V AFR 8.7

Внутр.			Т	емперату	/ра нарух	кного воз	вдуха (°СИ	/B)		
EDB		10	-	.5	()	(ò	1	0
(°C)	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
15.0	2.69	1,00	3.14	1.05	3.60	1.10	4,14	1,15	4.50	1,19
20.0	2.55	1.02	3.01	1.07	3.46	1.12	4.00	1.18	4.36	1.22
22.0	2.50	1.04	2.95	1,08	3.40	1.13	3,94	1,19	4.31	1.23
24.0	2.44	1.05	2.90	1.09	3.35	1,14	3.89	1.20	4.25	1.24
25.0	2.42	1.05	2.87	1.10	3.32	1.15	3.86	1.21	4.22	1.25
27.0	2.36	1.06	2.81	1,11	3.26	1,16	3.81	1.22	4.17	1.26

3D081325

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°C) EDB: (°C) Темп. сух. термом. на входе (ĸBT) Общая мощность TC: SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- 2. показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц (Использоваться должны только значения, приведенные в таблицах.)
- Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 7.5m Перепад уровня: 0m
- Расход воздуха (АFR) и коэффициент байпаса (ВF) приведены в таблице ниже.

4 - 1 Таблицы холодо-/теплопроизводительности

FDXS50F + RXS50K Охлаждение 50Гц 220-240V 0.11

Вну	гр.							Тем	ператур	а нарух	кного вс	здуха (°	'CDB)						
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	PI	TC	TC SHC PI			SHC	PI	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI
14.0	20	3.92	2.76	1.13	3.92	2.76	1.29	3.92	2.76	1.44	3.92	2.76	1.50	3.92	2.76	1.59	3.92	2.76	1.74
16.0	22	4.81	3.08	1.22	4.81	3.08	1.37	4.81	3.08	1.51	4.79	3.07	1.57	4.65	3.00	1.64	4.42	2.88	1.76
18.0	25	5.58	3.47	1.28	5.35	3.35	1.40	5.12	3.23	1.52	5.02	3.18	1.57	4.88	3.11	1.65	4.65	3.00	1.77
19.0	27	5.70	3.59	1.28	5.47	3.47	1.41	5.23	3.36	1.53	5.14	3.31	1.58	5.00	3.24	1.65	4.77	3.13	1.77
22.0	30	6.04	3.44	1.30	5.81	3.33	1.42	5.58	3.23	1.54	5.49	3.19	1.59	5.35	3.13	1.66	5.11	3.03	1.78
24.0	32	6.27	3.32	1.30	6.04	3.23	1.42	5.81	3.13	1.55	5.72	3.10	1.60	5.58	3.04	1.67	5.34	2.95	1.79

50Гц 220-240V AFR 12.0 Обогрев

Внутр.			Т	емперат	ура нарух	кного воз	здуха (°СИ	/B)			
EDB		10	-	-5		0	(5	10		
(°C)	TC	PI	TC	PI	TC	Pl	TC	Pl	TC	PI	
15.0	3.90	1.62	4.56	1.70	5.21	1.78	6.00	1.88	6.52	1.94	
20.0	3.70	1.67	4.36	1.75	5.01	1.83	5.80	1.92	6.32	1.98	
22.0	3.62	1.68	4.28	1.76	4.93	1.84	5.72	1.94	6.24	2.00	
24.0	3.54	1.70	4.20	1.78	4.85	1.86	5.64	1.95	6.16	2.02	
25.0	3.50	1.71	4.16	1.79	4.81	1.87	5.60	1.96	6.12	2.03	
27.0	3.42	1.73	4.08	1.81	4.73	1.89	5.52	1.98	6.04	2.04	

3D081324

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (м3/мин) Коэффициент байпаса EWB: Темп. смоч. термом. на входе EDB: (°C) Темп. сух. термом. на входе (кВт) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)

- 1. Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- показывает номинальную и входную мощность.
- 3. TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц (Использоваться должны только значения, приведенные в таблицах.)
- 4. Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5m Перепад уровня: 0m
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

FHQ35C + RXS35K

4 Таблицы производительности

Таблицы холодо-/теплопроизводительности

Охлаж	кдени	е	220-240V 50Гц											AFR BF			14).17		
Внут	тр.							Te	мперат	ура нар	ужного в	зоздуха	(°CDB)						
EWB	EDB		20 25 30 32 35 40																
°(°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI
14.0	20	3.48	2.76	0.73	3.33	2.69	0.80	3.17	2.61	0.87	3.10	2.58	0.90	3.01	2.54	0.94	2.85	2.47	1.01
16.0	22	3.64	2.72	0.73	3.48	2.65	0.81	3.32	2.58	0.88	3.26	2.55	0.90	3.17	2.51	0.94	3.01	2.44	1.01
18.0	25	3.80	2.87	0.73	3.64	2.81	0.81	3.48	2.74	0.88	3.42	2.72	0.90	3.32	2.68	0.95	3.16	2.61	1.02
19.0	27	3.87	3.05	0.74	3.72	2.99	0.81	3.56	2.93	0.88	3.49	2.90	0.90	3.40	2.87	0.95	3.24	2.80	1.02
22.0	30	4.11	2.95	0.74	3.95	2.90	0.81	3.79	2.84	0.89	3.73	2.82	0.91	3.63	2.79	0.96	3.48	2.73	1.02
24.0	32	4.27	2.88	0.75	4.11	2.83	0.82	3.95	2.78	0.89	3.89	2.76	0.11	3.79	2.73	0.96	3.63	2.68	1.03

Обогрев		220-240V 50Γ μ AFR 14										
Внутр.			Te	мперат	ура нар	ужного в	воздуха	(°CDB)				
EDB	-	10		-5		0		6	1	0		
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI		
15.0	2.69	0.86	3.14	0.89	3.60	0.94	4.14	0.98	4.50	1.02		
20.0	0.55	0.07	0.01	0.00	0.40	0.00	4.00	1.01	4.00	1.05		

15.0	2.69	0.86	3.14	0.89	3.60	0.94	4.14	0.98	4.50	1.02
20.0	2.55	0.87	3.01	0.92	3.46	0.96	4.00	1.01	4.36	1.05
22.0	2.50	0.88	2.95	0.93	3.40	0.97	3.94	1.02	4.31	1.06
24.0	2.44	0.89	2.90	0.94	3.35	0.98	3.89	1.03	4.25	1.06
25.0	2.42	0.90	2.87	0.94	3.32	0.98	3.86	1.04	4.22	1.06

2.36 | 0.91 | 2.81 | 0.95 | 3.26 | 0.99 | 3.81 | 1.05 | 4.17 | 1.07

3D080354

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха $(M^3/Muh.)$ Коэффициент байпаса Темп. смоч. термом. на входе

EWB: EDB: (°C) Темп. сух. термом. на входе TC: Общая мощность (кВт) SHC:

Чувствительная теплопроизводительностьа (кВт) Входная мощность

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5м
 - (2) Перепад уровня: 0м
- показывает номинальную и входную мощность.

FHQ50C + RXS50K

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	кдени	е		220-	240V	50Гц										AFR BF			15 .18
Вну	тр.							Te	мперату	/ра нару	/жного в	оздуха	(°CDB)						
EWB	EDB		20			25			30			32			35			40	
°(°C	TC	SHC	PI	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI
14.0	20	5.06	3.63	1.27	4.91	3.56	1.36	4.76	3.49	1.43	4.70	3.46	1.47	4.61	3.42	1.52	4.46	3.35	1.60
16.0	22	5.22	3.66	1.30	5.07	3.59	1.37	4.92	3.52	1.46	4.86	3.49	1.48	4.77	3.45	1.54	4.62	3.38	1.62
18.0	25	5.37	3.69	1.31	5.22	3.62	1.40	5.07	3.55	1.48	5.01	3.53	1.51	4.92	3.48	1.56	4.77	3.41	1.64
19.0	27	5.45	3.71	1.33	5.30	3.64	1.41	5.15	3.57	1.49	5.09	3.54	1.52	5.00	3.50	1.57	4.85	3.43	1.66
22.0	30	5.68	3.76	1.36	5.53	3.69	1.44	5.38	3.62	1.52	5.32	3.59	1.55	5.23	3.55	1.60	5.08	3.48	1.68
24.0	32	5.84	3.80	1.38	5.69	3.73	1.47	5.54	3.66	1.54	5.48	3.63	1.58	5.39	3.59	1.63	5.24	3.52	1.71

Обогрев	220-240V 50Гц	AFR	15

Внутр.	Температура наружного воздуха (°CDB)											
EDB		15	-	10		-5)		6	1	0
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
16.0	3.01	1.28	3.74	128	4.46	1.37	5.19	1.55	6.06	1.66	6.64	1.73
18.0	2.98	1.35	3.71	1.35	4.43	1.44	5.16	1.62	6.03	1.73	6.61	1.80
20.0	2.95	1.41	3.68	1.41	4.40	1.50	5.13	1.69	6.00	1.79	6.58	1.86
21.0	2.94	1.45	3.66	1.45	4.39	1.54	5.11	1.71	5.99	1.82	6.57	1.89
22.0	2.92	1.48	3.65	1.48	4.37	1.57	5.10	1.75	5.97	1.85	6.55	1.93
24.0	2.89	1.55	3.62	1.55	4.34	1.63	5.07	1.81	5.94	1.92	6.52	1.99

3D080355

	ОБОЗНАЧЕНИЯ	
AFR: BF:	Расход воздуха Коэффициент байпаса	(м ³ /Мин.
EWB: EDB:	Темп. смоч. термом. на входе Темп. сух. термом. на входе	(°C) (°C)
TC: SHC: PI:	Общая мощность Чувствительная теплопроизводительностьа́ Входная мощность	(кВт) (кВт) (кВт)

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5м
 - (2) Перепад уровня: 0м
- 2. показывает номинальную и входную мощность.

FFQ25B9V+ RXS25K

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	дение	•		50Гц	220-24	VOV										AFR BF		9 0.24	
Вну	/тр.							Тем	перату	ра нарух	кного во	оздуха (PCDB)						
EWB	EDB		20																
(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	2.56	1.95	0.56	2.44	1.89	0.61	2.33	1.84	0.67	2.28	1.81	0.69	2.21	1.78	0.72	2.10	1.72	0.78
16.0	22	2.68	1.92	0.56	2.56	1.86	0.62	2.44	1.81	0.67	2.40	1.79	0.69	2.33	1.76	0.73	2.21	1.71	0.78
18.0	25	2.79	2.01	0.57	2.68	1.96	0.62	2.56	1.92	0.67	2.51	1.90	0.70	2.44	1.87	0.73	2.33	1.82	0.78
19.0	27	2.85	2.13	0.57	2.73	2.08	0.62	2.62	2.04	0.68	2.57	2.02	0.70	2.50	1.99	0.73	2.38	1.94	0.78
22.0	30	3.02	2.06	0.57	2.91	2.02	0.63	2.79	1.97	0.68	2.74	1.96	0.70	2.67	1.93	0.73	2.56	1.89	0.79
24.0	32	3.14	2.01	0.58	3.02	1.97	0.63	2.90	1.93	0.68	2.86	1.91	0.71	2.79	1.89	0.74	2.67	1.85	0.79

Обогрев	50Гц 220-240V	AFR	9
---------	---------------	-----	---

Внутр.	Температура наружного воздуха (°CWB)										
EDB	-1	10	-	г	()	(5	10		
(°C)	TC	Pl	TC	Pl	TC	Pl	TC	PI	TC	PI	
15.0	2.15	0.78	2.52	0.82	2.88	0.85	3.31	0.90	3.60	0.93	
20.0	2.04	0.80	2.41	0.84	2.77	0.87	3.20	0.92	3.49	0.95	
22.0	2.00	0.81	2.36	0.84	2.72	0.88	3.16	0.93	3.44	0.96	
24.0	1.96	0.82	2.32	0.85	2.68	0.89	3.11	0.94	3.40	0.97	
25.0	1.93	0.82	2.29	0.86	2.66	0.90	3.09	0.94	3.38	0.97	
27.0	1.89	0.83	2.25	0.87	2.61	0.90	3.05	0.95	3.33	0.98	

3D055487D

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха $(m^3/min.)$ BF: Коэффициент байпаса (°C) (°C) (kW) EWB: Темп. смоч. термом. на входе EDB: TC: SHC: PI: Темп. сух. термом. на входе Общая мощность Чувствительная теплопроизводительностьа (kW) Входная мощность (kW)

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5m
 - (2) Перепад уровня: 0m
- показывает номинальную и входную мощность.

4 Таблицы производительности

FFQ35B9V + RXS35K

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	дение	•		50Гц	220-24	10V										AFR BF			10
Вну	тр.							Тем	перату	ра нарух	кного во	оздуха (^с	CDB)						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	3.48	2.48	0.84	3.33	2.40	0.93	3.17	2.32	1.01	3.10	2.29	1.04	3.01	2.24	1.09	2.85	2.16	1.17
16.0	22	3.64	2.44	0.85	3.48	2.36	0.93	3.32	2.28	1.01	3.26	2.25	1.04	3.17	2.21	1.09	3.01	2.13	1.17
18.0	25	3.80	2.54	0.85	3.64	2.46	0.93	3.48	2.39	1.02	3.42	2.36	1.05	3.32	2.32	1.10	3.16	2.25	1.18
19.0	27	3.87	2.66	0.86	3.72	2.59	0.94	3.56	2.52	1.02	3.49	2.49	1.05	3.40	2.45	1.10	3.24	2.39	1.18
22.0	30	4.11	2.56	0.86	3.95	2.50	0.94	3.79	2.44	1.03	3.73	2.41	1.06	3.63	2.38	1.11	3.48	2.32	1.19
24.0	32	4.27	2.49	0.87	4.11	2.43	0.95	3.95	2.37	1.03	3.89	2.35	1.06	3.79	2.32	1.11	3.63	2.26	1.19

Обогрев			50Гц	AFR		10				
Внутр.			Тем	иператур	ра нарух	жного во	эздуха (CMB)		
EDB	-	10	-	-5		0		6	1	0
°C	TC	PI	TC	PI	TC PI		TC	PI	TC	Pl
15.0	2.69	1.01	3.14	1.06	3.60	1.11	4.14	1.17	4.50	1.21
20.0	2.55	1.04	3.01	1.09	3.46	1.14	4.00	1.20	4.36	1.24
22.0	2.50	1.05	2.95	1.10	3.40	1.15	3.94	1.21	4.31	1.25
24.0	2.44	1.06	2.90	1.11	3.35	1.16	3.89	1.22	4.25	1.26
25.0	2.42	1.07	2.87	1.12	3.32	1.17	3.86	1.23	4.22	1.27
27.0	2.36	1.08	2.81	1.13	3.26	1.18	3.81	1.24	4.17	1.28

3D055489C

	ОБОЗНАЧЕНИЯ	
AFR: BF:	Расход воздуха Коэффициент байпаса	(м ³ /Мин.
EWB: EDB:	Темп. смоч. термом. на входе Темп. сух. термом. на входе	(°C)
TC: SHC:	Общая мощность Чувствительная теплопроизводительностьа́	(кВт) (кВт)
PI:	Входная мощность	(кВт)

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5м
 - (2) Перепад уровня: 0м
- 2. показывает номинальную и входную мощность.

4 Таблицы производительности

4 - 1 Таблицы холодо-/теплопроизводительности

FFQ50B	FFQ50B9V + RXS50K																		
Охлаж	дение			50	Гц 230	V										AFR		1.	2.0
																BF		0.	.16
Внут	внутр. Температура наружного воздуха (°CDB)																		
EWB	EDB		20 25 30 32 35 40 C SUC DI TC SUC DI TC SUC DI TC SUC DI TC SUC DI																
(°C)	(°C)	TC	SHC	Pl	TC	SHC	PI	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI
14.0	20	4.76	3.51	1.45	4.61	3.44	1.55	4.46	3.37	1.64	4.40	3.34	1.68	4.31	3.30	1.74	4.16	3.23	1.83
16.0	22	4.92	3.54	1.48	4.77	3.47	1.57	4.62	3.40	1.67	4.56	3.38	1.70	4.47	3.33	1.76	4.32	3.26	1.86
18.0	25	5.07	3.58	1.50	4.92	3.51	1.60	4.77	3.44	1.69	4.71	3.41	1.73	4.62	3.37	1.79	4.47	3.30	1.88
19.0	27	5.15	3.59	1.52	5.00	3.52	1.61	4.85	3.45	1.71	4.79	3.43	1.74	4.70	3.38	1.80	4.55	3.31	1.90
22.0	30	5.38	3.65	1.55	5.23	3.58	1.65	5.08	3.51	1.74	5.02	3.48	1.78	4.93	3.44	1.84	4.78	3.37	1.93
24.0	32	5.54	3.68	1.58	5.39	3.61	1.68	5.24	3.54	1.77	5.18	3.51	1.81	5.09	3.47	1.87	4.94	3.40	1.96

Обогрев	50Гц 230V	AFR	12.0

Внутр.	Температура наружного воздуха (°CWB)													
EDB	-1	5	-1	10	-	5	(0		6	· ·	10		
(°C)	TC	PI	TC	PI	TC	PI	TC	TC PI		PI	TC	PI		
16.0	2.76	1.41	3.43	1.51	4.09	1.60	4.76	1.70	5.56	1.82	6.09	1.90		
18.0	2.73	1.48	3.40	1.58	4.06	1.67	4.73	1.77	5.53	1.89	6.06	1.97		
20.0	2.70	1.55	3.37	1.65	4.04	1.74	4.70	1.84	5.50	1.96	6.03	2.04		
21.0	2.69	1.58	3.36	1.68	4.02	1.78	4.69	1.88	5.49	2.00	6.02	2.07		
22.0	2.68	1.62	3.34	1.72	4.01	1.81	4.67	1.91	5.47	2.03	6.00	2.11		
24.0	2.65	1.69	3.32	1.79	3.98	1.89	4.65	1.98	5.45	2.10	5.98	2.18		

3D060463B

ОБОЗНАЧЕНИЯ

AFR:	Расход воздуха	$(M^3/Mин.)$
BF:	Коэффициент байпаса	
EWB:	Темп. смоч. термом. на входе	(°C)
EDB:	Темп. сух. термом. на входе	(°C)
TC:	Общая мощность	(кВт)
SHC:	Чувствительная теплопроизводительностьа	(кВт)
PI:	Входная мошность	(kBt)

- 1. Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего Блока.
- показывает номинальную и входную мощность.
- 3. $\overline{\text{TC, PI u SHC}}$ необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц (Использоваться должны только значения, приведенные в таблицах.)
- 4. Значение SHC зависит от каждой EWB и EDB. SHC*= SHC поправка для другой температуры сухого термометра.
 - = 0.02*AFR(м³/Мин.)*(1-BF)*(DB*-EDB)
 - Сложить SHC* c SHC.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 5м Перепад уровня: Ом
- 6. Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

AFR

4 Таблицы производительности

FCQG35F + RXS35K

Обогрев

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	дение	!		220-2	240V 5	0Гц										AFR BF			2.5
Вну	тр.							Тем	перату	ра нарух	кного во	оздуха (^с	CDB)						
EWB	EDB		20 25 30 32 35 40																
°C	°C	TC	TC SHC PI TC SHC PI TC SHC PI TC SHC PI								TC	SHC	PI	TC	SHC	PI			
14,0	20	3,48	2,49	0,73	3,33	2,40	0,80	3,17	2,32	0,87	3,10	2,29	0,90	3,01	2,24	0,94	2,85	2,16	1,01
16,0	22	3,64	2,44	0,73	3,48	2,37	0,80	3,32	2,29	0,87	3,26	2,26	0,90	3,17	2,21	0,94	3,01	2,14	1,01
18,0	25	3,80	2,54	0,74	3,64	2,47	0,81	3,48	2,40	0,88	3,42	2,37	0,91	3,32	2,33	0,95	3,16	2,26	1,02
19,0	27	3,87	2,67	0,74	3,72	2,60	0,81	3,56	2,53	0,88	3,49	2,50	0,91	3,40	2,46	0,95	3,24	2,39	1,02
22,0	30	4,11	2,57	0,75	3,95	2,50	0,82	3,79	2,44	0,89	3,73	2,42	0,91	3,63	2,38	0,96	3,48	2,32	1,03
24,0	32	4,27	2,49	0,75	4,11	2,44	0,82	3,95	2,38	0,89	3,89	2,36	0,92	3,79	2,33	0,96	3,63	2,27	1,03

	•										
	Внутр.			тем	ператур	оа нарух	кного вс	здуха (°	CWB)		
	EDB		10	-	5	()	(5	1	0
	°C	TC	PI	TC	PI	TC	Pl	TC	PI	TC	PI
	15,0	2,83	1,04	3,30	1,09	3,78	1,14	4,34	1,20	4,72	1,24
	20,0	2,68	1,07	3,16	1,12	3,63	1,17	4,20	1,23	4,58	1,27
E	22,0	2,62	1,08	3,10	1,13	3,57	1,18	4,14	1,24	4,52	1,28
Г	24.0	2.57	1.09	3.04	1.14	3.51	1.19	4.08	1.25	4.46	1.29

220-240V 50Гц

25,0 2,54 1,10 3,01 1,15 3,49 1,20 4,06 1,26 4,43 1,30 2,48 1,11 2,95 1,16 3,43 1,21 4,00 1,27 4,38 1,31

3D077470A

	ОБОЗНАЧЕНИЯ	
AFR:	Расход воздуха	$(M^3/Muh.)$
BF:	Коэффициент байпаса	
EWB:	Темп. смоч. термом. на входе	(°C)
EDB:	Темп. сух. термом. на входе	(°C)
TC:	Общая мощность	(кВт)
SHC:	Чувствительная теплопроизводительностьа	(кВт)
PI:	Входная мощность	(кВт)

- показывает номинальную и входную мощность. 2. $\overline{\mathsf{TC}}$, $\overline{\mathsf{PI}}$ и SHC необходимо рассчитать интерполированием на
- основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах.)
- 3. Мощности основаны на следующих условиях:
 - (1) Соответствующая длина труб с хладагентом: 5.0м
 - (2) Перепад уровня: 0м

4 Таблицы производительности

Таблицы холодо-/теплопроизводительности

FCQG5	0F + R	KS50K																	
Охлаж	сдение	:		220-2	240V 5	0Гц										AFR BF			2.6
Вну	тр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20 25 30 32 35 40																
°C	°C	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14,0	20	5,12	3,56	1,08	4,89	3,43	1,19	4,66	3,31	1,29	4,56	3,26	1,33	4,42	3,18	1,39	4,19	3,06	1,50
16,0	22	5,35	3,49	1,09	5,12	3,37	1,19	4,89	3,26	1,30	4,79	3,21	1,34	4,65	3,14	1,40	4,42	3,03	1,50
18,0	25	5,58	3,62	1,09	5,35	3,50	1,20	5,12	3,40	1,30	5,02	3,35	1,34	4,88	3,29	1,41	4,65	3,18	1,51
19,0	27	5,70	3,77	1,10	5,47	3,67	1,20	5,23	3,56	1,31	5,14	3,52	1,35	5,00	3,46	1,41	4,77	3,35	1,51
22,0	30	6,04	3,62	1,11	5,81	3,53	1,21	5,58	3,44	1,32	5,49	3,40	1,36	5,35	3,34	1,42	5,11	3,25	1,52
24,0	32	6,27	3,52	1,11	6,04	3,43	1,22	5,81	3,34	1,32	5,72	3,31	1,36	5,58	3,26	1,43	5,34	3,18	1,53

Обогрев		220-240V 50Гц							12.5		
Внутр.			тем	ператур	а нарух	кного вс	здуха (°	CWB)			
EDB	-	0	-	5	()	(5	10		
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	Pl	
15,0	4,04	1,37	4,72	1,44	5,39	1,50	6,21	1,58	6,75	1,64	
20,0	3,83	1,41	4,51	1,47	5,19	1,54	6,00	1,62	6,54	1,67	
22,0	3,75	1,42	4,43	1,49	5,10	1,55	5,92	1,63	6,46	1,69	
24,0	3,67	1,44	4,34	1,50	5,02	1,57	5,83	1,65	6,38	1,70	
25,0	3,62	1,44	4,30	1,51	4,98	1,58	5,79	1,66	6,33	1,71	
27,0	3,54	1,46	4,22	1,52	4,90	1,59	5,71	1,67	5,97	1,71	

3D077499A

U	Ь	U	3	r	IA	Ч	E	HI	/1}	1

 $(M^3/Muh.)$

AFR: BF: Расход воздуха Коэффициент байпаса EWB: EDB: (°C) (°C) (кВт) Темп. смоч. термом. на входе Темп. сух. термом. на входе Общая мощность

TC: SHC: Чувствительная теплопроизводительностьа (кВт) Входная мощность

- показывает номинальную и входную мощность.
- 2. Мощности основаны на следующих условиях:

- (1) Соответствующая длина труб с хладагентом: 5.0м
- (2) Перепад уровня: 0м

AFR

 $(M^3/Muh.)$

4 Таблицы производительности

4 - 1 Таблицы холодо-/теплопроизводительности

BQ350	8+RXS	35K																	
Охлаж	дение			50Гц	220-24	0V										AFR BF			16 .15
Внут	ъ.							Тем	ператур	а нарух	кного во	здуха (°	'CDB)			DI		0.	13
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	3.48	3.12	0.81	3.33	3.04	0.89	3.17	2.97	0.97	3.10	2.94	1.00	3.01	2.90	1.04	2.85	2.83	1.12
16.0	22	3.64	3.07	0.81	3.48	3.00	0.89	3.32	2.93	0.97	3.26	2.91	1.00	3.17	2.87	1.05	3.01	2.80	1.13
18.0	25	3.80	3.29	0.82	3.64	3.22	0.90	3.48	3.16	0.98	3.42	3.14	1.01	3.32	3.10	1.05	3.16	3.04	1.13
19.0	27	3.87	3.53	0.82	3.72	3.47	0.90	3.56	3.41	0.98	3.49	3.39	1.01	3.40	3.35	1.06	3.24	3.30	1.13
22.0	30	4.11	3.43	0.83	3.95	3.38	0.91	3.79	3.33	0.98	3.73	3.31	1.02	3.63	3.28	1.06	3.48	3.22	1.14
24.0	32	4.27	3.37	0.83	4.11	3.32	0.91	3.95	3.27	0.99	3.89	3.25	1.02	3.79	3.22	1.07	3.63	3.18	1.15

							7 11 11			•
Внутр.			Тем	ператур	а нарух	кного во	здуха (°	CWB)		
EDB	-1	10	-	5	()	(ō	1	0
°C	TC	Pl	TC	PI	TC	PI	TC	PI	TC	Pl
15.0	2.69	0.96	3.14	1.01	3.60	1.05	4.14	1.11	4.50	1.15
20.0	2.55	0.99	3.01	1.03	3.46	1.08	4.00	1.14	4.36	1.17
22.0	2.50	1.00	2.95	1.04	3.40	1.09	3.94	1:15	4.31	1.18
24.0	2.44	1.01	2.90	1.05	3.35	1.10	3.89	1.16	4.25	1.19
25.0	2.42	1.01	2.87	1.06	3.32	1.11	3.86	1.16	4.22	1.20
27.0	2.36	1.02	2.81	1.07	3.26	1.12	3.81	1.17	4.17	1.21

50Гц 220-240V

3TW31272-3C

ОБОЗНАЧЕНИЯ AFR: Расход воздуха Коэффициент байпаса EWB: Темп. смоч. термом. на входе

Обогрев

(°C) EDB: Темп. сух. термом. на входе (кВт) TC: Общая мощность SHC: Чувствительная теплопроизводительностьа (кВт) PI:

Входная мощность

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5м (2) Перепад уровня: 0м
- показывает номинальную и входную мощность.

4 - 1 Таблицы холодо-/теплопроизводительности

Охлаж	сдение	•		50Гц	220-24	40V										AFR BF			16
Вну	тр.							Тем	ператур	ра нарух	жного во	оздуха (CDB)						
EWB	EDB		20			25			30			32			35			40	
°C	°C	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
14.0	20	5.12	3.88	1.27	4.89	3.76	1.39	4.66	3.65	1.51	4.56	3.60	1.56	4.42	3.54	1.63	4.19	3.43	1.75
16.0	22	5.35	3.81	1.27	5.12	3.70	1.40	4.89	3.60	1.52	4.79	3.55	1.57	4.65	3.49	1.64	4.42	3.39	1.76
18.0	25	5.58	4.00	1.28	5.35	3.90	1.40	5.12	3.80	1.52	5.02	3.76	1.57	4.88	3.71	1.65	4.65	3.61	1.77
19.0	27	5.70	4.23	1.28	5.47	4.13	1.41	5.23	4.04	1.53	5.14	4.00	1.58	5.00	3.95	1.65	4.77	3.85	1.77
22.0	30	6.04	4.08	1.30	5.81	4.00	1.42	5.58	3.92	1.54	5.49	3.88	1.59	5.35	3.83	1.66	5.11	3.75	1.78
240	32	6.27	3 98	1.30	6.04	3 90	1 42	5.81	3.83	1.55	5.72	3.80	1.60	5 58	3.75	1.67	5.34	3.68	1 79

Обогрев			50ΓL	220-2	40V		AFR		16		
Внутр.			Тем	іператуі	ра нарух	кного вс	эдуха (^с	CWB)			
EDB		10	-	-5		0		6	10		
°C	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	
15.0	3.70	1.36	4.32	1.43	4.94	1.50	5.69	1.58	6.19	1.63	
20.0	3.51	1.40	4.13	1.47	4.75	1.53	5.50	1.61	6.00	1.67	
22.0	3.44	1.41	4.06	1.48	4.68	1.55	5.42	1.63	5.92	1.68	
24.0	3.36	1.43	3.98	1.50	4.60	1.56	5.35	1.64	5.84	1.70	
25.0	3.32	1.44	3.94	1.50	4.56	1.57	5.31	1.65	5.81	1.70	

1.52

4.49

1.58

5.23

1.66

5.73

1.72

3TW31282-3B

ОБОЗНАЧЕНИЯ

3.25

1.45

27.0

 AFR:
 Расход воздуха
 (м³/Мин.)

 BF:
 Коэффициент байпаса

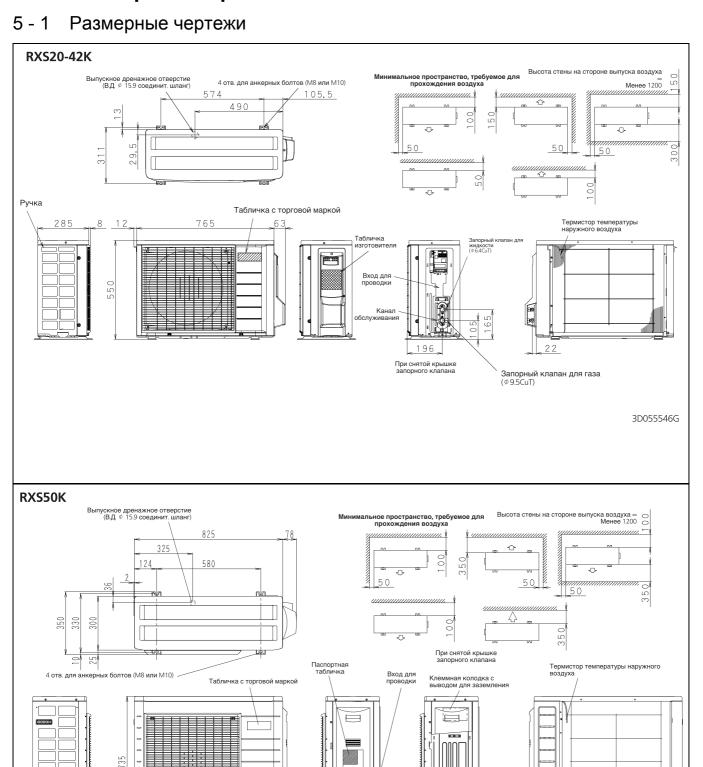
 EWB:
 Темп. смоч. термом. на входе
 (°C)

 EDB:
 Темп. сух. термом. на входе
 (°C)

 TC:
 Общая мощность
 (кВт)

3.87

TC: Общая мощность (кВт) SHC: Чувствительная теплопроизводительностьа (кВт) PI: Входная мощность (кВт)


ПРИМЕЧАНИЯ

- 1. Мощности основаны на следующих условиях: (1) Соответствующая длина труб с хладагентом: 5м
 - (2) Перепад уровня: 0м
- 2. показывает номинальную и входную мощность.

4

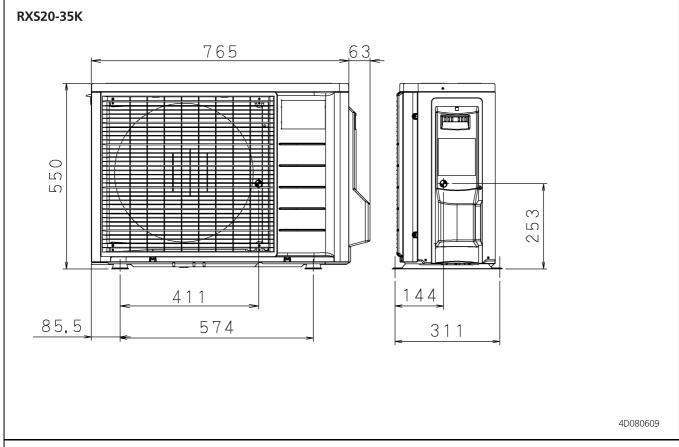
FBQ50C8+RXS50K

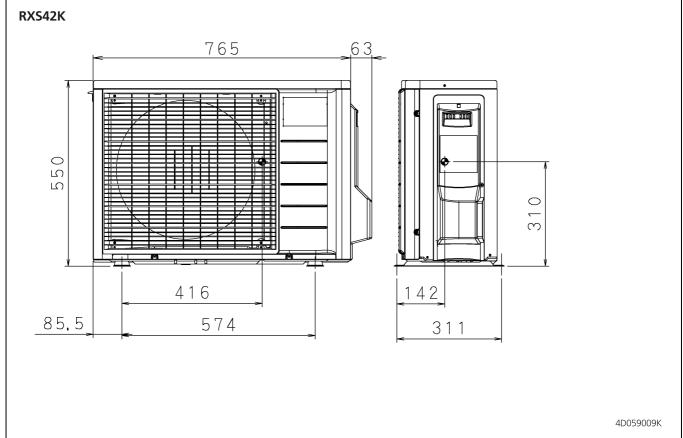
5 Размерные чертежи

ый клапан для жидкости (Ф 6.4CuT)

_160

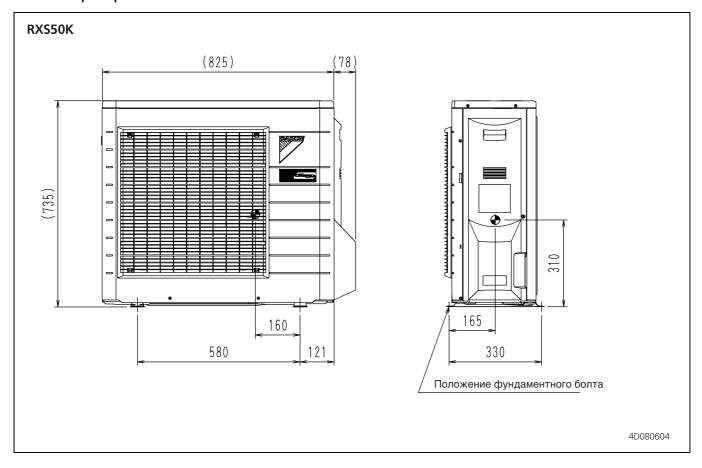
____30 й клапан для газа

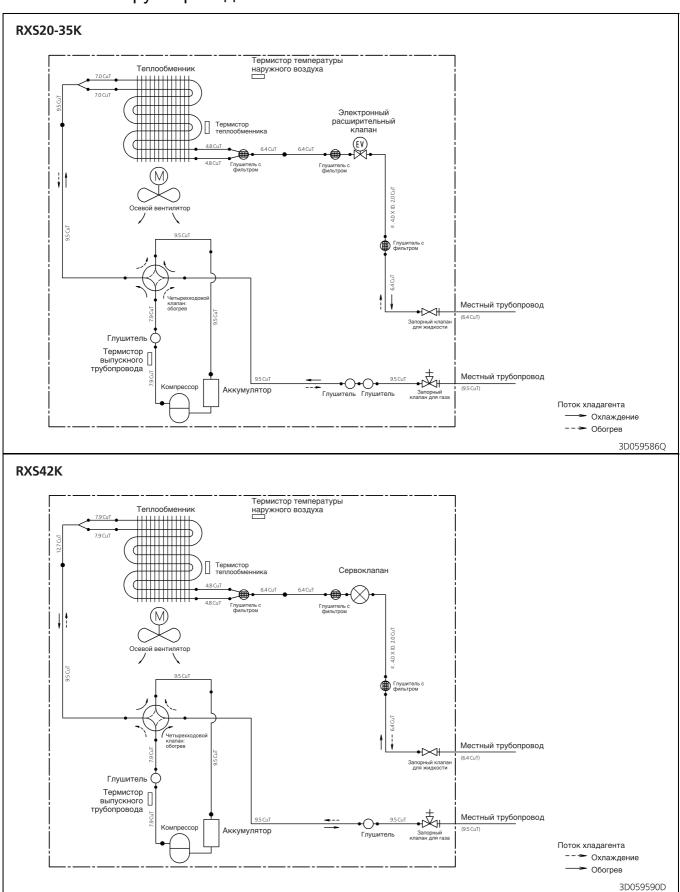

Запорный (Ø 12.7CuT)


Гранким • Split - Sky Air • Наружный блок

3D051657S

6 Центр тяжести

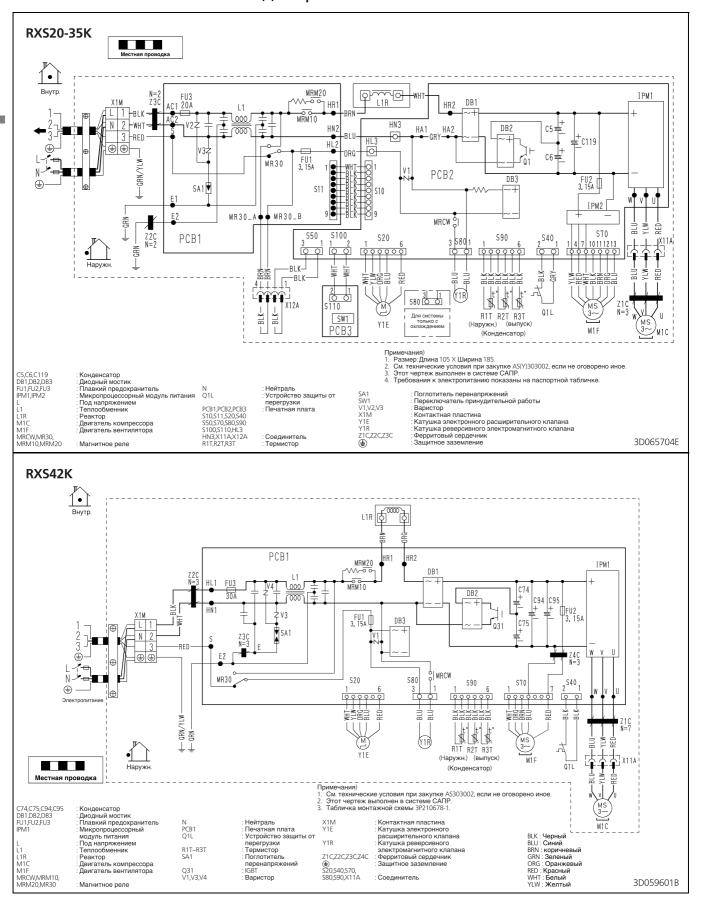

6 - 1 Центр тяжести


6 Центр тяжести

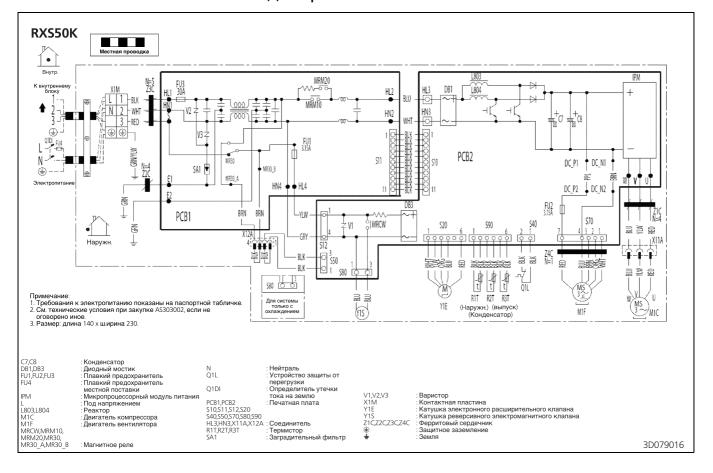
6 - 1 Центр тяжести

7 Схемы трубопроводов

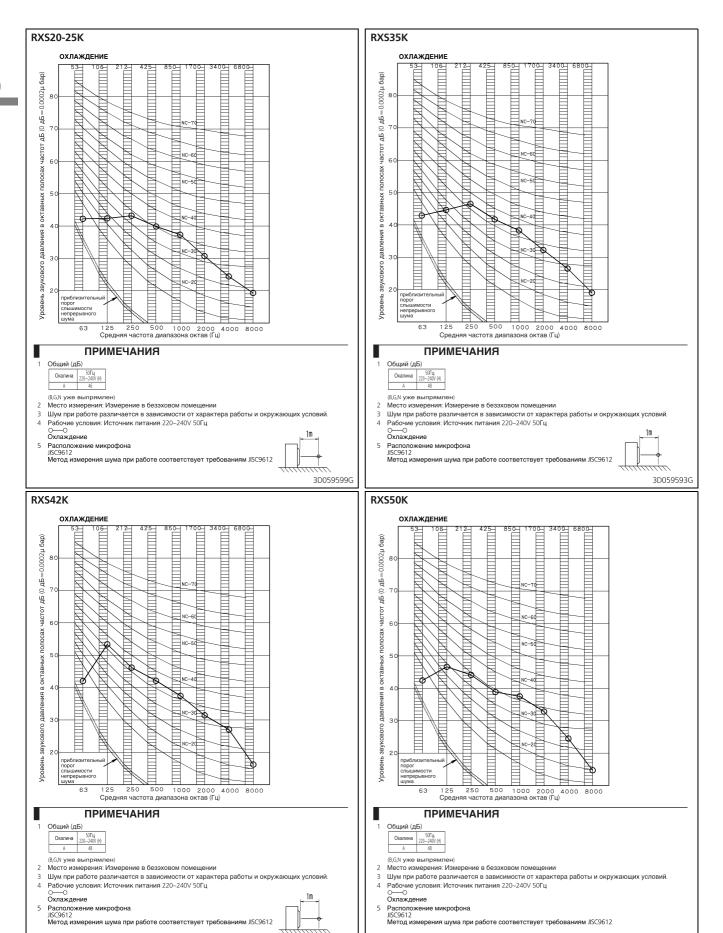
7 - 1 Схемы трубопроводов


7 Схемы трубопроводов

7 - 1 Схемы трубопроводов

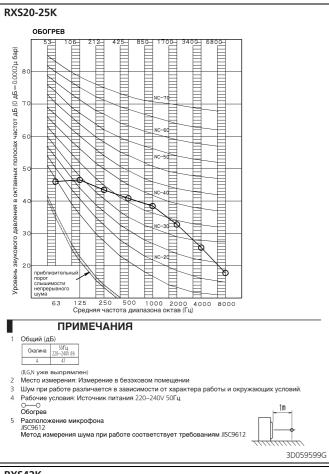

8 Монтажные схемы

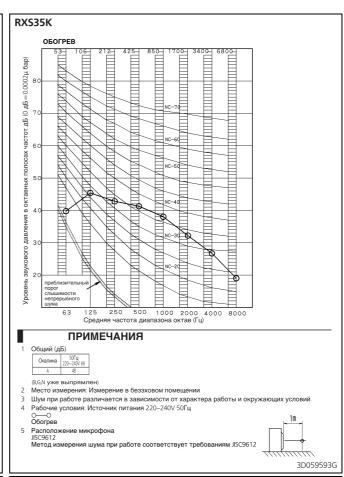
8 - 1 Монтажные схемы - Одна фаза

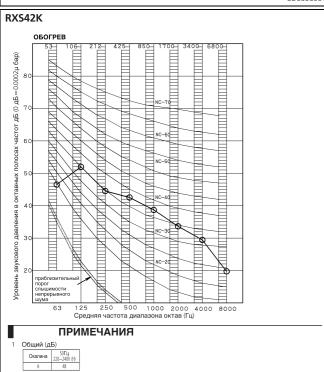

8 Монтажные схемы

8 - 1 Монтажные схемы - Одна фаза

9 Данные об уровне шума

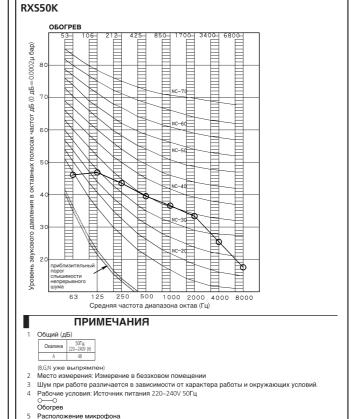

9 - 1 Спектр звукового давления - Охлаждение




3D059740F

9 Данные об уровне шума

9 - 2 Спектр звукового давления - Нагрев

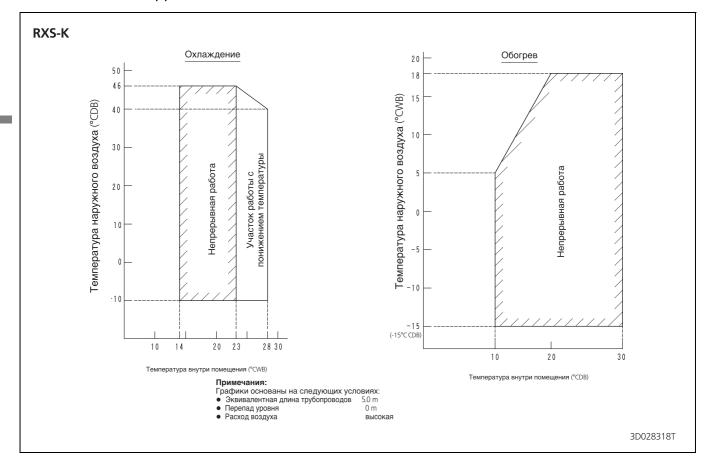


Шум при работе различается в зависимости от характера работы и окружающих услов Рабочие условия: Источник питания 220–240V 50Гц

Место измерения: Измерение в безэховом помещении

JISC9612 Метод измерения шума при работе соответствует требо

Расположение микрофона



JISC9612 Метод измерения шума при работе соответствует требованиям JISC9612

3D059740F

10 Рабочий диапазон

10 - 1 Рабочий диапазон

Компания Daikin занимает уникальное положение в области производства обордования для кондиционирования воздуха, ком пресоров и хладагентов Это стапо причиной ее активното участия в решении эколотических проблем. В течение нескольких нет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, котора в миникальной степени оказывает воздействие на окружающую среду. Эта задана требует, чтобы разработка и проектирование широкого стект ра продукции и систем управления выголнятись с учетом экспогических требований и были направлены на сохранение энергии и сисижение объема отходов.

Настоящий буклет составлен только для справонных целей и не является предложением, обязательным для выполнения компанией Dalkin Europe N.V. Его сфермание составлено компанией Dalkin Europe N.V. на основаниисведений которыми она компанией Da kin Europe N.V. на основаниисведений, которыми она располагает. Компания не дает прямую ити связанную гарантию относительно полноты, точности, недежности или соответствия конкретной цели ее содержания, а также гродуктов и услуг, представленных в нем. Тежнические характеристики могут быть изженены без предварительного уведомления. Компания Dalkin Еurope N.V. отказывается от какой-либо ответственности за прямые или косвенные. убытки, понимаемые в самом широком смысле, вытекающие из прямою или косвенного использования и/или трактовим данного буклета. На все содержание расгространяется авторское право Dalkin Europe N.V.

Данные продукты не входят в объем программы сертификации Eurovent

\mathbf{r}	A .	\mathbf{r}	\mathbf{C}	~		
к	Δ	ĸ		()	1)	н

Daik	cin proc	ducts a	re distri	buted b	y:			