

Чиллеры

Технические Данные

Чиллер с возд. охлажд., высокоэф. **DAIKIN**

ECDRU12-435

Чиллеры

Технические Данные

Чиллер с возд. охлажд., высокоэф. DAIKIN A

EWAD-CF

l	Чиллер с возд. охлажд., высокоэф. EWAD-CFXS	3	1
	EWAD-CFXL	29	2
	FWAD-CFXR	55	3

СОДЕРЖАНИЕ

EWAD-CFXS

1	ларактеристики
2	Технические характеристики Технические параметры Электрические параметры
3	Характеристики и преимущества
4	Общие характеристики
5	Обозначения 15 Обозначения 1
6	Таблицы производительности 14 Таблицы холодопроизводительности 14
7	Размерные чертежи 15 Размерные чертежи 17
8	Данные об уровне шума19 Данные об уровне шума1
9	Установка 2 Способ монтажа 2 Заправка, расход и количество воды 2
0	Рабочий диапазон 24 Рабочий диапазон 2
1	Описание технических характеристик

- Режим свободного охлаждения
- Высокая эффективность, стандартный уровень звука
- Широкий рабочий диапазон
- Пульт MicroTech III

2 Технические характеристики

2-1 Техническ	ие параметры		EWAD 640CFXS	EWAD 770CFXS	EWAD 850CFXS	EWAD 900CFXS	EWAD C10CFXS	EWAD C11CFXS	EWAD C12CFXS	EWAD C13CFXS	EWAD C14CFXS	EWAD C15CFXS	EWAD C16CFXS		
Холодопроизводит ельность	Ном.			кВт	640 (1) / 295 (2)	772 (1) / 365 (2)	852 (1) / 413 (2)	902 (1) / 434 (2)	1.027 (1) / 502 (2)	1.089 (1) / 524 (2)	1.269 (1) / 594 (2)	1.349 (1) / 652 (2)	1.435 (1) / 663 (2)	1.493 (1) / 659 (2)	1.555 (1) / 722 (2)
Регулирование	Способ			•					Б	есступен	14.		•	•	•
мощности	Минимальная мощн	НОСТЬ		%						12,5					
Входная мощность	Охлаждение	Ном.		кВт	257 (1) / 74,3 (2)	272 (1) / 87,9 (2)	293 (1) / 90,7 (2)	324 (1) / 99,8 (2)	360 (1) / 109 (2)	399 (1) / 118 (2)	397 (1) / 131 (2)	439 (1) / 143 (2)	454 (1) / 152 (2)	492 (1) / 160 (2)	530 (1) / 170 (2)
EER		•		•	2,49 (1) / 8,62 (2)	2,84 (1) / 8,78 (2)	2,90 (1) / 9,4 (2)	2,78 (1) / 9,04 (2)	2,85 (1) / 9,43 (2)	2,73 (1) / 9,19 (2)	3,19 (1) / 9,67 (2)	3,08 (1) / 9,45 (2)	3,16 (1) / 9,42 (2)	3,04 (1) / 9,33 (2)	2,93 (1) / 9,16 (2)
ESEER					3,44	3,52	3,78	3,50	3,74	3,54	3,88	3,78	4,01	3,95	3,85
IPLV					3,87 4,03 4,07 4,05 4,00 3,93 4,36 4,25 4,36 4,35 4,										
Корпус	Цвет					1	1	1	Сл	оновая ко	ОСТЬ	1			
	Материал				Оцинкованный и покрашенный стальной лист										
Размеры	Блок	Высота		MM		2.565									
·		Ширина		ММ						2.480					
		Глубина	1	ММ	6.185	7.085	7.9	985	8.8	8.885					
Bec	Блок			КГ	7.760	8.340	8.9	900	10.160	10.420	11.	900	12.540	12.620	12.670
	Эксплуатационный	вес		КГ	8.040	8.580	9.	140	10.560	10.820	12.	290	13.530	13.610	13.660
Вод.	Тип			1					л Одноходо	вой кожу	хотрубнь	ıй	ı	1	ı
теплообменник	Объем воды			Л	266	251	2	43	4	03	3	86		979	
	Номинальный расход воды	Охлажд	ение	л/сек	27,8	33,5	37,0	39,2	44,6	47,3	55,1	58,6	62,4	64,9	67,6
	Спад номинального	Охлаж дение	Теплооб менник	кПа	85 / 128 (2)	105 / 172 (2)	90 / 178 (2)	101 / 198 (2)	111 / 245 (2)	124 / 272 (2)	98 / 232 (2)	110 / 259 (2)	139 / 305 (2)	150 / 328 (2)	162 / 354 (2)
	давления воды														
	Изоляционный мат	ериал								крытая п					
Воздушный теплообменник	Тип				Высон	коэффект	гивное ор	ебрение	и трубны	ій теплоо	бменник	со встроє	енным пе	реохлади	телем
Вентилятор	Количество				10	12	1	14	1	6			20		
	Тип				Осевой вентилятор с прямой передачей										
	Диаметр			ММ						800					
	Расход воздуха	Ном.		л/сек	50.367	60.440	70.	513	80.	587			95.253		
	Скорость			об/мин						920					
Двигатель	Привод									Инвертор					
вентилятора	Вход	Охлажд	ение	W	5.200	6.300	6.800	7.300	8.400	9.200	14.100	18.100	10.800	18.100	12.700
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)	99,5	100,2	10	0,5	101,4	101,9	102,4		10	2,5	
Уровень звукового давления	Охлаждение	Ном.		дБ(А)	79,0 (1)		79,7 (1)		80,2 (1)	80,7 (1)	80,3 (1)		80,4	4 (1)	
Компрессор	Тип							A	симметри	ичный од	НОВИНТОВ	ой			
· ·	Количество								•	2					
	Масло	Объем з	заправки	Л		3	38		44			5	0		
Рабочий диапазон	Сторона воды	Охлаж дение	Мин.	°CDB						-8 15					
	Сторона воздуха	Охлаж	Мин.	°CDB						-20					
		°CDB						45							
Хладагент	Тип	1						R-134a				1			
	Заправка кг											48			
	Контуры Количество					2									
Подсоединение труб	Вход/выход воды и		я (НД)	1		N150PN1	, .		_		6(219.1m			0PN16(27	
	ь механической сист			кВт	345 (2)	407 (2)			524 (2)	565 (2)		697 (2)	772 (2)		(2)
Температура воздух	енного охл	аждения	°C	-0,8	-0,1	1,2	0,4	0,9	0,1	2,9	2,1	1,3	0,7	0,1	

2

Технические характеристики

2-2 Электрич	неские параметр		EWAD 640CFXS	EWAD 770CFXS	EWAD 850CFXS	EWAD 900CFXS	EWAD C10CFXS	EWAD C11CFXS	EWAD C12CFXS	EWAD C13CFXS	EWAD C14CFXS	EWAD C15CFXS	EWAD C16CFXS	
Компрессор	Фаза					•	•		3	•	•	•	•	•
	Напряжение		V						400					
	Диапазон	Мин.	%	-10										
	напряжений	Макс.	%						10					
	Максимальный ра	бочий ток	Α	218 231 274 333 398 45										
	Способ запуска						Тр	ойниковс	е соедин	ение - De	elta			
Компрессор 2	Максимальный ра	бочий ток	Α	218	231	2	74	33	33		398		4	51
Электропитание	Фаза								3~					
	Частота		Гц						50					
	Напряжение		V						400					
	Диапазон	Мин.	%	-10										
	напряжений	Макс.	%						10					
Блок	Максимальный ст	артовый ток	Α	605	619	6	58	924	971		1.030		1.073	1.086
	Номинальный рабочий ток	Охлаждение	A	404	430	467	515	568	628	636	701	720	773	825
	Максимальный ра	бочий ток	Α	476	510	561	605	672	731	811	87	75	929	982
	Макс. ток блока дл проводов	пя размеров	A	520	556	612	660	733	797	884	9	55	1.013	1.072
Вентиляторы	Номинальный раб	Α	40	48	5	6	6	4			80			

Примечания

- (1) Охлаждение: испаритель 16/10°C, температура среды 35°C, блок в режиме полной нагрузки; стандарт: ISO 3744
- (2) Данные рассчитаны при температуре воздуха снаружи 5°C, температуре воды на входе 16°C.
- (3) Жидкость: вода + этиленгликоль 30%
- (4) Допуск напряжения ± 10%. Разбаланс напряжений между фазами должен быть в пределах ± 3%.
- (5) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. наружного воздуха 35°C. Ток компрессора + вентиляторов.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Низкие эксплуатационные расходы и более длительный срок службы

Данная линейка охладителей стала результатом тщательного проектирования, направленного на оптимизацию энергетической эффективности охладителей при снижении эксплуатационных расходов и повышении рентабельности, эффективности и управляемости установки.

В охладителях применяется высокоэффективное решение с одним винтовым компрессором, большой площадью поверхности змеевика конденсатора для обеспечения максимальной теплопередачи и малого давления выпуска, вентиляторами конденсатора современной конструкции, кожухотрубным испарителем с малыми показателями падения давления хладагента.

В охладителях свободного охлаждения используется дополнительная секция для охлаждения воды в здании с использованием наружного воздуха, что позволяет снизить нагрузку на компрессоры и значительно уменьшить эксплуатационные затраты в холодный сезон.

При свободном охлаждении используется разница температур между наружным воздухом и возвратной водой для охлаждения воды перед ее возвращением для охлаждения с более низкой температурой. Когда температура на улице достаточно низкая, компрессоры охладителей полностью выключаются, и охлаждение осуществляется практически без затрат. Более того, сокращение использования компрессора также продлевает срок службы охладителя и дополнительно снижает общую стоимость установки.

Малый шум в процессе работы

Очень низкий шум как при частичной, так и при полной нагрузке достигается благодаря использованию новейшей конструкции компрессора и вентилятора, способного перемещать большие объемы воздуха и, при этом, работать очень тихо и практически без вибрации.

Выдающаяся надежность

Охладители имеют два полностью независимых контура хладагента для обеспечения максимальной безопасности при плановом или внеплановом техобслуживании. Они оснащены надежным компрессором с ведомыми роторами из новейшего композитного материала и проактивной логикой управления. Кроме того, оборудование проходит полное тестирование на заводе-изготовителе для обеспечения бесперебойной работы.

Бесступенчатое управление производительностью

Управление охлаждающей способностью осуществляется бесступенчато с помощью одного винтового ассиметричного компрессора, которым управляет микропроцессорная система. Каждый блок оснащен бесступенчатым регулятором производительности в диапазоне от 100% до 12,5%. Эта регулировка позволяет привести производительность компрессора в соответствие с нагрузкой по охлаждению в здании без колебаний температуры воды на выходе испарителя. Этих колебаний температуры охлажденной воды можно избежать при плавной регулировке.

При пошаговой регулировке нагрузки компрессора производительность компрессора будет слишком высокой или слишком низкой по сравнению с тепловой нагрузкой здания. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Колебание ELWT (температура воды на выходе испарителя) при ступенчатом управлении производительностью

Колебания температуры воды на выходе из испарителя в зависимости от ступени регулирования мощности (4 ступени)

Блоки с бесступенчатой регулировкой обеспечивают преимущества по сравнению с блоками со ступенчатой регулировкой. Возможность постоянной регулировки в зависимости от энергетических потребностей системы и обеспечения постоянства температуры воды на выходе без отклонения от установленного значения - вот два преимущества, которые позволят вам понять, почему блоки с бесступенчатой регулировкой могут оптимизировать условия работы систем.

FTA_1-2_Rev.00_1

3 - 1 Характеристики и преимущества

Непревзойденная логика управления

Контроллер MicroTech III обеспечивает простую в использовании среду управления. Логика управления гарантирует максимальную эффективность и способность продолжения работы в нештатных ситуациях. В памяти системы также хранятся хронологические данные о работе оборудования. Одним из наиболее значительных преимуществ устройств является простой интерфейс с системами связи LonWorks, Bacnet, Ethernet TCP/IP и Modbus.

Нормативные требования - Безопасность и соблюдение законов/директив

Данное оборудование спроектировано и изготовлено в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Сертификация

Все изготовленное Daikin оборудование имеет обозначение СЕ, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии для требованиями, действующими в странах вне ЕС (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Варианты

Оборудование предлагается в трех вариантах:

X: Высокая эффективность

11 типоразмеров в диапазоне от 640 до 1555 кВт с EER до 3,19 и ESEER до 4,01 (данные относятся к стандартному шуму)

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемую мощность компрессора, всех устройств управления, защитных устройств и потребляемую мощность вентиляторов.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воздуха на входе конденсатора.

ESEER = A x EER100% + B x EER75% + C x EER50% + D x EER25%

	А	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе конденсатора	35°C	30°C	25°C	20°C

Конфигурации с различным уровнем шума

Оборудование предлагается в трех вариантах:

s: Стандартный шум

Вентилятор конденсатора вращается на скорости 920 об./мин, с резиновыми антивибрационными опорами для компрессора

L: Низкий шум

Вентилятор конденсатора вращается со скоростью 920 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

х: Пониженный шум

Вентилятор конденсатора вращается со скоростью 715 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

FTA_1-2_Rev.00_2

4 - 1 Общие характеристики

Корпус и конструктивные особенности

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет: слоновая кость (Ivory White) (Код Munsell 5Y7.5/1) (±RAL7044).На основной раме имеется крюк для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Компрессор (Один ассиметричный винт)

Компрессор полугерметический, с одним винтом и селекторным ротором (с применением новейшего высокопрочного материала, усиленного волокнами). Каждый компрессор имеет асимметричный регулятор (ползунок), обеспечивающий вместе с контроллером устройства бесступенчатую регулировку производительности в диапазоне от 100% до 25%. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск - звезда-треугольник (Y- Δ).

Хладагент

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления) т.е. низкое TEWI (Обще эквивалентное влияние нагревания).

Испаритель (Кожухотрубный)

Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Указанные характеристики также повышают эффективность работы теплообменника, а также системы в целом. Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с фланцевыми соединениями (стандарт) У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED).

Конденсатор (Теплообменник "воздух-хладагент")

Конденсатор изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями. Встроенный контур переохлаждения исключает испарение и способствует увеличению холодопроизводительности без увеличения потребляемой мощности.

Свободное охлаждение (Теплообменник "воздух-вода")

Теплообменник свободного охлаждения изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями.

Вентиляторы конденсатора (ø 800)

Вентиляторы конденсатора относятся к пропеллерному типу. Специальная конструкция лопастей обеспечивает максимальную производительность. Лопатки изготовлены из стеклопластика, и каждый вентилятор защищен кожухом. Моторы вентиляторов защищены автоматическими выключателями, установленными внутри панели управления (стандартное оборудование), и имеют класс защиты IP54. Регулирование скорости вращения вентилятора является стандартным (опция 99).

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным. Электронные расширительные клапаны обладают уникальными характеристиками: малое время открытия и закрытия, высокое разрешение, положительная функция выключения, устраняющая необходимость использования дополнительного электромагнитного клапана, непрерывная регулировка массового расхода без повышенной нагрузки на контур хладагента, устойчивый к коррозии корпус из нержавеющей стали. Электронные расширительные клапаны обычно работают с меньшим значением ΔP между сторонами высокого и низкого давления, чем терморегулирующий вентиль. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

Контур хладагента

Каждый блок имеет 2 независимых контура хладагента, каждый из которых включает:

- Компрессор со встроенным маслоотделителем
- Охлаждаемый воздухом конденсатор
- Электронный расширительный клапан
- Испаритель
- Запорный клапан в линии выпуска
- Запорный клапан в линии для жидкости
- Запорный клапан в линии всасывания (опция)
- Указатель уровня с индикатором влажности
- Фильтр-осушитель
- Загрузочные клапаны
- Переключатель высокого давления
- Датчики высокого и низкого давления

GNC 1-2-3-4 Rev.00 1

4 - 1 Общие характеристики

Контур свободного водяного охлаждения

Свободное охлаждение "Стандартное с гликолем"

Основная гидравлическая схема подключается непосредственно (через трехходовой клапан) к части свободного охлаждения, создавая цепь с водно-гликолевой смесью. Секция свободного охлаждения включает в себя:

- Теплообменник "воздух-вода"
- Трехходовой клапан (Стандартный)

Электрическая панель управления

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу IP54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Силовая секция

Относящаяся к электропитанию часть панели включает предохранители компрессоров, автоматический выключатель вентилятора, контакторы вентилятора и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается в стандартной конфигурации; его можно использовать для изменения значений установок и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды, хладагента и воздуха, программируемые значения, установки. Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров, EEXV и вентиляторы конденсатора, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы. МicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от реле высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

Секция управления - основные характеристики

- Бесступенчатое управление производительностью компрессора и работой вентиляторов.
- Охладитель способен работать в состоянии частичного отказа.
- Полная работоспособность в условиях:
- высокой температуры окружающей среды
- высокой тепловой нагрузки
- высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя.
- Вывод на дисплей температуры вне помещения.
- Вывод на дисплей температуры конденсации-испарения и давления, перегрева на стороне всасывания и выпуска для каждого контура.
- Регулировка температуры воды на выходе испарителя (допуск по температуре = 0,1°C).
- Счетчик часов работы компрессора и насосов испарителя.
- Отображение состояния защитных устройств.
- Количество пусков и часов работы компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Управление вентиляторами в соответствии со значением давления конденсации.
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной).
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Запуск при высокой температуре воды в испарителе.
- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре).
- Сброс установки ОАТ (Температура окружающей среды вне помещения).
- Сброс установки значения (опция).
- Обновление приложения и системы с использованием обычных карт памяти SD.
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров.
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова.

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления).
- Высокое давление (датчик).
- Низкое давление (датчик).
- Автоматический выключатель в цепи вентиляторов.
- Высокая температура на выходе компрессора.
- Высокая температура обмоток двигателя.
- Фазоиндикатор.
- Низкое отношение давлений.
- Большое падение давления масла.
- Низкое давление масла.
- Отсутствие изменения давления при пуске.

GNC_1-2-3-4_Rev.00_2

4 - 1 Общие характеристики

Безопасность системы

- Фазоиндикатор.
- Блокировка при низкой температуре окружающего воздуха.
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики.

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков.
- Клавиатура с 3 клавишами.
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением.
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный).
- Ethernet TCP/IP.

Стандартные дополнительные функции (входят в комплект базового блока)

Пусковое устройство компрессора "звезда-треугольник" (Y-D) - Для низкого пускового тока и пониженного пускового момента

Два установочных значения - Две установки температуры воды на выходе.

Фазоиндикатор - Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз. Набор фланцев для испарителя

20 мм изоляция испарителя - Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами.

Электронагреватель испарителя - Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C и включенном питании.

Электронный расширительный клапан

Запорный клапан в линии выпуска - Установлен на выходном отверстии компрессора для облегчения техобслуживания.

Датчик температуры воздуха снаружи и сброс установки

Счетчик часов работы

Контактор общих неисправностей

Сброс установок, ограничение электропотребления и обработка аварийных сигналов от внешнего устройства

- (Сброс установки): Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); наружная температура; колебание температур в испарителе Δt. - (Ограничение нагрузки): Пользователь может ограничить нагрузку устройства с помощью сигнала 4 − 20 мА или по сети. - (Аварийный сигнал от внешнего устройства): Микропроцессор может получать аварийный сигнал от внешнего устройства (например, насоса и т.д....). Пользователь может определить, будет ли этот сигнал приводить к останову блока или нет.

Автоматические выключатели вентиляторов - Устройство защиты от перегрузки двигателя и короткого замыкания. Главная дверца с блокировкой

Аварийный останов

Регулировка скорости вентиляторов (также обеспечивает тихий режим работы вентилятора) - Управление оборотами вентилятора для повышения плавности управления блоком. Эта опция снижает уровень шума при работе в условиях низких температур окружающей среды.

Опции (по запросу)

Мягкий пуск - Электронное пусковое устройство снижает механическую нагрузку при пуске компрессора

Морской вариант - Блок может работать при температуре жидкости на выходе до −8°С (необходим антифриз).

Реле тепловой перегрузки компрессора - Устройства защиты от перегрузки двигателя компрессора. Это устройство вместе с внутренней защитой двигателя (стандартное оборудование) обеспечивает наилучшую систему защиты для двигателя компрессора.

Контроль пониженного/повышенного напряжения - Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

Электросчетчик - Устройство установлено внутри блока управления, измеряет и отображает значения тока и напряжения

GNC_1-2-3-4_Rev.00_3

4 - 1 Общие характеристики

Конденсаторы для компенсации коэффициента мощности - Для повышения коэффициента мощности устройства при работе в номинальном режиме. Конденсаторы относятся к "сухому", самовосстанавливающемуся типу, снабжены защитным устройством отключения при слишком высоком давлении, изоляция выполнена из нетоксичного диэлектрического материала, без РСВ или РСТ.

Ограничитель тока - Для ограничения (при необходимости) максимального потребляемого устройством тока

Защита змеевика конденсатора

Защита испарителя

Си-Си змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде.

Cu-Cu-Sn змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде и в соленом воздухе.

Оребрение змеевика с алюминиевым покрытием - Оребрения защищены специальным акриловым покрытием, защищающим от коррозии.

Реле потока испарителя - Предоставляется отдельно, подключается и устанавливается на водяном трубопроводе испарителя (заказчиком).

Запорный клапан в линии всасывания - Установлен на отверстии всасывания компрессора для облегчения техобслуживания.

Манометры на стороне высокого давления

Манометры на стороне низкого давления

Резиновые противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Пружинные противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для подавления вибраций при монтаже на крышах и металлических конструкциях.

Один центробежный насос (малый подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Один центробежный насос (большой подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Два центробежных насоса (малый подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Два центробежных насоса (большой подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Сдвоенный предохранительный клапан давления с отклоняющей перегородкой

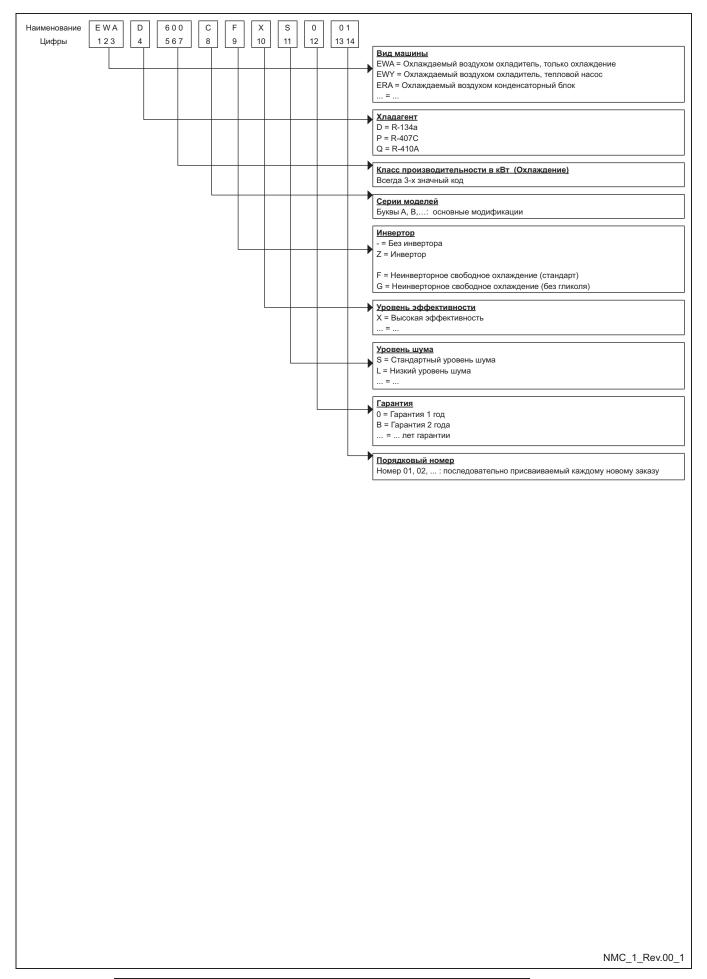
Автоматические выключатели компрессоров

Соединения для подключения трубок для воды на правой стороне испарителя

Реле защиты от замыканий на землю - Обеспечивает выключение всего блока при обнаружении замыкания на землю.

Быстрый перезапуск - Система позволяет включить блок всего лишь через 30 секунд после восстановления электропитания (в случае сбоя в сети электропитания).

Транспортный комплект


Оптимизированное свободное охлаждение (регулирование VFD вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

Оптимизированное свободное охлаждение (Вкл/выкл вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

GNC_1-2-3-4_Rev.00_4

5 Обозначения

5 - 1 Обозначения

6 - 1 Таблицы холодопроизводительности

EWAD-CFXS

Производительность по охлаждению

	Twout			3				9				10	
	Ta	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
		кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа
ļ	25	682	216	29,7	96	700	219	30,4	100	717	223	31,2	105
	30	648	232	28,2	87	664	236	28,9	91	681	240	29,6	95
640	32	632	238	27,5	83	649	242	28,2	87	665	247	28,9	91
040	35	608	248	26,4	77	624	253	27,1	81	640	257	27,8	85
	38	582	259	25,3	71	597	264	26,0	75	613	269	26,6	78
İ	40	563	267	24,5	67	578	271	25,1	71	593	276	25,8	74
	25	789	224	34,3	110	809	228	35,2	115	829	232	36,0	120
Ì	30	765	243	33,3	104	785	247	34,1	108	804	251	34,9	113
ŀ	32	754	251	32,8	101	773	255	33,6	105	792	259	34,4	110
770	35	735	263	32,0	96	753	268	32,7	101	772	272	 '	10
}												33,5	
}	38	712	276	31,0	91	730	281	31,8	95	748	285	32,5	99
	40	695	285	30,2	87	713	290	31,0	91	731	295	31,7	95
	25	866	242	37,7	94	888	246	38,6	98	910	250	39,6	10:
ļ	30	842	263	36,6	89	863	267	37,5	93	884	271	38,4	97
850	32	831	271	36,1	87	851	275	37,0	91	872	279	37,9	95
000	35	812	285	35,3	83	832	289	36,2	87	852	293	37,0	90
	38	788	299	34,3	79	809	303	35,1	82	828	308	36,0	86
1	40	770	308	33,5	75	790	313	34,4	79	810	318	35,2	82
	25	922	267	40,1	105	943	271	41,0	110	965	275	41,9	114
ŀ	30	896	290	39,0	100	916	294	39,8	104	937	299	40,7	10
}	32	883	300	38,4	97	904	304	39,3	101	924	309	40,7	10
900	35	863	315	37,5	93	882	320	38,3	97	902	324	39,2	10
}								-				' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	
}	38	835	331	36,3	88	857	336	37,2	92	876	341	38,1	95
	40	815	341	35,4	84	835	347	36,3	87	856	353	37,2	91
	25	1052	297	45,7	117	1080	302	46,9	123	1108	307	48,1	12
]	30	1018	322	44,3	110	1045	327	45,4	115	1072	333	46,6	12
C10	32	1002	332	43,6	107	1029	338	44,7	112	1055	343	45,8	11
010	35	976	348	42,4	102	1001	354	43,5	106	1027	360	44,6	111
F	38	945	365	41,1	96	969	371	42,1	100	994	377	43,2	10
	40	922	377	40,1	91	945	383	41,1	96	963	386	41,9	99
	25	1123	329	48,9	132	1152	335	50,1	139	1180	340	51,3	14
Ì	30	1085	356	47,2	124	1113	362	48,4	130	1140	369	49,5	136
ŀ	32	1068	368	46,4	120	1094	374	47,6	126	1121	380	48,7	13
C11	35	1037	386	45,1	114	1063	393	46,2	119	1089	399	47,3	124
}	38	1001	405	43,5	107	1003	412	44,6	112	1052	419	45,7	11
-										+			
	40	974	418	42,4	101	999	425	43,4	106	1011	426	43,9	10
	25	1277	328	55,5	100	1311	332	57,0	105	1345	337	58,4	110
	30	1244	356	54,1	95	1277	361	55,5	100	1310	367	56,9	10
C12	32	1229	368	53,5	93	1262	373	54,9	97	1295	379	56,3	10:
012	35	1205	386	52,4	89	1237	392	53,8	94	1269	397	55,1	98
Į	38	1176	405	51,2	85	1207	411	52,5	90	1239	417	53,8	94
Ī	40	1155	418	50,2	82	1185	424	51,5	87	1216	430	52,8	91
	25	1363	362	59,3	113	1398	367	60,8	118	1434	372	62,3	12
ļ	30	1327	393	57,7	107	1361	399	59,2	112	1396	404	60.7	118
ļ.,	32	1311	406	57,0	105	1345	412	58,4	110	1379	418	59,9	11:
C13	35	1283	426	55,8	101	1316	432	57,2	105	1349	439	58,6	11
ŀ	38	1251	447	54,4	96	1283	454	55,8	101	1315	460	57,2	10
ŀ	40	1227	462	53,4	93	1258	469	54,7	97	1290	476	56,0	10
	25	1457	375	63,3	143	1498	381	65,1	151	1540	388	66,9	15
}										 		1	_
	30	1413	406	61,4	135	1453	413	63,1	142	1493	420	64,9	14
C14	32	1393	419	60,6	132	1432	426	62,2	138	1471	433	63,9	14
	35	1360	440	59,1	126	1397	447	60,7	132	1435	454	62,4	13
ļ	38	1321	461	57,5	119	1358	468	59,0	125	1394	476	60,6	13
	40	1293	475	56,2	114	1328	483	57,7	120	1364	491	59,3	12
T	25	1522	404	66,2	156	1562	410	67,9	163	1602	417	69,6	17
	30	1476	439	64,2	147	1515	446	65,9	154	1554	453	67,5	16
C15	32	1455	454	63,3	143	1493	461	64,9	150	1532	468	66,5	15
C15	35	1419	476	61,7	136	1456	484	63,3	143	1493	492	64,9	15
ŀ	38	1377	500	59,9	129	1413	508	61,4	135	1450	517	63,0	14:
ŀ	40	1345	517	58,5	123	1381	525	60,0	129	1416	534	61,5	13
	25	1591	433	69,2	169	1632	440	71,0	177	1674	447	72,7	18
}													
-	30	1542	472	67,1	160	1581	479	68,7	167	1621	487	70,4	17
C16	32	1520	488	66,1	155	1558	496	67,7	162	1596	504	69,4	170
	35	1481	514	64,4	148	1518	522	66,0	155	1555	530	67,6	162
	38	1434	540	62,4	139	1471	549	64,0	146	1508	558	65,5	153
	40	1399	559	60,9	133	1435	568	62,4	139	1472	577	64,0	14

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_1 (1/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

^{*} В случае условий работы, в которых значение dpw указано курсивом красного цвета, обратитесь на завод-изготовитель.

6 - 1 Таблицы холодопроизводительности

EWAD-CFXS Производительность по охлаждению

	Twout		1	1			1	12			1	13	
	Та	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
		кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа
	25	735	227	31,9	109	753	231	32,7	114	772	235	33,5	119
	30	698	244	30,3	99	715	248	31,0	104	732	253	31,8	108
640	32	682	251	29,6	95	699	255	30,3	99	715	260	31,0	104
040	35	656	262	28,5	89	672	267	29,2	93	688	271	29,9	97
	38	628	273	27,3	82	644	278	28,0	86	660	283	28,6	89
	40	608	281	26,4	77	617	282	26,8	79	619	278	26,9	80
	25	849	235	36,9	125	870	239	37,8	131	890	243	38,6	136
	30	823	255	35,8	118	843	259	36,6	123	862	263	37,4	128
770	32	811	263	35,2	115	830	267	36,0	120	849	272	36,9	125
	35	790	276	34,3	110	809	281	35,1	114	827	285	35,9	119
	38	766	290	33,3	103	784	294	34,0	108	802	299	34,8	112
	40	748	299	32,5	99	765	304	33,2	103	774	304	33,6	105
	25	932	253	40,5	107	953	257	41,4	111	974	261	42,3	116
	30	906	275	39,3	101	927	279	40,2	106	947	283	41,1	110
850	32	893	284	38,8	99	914	288	39,7	103	935	292	40,6	107
	35	872	298	37,9	94	893	302	38,8	98	913	307	39,6	103
	38	848	312	36,8	90	868	317	37,7	93	888	322	38,5	97
	40	830	323	36,0	86	849	328	36,9	90	861	329	37,4	92
	25	986	279	42,8	119	1008	283	43,8	124	1030	288	44,7	128
	30	958	303	41,6	112	979	308	42,5	117	1000	312	43,4	121
900	32	944	313	41,0	110	965	318	41,9	114	986	322	42,8	118
	35	922	329	40,0	105	941	334	40,9	109	961	339	41,7	113
	38	895	346	38,9	99	914	351	39,7	103	934	356	40,5	107
	40	875	358	38,0	95	894	363	38,8	99	898	361	39,0	99
	25	1136	312	49,3	134	1164	318	50,5	140	1192	323	51,7	147
	30	1099	338	47,7	126	1126	344	48,9	132	1153	349	50,0	138
C10	32 35	1082	349	47,0	123	1108	355 372	48,1	128 122	1135	361	49,2 47,9	134
	38	1052 1019	366 383	45,7	116 110	1078 1043	390	46,8	114	1104 1062	378 393	46,1	127 118
	40	978	387	44,2 42,5	101	992	387	45,3 43,1	104	1002	387	43,7	107
	25	1209	346	52,5	151	1238	352	53,7	158	1267	358	55,0	165
	30	1167	375	52,5	142	1195	381	51,9	148	1207	388	53,0	154
	32	1148	387	49,9	137	1175	393	51,9	143	1201	400	52,1	149
C11	35	1114	406	49,9	130	1140	413	49,5	135	1166	420	50,6	149
	38	1076	426	46,8	122	1101	433	47,8	127	1113	433	48,3	129
	40	1016	422	44,1	109	1021	417	44,3	110	1025	411	44,5	110
	25	1380	342	59,9	115	1415	347	61,4	120	1450	352	62,9	126
	30	1344	372	58,4	109	1378	377	59,8	114	1412	383	61,3	120
	32	1328	384	57,7	107	1361	390	59,1	112	1395	395	60,5	117
C12	35	1301	403	56,5	103	1334	409	57,9	108	1367	415	59,3	112
	38	1270	423	55,2	98	1302	429	56,5	103	1334	435	57,9	107
	40	1247	437	54,2	95	1278	443	55,5	99	1310	449	56,8	104
	25	1470	378	63,9	130	1507	384	65,4	135	1544	389	67,0	142
	30	1431	410	62,2	123	1466	417	63,7	129	1502	423	65,2	134
040	32	1413	424	61,4	120	1448	430	62,9	126	1483	437	64,4	131
C13	35	1383	445	60,1	115	1417	452	61,5	121	1451	458	63,0	126
	38	1348	467	58,5	110	1381	474	59,9	115	1414	481	61,3	120
	40	1321	483	57,4	106	1353	490	58,8	111	1386	497	60,1	115
	25	1581	394	68,7	166	1623	401	70,5	174	1665	408	72,3	183
	30	1533	427	66,6	157	1573	434	68,3	164	1614	442	70,0	172
C14	32	1511	441	65,6	153	1551	448	67,3	160	1591	456	69,0	168
014	35	1474	462	64,0	146	1513	469	65,7	153	1552	477	67,3	160
	38	1431	484	62,2	138	1469	492	63,8	144	1506	500	65,4	151
	40	1400	499	60,8	132	1436	507	62,3	138	1473	515	63,9	145
	25	1643	424	71,4	179	1684	430	73,1	187	1725	437	74,9	195
	30	1593	460	69,2	169	1632	468	70,9	176	1672	475	72,5	184
C15	32	1570	476	68,2	164	1608	483	69,8	172	1647	491	71,5	179
	35	1531	500	66,5	157	1569	508	68,1	164	1606	516	69,7	171
	38	1486	525	64,5	148	1522	533	66,1	155	1559	542	67,7	161
	40	1452	542	63,1	142	1488	551	64,6	148	1509	552	65,5	152
	25	1715	454	74,5	194	1758	462	76,3	203	1800	469	78,1	212
	ارد ا	1661	495	72,1	182	1701	503	73,8	190	1741	511	75,6	199
	30				1.77	1675	520	72,7	185	1714	529	74,4	193
C16	32	1635	512	71,0	177	1675							
C16	32 35	1593	539	69,2	169	1630	547	70,8	176	1668	556	72,4	183
C16	32												

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_1 (2/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

 $^{^{\}star}$ В случае условий работы, в которых значение dpw указано курсивом красного цвета, обратитесь на завод-изготовитель.

Таблицы производительности 6 Таблицы холодопроизводительности

EWAD-CFXS

Производительность по свободному охлаждению

Twout		8						9			10					
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	
640	-2,1	608	19,1	26,4	117	-1,5	624	19	27,1	123	-0,8	640	19,1	27,8	128	
770	-1,4	735	22,7	32	158	-0,8	753	22,6	32,7	165	-0,1	772	22,6	33,5	172	
850	-0,2	812	26,2	35,3	164	0,5	832	26,2	36,2	171	1,2	852	26,3	37	178	
900	-1,0	863	26,2	37,5	183	-0,3	882	26,2	38,3	190	0,4	902	26,2	39,2	198	
C10	-0,4	976	29,9	42,4	224	0,2	1001	29,7	43,5	234	0,9	1027	29,8	44,6	245	
C11	-1,2	1037	30	45,1	250	-0,6	1063	29,8	46,2	261	0,1	1089	29,9	47,3	272	
C12	1,6	1205	37,1	52,4	212	2,2	1237	36,8	53,8	222	2,9	1269	36,8	55,1	232	
C13	0,8	1283	37	55,8	238	1,5	1316	37,1	57,2	248	2,1	1349	36,8	58,6	259	
C14	0,0	1360	36,8	59,1	278	0,7	1397	37,1	60,7	291	1,3	1435	37	62,4	305	
C15	-0,5	1419	37,1	61,7	300	0,1	1456	37	63,3	314	0,7	1493	36,9	64,9	328	
C16	-1,2	1481	36,8	64,4	324	-0,5	1518	37	66	339	0,1	1555	36,9	67,6	354	

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_4 (1/2)

Та: Температура воздуха снаружи; Twout: температура воды на выходе блока ($\Delta t\,6^{\circ}C$)

ТРС: Температура воздуха для свободного охлаждения 100%; СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение

6 Таблицы производительности

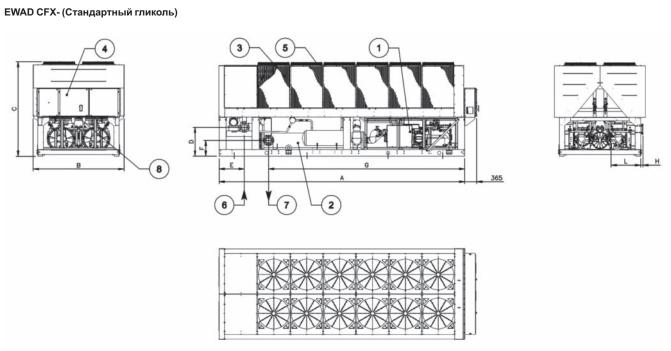
6 - 1 Таблицы холодопроизводительности

EWAD-CFXS

Производительность по свободному охлаждению

Twout			11					12			13					
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	
640	-0,1	656	19,2	28,5	134	0,5	672	19,1	29,2	140	1,2	688	19,1	29,9	146	
770	0,6	790	22,7	34,3	179	1,3	809	22,7	35,1	186	2,0	827	22,8	35,9	194	
850	1,9	872	26,3	37,9	186	2,6	893	26,3	38,8	193	3,3	913	26,4	39,6	201	
900	1,1	922	26,2	40	205	1,8	941	26,2	40,9	213	2,5	961	26,2	41,7	221	
C10	1,5	1052	29,7	45,7	255	2,2	1078	29,8	46,8	267	2,9	1104	29,9	47,9	278	
C11	0,7	1114	29,8	48,4	284	1,4	1140	29,9	49,5	295	2,0	1166	29,8	50,6	307	
C12	3,6	1301	36,9	56,5	242	4,3	1334	37	57,9	253	5,0	1367	37,1	59,3	264	
C13	2,8	1383	37	60,1	271	3,5	1417	37,1	61,5	282	4,1	1451	36,8	63	294	
C14	1,9	1474	36,9	64	320	2,5	1513	36,9	65,7	335	3,1	1552	36,8	67,3	350	
C15	1,4	1531	37,1	66,5	343	2,0	1569	37	68,1	358	2,6	1606	36,9	69,7	373	
C16	0,7	1593	36,8	69,2	369	1,4	1630	37,1	70,8	384	2,0	1668	37	72,4	400	

Жидкость: Вода + этиленгликоль 30%


Та: Температура воздуха снаружи; Twout: температура воды на выходе блока (Δt 6°C)

SRC_1-2-3-4-5-6_Rev.00_4 (2/2)

TFC:Температура воздуха для свободного охлаждения 100%; CC: Производительность по охлаждению; PI: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

7 Размерные чертежи

7 - 1 Размерные чертежи

Чертежи служат только для иллюстрации. Размеры блоков приведены в таблице ниже.

Мод	ели	Габариты (мм)												
EWAD CFXS/XL	EWAD CFXR	Α	В	С	D	E	F	G	Н	I	Вентиляторы			
640	600	5820	2480	2565	795	690	435	5370	75	800	10			
770	740	6720	2480	2565	795	690	435	5370	75	800	12			
850	820	7620	2480	2565	795	690	435	5370	75	800	14			
900	870	7620	2480	2565	795	690	435	5370	75	800	14			
C10	980	8520	2480	2565	795	690	540	5355	75	748	16			
C11	C10	8520	2480	2565	795	690	540	5355	75	748	16			
C12	C11	10320	2480	2565	795	690	540	5355	75	748	20			
C13	C12	10320	2480	2565	795	690	540	5355	75	748	20			
C14	C13	10320	2480	2565	795	690	540	5355	75	670	20			
C15	C14	10320	2480	2565	795	690	540	5355	75	670	20			
C16	C15	10320	2480	2565	795	690	540	5355	75	670	20			

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Компрессор
- 2 Испаритель
- 3 Змеевик конденсатора
- 4 Электрическая панель
- 5 Вентилятор
- 6 Патрубок подвода воды в испаритель
- 7 Выход испарителя для воды
- 8 Слот для подключения питания

DMN_1_Rev.00

8 Данные об уровне шума

8 - 1 Данные об уровне шума

EWAD-CFXS

			Уровень з	вукового дав	ления в 1 м	от блока (rif. 2	2 х 10-5 Па)			Электропитание
МОДЕЛЬ	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
640	73,9	76,0	78,8	78,0	73,9	69,4	59,8	50,7	79,0	99,5
770	74,6	76,7	79,5	78,7	74,6	70,1	60,5	51,4	79,7	100,2
850	74,6	76,7	79,5	78,7	74,6	70,1	60,5	51,4	79,7	100,5
900	74,6	76,7	79,5	78,7	74,6	70,1	60,5	51,4	79,7	100,5
C10	75,1	77,2	80,0	79,2	75,1	70,6	61,0	51,9	80,2	101,4
C11	75,6	77,7	80,5	79,7	75,6	71,1	61,5	52,4	80,7	101,9
C12	75,2	77,3	80,1	79,3	75,2	70,7	61,1	52,0	80,3	102,4
C13	75,3	77,4	80,2	79,4	75,3	70,8	61,2	52,1	80,4	102,5
C14	75,3	77,4	80,2	79,4	75,3	70,8	61,2	52,1	80,4	102,5
C15	75,3	77,4	80,2	79,4	75,3	70,8	61,2	52,1	80,4	102,5
C16	75,3	77,4	80,2	79,4	75,3	70,8	61,2	52,1	80,4	102,5

ПРИМЕЧАНИЯ

Жидкость: Вода + этиленгликоль 30%

Примечание: Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°C, наружная температура 35°C, работа при полной нагрузке

NSL_1-2-3_Rev.00_1

9 - 1 Способ монтажа

Примечания по установке

Предупреждение

Установка и техобслуживание блока должны производиться только квалифицированными специалистами, знающими местные положения и правила и имеющими опыт работы с данным оборудованием. Необходимо избегать установки агрегата на местах, где проведение технического обслуживания может быть опасным.

Обращение

Необходимо избегать небрежного обращения с блоком или ударов при падении. Не толкайте и не тяните блок на опорах, отличных от его основной рамы. Не допускайте падения блока во время разгрузки или перемещения, поскольку это может привести к значительному повреждению. Для подъема агрегата используйте проушины на опорной раме. Траверсу и тросы следует расположить так, чтобы избежать повреждения змеевика конденсатора или корпуса блока.

Расположение

Блоки выпускаются для наружной установки на крыше, на полу или ниже уровня поверхности земли при условии, что в месте установки нет препятствий для циркуляции воздуха для конденсатора. Блок должен находиться на прочном и ровном основании; в случае установки на крыше или на полу рекомендуется использовать подходящие балки для распределения весовых нагрузок. В случае установки блоков на земле необходимо подготовить бетонное основание, ширина и длина которого превышает установочные размеры блока, по меньшей мере, на 250 мм. К тому же, этот фундамент должен выдержать вес агрегата, указанный в таблице технических характеристик.

Требования по размещению

Блоки охлаждаются воздухом, поэтому важно соблюдать минимальные расстояния, которые обеспечивают наилучшую вентиляцию змеевиков конденсаторов. Пространственные ограничения, снижающие поток воздуха, могут привести к значительному снижению охлаждающей способности и повышению потребления электроэнергии.

При определении места для блока нужно обеспечить достаточный воздушный поток через поверхность передачи тепла конденсатора. Для наилучшего функционирования агрегата необходимо избегать: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

Оба эти условия приводят к увеличению давлений конденсации, которые уменьшают эффективность работы блока и его мощность.

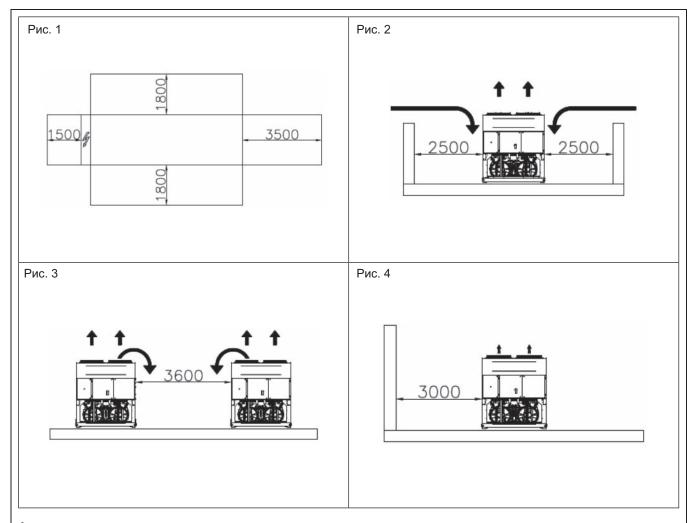
Более того, уникальный микропроцессор способен определять параметры среды работы воздушно-охлаждаемого охладителя и оптимальную нагрузку в случае нестандартных условий.

После установки каждая из сторон блока должна быть доступна для периодического обслуживания. На рис.1 показаны минимальные рекомендуемые расстояния.

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если блоки располагаются в местах, окруженных стенками или препятствиями той же высоты, что и блоки, то блоки должны, по крайней мере, на 2500 мм отделяться от препятствий (рис. 2). В случае, если препятствия выше блоков, блоки должны быть, по меньшей мере, на 3000 мм выше (рис. 4). Блоки, установленные ближе к стене или к другой вертикальной конструкции, чем минимально рекомендуемое расстояние, могут испытывать ограниченную подачу воздуха к змеевику и рециркуляцию теплого воздуха, что снижает их производительность и эффективность. Микропроцессорное управление проактивно реагирует на "нештатное состояние". В случае наличия одного или нескольких видов влияния, ограничивающих поток воздуха, микропроцессор будет подавать команды таким образом, чтобы компрессор(ы) продолжал(и) работать (при пониженной мощности), вместо того, чтобы выключаться при высоком давлении на выходе.

Если два или более блока расположены рядом друг с другом, рекомендуем располагать змеевики конденсаторов на расстоянии, по меньшей мере, 3600 мм друг от друга (рис. 3); сильный ветер может быть причиной рециркуляции теплого воздуха.


Для получения информации о других решениях по установке просьба обращаться к нашим техническим специалистам.

Приведенные выше рекомендации касаются общего случая установки. Специальная оценка выполняется подрядчиком на основании конкретной ситуации.

INN_1-2_Rev.00_1

9 Установка

9 - 1 Способ монтажа

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение

Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная температура окружающей среды: -20°C Максимальная температура окружающей среды: +57°C

Максимальная относительная влажность: 95% без конденсации

INN_1-2_Rev.00_2

Объем, поток и качество воды

9 - 2 Заправка, расход и количество воды

			Охла	аждающая	вода							
Поз	виции _{(1) (5)}		Сис-		Однократный поток	Охлажден	ная вода	Низ темпеј		Выс темпер		Тенденция в случае несоответствия
			Циркулирующая вода	Поступающая вода (4)	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода (4)	Циркулирующая вода [20°C ~ 60°C]	Поступающая вода ₍₄₎	Циркулирующая вода [60°C ~ 80°C]	Поступающая вода ₍₄₎	критериям
	pH	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,8 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
	Электропроводность	[мСм/м] при 25°C	Менее 80	Менее 30	Менее 40	Менее 80	Менее 80	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
;:		(мкСм/см) при 25°С	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 800)	(Менее 800)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
зиции:	Ионы хлоридов	[MrCl ²⁻ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
	Ионы сульфата	[MrSO ² - ₄ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
2	М-щелочность (рН 4,8)	[MrCaCo ₃ /л]	Менее 100	Менее 50	Менее 50	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
1	Общая жесткость	[MrCaCo ₃ /л]	Менее 200	Менее 70	Менее 70	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
) je	Кальциевая жесткость	[мгСаСо ₃ /л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
олируемые	Ионы силикатов	[MrSiO_/л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
8	Кислород	(мг О2 /л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Коррозия
Контро	Размер частиц	(MM)	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Эрозия
\ <u>\$</u>	Общее содержание растворенных твердых веществ	(мг/л)	Менее 1000	Менее 1000	Менее 1000	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Эрозия
	Этилен, пропиленгликоль (мас. конц.)	Менее 60%	Менее 60%		Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	-
Г	Ионы нитрата	(мг NO3- /л)	Менее 100	Менее 100	Менее 100	Менее 100	Менее 101	Менее 100	Менее 101	Менее 100	Менее 101	Коррозия
оверки:	ТОС Общее содержание органического углерода	(мг/л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Накипь
8	Железо	[мгFе/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
를	Медь	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
F 15	Ионы сульфитов	[MrS ² ·/л]	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Коррозия
	Ионы аммония	[MrNH+,/л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
Z	Остаточные хлориды	[MrCL/л]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
Позиции	Свободный карбид	[MrCO ₂ /л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
	Показатель устойчивости		6,0 ~ 7,0									Коррозия + накипь

waflowqua_1-2_Rev.00_1

9 - 2 Заправка, расход и количество воды

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

При каждом пуске компрессора избыточное количество масла поступает из картера компрессора. Одновременно с этим наблюдается повышение температуры статора двигателя компрессора вследствие повышенного тока пуска.

Во избежание повреждения компрессоров Daikin предусмотрено устройство, ограничивающее частые остановы и пуски

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 2 компрессорами

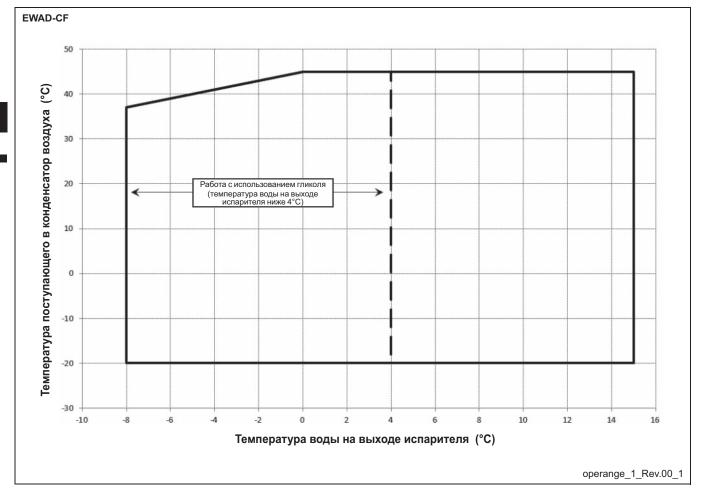
 $M(π) = (0.1595 \times ΔT(°C) + 3.0825) \times P(κBT)$

где:

М минимальное содержание воды в одном блоке, выраженное в литрах

Р Охлаждающая способность блока, выраженная в кВт

ΔТ разность температур воды на входе/выходе из испарителя в °C


Данная формула подходит для:

- стандартных параметров микропроцессора

Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

waflowqua_1-2_Rev.00_2

10 - 1 Рабочий диапазон

10

<u>1</u> 11

11 Описание технических характеристик

11 - 1 Описание технических характеристик

Технические характеристики охладителя с воздушным охлаждением

Охладитель разработан и изготовлен в соответствии со следующими Европейскими директивами:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе (при номинальных рабочих условиях и номинальной температуре воды). Охладитель будет доставлен на место работы полностью собранным и заправленным хладагентом и маслом. Установка охладителя должна выполняться в соответствии с инструкциями изготовителя по подъему оборудования и обращению с ним.

Устройство способно осуществлять пуск и работать (стандартно) при полной нагрузке:

- при температуре снаружи от	°С до	°C
- температуре жидкости на выходе испарителя между	°С и	°C

Хладагент

Можно использовать только R-134a.

Рабочие характеристики

- ✓ Количество винтовых охладителей с воздушным охлаждением
 ✓ Охлаждающая способность одного охладителя
 ✓ Потребляемая мощность одного охладителя в режиме охлаждения
 ✓ Температура воды на входе теплообменника в режиме охлаждения
 ° С
 ✓ Поток воды в теплообменнике
 ✓ Поток воды в теплообменнике
 ✓ Номинальная наружная рабочая температура окружающей среды в режиме охлаждения
 ° С
- ✓ Диапазон рабочего напряжения должен быть 400 В ±10%, 3 ф, 50 Гц, рассогласованность напряжения макс. 3%, без нейтрали, одна точка подключения к электросети.

Описание блока

В стандартной конфигурации охладитель включает, по меньшей мере: два независимых контура хладагента, полугерметические ассиметричные ротационные одновинтовые компрессоры, электронное расширительное устройство (EEXV), кожухотрубный теплообменник прямого расширения хладагента, охлаждаемый воздухом конденсатор, хладагент R134a, система смазки, пусковое устройство для двигателя, запорный клапан на сливной линии, система управления и все компоненты, необходимые для безопасной и стабильной работы аппарата.

Охладители собирают на заводе-изготовителе на крепкой опорной раме, сделанной из оцинкованной стали и покрытой эпоксидной краской.

Уровень шума и вибрации

Уровень давления звука на расстоянии 1 м в открытом полусферическом пространстве не будет превышать ... дБ(A). Уровни давления звука измеряются в соответствии с ISO 3744. Другие способы измерений неприменимы. Уровень вибрации опорной рамы не должен превышать 2 мм/с.

Габаритные размеры:

Размеры блока не превышают следующих значений:

- Длина блока мм - Ширина блока мм - Высота блока мм

Компоненты охладителя

Компрессоры

- ✓ Полугерметические, одновинтовые, ассиметричные, с одним главным винтовым ротором, взаимодействующим с двумя диаметрально противоположными ведомыми роторами. Контактные элементы ведомых роторов изготовляют из композитных материалов с длительным сроком службы. Электродвигатель: 2-полюсный, полугерметический, асинхронный, с короткозамкнутым ротором, охлаждаемый всасываемым газом.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- ✓ Компрессор имеет встроенный высокоэффективный маслоотделитель сетчатого типа и масляный фильтр.
- ✓ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система смазки с электрическим масляным насосом недопустима.

 SPC 1-2-3 Rev.00 1

11 Описание технических характеристик

11 - 1 Описание технических характеристик

- ✓ Охлаждение компрессора осуществляется путем подачи жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- ✓ Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- ✓ Корпус компрессора оснащается портами для возможности осуществления экономически выгодных циклов хладагента.
- ✓ Компрессор имеет защиту в виде датчика температуры (от высокой температуры на выходе) и термистора электродвигателя (от перегрева обмоток).
- Компрессор оборудован электрическим нагревателем для масла.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления охлаждающей способностью

- √ Каждый охладитель имеет микропроцессор для регулирования положения вентиля-задвижки компрессора.
- ✓ Управление производительностью блока является бесступенчатым от 100% до 25% для каждого контура (от 100% до 12,5% полной нагрузки для блока с 2 компрессорами. Охладитель обеспечивает стабильную работу до минимум 12,5% полной нагрузки без вывода горячего газа.
- ✓ Система управляет блоком на основании температуры воды на выходе испарителя, которая контролируется PID (пропорциональноинтегрально-дифференциальный) логикой.
- ✓ Логика управления блоком управляет задвижками компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке установки для поддержания постоянной установки температуры охлажденной воды.
- ✓ Микропроцессорное управление блока обнаруживает состояния, близкие к защитным пределам, и принимает меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - Высокое давление конденсации
 - о Низкая температура испарения хладагента

Испаритель

- ✓ Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента.
- ✓ Внешний слой соединен с электрообогревателем, управляемым термостатом, и покрыт изоляцией из полиуретанового материала с закрытыми порами (толщиной 20 мм) для предотвращения замораживания при температуре окружающей среды до -28°C.
- ✓ Каждый испаритель имеет 2 однопроходных контура хладагента, по одному на каждый компрессор.
- ✓ Для соединений трубок для воды в стандартной комплектации используются фитинги ФЛАНЦЕВОГО типа, которые обеспечивают быстрое механическое отсоединение аппарата от гидронической сети.
- ✓ Испаритель изготовлен в соответствии с директивой ЕС о напорном оборудовании (PED).

Змеевик конденсатора

- ✓ Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Расстояние между ребрами увеличивает поверхность соприкосновения с трубами, защищая их от наружной коррозии.
- ✓ Змеевик имеет встроенный суб-охлаждающий контур, который обеспечивает достаточное субохлаждение для предотвращения неоднородного течения жидкости и увеличения эффективности работы аппарата на 5-7% без увеличения потребляемой мошности.
- Змеевик конденсатора проверяют на утечки и испытывают под давлением с применением сухого воздуха.

Вентиляторы конденсатора

- Вентиляторы, используемые вместе с охлаждающими змеевиками, должны быть пропеллерными, с лопатками из усиленной стеклом смолы для обеспечения более высокой эффективности и снижения шума. Каждый вентилятор должен иметь защитное ограждение.
- ✓ Отвод воздуха должен осуществляться по вертикали, и каждый вентилятор должен быть соединен с электромотором, стандартно поставляемым с защитой IP54 и способным работать при внешней температуре от -20°C до +65°C.
- ✓ Защита должна включать стандартную внутреннюю термозащиту двигателя и выключатель-автомат внутри электрической панели.

Контур хладагента

- ✓ Блок должен иметь несколько независимых контуров хладагента.
- ✓ В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на линии выпуска из компрессора, фильтр-осушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированную линию всасывания.

Контроль конденсации

- ✓ Блоки оснащаются автоматической системой контроля давления конденсации, которая обеспечивает работу при низких внешних температурах вплоть до -...°С при поддержании давления конденсации.
- ✓ Компрессор автоматически отключает нагрузку при обнаружении слишком высокого давления конденсации, чтобы предотвратить
 отключение контура хладагента (выключение блока) вследствие вызванного высоким давлением отказа.

SPC 1-2-3 Rev.00 2

1 Описание технических характеристик

11 - 1 Описание технических характеристик

Варианты исполнения блока с пониженным шумом (на заказ)

- ✓ Компрессоры агрегата необходимо монтировать к металлической опорной раме при помощи резиновых антивибрационных опор для предотвращения передачи вибраций на все металлические элементы агрегата, таким образом контролируя уровень шума.
- ✓ В охладителе для компрессора предусмотрен специальный акустический корпус. Этот корпус состоит из легкого, устойчивого к коррозии алюминия и металлических панелей. Звукоизоляция компрессора гарантируется использованием внутренних гибких многослойных материалов высокой плотности.

Гидронный комплект (опция, на заказ)

- ✓ Гидронный модуль устанавливается на раму охладителя, не увеличивая его размеров. Комплект включает: центробежный водяной насос с трехфазным двигателем, оснащенным внутренней защитой от перегрева, предохранительный клапан, устройство для заполнения.
- У Водяные трубы защищены от коррозии и имеют пробки для очистки и сушки. Заказчик должен предоставить соединения типа
 Victaulic. Трубопровод должен быть полностью изолирован во избежание конденсации (изоляция насоса осуществляется с применением полиуретановой пены).
- ✓ Для блока с 2 компрессорами предлагается на выбор один из вариантов насосов:
 - о один насос
 - о два насоса

Панель управления

11

- ✓ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Пусковое устройство относится к типу "звезда-треугольник" (Y- Δ).
- Органы управления и средства защиты включают средства энергосбережения; кнопку аварийного останова; защиту от перегрузки для двигателя компрессора; выключатели высокого и низкого давления (для каждого контура хладагента); антифризный термостат; выключатель для каждого компрессора.

Вся информация касательно работы агрегата отображается на дисплее. Встроенные календарь и часы могут отключать и запускать агрегат в любое время.

- ✓ Предусмотрены следующие функции:
 - сброс установки температуры воды на выходе путем контроля ∆t температуры воды, сигналом дистанционного управления 4-20 мА пост. тока или путем контроля внешней температуры;
 - функция плавного пуска для защиты от перегрузки во время понижения температуры охлажденной жидкости;
 - о защита критических параметров системы паролем;
 - таймеры запуска и остановки для обеспечения минимального времени простоя компрессора с максимальной защитой двигателя;
 - о возможность сообщения с ПК или дистанционным контролем;
 - управление давлением на выходе путем задания цикла работы вентиляторов конденсатора;
 - о выбор опережения или задержки вручную или автоматически в зависимости от рабочих часов контура;
 - о двойная установка для морской версии агрегата;
 - программирование годового расписания пусков и остановов при помощи внутреннего датчика времени, включая выходные и праздники.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

Охладитель может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
- · Ethernet TCP/IP.

SPC_1-2-3_Rev.00_3

СОДЕРЖАНИЕ

EWAD-CFXL

1	Характеристики	.30
2	Технические характеристики Технические параметры Электрические параметры	. 31
3	Характеристики и преимущества	
4	Общие характеристики	
5	Обозначения	
6	Таблицы производительности Таблицы холодопроизводительности	
7	Размерные чертежи	
8	Данные об уровне шума. Данные об уровне шума	
9	Установка	. 46
10	Рабочий диапазон Рабочий диапазон	
11	Описание технических характеристик	

1 Характеристики

- Высокая эффективность, низкий уровень звука
- Режим свободного охлаждения

- Широкий рабочий диапазон
- Пульт MicroTech III

2 Технические характеристики

Seminoria Concot Seminoria Semin	2-1 Техническ	ие параметры				EWAD 640CFXL	EWAD 770CFXL	EWAD 850CFXL	EWAD 900CFXL	EWAD C10CFXL	EWAD C11CFXL	EWAD C12CFXL	EWAD C13CFXL	EWAD C14CFXL	EWAD C15CFXL	EWAD C16CFXL		
Partymoproalmoon Partymopro		Ном.			кВт						()	. ,				1.555 (1) / 722 (2)		
Bodgess malupromin Curriary, pieces February F	Регулирование	Способ								Б		ч.						
Page	мощности	Минимальная мощ	НОСТЬ		%	·												
ESER	Входная мощность	Охлаждение	Ном.		кВт	` '						. ,		. ,		530 (1) / 170 (2)		
SEER	EER	l				2,49(1)/	2,84(1)/	2,90(1)/	2,78(1)/				.,	3,16(1)/	3,04(1)/	2,93(1)/		
PLV Pawer ESEER					,	,		,	,	,	,	. , ,	,	,				
Margian Some Margian Margia	IPLV												<u> </u>	<u> </u>				
Passelpha Pass		Цвет				- , -	, , , ,	, ,	, , , ,		l	L		, , , ,	,	<u> </u>		
Passepal Passepa	, -								Опинкова				ьной пис	Т				
Вод.	Размеры		Высота		ММ								2	•				
Вес	Тавторы	Briok			!													
Вес Блок эксптуатационный вес кг 8.050 8.620 9.190 10.450 10.710 12.190 12.830 12.910 12.830 12.910 12.830 12.910 12.830 12.910 12.830 12.910 12.830 13.950					ļ	6 185	7 085	7 (285	8.8				10 685				
Вод. Тип	Roc	Enov	ТЛУОИНА		!							12	100		12 010	12.060		
BOR, TENTINOPMENHANK PERSONAL PROPRIATION OF METHOD	Dec		DO0		!					ļ								
Ремональный расхад воды	Don	, ,	Bec		KI	0.320	0.070	9.4						13.020	13.900	13.930		
Номинальный раскод воды Охлаждение рисек 1/2 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2					Τ_	200	054	1 0						1	070			
Раскод воды Охлаж Теплооб кПа воды Спад номинального двение воды Первод вения воды вения воды Первод вения воды вения воды вения воды Первод вения воды вения воды вения в	Termiooowenink		10											00.4		07.0		
номинального дение мении воды давления воды из деления воды деления воды из деления води из деления води воды из деления воды из деления води води води води води води води води				ение			,	,		,	,							
Воздушный теплообменник Тип Высокоэффективное оребрение и трубный теплообменник со встроенным переохладителем Вентилятор Количество 10 12 14 16 20 Тип Осевой вентилятор с прямой передачей Двигатель вентилятора Расход воздуха Ном. л/сек 50.367 60.440 70.513 80.587 95.253 Двигатель вентилятора Привод 95.200 16.000 1.000 18.100 12.700 Уровень звуковой мощности Охлаждение W 5.200 6.300 6.800 7.300 8.400 9.200 14.100 18.100 10.00 12.700 Уровень звуковой мощности Охлаждение Hom. ДБ(A) 75.5 76.3 76.5 (1) 76.9 77.1 76.7 76.8 (1) Компрессор Тип Асимметричный одновинтовой Асимметричный одновинтовой 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15		номинального			кПа					1	1				1	162 / 354 (2)		
Вентилятор Количество 10 12 14 16 20 Двигатель вентилятор с прямой передачей тилятор с пр		Изоляционный мат	ериал						•	3a	крытая п	ора						
Тип		Тип				Высон	коэффект	гивное ор	ебрение	и трубны	й теплоо	бменник	со встроє	енным пе	реохлади	телем		
Тип Осевной вентилятор с прямой передачей Диаметр мм 800 Расход воздуха Ном. л/сек 50.367 60.440 70.513 80.587 95.253 Двигатель Привод Инвертор Вентилятора Вход Охлаждение W 5.200 6.300 6.800 7.300 8.400 9.200 14.100 18.100 10.800 18.100 12.700 Уровень звукового давления Охлаждение Ном. ДБ(A) 96.0 96.8 97.4 98.0 98.2 98.8 98.9 98.9 98.9 98.8 98.9 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.9 98.8 98.9 98.8 98.9 98.9 98.9 98.9 98.9 <td< td=""><td>Вентилятор</td><td>Количество</td><td></td><td></td><td></td><td>10</td><td>12</td><td>1</td><td>4</td><td>1</td><td>6</td><td></td><td></td><td>20</td><td></td><td></td></td<>	Вентилятор	Количество				10	12	1	4	1	6			20				
Диметр							1	1	Осево	і й вентил:	тор с пр	и И пер	едачей					
Расход воздуха Ном. л/сек 50.367 60.440 70.513 80.587 95.253 Двигатель вентилятора Привод Вход Охлаждение W 5.200 6.300 7.300 8.400 9.200 14.100 18.100 10.800 18.100 12.700 Уровень звукового давления Охлаждение Ном. ДБ(A) 96,0 96,8 97,4 98,0 98,2 98,8 98,9 Компрессор Тип ДБ(A) 75,5 76,3 76,5 (1) 76,9 77,1 76,7 76,8 (1) Компрессор Тип Количество Зв 44 50 Рабочий диапазон Сторона воды Охлаж дение Макс. °CDB Зв 44 50 Контуры дение Макс. °CDB Зв -20 34 -20 Хладагент Тип Контуры Количество Кг 128 146 162 182 214 225 248 Хладагент Контуры Коли					ММ													
Скорость об/мин 920 Двигатель вентилятора Вход Охлаждение W 5.200 6.300 6.800 7.300 8.400 9.200 14.100 18.100 10.800 18.100 12.700 Уровень звуковой мощности Охлаждение Ном. ДБ(A) 96,0 96,8 97,4 98,0 98,2 98,8 98,9 Уровень звукового давления Охлаждение Ном. ДБ(A) 75,5 76,3 76,5 (1) 76,9 77,1 76,7 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,7 76,8 (1) 76,8 (1) 76,8 (1) 76,9 77,1 76,7 76,8 (1) 76,8 (1) 76,8 (1) 76,9 77,1 76,7 76,8 (1) 76,8 (1) 76,9 77,1 76,7 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,7 (1) 76,7 (2) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8			Ном		ļ	50 367	60 440	70	513									
Двигатель вентилятора Вход Охлаждение Ном. ДБ(A) Охлаждение Ном.						00.00.	000					<u> </u>		00.200				
Вентилятора Вход Охлаждение W 5.200 6.300 6.800 7.300 8.400 9.200 14.100 18.100 18.00 12.700 Уровень звуковой мощности Охлаждение Ном. дБ(A) 96,0 96,8 97.4 98,0 98,2 98,8 98,8 98,5 18.100 12.700 12.700 18.100 18.100 12.700 18.100	Пригатель	_ '										`						
Уровень звуковой мощности Уровень звукового давления Компрессор Тип Компессор Масло Объем заправки дение Сторона воздуха Осторона воздуха Дение Тип Сторона воздуха Осторона возду	1	<u> </u>	Overove	011140	\\\	E 200	6 200	6 900	7 200				10 100	10 000	10 100	12 700		
Уровень звукового давления Охлаждение Ном. дБ(A) 75,5 (1) 76,3 (1) 76,5 (1) 76,9 (1) 77,1 (1) 76,7 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,8 (1) 76,7 (Уровень звуковой			ение									10.100	<u> </u>	<u> </u>	12.700		
Компрессор Тип Асимметричный одновинтовой Количество 2 Масло Объем заправки дение л 38 44 50 Рабочий диапазон Дение Охлаж дение Мин. °CDB -8 -8 Сторона воздуха Охлаж дение Мин. °CDB 15 -20 Контуры Кг 128 146 162 182 214 225 248 Подсоединение труб Вход/выход воды испарителя (НД) DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273mm) Производительность механической системы КВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)	Уровень звукового	Охлаждение	Ном.		дБ(А)			76,	5 (1)			l .		76,8	8 (1)			
Количество Масло Объем згравки диапазон Рабочий диапазон Адение Сторона воды дение Мин. осрв дение осрв дение дение Мин. осрв дение осрв дение дение мин. осрв дение дение мин. осрв дение дение мин. осрв дение дение дение дение мин. осрв дение дение дение дение мин. осрв дение дение дение дение дение дение мин. осрв дение		Тип	1		1	(1)	(1)	<u> </u>	Λ	. ,			I ой					
Масло Объем згравки Л 38 44 55 Рабочий диапазон Рабочий диап	Компрессор								^	Chiminieibi		повинтов	ОИ					
Рабочий диапазон Сторона воды Охлаж дение Макс. °CDB 15 Сторона воздуха Охлаж дение Макс. °CDB 15 Хладагент Тип R-134a Хладагент Контуры Количество 2 Подсоединение труб Вход/выход воды испарителя (НД) Производительность механической системы КВТ 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)			06.00	OGDODIC:	_		-	10		11				50				
Дение Макс. °CDB 15 Сторона воздуха Охлаж дение Мин. °CDB -20 Макс. °CDB 45 Хладагент Тип R-134a Заправка кг 128 146 162 182 214 225 248 Контуры Количество Бход/выход воды испарителя (НД) DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273mm) Производительность механической системы кВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 697 (2) 772 (2) 834 (2)	D-6*		+					00		44			- 0	00				
Сторона воздуха Охлаж дение Мин. °CDB	Рабочии диапазон	Сторона воды		-														
Хладагент Тип R-134a Заправка кг 128 146 162 182 214 225 248 Контуры Количество DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273mm) Производительность механической системы кВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)			-															
Хладагент Тип R-134a Заправка кг 128 146 162 182 214 225 248 Контуры Количество 2 Подсоединение труб Вход/выход воды испарителя (НД) DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273mm) Производительность механической системы кВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 697 (2) 772 (2) 834 (2)		Сторона воздуха		-														
Заправка кг 128 146 162 182 214 225 248 Контуры Количество Подсоединение труб Вход/выход воды испарителя (НД) производительность механической системы кВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)			дение	Макс.	°CDB													
Контуры Количество 2 Подсоединение труб Вход/выход воды испарителя (НД) DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273mm) Производительность механической системы кВт 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)	Хладагент																	
Подсоединение турб Вход/выход воды испарителя (НД) турб Производительность механической системы КВт З45 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)		Заправка	_		КГ	128	146	1	62	1	32	2	14	225	2	48		
труб RBT 345 (2) 407 (2) 439 (2) 468 (2) 524 (2) 565 (2) 675 (2) 697 (2) 772 (2) 834 (2)		Контуры	Количес	тво							2							
		Вход/выход воды и	спарителя	і (НД)			N150PN1	6(168,3 M	ім)	D	N200PN1	6(219.1m	m)	DN25	0PN16(2	73mm)		
Температура воздуха для 100% естественного охлаждения °C -0.8 -0.1 1.2 0.4 0.9 0.1 2.9 2.1 1.3 0.7 0.1					кВт	345 (2)	407 (2)	439 (2)	468 (2)	524 (2)	565 (2)	675 (2)	697 (2)	772 (2)	834	4 (2)		
· · · · · · · · · · · · · · · · · · ·	Температура воздух	а для 100% естеств	енного охл	аждения	°C	-0,8	-0,1	1,2	0,4	0,9	0,1	2,9	2,1	1,3	0,7	0,1		

2 Технические характеристики

2-2 Электрические параметры				EWAD 640CFXL	EWAD 770CFXL	EWAD 850CFXL	EWAD 900CFXL	EWAD C10CFXL	EWAD C11CFXL	EWAD C12CFXL	EWAD C13CFXL	EWAD C14CFXL	EWAD C15CFXL	EWAD C16CFXL
Компрессор	Фаза			3										
1	Напряжение		V						400					
	Диапазон	Мин.	%		-10									
	напряжений	Макс.	%						10					
	Максимальный ра	бочий ток	Α	218	23	31	2	74	33	33		398		451
	Способ запуска						Тр	ойниково	е соедин	ение - De	elta			
Компрессор 2	Максимальный ра	бочий ток	Α	218	231	2	74	3:	33		398		4	51
Электропитание	Фаза	Фаза			3~									
	Частота	Частота Гц			50									
	Напряжение V			400										
	Диапазон	Мин.	%	-10										
	напряжений	Макс.	%	10										
Блок	Максимальный ста	артовый ток	Α	605	619	6	58	924	971		1.030		1.073	1.086
	Номинальный рабочий ток	Охлаждение	A	404	430	467	515	568	628	636	701	720	773	825
	Максимальный ра	Максимальный рабочий ток А		476	510	561	605	672	731	811	8	75	929	982
	Макс. ток блока дл проводов	Макс. ток блока для размеров A проводов		520	556	612	660	733	797	884	9:	55	1.013	1.072
Вентиляторы	Номинальный раб	очий ток	Α	40	48	5	56	6	64		•	80	•	•

Примечания

- (1) Охлаждение: испаритель 16/10°C, температура среды 35°C, блок в режиме полной нагрузки; стандарт: ISO 3744
- (2) Данные рассчитаны при температуре воздуха снаружи 5°C, температуре воды на входе 16°C.
- (3) Жидкость: вода + этиленгликоль 30%
- (4) Допуск напряжения \pm 10%. Разбаланс напряжений между фазами должен быть в пределах \pm 3%.
- (5) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°С; температура воды испарителя на выходе 7°С; темп. наружного воздуха 35°С. Ток компрессора + вентиляторов.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Низкие эксплуатационные расходы и более длительный срок службы

Данная линейка охладителей стала результатом тщательного проектирования, направленного на оптимизацию энергетической эффективности охладителей при снижении эксплуатационных расходов и повышении рентабельности, эффективности и управляемости установки.

В охладителях применяется высокоэффективное решение с одним винтовым компрессором, большой площадью поверхности змеевика конденсатора для обеспечения максимальной теплопередачи и малого давления выпуска, вентиляторами конденсатора современной конструкции, кожухотрубным испарителем с малыми показателями падения давления хладагента.

В охладителях свободного охлаждения используется дополнительная секция для охлаждения воды в здании с использованием наружного воздуха, что позволяет снизить нагрузку на компрессоры и значительно уменьшить эксплуатационные затраты в холодный сезон.

При свободном охлаждении используется разница температур между наружным воздухом и возвратной водой для охлаждения воды перед ее возвращением для охлаждения с более низкой температурой. Когда температура на улице достаточно низкая, компрессоры охладителей полностью выключаются, и охлаждение осуществляется практически без затрат. Более того, сокращение использования компрессора также продлевает срок службы охладителя и дополнительно снижает общую стоимость установки.

Малый шум в процессе работы

Очень низкий шум как при частичной, так и при полной нагрузке достигается благодаря использованию новейшей конструкции компрессора и вентилятора, способного перемещать большие объемы воздуха и, при этом, работать очень тихо и практически без вибрации.

Выдающаяся надежность

Охладители имеют два полностью независимых контура хладагента для обеспечения максимальной безопасности при плановом или внеплановом техобслуживании. Они оснащены надежным компрессором с ведомыми роторами из новейшего композитного материала и проактивной логикой управления. Кроме того, оборудование проходит полное тестирование на заводе-изготовителе для обеспечения бесперебойной работы.

Бесступенчатое управление производительностью

Управление охлаждающей способностью осуществляется бесступенчато помощью одного винтового ассиметричного С компрессора, которым управляет микропроцессорная система. Каждый блок оснащен бесступенчатым регулятором производительности в диапазоне от 100% до 12,5%. Эта регулировка позволяет привести производительность компрессора в соответствие с нагрузкой по охлаждению в здании без колебаний температуры воды на выходе испарителя. Этих колебаний температуры охлажденной воды можно избежать при плавной регулировке.

При пошаговой регулировке нагрузки компрессора производительность компрессора будет слишком высокой или слишком низкой по сравнению с тепловой нагрузкой здания. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Колебание ELWT (температура воды на выходе испарителя) при ступенчатом управлении производительностью

Колебания температуры воды на выходе из испарителя в зависимости от ступени регулирования мощности (4 ступени)

Блоки с бесступенчатой регулировкой обеспечивают преимущества по сравнению с блоками со ступенчатой регулировкой. Возможность постоянной регулировки в зависимости от энергетических потребностей системы и обеспечения постоянства температуры воды на выходе без отклонения от установленного значения - вот два преимущества, которые позволят вам понять, почему блоки с бесступенчатой регулировкой могут оптимизировать условия работы систем.

FTA_1-2_Rev.00_1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Непревзойденная логика управления

Контроллер MicroTech III обеспечивает простую в использовании среду управления. Логика управления гарантирует максимальную эффективность и способность продолжения работы в нештатных ситуациях. В памяти системы также хранятся хронологические данные о работе оборудования. Одним из наиболее значительных преимуществ устройств является простой интерфейс с системами связи LonWorks, Bacnet, Ethernet TCP/IP и Modbus.

Нормативные требования - Безопасность и соблюдение законов/директив

Данное оборудование спроектировано и изготовлено в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI - EN ISO 9001:2004

Сертификация

Все изготовленное Daikin оборудование имеет обозначение СЕ, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии для требованиями, действующими в странах вне ЕС (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Варианты

Оборудование предлагается в трех вариантах:

X: Высокая эффективность

11 типоразмеров в диапазоне от 640 до 1555 кВт с EER до 3,19 и ESEER до 4,01 (данные относятся к стандартному шуму)

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемую мощность компрессора, всех устройств управления, защитных устройств и потребляемую мощность вентиляторов.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воздуха на входе конденсатора.

ESEER = A x EER100% + B x EER75% + C x EER50% + D x EER25%

	А	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе конденсатора	35°C	30°C	25°C	20°C

Конфигурации с различным уровнем шума

Оборудование предлагается в трех вариантах:

S: Стандартный шум

Вентилятор конденсатора вращается на скорости 920 об./мин, с резиновыми антивибрационными опорами для компрессора

L: Низкий шум

Вентилятор конденсатора вращается со скоростью 920 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

х: Пониженный шум

Вентилятор конденсатора вращается со скоростью 715 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

FTA_1-2_Rev.00_2

4 - 1 Общие характеристики

Корпус и конструктивные особенности

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет: слоновая кость (Ivory White) (Код Munsell 5Y7.5/1) (±RAL7044).На основной раме имеется крюк для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Компрессор (Один ассиметричный винт)

Компрессор полугерметический, с одним винтом и селекторным ротором (с применением новейшего высокопрочного материала, усиленного волокнами). Каждый компрессор имеет асимметричный регулятор (ползунок), обеспечивающий вместе с контроллером устройства бесступенчатую регулировку производительности в диапазоне от 100% до 25%. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск - звезда-треугольник (Y- Δ).

Хладагент

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления) т.е. низкое TEWI (Обще эквивалентное влияние нагревания).

Испаритель (Кожухотрубный)

Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Указанные характеристики также повышают эффективность работы теплообменника, а также системы в целом. Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с фланцевыми соединениями (стандарт) У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED).

Конденсатор (Теплообменник "воздух-хладагент")

Конденсатор изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями. Встроенный контур переохлаждения исключает испарение и способствует увеличению холодопроизводительности без увеличения потребляемой мощности.

Свободное охлаждение (Теплообменник "воздух-вода")

Теплообменник свободного охлаждения изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями.

Вентиляторы конденсатора (ø 800)

Вентиляторы конденсатора относятся к пропеллерному типу. Специальная конструкция лопастей обеспечивает максимальную производительность. Лопатки изготовлены из стеклопластика, и каждый вентилятор защищен кожухом. Моторы вентиляторов защищены автоматическими выключателями, установленными внутри панели управления (стандартное оборудование), и имеют класс защиты IP54. Регулирование скорости вращения вентилятора является стандартным (опция 99).

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным. Электронные расширительные клапаны обладают уникальными характеристиками: малое время открытия и закрытия, высокое разрешение, положительная функция выключения, устраняющая необходимость использования дополнительного электромагнитного клапана, непрерывная регулировка массового расхода без повышенной нагрузки на контур хладагента, устойчивый к коррозии корпус из нержавеющей стали. Электронные расширительные клапаны обычно работают с меньшим значением ΔP между сторонами высокого и низкого давления, чем терморегулирующий вентиль. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

Контур хладагента

Каждый блок имеет 2 независимых контура хладагента, каждый из которых включает:

- Компрессор со встроенным маслоотделителем
- Охлаждаемый воздухом конденсатор
- Электронный расширительный клапан
- Испаритель
- Запорный клапан в линии выпуска
- Запорный клапан в линии для жидкости
- Запорный клапан в линии всасывания (опция)
- Указатель уровня с индикатором влажности
- Фильтр-осушитель
- Загрузочные клапаны
- Переключатель высокого давления
- Датчики высокого и низкого давления

GNC 1-2-3-4 Rev.00 1

4 - 1 Общие характеристики

Контур свободного водяного охлаждения

Свободное охлаждение "Стандартное с гликолем"

Основная гидравлическая схема подключается непосредственно (через трехходовой клапан) к части свободного охлаждения, создавая цепь с водно-гликолевой смесью. Секция свободного охлаждения включает в себя:

- Теплообменник "воздух-вода"
- Трехходовой клапан (Стандартный)

Электрическая панель управления

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу IP54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Силовая секция

Относящаяся к электропитанию часть панели включает предохранители компрессоров, автоматический выключатель вентилятора, контакторы вентилятора и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается в стандартной конфигурации; его можно использовать для изменения значений установок и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды, хладагента и воздуха, программируемые значения, установки. Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров, EEXV и вентиляторы конденсатора, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы. МicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от реле высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

Секция управления - основные характеристики

- Бесступенчатое управление производительностью компрессора и работой вентиляторов.
- Охладитель способен работать в состоянии частичного отказа.
- Полная работоспособность в условиях:
- высокой температуры окружающей среды
- высокой тепловой нагрузки
- высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя.
- Вывод на дисплей температуры вне помещения.
- Вывод на дисплей температуры конденсации-испарения и давления, перегрева на стороне всасывания и выпуска для каждого контура.
- Регулировка температуры воды на выходе испарителя (допуск по температуре = 0,1°C).
- Счетчик часов работы компрессора и насосов испарителя.
- Отображение состояния защитных устройств.
- Количество пусков и часов работы компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Управление вентиляторами в соответствии со значением давления конденсации.
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной).
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Запуск при высокой температуре воды в испарителе.
- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре).
- Сброс установки ОАТ (Температура окружающей среды вне помещения).
- Сброс установки значения (опция).
- Обновление приложения и системы с использованием обычных карт памяти SD.
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров.
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова.

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления).
- Высокое давление (датчик).
- Низкое давление (датчик).
- Автоматический выключатель в цепи вентиляторов.
- Высокая температура на выходе компрессора.
- Высокая температура обмоток двигателя.
- Фазоиндикатор.
- Низкое отношение давлений.
- Большое падение давления масла.
- Низкое давление масла.
- Отсутствие изменения давления при пуске.

GNC_1-2-3-4_Rev.00 2

4 - 1 Общие характеристики

Безопасность системы

- Фазоиндикатор.
- Блокировка при низкой температуре окружающего воздуха.
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики.

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков.
- Клавиатура с 3 клавишами.
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением.
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный).
- Ethernet TCP/IP.

Стандартные дополнительные функции (входят в комплект базового блока)

Пусковое устройство компрессора "звезда-треугольник" (Y-D) - Для низкого пускового тока и пониженного пускового момента

Два установочных значения - Две установки температуры воды на выходе.

Фазоиндикатор - Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз. Набор фланцев для испарителя

20 мм изоляция испарителя - Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами.

Электронагреватель испарителя - Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C и включенном питании.

Электронный расширительный клапан

Запорный клапан в линии выпуска - Установлен на выходном отверстии компрессора для облегчения техобслуживания.

Датчик температуры воздуха снаружи и сброс установки

Счетчик часов работы

Контактор общих неисправностей

Сброс установок, ограничение электропотребления и обработка аварийных сигналов от внешнего устройства

- (Сброс установки): Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); наружная температура; колебание температур в испарителе Δt. - (Ограничение нагрузки): Пользователь может ограничить нагрузку устройства с помощью сигнала 4 − 20 мА или по сети. - (Аварийный сигнал от внешнего устройства): Микропроцессор может получать аварийный сигнал от внешнего устройства (например, насоса и т.д....). Пользователь может определить, будет ли этот сигнал приводить к останову блока или нет.

Автоматические выключатели вентиляторов - Устройство защиты от перегрузки двигателя и короткого замыкания. Главная дверца с блокировкой

Аварийный останов

Регулировка скорости вентиляторов (также обеспечивает тихий режим работы вентилятора) - Управление оборотами вентилятора для повышения плавности управления блоком. Эта опция снижает уровень шума при работе в условиях низких температур окружающей среды.

Опции (по запросу)

Мягкий пуск - Электронное пусковое устройство снижает механическую нагрузку при пуске компрессора

Морской вариант - Блок может работать при температуре жидкости на выходе до −8°С (необходим антифриз).

Реле тепловой перегрузки компрессора - Устройства защиты от перегрузки двигателя компрессора. Это устройство вместе с внутренней защитой двигателя (стандартное оборудование) обеспечивает наилучшую систему защиты для двигателя компрессора.

Контроль пониженного/повышенного напряжения - Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

Электросчетчик - Устройство установлено внутри блока управления, измеряет и отображает значения тока и напряжения

GNC_1-2-3-4_Rev.00_3

Конденсаторы для компенсации коэффициента мощности - Для повышения коэффициента мощности устройства при работе в номинальном режиме. Конденсаторы относятся к "сухому", самовосстанавливающемуся типу, снабжены защитным устройством отключения при слишком высоком давлении, изоляция выполнена из нетоксичного диэлектрического материала, без РСВ или РСТ.

Ограничитель тока - Для ограничения (при необходимости) максимального потребляемого устройством тока

Защита змеевика конденсатора

Защита испарителя

Си-Си змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде.

Cu-Cu-Sn змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде и в соленом воздухе.

Оребрение змеевика с алюминиевым покрытием - Оребрения защищены специальным акриловым покрытием, защищающим от коррозии.

Реле потока испарителя - Предоставляется отдельно, подключается и устанавливается на водяном трубопроводе испарителя (заказчиком).

Запорный клапан в линии всасывания - Установлен на отверстии всасывания компрессора для облегчения техобслуживания.

Манометры на стороне высокого давления

Манометры на стороне низкого давления

Резиновые противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Пружинные противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для подавления вибраций при монтаже на крышах и металлических конструкциях.

Один центробежный насос (малый подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Один центробежный насос (большой подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Два центробежных насоса (малый подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Два центробежных насоса (большой подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Сдвоенный предохранительный клапан давления с отклоняющей перегородкой

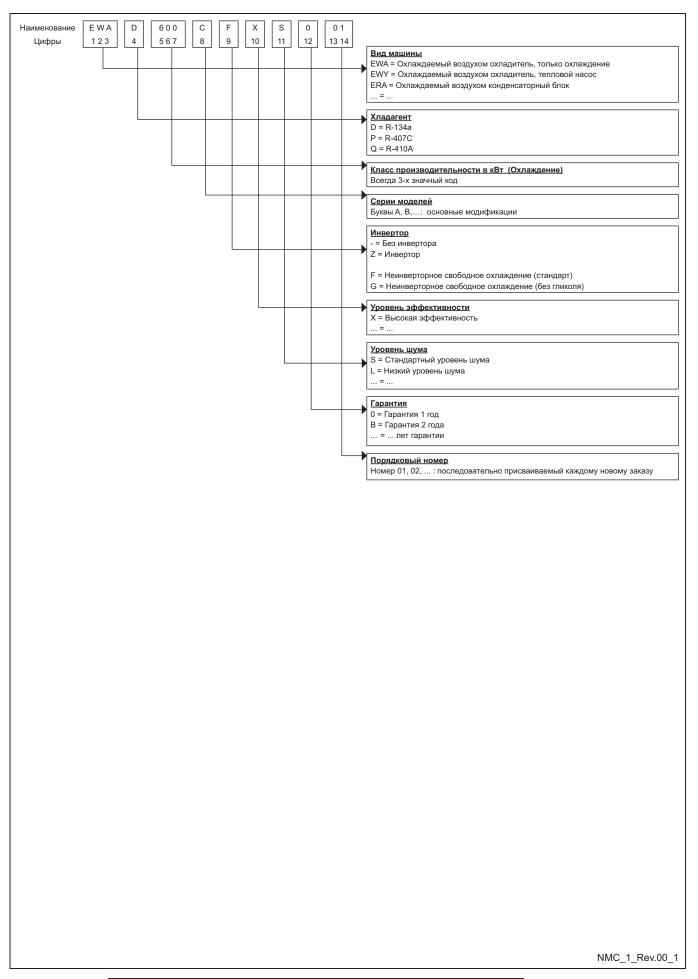
Автоматические выключатели компрессоров

Соединения для подключения трубок для воды на правой стороне испарителя

Реле защиты от замыканий на землю - Обеспечивает выключение всего блока при обнаружении замыкания на землю.

Быстрый перезапуск - Система позволяет включить блок всего лишь через 30 секунд после восстановления электропитания (в случае сбоя в сети электропитания).

Транспортный комплект


Оптимизированное свободное охлаждение (регулирование VFD вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

Оптимизированное свободное охлаждение (Вкл/выкл вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

GNC_1-2-3-4_Rev.00_4

5 Обозначения

5 - 1 Обозначения

6 - 1 Таблицы холодопроизводительности

EWAD-CFXL

Производительность по охлаждению

Table CC		Twout			3				9			1	0	
25		Та	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
Section Color														
840 32 632 238 27,5 83 649 242 282 87, 665 247 289, 91 841 640 253 5 608 248 244 77 624 253 27,1 81 640 277 27,8 85 38 552 259 253,3 71 597 294 260 75 613 209 260 75 25 789 224 34,3 110 899 226 35,2 115 629 232 35,0 120 25 789 224 34,3 110 899 226 35,2 115 629 232 35,0 120 30 785 241 33,3 104 785 247 34,1 108 604 281 34,1 113 30 785 241 33,3 104 785 247 34,1 108 604 281 34,1 113 31 777 33 775 281 320 10 60 773 288 33,7 160 772 287 33,5 150 40 605 285 30,0 10 773 281 31,8 10 91 773 281 31,8 10 91 773 281 31,8 10 91 774 287 33,5 150 40 605 285 30,2 87 71, 94 888 246 38,8 39 910 290 39,6 110 30 842 283 36,6 89 803 267 37,5 93 884 271 33,4 95 110 30 842 283 36,6 89 803 267 37,5 93 884 271 33,4 95 110 850 35 812 285 35,3 83 83 22 299 36,2 87 652 203 37,0 90 30 842 831 33,4 77 84 888 246 38,7 87,0 91 872 279 37,9 95 30 30 842 833 36,6 89 803 36,7 87 87 87 87 87 88 87														
Section Sect														
Section Sect	640													
40 583 267 24.5 677 578 271 25.1 71 593 276 25.8 74	770													
25														
1770 30														
170														
105 38 735 263 32.0 96 753 288 32.7 101 772 272 33.5 105														
18	770													
Mathematics														
25														
850 800 842 223 36,6 89 863 267 37,5 93 884 271 38,4 97														
850 32 831 271 36,1 87 851 276 37.0 91 872 279 37,9 95 38 788 299 34,3 79 809 303 35,1 82 288 308 308 36,0 86 40 770 308 33,5 75 790 313 34,4 79 810 318 35,2 82 25 922 267 40,1 105 943 271 41,0 110 965 275 41,9 114 30 806 290 30,0 100 916 294 39,8 104 937 299 40,7 108 30 806 230 33,0 100 916 294 39,8 104 937 299 40,7 108 32 883 300 38,4 97 904 304 39,3 101 924 309 40,2 105 33 835 331 33,3 88 857 336 37,2 92 876 341 38,1 95 40 815 341 35,4 84 835 347 36,3 87 866 353 37,2 91 25 1052 297 45,7 117 1080 302 46,9 123 1108 307 48,1 128 25 1052 297 43,7 117 1080 302 46,9 123 1108 307 48,1 128 26 30 1018 322 44,3 110 1045 327 45,4 115 1055 343 45,8 117 38 945 365 41,1 96 969 371 42,1 100 994 377 43,2 105 39 30 108 308 45,4 115 1029 338 44,7 7112 1055 343 45,8 117 30 108 368 47,2 124 1113 302 48,4 130 1100 994 377 43,2 105 25 1123 329 49,9 132 1152 355 50,1 139 1100 340 51,3 145 40 974 418 42,4 102 1094 374 47,6 126 1121 308 46,7 131 25 1123 329 48,9 132 1152 335 50,1 139 1100 394 45,7 117 38 1001 405 43,5 107 1026 412 44,6 112 1052 419 45,7 117 38 39 41 41 42,4 110 494 374 47,6 126 1121 380 46,7 131 40 974 418 42,4 110 994 45,7 117 1060 394 41,1 96 996 371 42,1 1000 944 379 56,3 108 25 1277 328 55,5 100 1311 332 45,8 100 349 43,5 56,9 108 40 974 418 42,4 100 42,4 44,6 112 1052 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4														
SS 812 285 35,3 83 832 289 36,2 87 852 293 37,0 90	050													
10	850		812	285		83	832					293		90
900 900			788	299	34,3				35,1		828	308		
900 30 806 200 300 300 906 200 300 301 807 907 908 302 803 303 303 304 305 305 305 305 3			770			75	790			79		318		82
900 32 883 300 38.4 97 90.4 30.4 39.3 10.1 92.4 30.9 40.2 105 35 863 315 37.5 93 882 320 383.3 10.1 92.4 30.9 40.2 105 38 835 331 39.3 36.3 88 857 336 37.2 92 876 341 38.1 95 40 815 341 35.4 84 835 347 36.3 87 876 341 38.1 95 25 1052 297 45.7 117 1080 30.2 45.9 123 110.8 307 48.1 128 30 1018 322 44.3 110 1045 327 45.4 115 1072 333 46.8 122 31 1002 332 43.6 107 1020 338 44.7 112 1055 343 45.8 117 335 976 348 42.4 102 1001 354 43.5 108 1027 380 44.6 117 38 845 385 41.1 96 99.9 371 42.1 110 99.4 374 42.1 100 994 377 43.2 105 40 922 377 40.1 91 91 945 383 41,1 96 99.9 371 42.1 100 994 377 43.2 105 25 1123 329 46.9 132 1152 335 50.1 139 1180 380 41,9 99 30 1085 368 46.4 120 1094 374 47.6 126 1121 380 48,7 131 35 1037 386 45.1 114 1063 393 46.2 119 1089 399 47.3 124 40 974 418 42.4 101 999 425 43.4 106 1011 426 43.9 108 38 1001 405 43.5 107 1026 412 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 457 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 457 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 457 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 457 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 457 44,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 458 457 458 46,6 112 1089 399 47.3 124 40 974 418 42.4 101 999 458 457 48,6 106 1011 426 43,9 108 40 1155 418 50.2 82 1185 43,4 106 1011 426 43,9 108 40 1155 418 50.2 82 1185 43,4 106 1011 426 43,9 108 40 1155 418 50.2 82 1185 424 51,5 87 1216 430 52.8 191 40 1155 418 50.2 82 1185 424 51,5 87 1216 430 52.8 191 40 1157 440 56 51.2 85 1207 411 539 56,5 100 1310 367 56,9 104 35 1205 386 52.4 89 1237 392 53.8 94 1299 397 55,1 98 40 1157 447 457 457 56,5 100 1311 339 64,0 40 60,7 118 51 1205 386 52.4 89 1237 392 53.8 94 1299 397 55,1 98 40 1157 447 457 45,5 49 61 62 43,9 41 64 60,7 118 51 1205 386 52.4 89 1237 392 53.8 94 1299 397 55,1 98 40 1277 482 53.4 98 1237 392 53.8 94 1249 439 58.6 110 51 1205 386 52.4 89 1237 392 53.8 94 1299 397 55,1 98 51 1233 393 57,7 107 1361 399 592 112 1393 640 40 60,7 118 51 1205 386 59.3 113 1399 59.5 120 1394 4476 50.0 477														
35 863 315 375 93 882 320 38,3 97 902 324 39,2 101 38 81 81 95 40 81 81 81 95 81 81 81 95 81 81 81 95 81 81 81 95 81 81 81 81 95 81 81 81 81 81 81 81 81 81 81 81 81 81														
Second Process Seco	900													
C10 40 815 341 354 341 354 844 835 347 348 347 348 348 347 348 348														
C10 C10														
C10 C10														
C10 32 1002 332 43.6 107 1029 338 44.7 112 1055 343 45.8 117 38 945 386 41.1 96 969 371 42.1 100 994 377 43.2 105 40 922 377 40.1 91 945 383 41.1 96 969 371 42.1 100 994 377 43.2 105 40 922 377 40.1 91 945 380 41.1 96 963 386 41.9 99 30 1085 360 41.1 96 963 386 41.9 99 30 1085 360 41.1 96 963 386 41.9 99 1152 1152 335 50.1 139 1180 340 569 48,4 130 1140 369 48,5 136 136 141,1 360 48,5 136 141,1 360 48,5 136 141,1 360 48,5 136 141,1 360 48,5 136 48,5 136 141,1 360 48,5 136 48,5 136 141,1 360 48,5 136 48,5 136 141,1 360 48,5 136 48,5 136 48,5 136 48,6 41,9 99 48,6 41,1 48,6 48,6 41,1 48,6 48,6 41,1 48,6 48,6 41,1 48,6 48,6 41,1 48,6 48,6 41,1 48,6 48,7 48,7 48,7 48,6 48,6 48,7 48,7 48,7 48,6 48,6 48,7 48,7 48,7 48,7 48,6 48,7 48,7 48,7 48,7 48,6 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,7 48,8 48,8 48,8 48,1 48,8 48,1 48,1 48,1 48,6 48,1 48,6 48,1 48,6 48,1 48,6 48,1 48,6 48,1 48,6 48,1 48,6 48,1 48,6 48,6 48,6 48,6 48,1 48,6 48,6 48,6 48,6 48,1 48,6 48,6 48,6 48,6 48,6 48,6 48,6 48,6 48,6 48,6 48,7 4														
C10 35 976														
105 107 108 108 109 108 109 109 109 109 109 109 108 109 109 108 109 108 108 109 108	C10													
40 922 377 40,1 91 945 333 41,1 96 963 386 41,9 99 25 1123 329 48,9 132 1152 335 50,1 139 1180 340 51,3 145 30 1088 386 47,2 124 1113 362 48,4 130 1140 369 49,5 136 32 1068 386 46,1 120 1094 374 47,6 126 1121 380 48,7 131 38 1001 405 43,5 107 1026 412 44,6 1112 1082 449 47,3 124 40 974 418 42,4 101 999 425 43,4 106 1011 426 43,9 108 25 1277 328 55,5 100 1311 332 130 1229 386 53,5 93														
C11 C12 C13														
C11 C11 C11 C12 C13 C13 C13 C13														
C11 32 1068 368 46,4 120 1094 374 47,6 126 1121 380 48,7 131 131 355 1037 386 45,1 114 1063 393 46,2 119 1089 399 47,3 124 124 40 124 1052 419 45,7 117 124 125 125 1419 125 1419 45,7 117 124 125 125 1277 386 55,5 100 1311 332 25 1277 328 55,5 55,5 100 1311 332 57,0 105 1345 337 58,4 110 1310 367 56,9 104 125 129 388 53,5 93 1262 373 54,9 97 1295 379 56,3 102 125 368 52,4 89 1237 392 53,8 94 1269 397 55,1 98 127 361 52,5 90 1239 417 53,8 94 40 1155 418 50,2 82 1185 424 51,5 87 1216 430 52,8 91 125 330 1327 393 57,7 107 1361 399 59,2 112 1396 404 60,7 118 132 32 321 3311 406 57,0 105 1345 412 58,4 110 1379 418 59,9 115 338 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 338 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 338 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 338 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 338 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 32 339 349 400 40		30	1085			124	1113		48,4		1140	369		136
103 103	C11	32	1068	368		120	1094	374	47,6	126	1121	380	48,7	131
C12 A	611		1037	386		114	1063			119	1089	399	47,3	124
C12 C12 C12 C12 C12 C12 C12 C13														
C12 C12 30														
C12 32 1229 368 53,5 93 1262 373 54,9 97 1295 379 56,3 102 35 1205 386 52,4 89 1237 392 53,8 94 1269 397 55,1 98 38 1176 405 51,2 85 1207 411 52,5 90 1239 417 53,8 94 40 1155 418 50,2 82 1185 424 51,5 87 1216 430 52,8 91 25 1363 362 59,3 113 1398 367 60,8 118 1434 372 62,3 124 30 1327 393 57,7 107 1361 399 59,2 112 1396 404 60,7 118 32 1311 406 57,0 105 1345 412 58,4 110 1379 418 59,9 115 335 1283 426 55,8 101 1316 432 57,2 105 1349 439 58,6 110 38 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 40 1227 462 53,4 93 1258 469 54,7 97 1290 476 56,0 101 25 1457 375 63,3 143 1498 381 65,1 151 1540 388 66,9 158 30 1413 406 61,4 135 1453 413 63,1 142 1493 420 64,9 149 32 1393 419 60,6 132 1432 426 62,2 138 1471 433 63,9 145 32 1393 419 60,6 132 1432 426 62,2 138 1471 433 63,9 145 35 1360 440 59,1 126 1397 447 60,7 132 1435 454 62,4 139 38 1321 461 57,5 119 1358 468 59,0 125 1394 476 60,6 131 40 1293 475 56,2 114 1328 483 57,7 120 1364 491 59,3 126 25 1522 404 66,2 156 1562 410 67,9 163 1602 417 69,6 171 30 1476 439 64,2 147 1515 446 65,9 154 1554 453 67,5 161 32 1455 454 63,3 143 1493 491 64,9 150 1532 468 66,5 157 35 1419 476 61,7 136 1456 446 65,9 154 1554 453 67,5 161 40 1345 517 56,5 123 1381 525 60,0 129 1416 534 61,5 136 40 1345 517 56,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 777 1674 447 72,7 185 25 159														
C12 35														
C13 38 1176 405 51,2 85 1207 411 52,5 90 1239 417 53,8 94 40 1155 418 50,2 82 1185 424 51,5 87 1216 430 52,8 91 25 1363 362 59,3 113 1398 367 60,8 118 1434 372 62,3 124 30 1327 393 57,7 107 1361 399 59,2 112 1396 404 60,7 118 32 1311 406 57,0 105 1345 412 58,4 110 1379 418 59,9 115 35 1283 426 55,8 101 1316 432 57,2 105 1349 439 58,6 110 40 1227 462 53,4 93 1258 469 54,7 97 1290 476	C12													
C13 C14 40														
C13 C13 C13 C13 C13 C13 C13 C13 C14 C15														
C13 C13														
C13 32					57.7									
C13 35														
38 1251 447 54,4 96 1283 454 55,8 101 1315 460 57,2 105 40 1227 462 53,4 93 1258 469 54,7 97 1290 476 56,0 101 C14 25 1457 375 63,3 143 1498 381 65,1 151 1540 388 66,9 158 30 1413 406 61,4 135 1453 413 63,1 142 1493 420 64,9 149 32 1393 419 60,6 132 1432 426 62,2 138 1471 433 63,9 145 35 1360 440 59,1 126 1397 447 60,7 132 1435 454 62,4 139 38 1321 461 57,5 119 1358 468 59,0 125 1394 <	C13													
C14 A0			1251			96	1283			101	1315		57,2	105
C14 30					53,4				54,7				56,0	
C14 32 1393 419 60,6 132 1432 426 62,2 138 1471 433 63,9 145 35 1360 440 59,1 126 1397 447 60,7 132 1435 454 62,4 139 38 1321 461 57,5 119 1358 468 59,0 125 1394 476 60,6 131 40 1293 475 56,2 114 1328 483 57,7 120 1364 491 59,3 126 25 1522 404 66,2 156 1562 410 67,9 163 1602 417 69,6 171 30 1476 439 64,2 147 1515 446 65,9 154 1554 453 67,5 161 32 1455 454 63,3 143 1493 461 64,9 150 1532 468 66,5 157 35 1419 476 61,7 136 1456 484 63,3 143 1493 492 64,9 150 38 1377 500 59,9 129 1413 508 61,4 135 1450 517 63,0 142 40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175														
C14 35														
35 1360 440 59,1 126 1397 447 60,7 132 1435 454 62,4 139 38 1321 461 57,5 119 1358 468 59,0 125 1394 476 60,6 131 40 1293 475 56,2 114 1328 483 57,7 120 1364 491 59,3 126 25 1522 404 66,2 156 1562 410 67,9 163 1602 417 69,6 171 30 1476 439 64,2 147 1515 446 65,9 154 1554 453 67,5 161 32 1455 454 63,3 143 1493 461 64,9 150 1532 468 66,5 157 35 1419 476 61,7 136 1456 484 63,3 143 1493 492 64,9 150 38 1377 500 59,9 129 1413 508 61,4 135 1450 517 63,0 142 40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175	C14								 		1			
C15 40 1293 475 56,2 114 1328 483 57,7 120 1364 491 59,3 126 25 1522 404 66,2 156 1562 410 67,9 163 1602 417 69,6 171 30 1476 439 64,2 147 1515 446 65,9 154 1554 453 67,5 161 32 1455 454 63,3 143 1493 461 64,9 150 1532 468 66,5 157 35 1419 476 61,7 136 1456 484 63,3 143 1493 492 64,9 150 38 1377 500 59,9 129 1413 508 61,4 135 1450 517 63,0 142 40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175									 		+		 	
C15 C15 1522 404 66,2 156 1562 410 67,9 163 1602 417 69,6 171														
C15 30														
C15													 	
35 1419 476 61,7 136 1456 484 63,3 143 1493 492 64,9 150 38 1377 500 59,9 129 1413 508 61,4 135 1450 517 63,0 142 40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175														
38 1377 500 59,9 129 1413 508 61,4 135 1450 517 63,0 142 40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175	C15										1			
40 1345 517 58,5 123 1381 525 60,0 129 1416 534 61,5 136 25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175														
25 1591 433 69,2 169 1632 440 71,0 177 1674 447 72,7 185 30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175	1								 					
30 1542 472 67,1 160 1581 479 68,7 167 1621 487 70,4 175														
											-			
	C16	32	1520	488	66,1	155	1558	496	67,7	162	1596	504	69,4	170
35 1481 514 64,4 148 1518 522 66,0 155 1555 530 67,6 162	010			514	64,4		1518	522	66,0	155	1555	530	67,6	162
38 1434 540 62,4 139 1471 549 64,0 146 1508 558 65,5 152														
40 1399 559 60,9 133 1435 568 62,4 139 1472 577 64,0 146		40	1399	559	60,9	133	1435	568	62,4	139	1472	577	64,0	146

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_2 (1/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; Р1: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

^{*} Если условия работы соответствуют значениям dpw, указанным курсивом красного цвета, обратитесь на завод-изготовитель

6 - 1 Таблицы холодопроизводительности

EWAD-CFXL Производительность по охлаждению

6

	Twout		1	1			1	12			1	3	
	Ta	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
		кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа
	25	735	227	31,9	109	753	231	32,7	114	772	235	33,5	119
	30	698	244	30,3	99	715	248	31,0	104	732	253	31,8	108
640	32	682	251	29,6	95	699	255	30,3	99	715	260	31,0	104
640 770 850 900 C10 C11 C12 C13 C14	35	656	262	28,5	89	672	267	29,2	93	688	271	29,9	97
	38	628	273	27,3	82	644	278	28,0	86	660	283	28,6	89
	40	608	281	26,4	77	617	282	26,8	79	619	278	26,9	80
	25	849	235	36,9	125	870	239	37,8	131	890	243	38,6	136
	30	823	255	35,8	118	843	259	36,6	123	862	263	37,4	128
770	32	811	263	35,2	115	830	267	36,0	120	849	272	36,9	125
110	35	790	276	34,3	110	809	281	35,1	114	827	285	35,9	119
	38	766	290	33,3	103	784	294	34,0	108	802	299	34,8	112
	40	748	299	32,5	99	765	304	33,2	103	774	304	33,6	105
	25	932	253	40,5	107	953	257	41,4	111	974	261	42,3	116
	30	906	275	39,3	101	927	279	40,2	106	947	283	41,1	110
850	32	893	284	38,8	99	914	288	39,7	103	935	292	40,6	107
000	35	872	298	37,9	94	893	302	38,8	98	913	307	39,6	103
	38	848	312	36,8	90	868	317	37,7	93	888	322	38,5	97
	40	830	323	36,0	86	849	328	36,9	90	861	329	37,4	92
	25	986	279	42,8	119	1008	283	43,8	124	1030	288	44,7	128
	30	958	303	41,6	112	979	308	42,5	117	1000	312	43,4	121
900	32	944	313	41,0	110	965	318	41,9	114	986	322	42,8	118
	35	922	329	40,0	105	941	334	40,9	109	961	339	41,7	113
	38	895	346	38,9	99	914	351	39,7	103	934	356	40,5	107
	40	875	358	38,0	95	894	363	38,8	99	898	361	39,0	99
	25	1136	312	49,3	134	1164	318	50,5	140	1192	323	51,7	147
	30	1099	338	47,7	126	1126	344	48,9	132	1153	349	50,0	138
C10 -	32	1082	349	47,0	123	1108	355	48,1	128	1135	361	49,2	134
	35	1052	366	45,7	116	1078	372	46,8	122	1104	378	47,9	127
	38	1019	383	44,2	110	1043	390	45,3	114	1062	393	46,1	118
	40	978	387	42,5	101	992	387	43,1	104	1006	387	43,7	107
	25	1209	346	52,5	151	1238	352	53,7	158	1267	358	55,0	165
	30	1167	375	50,7	142	1195	381	51,9	148	1222	388	53,0	154
C11	32	1148	387	49,9	137	1175	393	51,0	143	1201	400	52,1	149
C11 -	35	1114	406	48,4	130	1140	413	49,5	135	1166	420	50,6	141
	38	1076	426	46,8	122	1101	433	47,8	127	1113	433	48,3	129
	40 25	1016 1380	422	44,1 59,9	109	1021	417 347	44,3	110 120	1025	411 352	44,5	110
		1344	342		115	1415		61,4	114	1450		62,9	126
	30	1328	372 384	58,4 57,7	109 107	1378 1361	377 390	59,8 59,1	112	1412 1395	383 395	61,3 60,5	120 117
C12	35	1301	403	56,5	107	1334	409	57,9	108	1367	415	59,3	112
	38	1270	423	55,2	98	1302	429	56,5	103	1334	435	57,9	107
	40	1247	437	54,2	95	1278	443	55,5	99	1310	449	56,8	107
	25	1470	378	63,9	130	1507	384	65,4	135	1544	389	67,0	142
	30	1431	410	62,2	123	1466	417	63,7	129	1502	423	65,2	134
	32	1413	424	61,4	120	1448	430	62,9	126	1483	437	64,4	131
C13	35	1383	445	60,1	115	1417	452	61,5	121	1451	458	63,0	126
	38	1348	467	58,5	110	1381	474	59,9	115	1414	481	61,3	120
	40	1321	483	57,4	106	1353	490	58,8	111	1386	497	60,1	115
	25	1581	394	68,7	166	1623	401	70,5	174	1665	408	72,3	183
	30	1533	427	66,6	157	1573	434	68,3	164	1614	442	70,0	172
044	32	1511	441	65,6	153	1551	448	67,3	160	1591	456	69,0	168
C14	35	1474	462	64,0	146	1513	469	65,7	153	1552	477	67,3	160
	38	1431	484	62,2	138	1469	492	63,8	144	1506	500	65,4	151
	40	1400	499	60,8	132	1436	507	62,3	138	1473	515	63,9	145
	25	1643	424	71,4	179	1684	430	73,1	187	1725	437	74,9	195
	30	1593	460	69,2	169	1632	468	70,9	176	1672	475	72,5	184
C15	32	1570	476	68,2	164	1608	483	69,8	172	1647	491	71,5	179
010	35	1531	500	66,5	157	1569	508	68,1	164	1606	516	69,7	171
	38	1486	525	64,5	148	1522	533	66,1	155	1559	542	67,7	161
	40	1452	542	63,1	142	1488	551	64,6	148	1509	552	65,5	152
	25	1715	454	74,5	194	1758	462	76,3	203	1800	469	78,1	212
-	30	1661	495	72,1	182	1701	503	73,8	190	1741	511	75,6	199
C16	32	1635	512	71,0	177	1675	520	72,7	185	1714	529	74,4	193
C16	35	1593	539	69,2	169	1630	547	70,8	176	1668	556	72,4	183
				07.4	450	4500	F70	00.0	100	1017	505	70.0	470
	38 40	1544 1508	567 586	67,1	159 152	1580	576	68,6	166	1617	585	70,2	173

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_2 (2/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

^{*} Если условия работы соответствуют значениям dpw, указанным курсивом красного цвета, обратитесь на завод-изготовитель

6 - 1 Таблицы холодопроизводительности

EWAD-CFXL

Производительность по свободному охлаждению

Twout		8						9					10					
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw			
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа			
640	-2,1	608	19,1	26,4	117	-1,5	624	19	27,1	123	-0,8	640	19,1	27,8	128			
770	-1,4	735	22,7	32	158	-0,8	753	22,6	32,7	165	-0,1	772	22,6	33,5	172			
850	-0,2	812	26,2	35,3	164	0,5	832	26,2	36,2	171	1,2	852	26,3	37	178			
900	-1,0	863	26,2	37,5	183	-0,3	882	26,2	38,3	190	0,4	902	26,2	39,2	198			
C10	-0,4	976	29,9	42,4	224	0,2	1001	29,7	43,5	234	0,9	1027	29,8	44,6	245			
C11	-1,2	1037	30	45,1	250	-0,6	1063	29,8	46,2	261	0,1	1089	29,9	47,3	272			
C12	1,6	1205	37,1	52,4	212	2,2	1237	36,8	53,8	222	2,9	1269	36,8	55,1	232			
C13	0,8	1283	37	55,8	238	1,5	1316	37,1	57,2	248	2,1	1349	36,8	58,6	259			
C14	0,0	1360	36,8	59,1	278	0,7	1397	37,1	60,7	291	1,3	1435	37	62,4	305			
C15	-0,5	1419	37,1	61,7	300	0,1	1456	37	63,3	314	0,7	1493	36,9	64,9	328			
C16	-1,2	1481	36,8	64,4	324	-0,5	1518	37	66	339	0,1	1555	36,9	67,6	354			

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_5 (1/2)

Та: Температура воздуха снаружи; Twout: температура воды на выходе блока ($\Delta t\,6^{\circ}C$)

TFC: Температура воздуха для свободного охлаждения 100%; СС: Производительность по охлаждению; PI: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

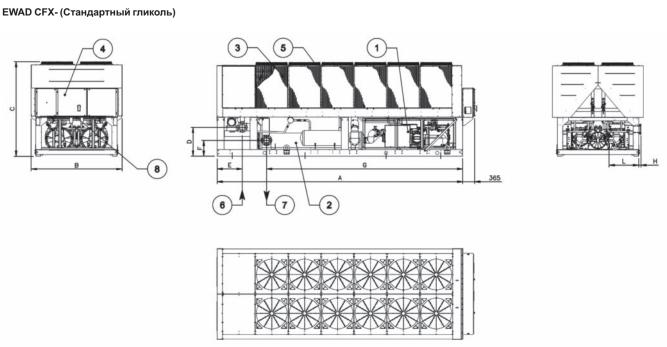
6 - 1 Таблицы холодопроизводительности

EWAD-CFXL

Производительность по свободному охлаждению

Twout			11					12					13		
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа
640	-0,1	656	19,2	28,5	134	0,5	672	19,1	29,2	140	1,2	688	19,1	29,9	146
770	0,6	790	22,7	34,3	179	1,3	809	22,7	35,1	186	2,0	827	22,8	35,9	194
850	1,9	872	26,3	37,9	186	2,6	893	26,3	38,8	193	3,3	913	26,4	39,6	201
900	1,1	922	26,2	40	205	1,8	941	26,2	40,9	213	2,5	961	26,2	41,7	221
C10	1,5	1052	29,7	45,7	255	2,2	1078	29,8	46,8	267	2,9	1104	29,9	47,9	278
C11	0,7	1114	29,8	48,4	284	1,4	1140	29,9	49,5	295	2,0	1166	29,8	50,6	307
C12	3,6	1301	36,9	56,5	242	4,3	1334	37	57,9	253	5,0	1367	37,1	59,3	264
C13	2,8	1383	37	60,1	271	3,5	1417	37,1	61,5	282	4,1	1451	36,8	63	294
C14	1,9	1474	36,9	64	320	2,5	1513	36,9	65,7	335	3,1	1552	36,8	67,3	350
C15	1,4	1531	37,1	66,5	343	2,0	1569	37	68,1	358	2,6	1606	36,9	69,7	373
C16	0,7	1593	36,8	69,2	369	1,4	1630	37,1	70,8	384	2,0	1668	37	72,4	400

Жидкость: Вода + этиленгликоль 30%


Та: Температура воздуха снаружи; Тwout: температура воды на выходе блока ($\Delta t\,6^{\circ}C$)

TFC: Температура воздуха для свободного охлаждения 100%; СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

SRC_1-2-3-4-5-6_Rev.00_5 (2/2)

7 Размерные чертежи

7 - 1 Размерные чертежи

Чертежи служат только для иллюстрации. Размеры блоков приведены в таблице ниже.

Мод	ели					Габари	ты (мм)				
EWAD CFXS/XL	EWAD CFXR	Α	В	С	D	E	F	G	Н	I	Вентиляторы
640	600	5820	2480	2565	795	690	435	5370	75	800	10
770	740	6720	2480	2565	795	690	435	5370	75	800	12
850	820	7620	2480	2565	795	690	435	5370	75	800	14
900	870	7620	2480	2565	795	690	435	5370	75	800	14
C10	980	8520	2480	2565	795	690	540	5355	75	748	16
C11	C10	8520	2480	2565	795	690	540	5355	75	748	16
C12	C11	10320	2480	2565	795	690	540	5355	75	748	20
C13	C12	10320	2480	2565	795	690	540	5355	75	748	20
C14	C13	10320	2480	2565	795	690	540	5355	75	670	20
C15	C14	10320	2480	2565	795	690	540	5355	75	670	20
C16	C15	10320	2480	2565	795	690	540	5355	75	670	20

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Компрессор
- 2 Испаритель
- 3 Змеевик конденсатора
- 4 Электрическая панель
- 5 Вентилятор
- 6 Патрубок подвода воды в испаритель
- 7 Выход испарителя для воды
- 8 Слот для подключения питания

DMN_1_Rev.00

8 Данные об уровне шума

8 - 1 Данные об уровне шума

EWAD-CFXL

			Уровень з	вукового дав	ления в 1 м с	от блока (rif. 2	2 х 10-5 Па)			Электропитание
МОДЕЛЬ	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
640	70,4	72,5	75,3	74,5	70,4	65,9	56,3	47,2	75,5	96,0
770	71,2	73,3	76,1	75,3	71,2	66,7	57,1	48,0	76,3	96,8
850	71,4	73,5	76,3	75,5	71,4	66,9	57,3	48,2	76,5	97,4
900	71,4	73,5	76,3	75,5	71,4	66,9	57,3	48,2	76,5	97,4
C10	71,8	73,9	76,7	75,9	71,8	67,3	57,7	48,6	76,9	98,0
C11	72,0	74,1	76,9	76,1	72,0	67,5	57,9	48,8	77,1	98,2
C12	71,6	73,7	76,5	75,7	71,6	67,1	57,5	48,4	76,7	98,8
C13	71,7	73,8	76,6	75,8	71,7	67,2	57,6	48,5	76,8	98,9
C14	71,7	73,8	76,6	75,8	71,7	67,2	57,6	48,5	76,8	98,9
C15	71,7	73,8	76,6	75,8	71,7	67,2	57,6	48,5	76,8	98,9
C16	71,7	73,8	76,6	75,8	71,7	67,2	57,6	48,5	76,8	98,9

ПРИМЕЧАНИЯ

Жидкость: Вода + этиленгликоль 30%

Примечание: Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°С, наружная температура 35°С, работа при полной нагрузке

NSL_1-2-3_Rev.00_2

9 - 1 Способ монтажа

Примечания по установке

Предупреждение

Установка и техобслуживание блока должны производиться только квалифицированными специалистами, знающими местные положения и правила и имеющими опыт работы с данным оборудованием. Необходимо избегать установки агрегата на местах, где проведение технического обслуживания может быть опасным.

Обращение

Необходимо избегать небрежного обращения с блоком или ударов при падении. Не толкайте и не тяните блок на опорах, отличных от его основной рамы. Не допускайте падения блока во время разгрузки или перемещения, поскольку это может привести к значительному повреждению. Для подъема агрегата используйте проушины на опорной раме. Траверсу и тросы следует расположить так, чтобы избежать повреждения змеевика конденсатора или корпуса блока.

Расположение

Блоки выпускаются для наружной установки на крыше, на полу или ниже уровня поверхности земли при условии, что в месте установки нет препятствий для циркуляции воздуха для конденсатора. Блок должен находиться на прочном и ровном основании; в случае установки на крыше или на полу рекомендуется использовать подходящие балки для распределения весовых нагрузок. В случае установки блоков на земле необходимо подготовить бетонное основание, ширина и длина которого превышает установочные размеры блока, по меньшей мере, на 250 мм. К тому же, этот фундамент должен выдержать вес агрегата, указанный в таблице технических характеристик.

Требования по размещению

Блоки охлаждаются воздухом, поэтому важно соблюдать минимальные расстояния, которые обеспечивают наилучшую вентиляцию змеевиков конденсаторов. Пространственные ограничения, снижающие поток воздуха, могут привести к значительному снижению охлаждающей способности и повышению потребления электроэнергии.

При определении места для блока нужно обеспечить достаточный воздушный поток через поверхность передачи тепла конденсатора. Для наилучшего функционирования агрегата необходимо избегать: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

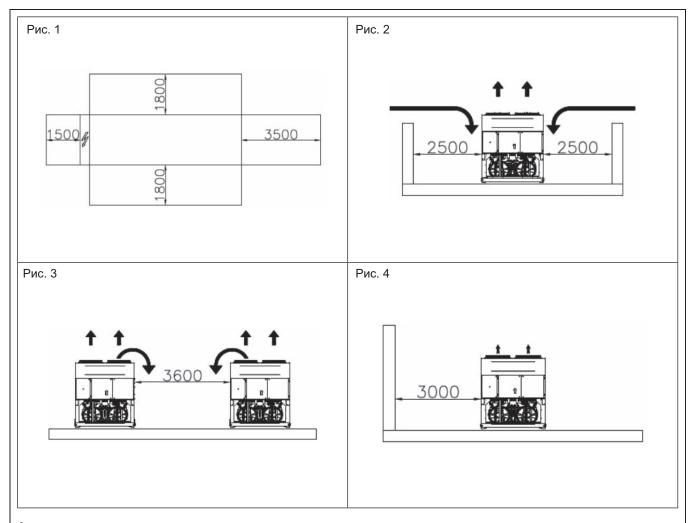
Оба эти условия приводят к увеличению давлений конденсации, которые уменьшают эффективность работы блока и его мощность.

Более того, уникальный микропроцессор способен определять параметры среды работы воздушно-охлаждаемого охладителя и оптимальную нагрузку в случае нестандартных условий.

После установки каждая из сторон блока должна быть доступна для периодического обслуживания. На рис.1 показаны минимальные рекомендуемые расстояния.

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если блоки располагаются в местах, окруженных стенками или препятствиями той же высоты, что и блоки, то блоки должны, по крайней мере, на 2500 мм отделяться от препятствий (рис. 2). В случае, если препятствия выше блоков, блоки должны быть, по меньшей мере, на 3000 мм выше (рис. 4). Блоки, установленные ближе к стене или к другой вертикальной конструкции, чем минимально рекомендуемое расстояние, могут испытывать ограниченную подачу воздуха к змеевику и рециркуляцию теплого воздуха, что снижает их производительность и эффективность. Микропроцессорное управление проактивно реагирует на "нештатное состояние". В случае наличия одного или нескольких видов влияния, ограничивающих поток воздуха, микропроцессор будет подавать команды таким образом, чтобы компрессор(ы) продолжал(и) работать (при пониженной мощности), вместо того, чтобы выключаться при высоком давлении на выходе.


Если два или более блока расположены рядом друг с другом, рекомендуем располагать змеевики конденсаторов на расстоянии, по меньшей мере, 3600 мм друг от друга (рис. 3); сильный ветер может быть причиной рециркуляции теплого воздуха.

Для получения информации о других решениях по установке просьба обращаться к нашим техническим специалистам.

Приведенные выше рекомендации касаются общего случая установки. Специальная оценка выполняется подрядчиком на основании конкретной ситуации.

INN 1-2 Rev.00 1

9 - 1 Способ монтажа

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение

Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная температура окружающей среды: -20°C Максимальная температура окружающей среды: +57°C

Максимальная относительная влажность: 95% без конденсации

INN_1-2_Rev.00_2

9 - 2 Заправка, расход и количество воды

Эбъ	ем, поток и ка	ачество во	ды									
			Охла	аждающая	вода				Нагрета	я вода (2)		
По	зиции _{(1) (5)}		Сис-	гема ляции	Однократный поток	Охлажде	нная вода	Низкая Высокая температура температура			Тенденция в случае несоответствия	
	· · · · · · · · · · · · · · · · · · ·		Циркулирующая вода	Поступающая вода ₍₄₎	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода (4)	Циркулирующая вода [20°С ~ 60°С]	Поступающая вода (4)	Циркулирующая вода [60°C ~ 80°C]	Поступающая вода (4)	критериям
	pН	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,8 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
	Электропроводность	[мСм/м] при 25°C	Менее 80	Менее 30	Менее 40	Менее 80	Менее 80	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
<u></u>		(мкСм/см) при 25°C	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 800)	(Менее 800)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
позиции:	Ионы хлоридов	[MrCl ²⁻ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
31	Ионы сульфата	[MrSO ²⁻ ₄ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
	М-щелочность (рН 4,8)	[мгСаСо ₃ /л]	Менее 100	Менее 50	Менее 50	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
Контролируемые	Общая жесткость	[мгСаСо ₃ /л]	Менее 200	Менее 70	Менее 70	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
Ş.	Кальциевая жесткость	[мгСаСо₃/л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
N N	Ионы силикатов	[MrSiO _z /л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
ğ	Кислород	(мг О2 /л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Коррозия
Ē	Размер частиц	(MM)	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Эрозия
중	Общее содержание растворенных твердых веществ	(мг/л)	Менее 1000	Менее 1000	Менее 1000	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Эрозия
	Этилен, пропиленгликоль	(мас. конц.)	Менее 60%	Менее 60%		Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	-
	Ионы нитрата	(мг NO3- /л)	Менее 100	Менее 100	Менее 100	Менее 100	Менее 101	Менее 100	Менее 101	Менее 100	Менее 101	Коррозия
проверки:	ТОС Общее содержание органического углерода	(мг/л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Накипь
90 00	Железо	[мгFе/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
	Медь	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
	Ионы сульфитов	[MrS ² ·/л]	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Коррозия
	Ионы аммония	[MrNH+,/л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
Z	Остаточные хлориды	[MrCL/n]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
Позиции	Свободный карбид	[MrCO ₂ /л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
_	Показатель устойчивости		6,0 ~ 7,0									Коррозия + накипь

waflowqua_1-2_Rev.00_1

9 - 2 Заправка, расход и количество воды

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

При каждом пуске компрессора избыточное количество масла поступает из картера компрессора. Одновременно с этим наблюдается повышение температуры статора двигателя компрессора вследствие повышенного тока пуска.

Во избежание повреждения компрессоров Daikin предусмотрено устройство, ограничивающее частые остановы и пуски

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 2 компрессорами

 $M(π) = (0.1595 \times ΔT(°C) + 3.0825) \times P(κBT)$

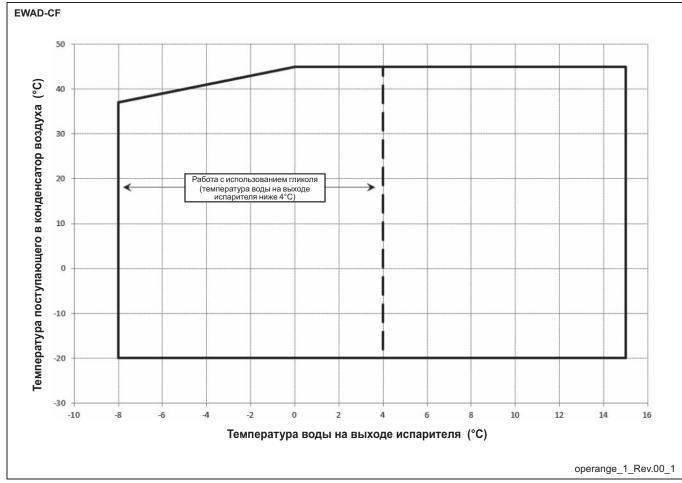
где:

М минимальное содержание воды в одном блоке, выраженное в литрах

Р Охлаждающая способность блока, выраженная в кВт

ΔT разность температур воды на входе/выходе из испарителя в °C

Данная формула подходит для:


- стандартных параметров микропроцессора

Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

waflowqua_1-2_Rev.00_2

10 Рабочий диапазон

10 - 1 Рабочий диапазон

11 - 1 Описание технических характеристик

Технические характеристики охладителя с воздушным охлаждением

Охладитель разработан и изготовлен в соответствии со следующими Европейскими директивами:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе (при номинальных рабочих условиях и номинальной температуре воды). Охладитель будет доставлен на место работы полностью собранным и заправленным хладагентом и маслом. Установка охладителя должна выполняться в соответствии с инструкциями изготовителя по подъему оборудования и обращению с ним.

Устройство способно осуществлять пуск и работать (стандартно) при полной нагрузке:

при температуре снаружи от	°С до	°C
температуре жидкости на выходе испарителя между	°С и	°C

Хладагент

Можно использовать только R-134a.

Рабочие характеристики

- ✓ Количество винтовых охладителей с воздушным охлаждением
 ✓ Охлаждающая способность одного охладителя
 ✓ Потребляемая мощность одного охладителя в режиме охлаждения
 ✓ Температура воды на входе теплообменника в режиме охлаждения
 ° С
 ✓ Поток воды в теплообменнике
 ✓ Поток воды в теплообменнике
 ✓ Номинальная наружная рабочая температура окружающей среды в режиме охлаждения
 ° С
- ✓ Диапазон рабочего напряжения должен быть 400 В ±10%, 3 ф, 50 Гц, рассогласованность напряжения макс. 3%, без нейтрали, одна точка подключения к электросети.

Описание блока

В стандартной конфигурации охладитель включает, по меньшей мере: два независимых контура хладагента, полугерметические ассиметричные ротационные одновинтовые компрессоры, электронное расширительное устройство (EEXV), кожухотрубный теплообменник прямого расширения хладагента, охлаждаемый воздухом конденсатор, хладагент R134a, система смазки, пусковое устройство для двигателя, запорный клапан на сливной линии, система управления и все компоненты, необходимые для безопасной и стабильной работы аппарата.

Охладители собирают на заводе-изготовителе на крепкой опорной раме, сделанной из оцинкованной стали и покрытой эпоксидной краской.

Уровень шума и вибрации

Уровень давления звука на расстоянии 1 м в открытом полусферическом пространстве не будет превышать ... дБ(A). Уровни давления звука измеряются в соответствии с ISO 3744. Другие способы измерений неприменимы. Уровень вибрации опорной рамы не должен превышать 2 мм/с.

Габаритные размеры:

Размеры блока не превышают следующих значений:

- Длина блока	 MN
- Ширина блока	 MN
- Высота блока	M

Компоненты охладителя

Компрессоры

- ✓ Полугерметические, одновинтовые, ассиметричные, с одним главным винтовым ротором, взаимодействующим с двумя диаметрально противоположными ведомыми роторами. Контактные элементы ведомых роторов изготовляют из композитных материалов с длительным сроком службы. Электродвигатель: 2-полюсный, полугерметический, асинхронный, с короткозамкнутым ротором, охлаждаемый всасываемым газом.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- √ Компрессор имеет встроенный высокоэффективный маслоотделитель сетчатого типа и масляный фильтр.
- ✓ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система смазки с электрическим масляным насосом недопустима.

 SPC 1-2-3 Rev.00 1

11 - 1 Описание технических характеристик

- ✓ Охлаждение компрессора осуществляется путем подачи жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- ✓ Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- ✓ Корпус компрессора оснащается портами для возможности осуществления экономически выгодных циклов хладагента.
- ✓ Компрессор имеет защиту в виде датчика температуры (от высокой температуры на выходе) и термистора электродвигателя (от перегрева обмоток).
- Компрессор оборудован электрическим нагревателем для масла.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления охлаждающей способностью

- ✓ Каждый охладитель имеет микропроцессор для регулирования положения вентиля-задвижки компрессора.
- ✓ Управление производительностью блока является бесступенчатым от 100% до 25% для каждого контура (от 100% до 12,5% полной нагрузки для блока с 2 компрессорами. Охладитель обеспечивает стабильную работу до минимум 12,5% полной нагрузки без вывода горячего газа.
- ✓ Система управляет блоком на основании температуры воды на выходе испарителя, которая контролируется PID (пропорциональноинтегрально-дифференциальный) логикой.
- ✓ Логика управления блоком управляет задвижками компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке установки для поддержания постоянной установки температуры охлажденной воды.
- ✓ Микропроцессорное управление блока обнаруживает состояния, близкие к защитным пределам, и принимает меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - о Высокое давление конденсации
 - о Низкая температура испарения хладагента

Испаритель

- ✓ Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента.
- ✓ Внешний слой соединен с электрообогревателем, управляемым термостатом, и покрыт изоляцией из полиуретанового материала с закрытыми порами (толщиной 20 мм) для предотвращения замораживания при температуре окружающей среды до -28°C.
- ✓ Каждый испаритель имеет 2 однопроходных контура хладагента, по одному на каждый компрессор.
- ✓ Для соединений трубок для воды в стандартной комплектации используются фитинги ФЛАНЦЕВОГО типа, которые обеспечивают быстрое механическое отсоединение аппарата от гидронической сети.
- ✓ Испаритель изготовлен в соответствии с директивой EC о напорном оборудовании (PED).

Змеевик конденсатора

- Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Расстояние между ребрами увеличивает поверхность соприкосновения с трубами, защищая их от наружной коррозии.
- ✓ Змеевик имеет встроенный суб-охлаждающий контур, который обеспечивает достаточное субохлаждение для предотвращения неоднородного течения жидкости и увеличения эффективности работы аппарата на 5-7% без увеличения потребляемой мошности.
- Змеевик конденсатора проверяют на утечки и испытывают под давлением с применением сухого воздуха.

Вентиляторы конденсатора

- Вентиляторы, используемые вместе с охлаждающими змеевиками, должны быть пропеллерными, с лопатками из усиленной стеклом смолы для обеспечения более высокой эффективности и снижения шума. Каждый вентилятор должен иметь защитное ограждение.
- ✓ Отвод воздуха должен осуществляться по вертикали, и каждый вентилятор должен быть соединен с электромотором, стандартно поставляемым с защитой IP54 и способным работать при внешней температуре от -20°C до +65°C.
- ✓ Защита должна включать стандартную внутреннюю термозащиту двигателя и выключатель-автомат внутри электрической панели.

Контур хладагента

- ✓ Блок должен иметь несколько независимых контуров хладагента.
- ✓ В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на линии выпуска из компрессора, фильтр-осушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированную линию всасывания.

Контроль конденсации

- ✓ Блоки оснащаются автоматической системой контроля давления конденсации, которая обеспечивает работу при низких внешних температурах вплоть до -...°С при поддержании давления конденсации.
- ✓ Компрессор автоматически отключает нагрузку при обнаружении слишком высокого давления конденсации, чтобы предотвратить отключение контура хладагента (выключение блока) вследствие вызванного высоким давлением отказа.

SPC 1-2-3 Rev.00 2

Варианты исполнения блока с пониженным шумом (на заказ)

- ✓ Компрессоры агрегата необходимо монтировать к металлической опорной раме при помощи резиновых антивибрационных опор для предотвращения передачи вибраций на все металлические элементы агрегата, таким образом контролируя уровень шума.
- ✓ В охладителе для компрессора предусмотрен специальный акустический корпус. Этот корпус состоит из легкого, устойчивого к коррозии алюминия и металлических панелей. Звукоизоляция компрессора гарантируется использованием внутренних гибких многослойных материалов высокой плотности.

Гидронный комплект (опция, на заказ)

- ✓ Гидронный модуль устанавливается на раму охладителя, не увеличивая его размеров. Комплект включает: центробежный водяной насос с трехфазным двигателем, оснащенным внутренней защитой от перегрева, предохранительный клапан, устройство для заполнения.
- ✓ Водяные трубы защищены от коррозии и имеют пробки для очистки и сушки. Заказчик должен предоставить соединения типа
 Victaulic. Трубопровод должен быть полностью изолирован во избежание конденсации (изоляция насоса осуществляется с применением полиуретановой пены).
- ✓ Для блока с 2 компрессорами предлагается на выбор один из вариантов насосов:
 - о один насос
 - о два насоса

Панель управления

11

- ✓ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Пусковое устройство относится к типу "звезда-треугольник" (Y- Δ).
- Органы управления и средства защиты включают средства энергосбережения; кнопку аварийного останова; защиту от перегрузки для двигателя компрессора; выключатели высокого и низкого давления (для каждого контура хладагента); антифризный термостат; выключатель для каждого компрессора.

Вся информация касательно работы агрегата отображается на дисплее. Встроенные календарь и часы могут отключать и запускать агрегат в любое время.

- ✓ Предусмотрены следующие функции:
 - сброс установки температуры воды на выходе путем контроля Δt температуры воды, сигналом дистанционного управления 4-20 мA пост. тока или путем контроля внешней температуры;
 - о функция плавного пуска для защиты от перегрузки во время понижения температуры охлажденной жидкости;
 - о защита критических параметров системы паролем;
 - таймеры запуска и остановки для обеспечения минимального времени простоя компрессора с максимальной защитой двигателя;
 - о возможность сообщения с ПК или дистанционным контролем;
 - управление давлением на выходе путем задания цикла работы вентиляторов конденсатора;
 - выбор опережения или задержки вручную или автоматически в зависимости от рабочих часов контура;
 - о двойная установка для морской версии агрегата;
 - программирование годового расписания пусков и остановов при помощи внутреннего датчика времени, включая выходные и праздники.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

Охладитель может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
- · Ethernet TCP/IP.

SPC_1-2-3_Rev.00_3

СОДЕРЖАНИЕ

EWAD-CFXR

1	Характеристики	.56
2	Технические характеристики Технические параметры Электрические параметры	57
3	Характеристики и преимущества	
4	Общие характеристики	
5	Обозначения Обозначения	
6	Таблицы производительности	
7	Размерные чертежи	
8	Данные об уровне шума. Данные об уровне шума	
9	Установка Способ монтажа Заправка, расход и количество воды	72
10	Рабочий диапазон	
11	Описание технических характеристик	

1 Характеристики

- Высокая эффективность, сниженный уровень звука
- Режим свободного охлаждения

- Широкий рабочий диапазон
- Пульт MicroTech III

2 Технические характеристики

2-1 Техническ	ие параметры				EWAD 600CFXR	EWAD 740CFXR	EWAD 820CFXR	EWAD 870CFXR	EWAD 980CFXR	EWAD C10CFXR	EWAD C11CFXR	EWAD C12CFXR	EWAD C13CFXR	EWAD C14CFXR	EWAD C15CFXR
Холодопроизводит ельность	Ном.			кВт	602 (1) / 270 (2)	739 (1) / 334 (2)	821 (1) / 379 (2)	866 (1) / 409 (2)	981 (1) / 459 (2)	1.034 (1) / 492 (2)	1.229 (1) / 562 (2)	1.302(1) / 598(2)	1.374 (1) / 619 (2)	1.424 (1) / 640 (2)	1.476 (1) / 668 (2)
Регулирование	Способ			ļ	` '				Б	есступен	14.				. ,
мощности	Минимальная мощі	НОСТЬ		%						12,5					
Входная мощность	Охлаждение	Ном.		кВт	263 (1) / 70,3 (2)	278 (1) / 84,3 (2)	299 (1) / 88,4 (2)	334 (1) / 95,9 (2)	368 (1) / 106 (2)	412 (1) / 112 (2)	403 (1) / 127 (2)	450 (1) / 141 (2)	466 (1) / 146 (2)	511 (1) / 154 (2)	556 (1) / 161 (2)
EER		•		•	2,29 (1) / 8,56 (2)	2,66 (1) / 8,77 (2)	2,75 (1) / 9,29 (2)	2,59 (1) / 9,03 (2)	2,67 (1) / 9,27 (2)	2,51 (1) / 9,21 (2)	3,05 (1) / 9,67 (2)	2,90 (1) / 9,22 (2)	2,95 (1) / 9,4 (2)	2,79 (1) / 9,26 (2)	2,66 (1) / 9,15 (2)
ESEER					3,59	3,66	3,89	3,62	3,83	3,63	4,13	3,89	4,09	4,02	3,92
IPLV					4,08	4,11	4,16	4,18	4,10	4,09	4,40	4,35	4,39	4,37	4,25
Корпус	Цвет								Сл	оновая ко	ОСТЬ				
	Материал							Оцинкова	анный и п	окрашен	ный стал	ьной лис	Т		
Размеры	Блок	Высота		MM						2.565					
		Ширина		ММ						2.480					
		Глубина	1	ММ	6.185 7.085 7.985 8.885 10.685										
Bec	Блок			КГ	8.050	8.620	9.1	190	10.450	10.710	12.	190	12.830	12.910	12.960
	Эксплуатационный	вес		КГ				10.850	11.110	12.	580	13.820	13.900	13.950	
Вод.	Тип								Одноходо	вой кожу:	хотрубнь	IЙ			
теплообменник	Объем воды			Л	266	251	2	43	40	03	3	86		979	
	Номинальный расход воды	Охлажд	ение	л/сек	26,2	32,1	35,7	37,6	42,6	44,9	53,4	56,6	59,7	61,9	64,1
	Спад номинального	Охлаж дение	Теплооб менник	кПа	76 / 115 (2)	97 / 159 (2)	84 / 167 (2)	93 / 184 (2)	102 / 225 (2)	113 / 248 (2)	92 / 219 (2)	103 / 243 (2)	128 / 282 (2)	137 / 301 (2)	146 / 321 (2)
	давления воды														
D	Изоляционный мат	ериал			Diversi			-6		крытая п					
Воздушный теплообменник	Тип					коэффект					оменник	со встроє		реохлади	телем
Вентилятор	Количество				10	12	1	4		6	L		20		
	Тип					Осевой вентилятор с прямой передачей									
	Диаметр	T.,		MM	22.224	10 =01		=00		800			=======================================		
	Расход воздуха	Ном.		л/сек	38.934	46.721	54.	508	62.				73.010		
_	Скорость			об/мин						715					
Двигатель	Привод	Τ.		1		T a aaa			1	Инвертор					= ===
вентилятора	Вход	Охлажд	ение	W	3.000	3.600	4.000	4.600	4.900	5.600	8.300	6.000	6.600	7.200	7.500
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)	91,5	92,0		2,3	93,5	93,7	94,3		1,5	94	,
Уровень звукового давления	Охлаждение	Ном.		дБ(А)	71,0 (1)		71,5 (1)		72,3 (1)	72,5 (1)	72,2 (1)	72,	3 (1)	72,5	5 (1)
Компрессор	Тип							A	симметри		новинтов	ой			
	Количество		заправки	T						2					
	Масло	Л		3	18		44				50				
Рабочий диапазон	Сторона воды	°CDB						-8 15							
	Сторона воздуха	Охлаж дение	Мин. Макс.	°CDB						-20 45					
Хладагент	Тип	1		1 222	R-134a										
логадаготт	Заправка			КГ	128	146	1	62	11		2	14	225	2/	18
	Контуры	Количес	TRO	IM	128 146 162 182 214 225 248 2										
	71						2 DN150PN16(168,3 мм) DN200PN16(219.1mm) DN250PN16(273m				70				
Полсоелинение труб	,,,	спарителя	э (НЛ)		ח	N150PN1	6(168 3 м	IM)	וח	N200PN1	6(219 1m	m)	DN25	0PN16/27	'.3mm≀
Подсоединение труб	,,,		я (НД)	кВт	332 (2)	N150PN1 405 (2)		· '	523 (2)	N200PN1 542 (2)	6(219.1m 667 (2)	m) 704 (2)	DN25 756 (2)	0PN16(27 784 (2)	809 (2)

2 Технические характеристики

2-2 Электрич	еские параметр	Ы		EWAD 600CFXR	EWAD 740CFXR	EWAD 820CFXR	EWAD 870CFXR	EWAD 980CFXR	EWAD C10CFXR	EWAD C11CFXR	EWAD C12CFXR	EWAD C13CFXR	EWAD C14CFXR	EWAD C15CFXR
Компрессор	Фаза				•	•	•	•	3	•		•		
	Напряжение		V						400					
	Диапазон	Мин.	%						-10					
	напряжений	Макс.	%						10					
	Максимальный ра	бочий ток	Α	218	2:	31	2	74	33	33		398		451
	Способ запуска		•	Тройниковое сое			е соедин	единение - Delta						
Компрессор 2	Максимальный ра	бочий ток	Α	218	231	2	74	3	33		398		45	51
Электропитание	Фаза							3~						
	Частота		Гц						50					
	Напряжение		V						400					
	Диапазон	Мин.	%	-10										
	напряжений	Макс.	%						10					
Блок	Максимальный ста	артовый ток	Α	598	611	64	48	912	960		1.016		1.059	1.072
	Номинальный Охлаждение А рабочий ток			411	439	473	526	580	647	645	717	738	800	862
	Максимальный ра	Α	462	493	542	585	649	708	783	84	47	901	954	
	Макс. ток блока дл проводов	А	506	540	592	640	710	775	856	92	27	985	1.044	
Вентиляторы	Номинальный раб	очий ток	Α	26	31	3	6	4	2			52		

Примечания

- (1) Охлаждение: испаритель 16/10°C, температура среды 35°C, блок в режиме полной нагрузки; стандарт: ISO 3744
- (2) Данные рассчитаны при температуре воздуха снаружи 5°C, температуре воды на входе 16°C.
- (3) Жидкость: вода + этиленгликоль 30%
- (4) Допуск напряжения \pm 10%. Разбаланс напряжений между фазами должен быть в пределах \pm 3%.
- (5) Максимальный стартовый ток: пусковой ток наибольшего компрессора + 75 % максимального тока другого компрессора + ток вентиляторов для цепи при 75 %.
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°С; температура воды испарителя на выходе 7°С; темп. наружного воздуха 35°С. Ток компрессора + вентиляторов.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области и макс. потребляемом токе вентилятора
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: (ток полной нагрузки компрессоров + ток вентиляторов) х 1,1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Низкие эксплуатационные расходы и более длительный срок службы

Данная линейка охладителей стала результатом тщательного проектирования, направленного на оптимизацию энергетической эффективности охладителей при снижении эксплуатационных расходов и повышении рентабельности, эффективности и управляемости установки.

В охладителях применяется высокоэффективное решение с одним винтовым компрессором, большой площадью поверхности змеевика конденсатора для обеспечения максимальной теплопередачи и малого давления выпуска, вентиляторами конденсатора современной конструкции, кожухотрубным испарителем с малыми показателями падения давления хладагента.

В охладителях свободного охлаждения используется дополнительная секция для охлаждения воды в здании с использованием наружного воздуха, что позволяет снизить нагрузку на компрессоры и значительно уменьшить эксплуатационные затраты в холодный сезон.

При свободном охлаждении используется разница температур между наружным воздухом и возвратной водой для охлаждения воды перед ее возвращением для охлаждения с более низкой температурой. Когда температура на улице достаточно низкая, компрессоры охладителей полностью выключаются, и охлаждение осуществляется практически без затрат. Более того, сокращение использования компрессора также продлевает срок службы охладителя и дополнительно снижает общую стоимость установки.

Малый шум в процессе работы

Очень низкий шум как при частичной, так и при полной нагрузке достигается благодаря использованию новейшей конструкции компрессора и вентилятора, способного перемещать большие объемы воздуха и, при этом, работать очень тихо и практически без вибрации.

Выдающаяся надежность

Охладители имеют два полностью независимых контура хладагента для обеспечения максимальной безопасности при плановом или внеплановом техобслуживании. Они оснащены надежным компрессором с ведомыми роторами из новейшего композитного материала и проактивной логикой управления. Кроме того, оборудование проходит полное тестирование на заводе-изготовителе для обеспечения бесперебойной работы.

Бесступенчатое управление производительностью

Управление охлаждающей способностью осуществляется бесступенчато с помощью одного винтового ассиметричного компрессора, которым управляет микропроцессорная система. Каждый блок оснащен бесступенчатым регулятором производительности в диапазоне от 100% до 12,5%. Эта регулировка позволяет привести производительность компрессора в соответствие с нагрузкой по охлаждению в здании без колебаний температуры воды на выходе испарителя. Этих колебаний температуры охлажденной воды можно избежать при плавной регулировке.

При пошаговой регулировке нагрузки компрессора производительность компрессора будет слишком высокой или слишком низкой по сравнению с тепловой нагрузкой здания. Результатом является повышение расходов на энергию для охлаждения, особенно в условиях частичной нагрузки, при которой охладитель работает большую часть времени.

Колебание ELWT (температура воды на выходе испарителя) при ступенчатом управлении производительностью

Колебания температуры воды на выходе из испарителя в зависимости от ступени регулирования мощности (4 ступени)

Блоки с бесступенчатой регулировкой обеспечивают преимущества по сравнению с блоками со ступенчатой регулировкой. Возможность постоянной регулировки в зависимости от энергетических потребностей системы и обеспечения постоянства температуры воды на выходе без отклонения от установленного значения - вот два преимущества, которые позволят вам понять, почему блоки с бесступенчатой регулировкой могут оптимизировать условия работы систем.

FTA_1-2_Rev.00_1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Непревзойденная логика управления

Контроллер MicroTech III обеспечивает простую в использовании среду управления. Логика управления гарантирует максимальную эффективность и способность продолжения работы в нештатных ситуациях. В памяти системы также хранятся хронологические данные о работе оборудования. Одним из наиболее значительных преимуществ устройств является простой интерфейс с системами связи LonWorks, Bacnet, Ethernet TCP/IP и Modbus.

Нормативные требования – Безопасность и соблюдение законов/директив

Данное оборудование спроектировано и изготовлено в соответствии с применимыми документами из следующего списка:

Конструкция аппарата высокого давления	97/23/EC (PED)
Директива об оборудовании	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2004

Сертификация

Все изготовленное Daikin оборудование имеет обозначение СЕ, соответствует положениям действующих Европейских директив, регулирующих производство и безопасность. По запросу оборудование может быть произведено в соответствии для требованиями, действующими в странах вне ЕС (ASME, ГОСТ и т.д.), а также в других отраслях, например, морской (RINA и т.д.).

Варианты

Оборудование предлагается в трех вариантах:

X: Высокая эффективность

11 типоразмеров в диапазоне от 640 до 1555 кВт с EER до 3,19 и ESEER до 4,01 (данные относятся к стандартному шуму)

EER (Показатель эффективности энергопотребления) - это отношение производительности по охлаждению к потребляемой блоком мощности. Потребляемая мощность включает: потребляемую мощность компрессора, всех устройств управления, защитных устройств и потребляемую мощность вентиляторов.

ESEER (Европейский показатель сезонной эффективности энергопотребления) - взвешенный показатель, учитывающий изменение EER в зависимости от нагрузки и температуры воздуха на входе конденсатора.

ESEER = A x EER100% + B x EER75% + C x EER50% + D x EER25%

	А	В	С	D
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе конденсатора	35°C	30°C	25°C	20°C

Конфигурации с различным уровнем шума

Оборудование предлагается в трех вариантах:

S: Стандартный шум

Вентилятор конденсатора вращается на скорости 920 об./мин, с резиновыми антивибрационными опорами для компрессора

L: Низкий шум

Вентилятор конденсатора вращается со скоростью 920 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

х: Пониженный шум

Вентилятор конденсатора вращается со скоростью 715 об/мин, резиновая противовибрационная опора под компрессором, звукопоглощающий корпус компрессора.

FTA_1-2_Rev.00_2

4 - 1 Общие характеристики

Корпус и конструктивные особенности

Корпус изготовлен из листов оцинкованной стали и окрашен краской. Таким образом обеспечивается высокая стойкость к коррозии. Цвет: слоновая кость (Ivory White) (Код Munsell 5Y7.5/1) (±RAL7044).На основной раме имеется крюк для крепления тросов с целью подъема и установки. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Компрессор (Один ассиметричный винт)

Компрессор полугерметический, с одним винтом и селекторным ротором (с применением новейшего высокопрочного материала, усиленного волокнами). Каждый компрессор имеет асимметричный регулятор (ползунок), обеспечивающий вместе с контроллером устройства бесступенчатую регулировку производительности в диапазоне от 100% до 25%. Высокоэффективный встроенный маслоотделитель обеспечивает максимальное отделение масла. Стандартный пуск - звезда-треугольник (Y- Δ).

Хладагент

Компрессоры предназначены для работы с хладагентом R-134a, который отвечает экологическим требованиям, имеет нулевой показатель ODP (Потенциал истощения озонового слоя) и очень низкий GWP (Потенциал глобального потепления) т.е. низкое TEWI (Обще эквивалентное влияние нагревания).

Испаритель (Кожухотрубный)

Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента. Указанные характеристики также повышают эффективность работы теплообменника, а также системы в целом. Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами, а водоотводные патрубки испарителя поставляются с фланцевыми соединениями (стандарт) У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED).

Конденсатор (Теплообменник "воздух-хладагент")

Конденсатор изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями. Встроенный контур переохлаждения исключает испарение и способствует увеличению холодопроизводительности без увеличения потребляемой мощности.

Свободное охлаждение (Теплообменник "воздух-вода")

Теплообменник свободного охлаждения изготовлен с применением обработанных изнутри бесшовных медных трубок, расположенных в шахматном порядке и механически посаженных в рифленые алюминиевые оребрения, скрепленные петлями.

Вентиляторы конденсатора (ø 800)

Вентиляторы конденсатора относятся к пропеллерному типу. Специальная конструкция лопастей обеспечивает максимальную производительность. Лопатки изготовлены из стеклопластика, и каждый вентилятор защищен кожухом. Моторы вентиляторов защищены автоматическими выключателями, установленными внутри панели управления (стандартное оборудование), и имеют класс защиты IP54. Регулирование скорости вращения вентилятора является стандартным (опция 99).

Электронный расширительный клапан

Блок оснащен самыми современными электронными расширительными клапанами, обеспечивающими прецизионное управление массовым расходом хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным. Электронные расширительные клапаны обладают уникальными характеристиками: малое время открытия и закрытия, высокое разрешение, положительная функция выключения, устраняющая необходимость использования дополнительного электромагнитного клапана, непрерывная регулировка массового расхода без повышенной нагрузки на контур хладагента, устойчивый к коррозии корпус из нержавеющей стали. Электронные расширительные клапаны обычно работают с меньшим значением ΔP между сторонами высокого и низкого давления, чем терморегулирующий вентиль. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

Контур хладагента

Каждый блок имеет 2 независимых контура хладагента, каждый из которых включает:

- Компрессор со встроенным маслоотделителем
- Охлаждаемый воздухом конденсатор
- Электронный расширительный клапан
- Испаритель
- Запорный клапан в линии выпуска
- Запорный клапан в линии для жидкости
- Запорный клапан в линии всасывания (опция)
- Указатель уровня с индикатором влажности
- Фильтр-осушитель
- Загрузочные клапаны
- Переключатель высокого давления
- Датчики высокого и низкого давления

GNC_1-2-3-4_Rev.00_1

4 - 1 Общие характеристики

Контур свободного водяного охлаждения

Свободное охлаждение "Стандартное с гликолем"

Основная гидравлическая схема подключается непосредственно (через трехходовой клапан) к части свободного охлаждения, создавая цепь с водно-гликолевой смесью. Секция свободного охлаждения включает в себя:

- Теплообменник "воздух-вода"
- Трехходовой клапан (Стандартный)

Электрическая панель управления

Электропитание и управление организовано в главной панели, обеспеченной защитой от погодных условий. Электрическая панель относится к типу IP54 и (при открытии дверей) защищена изнутри панелью из плексигласа, предотвращающей случайный контакт с электрическими компонентами (IP20). Главная панель оснащена блокировкой на двери.

Силовая секция

Относящаяся к электропитанию часть панели включает предохранители компрессоров, автоматический выключатель вентилятора, контакторы вентилятора и трансформатор схемы управления.

Контроллер MicroTech III

Контроллер MicroTech III устанавливается в стандартной конфигурации; его можно использовать для изменения значений установок и проверки параметров управления. На встроенный дисплей выводятся данные рабочего состояния охладителя, температура и давление воды, хладагента и воздуха, программируемые значения, установки. Совершенное программное обеспечение с прогнозирующей логикой выбирает наиболее эффективное с точки зрения энергопотребления сочетание компрессоров, EEXV и вентиляторы конденсатора, обеспечивающее стабильные условия работы для достижения максимальной эффективности энергопотребления охладителя и надежности работы. МicroTech III способен защитить важнейшие компоненты, определяя параметры системы (такие как температура двигателя, давление хладагента и масла, правильность последовательности фаз, реле давления и испаритель). Входной сигнал, поступающий от реле высокого давления, отключает все выходные цифровые сигналы контроллера в течение менее чем 50 мс. Это служит дополнительной защитой для оборудования.

Короткий программный цикл (200 мс), обеспечивающий точный контроль за системой. Поддержка расчетов с плавающей запятой обеспечивает более высокую точность Р/Т преобразований.

Секция управления - основные характеристики

- Бесступенчатое управление производительностью компрессора и работой вентиляторов.
- Охладитель способен работать в состоянии частичного отказа.
- Полная работоспособность в условиях:
- высокой температуры окружающей среды
- высокой тепловой нагрузки
- высокой температуры воды на входе испарителя (пуск)
- Вывод на дисплей значений температуры воды на входе/выходе испарителя.
- Вывод на дисплей температуры вне помещения.
- Вывод на дисплей температуры конденсации-испарения и давления, перегрева на стороне всасывания и выпуска для каждого контура.
- Регулировка температуры воды на выходе испарителя (допуск по температуре = 0,1°C).
- Счетчик часов работы компрессора и насосов испарителя.
- Отображение состояния защитных устройств.
- Количество пусков и часов работы компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Управление вентиляторами в соответствии со значением давления конденсации.
- Повторный пуск в случае перебоя в электропитании (автоматический/ручной).
- Плавная нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Запуск при высокой температуре воды в испарителе.
- Сброс установки возвратной линии (Изменения установки в зависимости от температуры воды в возвратном контуре).
- Сброс установки ОАТ (Температура окружающей среды вне помещения).
- Сброс установки значения (опция).
- Обновление приложения и системы с использованием обычных карт памяти SD.
- Порт Ethernet для дистанционного или локального обслуживания с использованием обычных веб-браузеров.
- Возможность записи в память двух различных наборов параметров по умолчанию для последующего вызова.

Устройства защиты/логика для каждого контура хладагента

- Высокое давление (переключатель давления).
- Высокое давление (датчик).
- Низкое давление (датчик).
- Автоматический выключатель в цепи вентиляторов.
- Высокая температура на выходе компрессора.
- Высокая температура обмоток двигателя.
- Фазоиндикатор.
- Низкое отношение давлений.
- Большое падение давления масла.
- Низкое давление масла.
- Отсутствие изменения давления при пуске.

GNC_1-2-3-4_Rev.00 2

4 - 1 Общие характеристики

Безопасность системы

- Фазоиндикатор.
- Блокировка при низкой температуре окружающего воздуха.
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу датчика воды на выходе испарителя.

MicroTech III

Встроенный терминал MicroTech III имеет следующие характеристики.

- Жидкокристаллический дисплей 164х44 точек с белой подсветкой. Поддержка шрифтов Unicode для различных языков.
- Клавиатура с 3 клавишами.
- Управление Push'n'Roll (путем нажатия кнопок и поворота регуляторов) максимально упрощает использование.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Защита от несанкционированной модификации приложения или использования приложений сторонних производителей с данным аппаратным обеспечением.
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech III

MicroTech III может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный).
- Ethernet TCP/IP.

Стандартные дополнительные функции (входят в комплект базового блока)

Пусковое устройство компрессора "звезда-треугольник" (Y-D) - Для низкого пускового тока и пониженного пускового момента

Два установочных значения - Две установки температуры воды на выходе.

Фазоиндикатор - Монитор фаз обеспечивает правильную последовательность фаз и контролирует пропадание фаз. Набор фланцев для испарителя

20 мм изоляция испарителя - Внешняя оболочка покрыта 20 мм изоляционным материалом с закрытыми порами.

Электронагреватель испарителя - Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C и включенном питании.

Электронный расширительный клапан

Запорный клапан в линии выпуска - Установлен на выходном отверстии компрессора для облегчения техобслуживания.

Датчик температуры воздуха снаружи и сброс установки

Счетчик часов работы

Контактор общих неисправностей

Сброс установок, ограничение электропотребления и обработка аварийных сигналов от внешнего устройства

- (Сброс установки): Установку температуры воды на выходе можно изменить следующими способами: 4-20 мА от внешнего источника (пользователем); наружная температура; колебание температур в испарителе Δt. - (Ограничение нагрузки): Пользователь может ограничить нагрузку устройства с помощью сигнала 4 − 20 мА или по сети. - (Аварийный сигнал от внешнего устройства): Микропроцессор может получать аварийный сигнал от внешнего устройства (например, насоса и т.д....). Пользователь может определить, будет ли этот сигнал приводить к останову блока или нет.

Автоматические выключатели вентиляторов - Устройство защиты от перегрузки двигателя и короткого замыкания. **Главная дверца с блокировкой**

Аварийный останов

Регулировка скорости вентиляторов (также обеспечивает тихий режим работы вентилятора) - Управление оборотами вентилятора для повышения плавности управления блоком. Эта опция снижает уровень шума при работе в условиях низких температур окружающей среды.

Опции (по запросу)

Мягкий пуск - Электронное пусковое устройство снижает механическую нагрузку при пуске компрессора

Морской вариант - Блок может работать при температуре жидкости на выходе до −8°С (необходим антифриз).

Реле тепловой перегрузки компрессора - Устройства защиты от перегрузки двигателя компрессора. Это устройство вместе с внутренней защитой двигателя (стандартное оборудование) обеспечивает наилучшую систему защиты для двигателя компрессора.

Контроль пониженного/повышенного напряжения - Это устройство следит за напряжением электропитания и выключает охладитель, если значение выходит за пределы допустимого диапазона.

Электросчетчик - Устройство установлено внутри блока управления, измеряет и отображает значения тока и напряжения

GNC_1-2-3-4_Rev.00_3

4 - 1 Общие характеристики

Конденсаторы для компенсации коэффициента мощности - Для повышения коэффициента мощности устройства при работе в номинальном режиме. Конденсаторы относятся к "сухому", самовосстанавливающемуся типу, снабжены защитным устройством отключения при слишком высоком давлении, изоляция выполнена из нетоксичного диэлектрического материала, без РСВ или РСТ.

Ограничитель тока - Для ограничения (при необходимости) максимального потребляемого устройством тока

Защита змеевика конденсатора

Защита испарителя

Си-Си змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде.

Cu-Cu-Sn змеевик конденсатора - Улучшенная защита от коррозии при работе в агрессивной среде и в соленом воздухе.

Оребрение змеевика с алюминиевым покрытием - Оребрения защищены специальным акриловым покрытием, защищающим от коррозии.

Реле потока испарителя - Предоставляется отдельно, подключается и устанавливается на водяном трубопроводе испарителя (заказчиком).

Запорный клапан в линии всасывания - Установлен на отверстии всасывания компрессора для облегчения техобслуживания.

Манометры на стороне высокого давления

Манометры на стороне низкого давления

Резиновые противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Пружинные противовибрационные опоры - Поставляются отдельно, предназначены для размещения под основанием блока в процессе установки. Идеально подходят для подавления вибраций при монтаже на крышах и металлических конструкциях.

Один центробежный насос (малый подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Один центробежный насос (большой подъем) - Гидронный узел включает: один центробежный насос с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Два центробежных насоса (малый подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Два центробежных насоса (большой подъем) - Гидронный узел включает: два центробежных насоса с прямым приводом, систему заполнения водой с манометром, предохранительный клапан, сливной клапан. Мотор насоса защищен автоматическим выключателем, установленным в панели управления. Комплект собирают и подключают к панели управления. Труба и насосы защищены от замерзания дополнительным электрическим нагревателем.

Сдвоенный предохранительный клапан давления с отклоняющей перегородкой

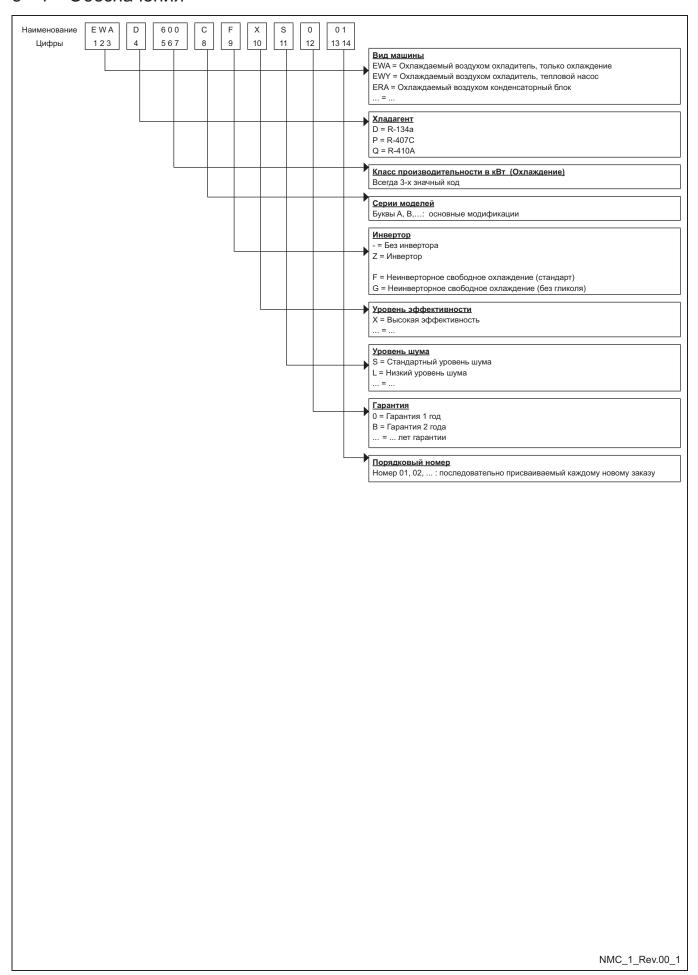
Автоматические выключатели компрессоров

Соединения для подключения трубок для воды на правой стороне испарителя

Реле защиты от замыканий на землю - Обеспечивает выключение всего блока при обнаружении замыкания на землю.

Быстрый перезапуск - Система позволяет включить блок всего лишь через 30 секунд после восстановления электропитания (в случае сбоя в сети электропитания).

Транспортный комплект


Оптимизированное свободное охлаждение (регулирование VFD вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

Оптимизированное свободное охлаждение (Вкл/выкл вентиляторов) - Эта опция позволяет повысить эффективность блока в диапазоне температур между началом свободного охлаждения (начало свободного охлаждения соответствует моменту, когда температура наружного воздуха на один градус ниже температуры воды на входе блока свободного охлаждения) и 100% свободным охлаждением (т.е. когда общая нагрузка установки обеспечивается свободным охлаждением).

GNC 1-2-3-4 Rev.00 4

5 Обозначения

5 - 1 Обозначения

6 - 1 Таблицы холодопроизводительности

EWAD-CFXR

Производительность по охлаждению

The CC		Twout			3				9			1	0	
Sept			CC			dnw	CC		·	dnw	CC		<u> </u>	dnw
25		ıα												
Second Color		25												
600 32 598 243 261 75 614 247 267 78 679 252 274 68 62 62 62 61 62 62 62 62 62 62 62 62 62 62 62 62 62														
Section Sect														
Section Sect	600													
Mathematics														
255 771 228 33.5 105 790 232 34.3 110 809 236 35.1 114 114 32 779 256 31.7 55 746 260 32.4 99 774 265 33.2 103 103 32 729 256 31.7 55 746 260 32.4 99 774 265 33.2 103 32 729 256 31.7 55 746 260 32.4 99 774 265 33.2 103 38 775 32.1 97 38 722 273 38 31.4 35 738 278 32.1 97 38 725 28 32.1 37 38 725 28 32.1 37 38 38 38 38 38 38 38														
740 30 742 247 32,3 38 760 252 33,0 102 778 296 33,8 107 33 705 299 30,7 89 722 273 31,4 93 799 724 228 32,4 97 78 38 795 222 295 83 685 287 31,4 93 799 278 32,4 97 78 38 799 278 32,4 97 78 38 799 278 32,4 97 78 38 695 287 28 28 38 695 287 28 28 28 28 28 28 2									· '					
740 32														
Section Sect									· · ·					
Mathematics	740													
40														
25 849 244 36,9 90 869 248 37,8 94 860 225 38,7 98 30 820 32 265 35,7 85 840 270 36,5 88 860 275 37,4 92 32 286 34,0 77 800 2293 34,9 81 821 229 35,7 89 35 782 288 34,0 77 800 2293 34,9 81 821 229 35,7 84 38 77 28 33 32,8 72 771 307 33,5 75 780 306 33,9 77 77 301 31,2 86 727 302 31,6 67 738 301 32,1 69 32 32 33,9 33,5 75 780 306 33,9 77 301 31,2 86 727 302 31,6 67 738 301 32,1 69 30,5 30														
820 30 820 255 337 85 840 270 36,5 88 860 275 37,4 92 32 806 32 806 274 351 82 828 279 35,9 86 845 284 36,7 89 35 782 288 34,0 77 802 293 34,9 81 821 299 35,7 84 38 37 55 303 32,28 72 771 307 33,5 75 780 306 33,9 77 400 717 301 31,2 66 727 302 31,6 67 738 301 32,1 69 32 32 855 306 37,2 91 889 301 38,7 98 909 306 39,5 102 32 855 306 37,2 91 874 312 38,0 95 893 317 38,8 99 32 855 306 37,2 91 874 312 38,0 95 893 317 38,8 99 38 794 389 301 38,7 98 909 306 39,5 102 38 794 338 345 80 808 342 35,1 82 808 336 331 734 38 345 80 808 342 35,1 82 808 336 331 734 38 345 80 808 342 35,1 82 808 336 336 35,1 82 808 308														
820 32 806 274 35.1 82 828 329 279 35.9 86 845 284 36.7 89 89 85 752 288 34.0 77 802 223 34.9 81 821 821 299 35.7 84 40 717 301 312 66 727 302 302 31,6 67 738 306 33.9 77 2 771 307 33.5 755 780 306 33.9 77 2 771 307 31.2 66 727 302 30,2 31,6 67 738 306 33.9 77 2 771 307 31.2 66 727 302 30,2 31,6 67 738 306 33.9 77 3 30 870 296 37.8 94 40 301 32,1 69 99 306 39,5 102 32 855 306 37.2 91 874 312 38.0 95 883 317 38,8 99 85 883 317 38,8 89 99 33 80 822 359,9 88 846 3228 36,8 90 863 334 37,6 93 38 794 338 34,5 80 808 342 35,1 82 808 334 37,6 93 38 794 338 34,5 80 808 342 35,1 82 808 336 35,1 82 30,0 95 883 317 38,8 99 80 30 96 30,0 95 30 966 327 42,9 104 1010 333 43,9 108 1035 339 45,0 110 44,6 111 1052 307 45,7 117 1078 313 46,9 1122 30 980 32 997 338 42.0 100 991 344 43,1 104 1015 351 44,1 109 35 995 35 935 854 40.7 94 988 361 41,6 98 89 192 394 39,6 89 40 885 363 38,5 85 896 393 38,5 885 393 38,5 885 393 38,5 885 393 38,5 885 393 38,5 885 393 38,5 885 896 392 33,9 86 912 394 39,6 89 89 40 885 393 39,5 102 30 104 44,5 111 1052 307 34,4 114 104 1015 351 44,1 109 38 42,6 102 38 40 885 393 38,5 85 896 392 38,9 86 912 394 39,6 89 40 885 393 38,5 85 896 392 38,9 86 912 394 39,6 89 40 885 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,5 886 393 38,9 86 912 394 39,6 89 40 885 393 39,9 90 917 390 39,9 90 927 398 40,3 39,2 46,6 102 32 40,4 378 44,5 111 1043 385 44,6 111 114 144,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 350 49,8 113 114,5 11														
35 782 288 34,0 77 802 293 34,9 81 821 299 35,7 84														
18	820													
Mathematics														
25														
870 870 870 870 870 870 870 870 870 870													-	
870 870 872 873 874 875 876 877 877 878 877 878 878														
810 35 826 322 35.9 86 846 328 36.8 90 866 334 37.6 93 38 794 338 34.5 80 808 342 35.1 82 808 336 35.1 82 40 735 326 32.0 69 739 322 32.1 70 742 317 32.3 70 30 986 327 42.9 104 1010 333 43.9 108 1035 339 45.0 113 22 967 338 42.0 100 991 344 43.1 104 1015 351 44.1 119 980 35 35 355 355 355 355 355 355 355 355	070							312					38,8	
Mathematics	870	35	826	322	35,9	86	846	328	36,8	90	866	334	37,6	93
980 25 1026 301 44.6 111 1052 307 45.7 117 1078 313 46.9 122 30 986 327 42.9 104 1010 333 43.9 108 1035 339 45.0 113 31 985 328 42.0 100 991 344 43.1 104 1015 351 44.1 109 32 987 338 42.0 100 991 344 43.1 104 1015 351 44.1 109 33 985 354 44.7 94 588 361 41.6 98 981 358 364 39.6 193 34 985 363 38.5 85 85 886 362 38.9 86 912 364 39.6 89 40 835 35.7 86.3 76 847 357 36.8 78 860 358 37.4 80 25 1092 337 47.5 125 1118 343 46.6 131 1145 350 48.8 137 30 1046 366 45.5 116 1071 373 46.5 121 1096 380 47.6 126 C10 35 986 397 42.9 104 1010 404 43.9 108 1034 412 44.9 113 38 918 399 39.9 90 91 77 390 39.9 9 92 7389 40.3 92 40 840 876 36.5 77 843 369 36.7 77 882 367 37.0 78 40 840 840 376 36.5 77 843 369 36.7 77 882 367 37.0 78 C11 35 1169 390 50.8 84 1199 397 52.1 88 1229 403 53.4 89.7 C11 35 1169 390 50.8 84 1199 397 52.1 88 1229 403 53.4 92 40 840 444 48.2 75 84 1199 397 52.1 88 1229 403 53.4 92 40 840 840 376 36.5 77 843 369 36.7 77 882 367 37.0 78 25 1253 330 54.5 96 1228 335 55.9 101 1318 341 57.3 106 30 1216 359 52.9 91 1247 365 54.2 95 1279 371 55.6 100 35 1169 390 50.8 84 1199 397 52.1 88 1229 403 53.4 92 35 1169 390 50.8 84 1199 397 52.1 88 1229 403 53.4 92 36 1169 444 482 75 1137 431 49.4 80 1166 439 50.7 84 C12 32 1274 413 56.4 99 1136 447 56.5 57.6 107 1358 413 50.0 112 C13 32 1394 428 482 75 1137 443 49.8 80 1166 439 50.7 84 C14 32 1494 458 52.2 89 1231 465 53.5 93 1261 473 54.8 97 40 1109 424 482 75 1137 443 56.2 99 130 449 55.7 50.0 112 30 1293 400 56.2 132 1328 496 56.2 114 142 366 69 57.7 142 32 1394 648 55.9 94 1271 442 55.2 99 130 132 64.0 117 138 34 14 14 14 14 14 14 14 14 14 14 14 14 14		38	794	338		80	808	342			808	336		82
980 986 327 429 104 1010 333 43,9 108 1035 339 45,0 113 32 967 338 420 100 991 344 43,1 104 1015 351 44,1 109 35 935 354 40,7 94 958 361 41,6 98 991 368 42,6 102 38 885 354 40,7 94 958 361 41,6 98 991 368 42,6 102 38 885 363 385, 85 86 896 362 38,9 86 912 364 39,6 89 40 835 357 47,5 125 1118 343 48,6 131 1145 350 49,8 137 30 1046 366 45,5 116 1071 373 46,5 121 1066 380 47,6 126 32 1024 378 44,5 111 1048 385 45,6 116 1072 392 46,6 121 33 996 397 42,9 104 1010 404 43,9 108 1034 41,4 14,9 113 38 918 399 399 90 917 390 399 90 227 389 40,3 92 40 840 376 36,5 77 843 369 36,7 77 882 367 37,0 78 40 840 376 36,5 77 843 369 36,7 77 882 367 37,0 78 50 125 125 125 3 330 54,5 96 1225 335 55,2 125 37,0 78 50 126 399 529 91 1247 385 54,2 95 127 371 55,6 100 32 1198 371 52,1 88 1229 377 53,4 93 1260 384 54,8 97 35 1169 390 50,8 84 1199 397 52,1 88 1193 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1106 439 50,7 84 40 1109 424 435 53,9 94 1271 442 55,2 99 1104 133 424 51,8 87 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 50,7 84 40 1172 473 51,0 85 127 1406 423 61,1 134 443 431 59,0 112 C12 13 136 400 488 60,9 133 143 49,4 80 1166 439 50,7 86,1 119 39 1293 400 56,2 102 1326 406 57,6 107 1338 413 59,0 112 40 1172 473 51,0 85 127 1406 423 61,1 134 444 443 431 62,7 140 40 1172 473 51,0 85 127 1406 423 61,1 134 444 443 431 62,7 140 40 1172 473 51,0 85 127 1406 423 61,1 134 444 449 68,0 16,0 173 68,0 173			735	326	32,0	69	739	322	32,1	70	742	317	32,3	70
980 32			1026		44,6	111	1052		45,7				46,9	122
35 935 354 40,7 94 958 361 41,6 98 9811 388 42,6 102 38 885 363 38,5 85 896 362 38,2 38,9 86 912 364 39,6 88 40 835 357 36,3 76 847 357 38,8 78 860 358 37,4 80 25 1092 337 47,5 125 1118 343 48,6 131 1145 350 49,8 137 30 1046 366 45,5 116 1071 373 46,5 121 1096 380 47,6 126 32 1024 378 44,5 111 1048 385 45,6 116 1072 392 46,6 121 32 1024 378 44,5 111 1048 385 45,6 116 1072 392 46,6 121 38 918 399 39,9 90 917 390 39,9 90 97 389 40,3 92 40,3 92 40 840 376 36,5 77 843 369 36,7 77 852 367 37,0 78 25 1253 330 54,5 96 1285 335 55,9 101 1318 341 57,3 106 30 1216 359 52,9 91 1247 365 54,2 95 1279 371 55,6 100 32 1198 371 52,1 88 1229 377 53,4 93 1260 384 54,8 97 35 1199 390 50,8 84 1199 397 52,1 88 1229 403 53,4 92 38 1135 410 49,4 80 1164 417 50,6 84 1193 424 51,8 87 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 30,7 84 40 1109 424 48,2 76 1137 431 49,4 80 1166 439 50,7 84 40 1109 424 48,2 86 152 136 406 57,6 107 1358 413 59,0 112 25 1353 367 59,1 109 1369 373 59,5 114 1403 380 61,0 119 30 1223 400 56,2 102 1326 406 57,6 107 1358 413 59,0 112 25 1335 167 49 435 53,9 94 1271 442 55,2 99 1302 450 56,6 103 35 1240 435 53,9 94 1271 442 55,2 99 1302 450 56,6 103 36 1262 487 53,3 104 1258 496 54,7 109 1273 497 55,3 111 C13 32 1274 413 55,4 99 1305 420 56,7 104 1337 427 58,1 106 35 1366 492 56,5 123 1381 436 50,0 129 1374 445 61,6 136 36 1366 497 56,8 117 1340 456 56,2 114 1366 489 57,6 120 36 1240 435 53,9 94 1271 442 55,2 59 1302 450 56,6 103 37 1369 415 59,5 127 1406 423 61,1 134 1443 431 62,7 140 38 1200 478 58,5 123 1381 436 60,0 129 1374 486 59,7 128 38 1305 518 56,8 117 1321 56,7 57,4 119 1341 548 56,6 57,7 162 30 1486 499 50,5 135 104 1252 500 66														
35 935 394 40,7 94 998 361 41,6 99 981 308 42,6 102 40 835 365 363 38,5 85 896 362 38,9 86 912 304 39,6 89 912 25 1092 337 47,5 118 343 46,6 131 1145 350 49,8 137 30 1046 386 45,5 116 1071 373 46,5 121 1096 380 47,6 126 31 201024 378 44,5 111 1048 38,5 45,6 116 1072 392 46,6 121 35 986 397 42,9 104 1010 404 43,9 108 1034 412 44,9 113 38 918 399 38,9 90 917 390 39,9 90 927 389 40,3 92 40 840 376 36,5 77 843 369 36,7 77 852 367 37,0 78 25 1253 330 54,5 96 1225 335 55,9 101 1318 341 57,3 106 30 1126 359 52,9 91 1247 365 54,2 95 1279 371 55,6 100 31 1199 390 50,8 84 1199 397 52,1 88 1229 403 384 54,8 97 38 1135 410 49,4 80 1164 417 50,6 84 1193 424 51,8 87 40 1199 424 48,2 76 1137 431 434, 80 1166 439 50,7 84 40 1109 424 48,2 76 1137 442 55,5 95 179 40 1172 473 51,0 85 122 1326 406 57,6 107 1388 413 390 112 C12 C13 35 1240 435 59,9 94 1271 442 55,2 99 1302 450 56,6 103 38 1235 440 85,8 117 1349 439 63,7 144 1443 449 89 172 40 1172 473 51,0 85 127 1406 423 61,1 134 1444 144 144 144 144 144 144 144 1	980													
C10 40 835 357 36,3 76 847 357 36,8 78 860 358 37,4 80	000													
C10 C10 C10 C10 C10 C10 C10 C10														
C10 C10 30														
C10 C10							+							
C10 35 986 397 42.9 104 1010 404 43.9 108 1034 412 44.9 113 38 918 399 39.9 90 917 390 39.9 90 927 38.9 40.3 92 40 840 376 36.5 77 843 369 36.7 77 852 367 37.0 78 25 1253 330 54.5 96 1285 336 55.9 101 1318 341 57,3 106 30 1216 35.9 52.9 91 1247 365 54.2 95 1279 371 55.6 100 32 1198 371 52.1 88 1229 377 53.4 93 1260 384 54.8 97 35 1169 390 50.8 84 1199 397 52.1 88 1229 403 53.4 92 40 1109 424 48.2 76 1137 431 49.4 80 1166 439 50.7 84 40 1109 424 48.2 76 1137 431 49.4 80 1166 439 50.7 84 25 1335 367 58.1 109 1389 373 59.5 114 1403 380 61.0 119 30 1283 400 56.2 102 1326 406 57.6 107 1358 413 59.0 112 21 22 1274 413 55.4 99 1305 420 56.7 104 1337 427 58.1 108 38 1201 458 52.2 89 1231 465 53.5 93 1261 473 54.8 97 40 1172 473 51.0 85 1201 481 52.2 89 1230 489 53.4 93 40 1172 473 51.0 85 1201 481 52.2 89 1230 489 53.4 93 40 126 428 58.5 123 1381 436 60.0 129 1417 445 61.6 61.6 136 33 1366 449 56.8 117 1340 424 66.0 155 1557 432 67.7 162 40 1226 487 53.3 104 1258 496 54.7 109 1273 497 55.3 111 40 1226 487 53.3 104 1258 496 54.7 109 1273 497 55.3 111 41 42 43 43 44 44 44 44 44														
C11 Signature	C10													
C11 August Augus														
C11 C11														
C11 30														
C11 32 1198 371 52,1 88 1229 377 53,4 93 1260 334 54,8 97														
C11 35 1169 390 50,8 84 1199 397 52,1 88 1229 403 53,4 92														
1135	C11													
C12 A														
C12 C12 C12 C13 C13 C13 C13 C13 C14														
C12 30 1293 400 56,2 102 1326 406 57,6 107 1358 413 59,0 112														
C12 32 1274														
C12 35														
C13 38 1201 458 52,2 89 1231 465 53,5 93 1261 473 54,8 97	C12													
C13 A0							+							
C13 C13 C14 C15														
C13 C13 C13 C13 C13 C13 C13 C14 C14 C15														
C13 C13 32 1346 428 58,5 123 1381 436 60,0 129 1417 445 61,6 136			1369	415	50 F	127	1406	423	0.4.4	134	1443	431	00.7	140
State	C42													
C14 40	U13	35	1306	449	56,8	117	1340	458	58,2	122	1374	466	59,7	128
C14 C14 25			1260	472	54,8	109	1293		56,2	114	1326	489	57,6	120
C14 30			1226	487		104	1258	496	54,7	109	1273	497	55,3	111
C14 32									 					
C14 35														
35 1356 492 59,0 125 1390 501 60,4 131 1424 511 61,9 137 38 1305 518 56,8 117 1321 517 57,4 119 1341 518 58,3 122 40 1229 509 53,5 104 1252 512 54,4 108 1262 508 54,8 109 25 1546 450 67,2 160 1584 458 68,9 167 1622 467 70,5 175 30 1486 491 64,6 149 1522 500 66,2 155 1557 509 67,7 162 32 1457 508 63,3 143 1493 518 64,9 150 1527 527 66,4 156 35 1407 535 61,2 134 1442 545 62,7 140 1476 556 64,1 </td <td>C14</td> <td></td>	C14													
40 1229 509 53,5 104 1252 512 54,4 108 1262 508 54,8 109 25 1546 450 67,2 160 1584 458 68,9 167 1622 467 70,5 175 30 1486 491 64,6 149 1522 500 66,2 155 1557 509 67,7 162 32 1457 508 63,3 143 1493 518 64,9 150 1527 527 66,4 156 335 1407 535 61,2 134 1442 545 62,7 140 1476 556 64,1 146 38 1351 564 58,8 124 1351 554 58,7 124 1358 547 59,0 125														
C15														
C15														
C15 32 1457 508 63,3 143 1493 518 64,9 150 1527 527 66,4 156 35 1407 535 61,2 134 1442 545 62,7 140 1476 556 64,1 146 38 1351 564 58,8 124 1351 554 58,7 124 1358 547 59,0 125														
C15 35 1407 535 61,2 134 1442 545 62,7 140 1476 556 64,1 146 38 1351 564 58,8 124 1351 554 58,7 124 1358 547 59,0 125														
35 1407 535 61,2 134 1442 545 62,7 140 1476 556 64,1 146 38 1351 564 58,8 124 1351 554 58,7 124 1358 547 59,0 125	C15													
40 1232 530 53,6 105 1246 528 54,2 107 1251 518 54,3 107														
		40	1232	530	53,6	105	1246	528	54,2	10/	1251	518	54,3	10/

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_3 (1/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

^{*} Если условия работы соответствуют значениям dpw, указанным курсивом красного цвета, обратитесь на завод-изготовитель

6 - 1 Таблицы холодопроизводительности

EWAD-CFXR
Производительность по охлаждению

	Twout		1	1			1	2			1	3	
	Та	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
		кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа	кВт	кВт	л/с	кПа
	25	702	232	30,5	101	719	237	31,2	105	735	242	31,9	109
	30	662	250	28,8	90	677	255	29,4	94	693	260	30,1	98
600	32	645	257	28,0	86	660	262	28,6	89	674	267	29,3	93
600	35	616	269	26,8	79	631	274	27,4	82	639	275	27,7	84
	38	561	259	24,4	66	565	256	24,5	67	570	253	24,7	68
	40	514	243	22,3	57	521	242	22,6	58	524	237	22,7	59
	25	828	240	35,9	119	847	245	36,8	124	866	249	37,6	129
	30	796	261	34,6	111	814	266	35,3	116	832	271	36,1	120
740	32	781	270	33,9	107	799	275	34,7	112	816	280	35,4	116
740	35	756	283	32,8	101	773	289	33,6	105	790	294	34,3	109
	38	702	282	30,5	88	705	279	30,6	89	708	275	30,7	89
	40	644	266	28,0	75	651	264	28,2	76	652	259	28,3	76
	25	912	257	39,6	103	932	261	40,5	107	952	266	41,3	111
	30	880	279	38,2	96	900	284	39,1	100	920	289	39,9	104
000	32	865	289	37,6	93	885	294	38,4	97	904	299	39,2	101
820	35	840	304	36,5	88	859	309	37,3	92	878	314	38,1	95
	38	791	307	34,4	79	802	307	34,8	81	816	309	35,4	83
	40	750	303	32,6	71	760	302	33,0	73	766	300	33,2	74
	25	963	286	41,8	114	983	291	42,7	118	1004	296	43,6	122
	30	928	311	40,3	106	947	317	41,1	110	967	322	42,0	114
	32	911	322	39,6	103	930	328	40,4	106	949	333	41,2	110
870	35	884	339	38,4	97	902	345	39,2	100	920	351	39,9	104
	38	812	332	35,3	83	816	327	35,4	83	824	326	35,8	85
	40	750	315	32,6	71	752	309	32,6	71	758	307	32,9	72
	25	1105	319	48,0	128	1131	325	49,1	133	1157	331	50,2	139
	30	1060	346	46,1	118	1085	352	47,1	123	1110	359	48,2	128
	32	1039	357	45,1	114	1064	364	46,2	119	1088	371	47,2	124
980	35	999	371	43,4	106	1013	372	44,0	108	1027	373	44,6	111
	38	925	364	40,2	91	937	364	40,7	94	950	365	41,2	96
	40	863	352	37,5	80	869	348	37,7	81	863	352	37,5	80
	25	1172	357	50,9	143	1198	364	52,0	148	1225	371	53,2	154
	30	1121	387	48,7	131	1146	395	49,7	136	1170	402	50,8	142
	32	1097	400	47,6	126	1121	408	48,7	131	1145	415	49,7	136
C10	35	1045	413	45,4	115	1050	409	45,6	116	1055	404	45,8	117
	38	931	383	40,4	92	933	376	40,5	93	942	373	40,9	94
	40	854	359	37,1	79	861	355	37,4	80	847	367	36,8	77
	25	1352	347	58,7	110	1385	352	60,1	115	1419	358	61,6	121
	30	1311	377	56,9	104	1343	383	58,3	109	1375	390	59,7	114
	32	1292	390	56,1	101	1323	396	57,4	106	1355	403	58,8	111
C11	35	1259	410	54,7	97	1290	417	56,0	101	1321	424	57,3	105
	38	1222	431	53,1	91	1252	438	54,3	95	1281	445	55,6	100
	40	1195	446	51,9	88	1216	449	52,8	90	1233	450	53,5	93
	25	1437	386	62,4	124	1472	393	63,9	130	1507	400	65,4	135
	30	1391	420	60,4	117	1424	427	61,8	122	1457	435	63,2	127
	32	1369	435	59,5	113	1401	442	60,8	118	1434	450	62,2	123
C12	35	1332	457	57,9	108	1363	465	59,2	112	1395	473	60,5	117
	38	1290	481	56,0	101	1320	489	57,3	105	1350	497	58,6	110
	40	1259	497	54,7	97	1273	498	55,3	99	1279	493	55,5	99
	25	1538	405	66,8	158	1577	413	68,5	165	1616	421	70,2	173
	30	1480	439	64,3	147	1518	447	65,9	154	1556	456	67,5	161
	32	1454	453	63,1	142	1490	462	64,7	148	1527	470	66,3	155
C13	35	1409	475	61,2	134	1444	484	62,7	140	1479	493	64,2	146
	38	1359	498	59,0	125	1392	507	60,4	131	1408	508	61,1	133
	40	1280	492	55,6	112	1286	486	55,8	112	1290	479	56,0	113
	25	1595	440	69,3	169	1633	448	70,9	177	1671	456	72,5	184
	30	1535	478	66,7	157	1571	487	68,2	164	1606	496	69,7	171
	32	1506	495	65,4	152	1541	504	66,9	158	1576	513	68,4	165
C14	35	1458	520	63,3	143	1492	530	64,8	149	1513	532	65,7	153
	38	1360	518	59,1	125	1384	522	60,1	129	1393	517	60,5	131
	40	1266	500	55,0	110	1275	495	55,4	111	1282	489	55,7	112
	25	1661	476	72,1	182	1699	485	73,8	190	1738	494	75,4	198
	30	1593	519	69,2	169	1629	528	70,7	176	1666	538	72,3	183
	32	1562	537	67,9	163	1597	547	69,3	169	1632	557	70,8	176
C15	35	1510	566	65,6	153	1597	576	67,0	159	1551	571	67,3	160
	38	1364	539	59,2	126	1378	536		128	1382	527		129
	1 30	1304						59,8				60,0	
	40	1254	508	54,5	108	1265	504	54,9	109	1276	499	55,4	111

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_3 (2/2)

Та: Температура воздуха на входе конденсатора; Twout: Температура воды на выходе испарителя ($\Delta t\,6^{\circ}C$)

СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

^{*} Если условия работы соответствуют значениям dpw, указанным курсивом красного цвета, обратитесь на завод-изготовитель

6 - 1 Таблицы холодопроизводительности

EWAD-CFXR

Производительность по свободному охлаждению

Twout			8					9					10		
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа
640	-3,6	573	9,4	24,9	105	-3,0	588	9,4	25,5	110	-2,3	602	9,4	26,2	115
770	-3,2	705	11	30,7	147	-2,6	722	11	31,4	153	-1,9	739	11	32,1	159
850	-2,0	782	12,5	34	153	-1,3	802	12,6	34,9	160	-0,6	821	12,6	35,7	167
900	-2,7	826	12,6	35,9	169	-2,1	846	12,6	36,8	176	-1,5	866	12,5	37,6	184
C10	-2,2	935	14,2	40,7	207	-1,6	958	14,1	41,6	216	-0,9	981	14,2	42,6	225
C11	-3,0	986	14,2	42,9	228	-2,4	1010	14,2	43,9	238	-1,7	1034	14,2	44,9	248
C12	-0,6	1169	17,4	50,8	201	0,0	1199	17,3	52,1	210	0,7	1229	17,4	53,4	219
C13	-1,5	1240	17,3	53,9	224	-0,8	1271	17,4	55,2	233	-0,2	1302	17,4	56,6	243
C14	-2,2	1306	17,5	56,8	258	-1,7	1340	17,3	58,2	270	-1,1	1374	17,4	59,7	282
C15	-2,8	1356	17,5	59	276	-2,2	1390	17,5	60,4	288	-1,6	1424	17,5	61,9	301
C16	-3,4	1407	17,5	61,2	296	-2,9	1442	17,4	62,7	308	-2,3	1476	17,4	64,1	321

Жидкость: Вода + этиленгликоль 30%

SRC_1-2-3-4-5-6_Rev.00_6 (1/2)

Та: Температура воздуха снаружи; Twout: температура воды на выходе блока ($\Delta t\,6^{\circ}C$)

ТЕС: Температура воздуха для свободного охлаждения 100%; СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение

6 - 1 Таблицы холодопроизводительности

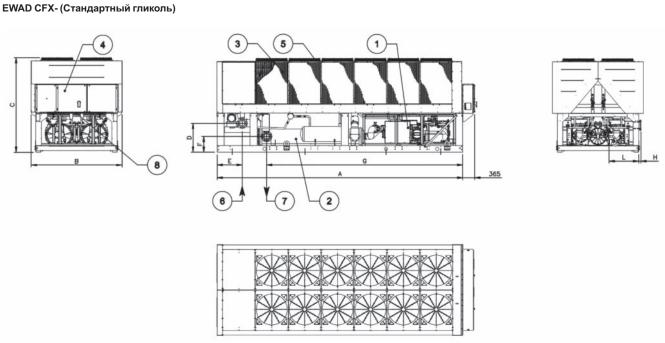
EWAD-CFXR

Производительность по свободному охлаждению

Twout			11					12					13		
	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw	TFC	CC	PI	qw	dpw
	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа	°C	кВт	кВт	л/с	кПа
640	-1,7	616	9,4	26,8	120	-1,1	631	9,4	27,4	124	-0,3	639	9,4	27,7	127
770	-1,3	756	11	32,8	165	-0,6	773	11	33,6	172	0,0	790	11	34,3	178
850	0,0	840	12,6	36,5	173	0,7	859	12,6	37,3	180	1,3	878	12,6	38,1	187
900	-0,8	884	12,6	38,4	190	-0,1	902	12,6	39,2	197	0,6	920	12,6	39,9	204
C10	-0,2	999	14,2	43,4	232	0,6	1013	14,2	44	238	1,4	1027	14,2	44,6	244
C11	-0,9	1045	14,2	45,4	252	0,0	1050	14,2	45,6	254	0,9	1055	14,2	45,8	256
C12	1,3	1259	17,4	54,7	228	2,0	1290	17,5	56	238	2,6	1321	17,4	57,3	248
C13	0,4	1332	17,3	57,9	253	1,1	1363	17,5	59,2	263	1,7	1395	17,4	60,5	274
C14	-0,5	1409	17,4	61,2	294	0,1	1444	17,4	62,7	307	0,7	1479	17,4	64,2	321
C15	-1,1	1458	17,3	63,3	314	-0,5	1492	17,4	64,8	326	0,3	1513	17,4	65,7	334
C16	-1,7	1510	17,4	65,6	334	-1,1	1543	17,4	67	347	-0,2	1551	17,4	67,3	350

Жидкость: Вода + этиленгликоль 30%

Та: Температура воздуха снаружи; Twout: температура воды на выходе блока (Δt 6°C)


ТЕС: Температура воздуха для свободного охлаждения 100%; СС: Производительность по охлаждению; РІ: Потребляемая мощность; qw: Скорость потока жидкости; dpw: Падение давления жидкости

SRC_1-2-3-4-5-6_Rev.00_6 (2/2)

7 Размерные чертежи

7 - 1 Размерные чертежи

Чертежи служат только для иллюстрации. Размеры блоков приведены в таблице ниже.

Мод	ели					Габари	ты (мм)				
EWAD CFXS/XL	EWAD CFXR	Α	В	С	D	E	F	G	Н	I	Вентиляторы
640	600	5820	2480	2565	795	690	435	5370	75	800	10
770	740	6720	2480	2565	795	690	435	5370	75	800	12
850	820	7620	2480	2565	795	690	435	5370	75	800	14
900	870	7620	2480	2565	795	690	435	5370	75	800	14
C10	980	8520	2480	2565	795	690	540	5355	75	748	16
C11	C10	8520	2480	2565	795	690	540	5355	75	748	16
C12	C11	10320	2480	2565	795	690	540	5355	75	748	20
C13	C12	10320	2480	2565	795	690	540	5355	75	748	20
C14	C13	10320	2480	2565	795	690	540	5355	75	670	20
C15	C14	10320	2480	2565	795	690	540	5355	75	670	20
C16	C15	10320	2480	2565	795	690	540	5355	75	670	20

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Компрессор
- 2 Испаритель
- 3 Змеевик конденсатора
- 4 Электрическая панель
- 5 Вентилятор
- 6 Патрубок подвода воды в испаритель
- 7 Выход испарителя для воды
- 8 Слот для подключения питания

DMN_1_Rev.00

8 Данные об уровне шума

8 - 1 Данные об уровне шума

EWAD-CFXR

			Уровень з	вукового дав	ления в 1 м с	от блока (rif. 2	2 х 10-5 Па)			Электропитание
МОДЕЛЬ	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
600	67,6	60,8	67,9	73,1	60,5	56,9	48,6	36,0	71,0	91,5
740	68,1	61,3	68,4	73,6	61,0	57,4	49,1	36,5	71,5	92,0
820	68,1	61,3	68,4	73,6	61,0	57,4	49,1	36,5	71,5	92,3
870	68,1	61,3	68,4	73,6	61,0	57,4	49,1	36,5	71,5	92,3
980	68,9	62,1	69,2	74,4	61,8	58,2	49,9	37,3	72,3	93,5
C10	69,1	62,3	69,4	74,6	62,0	58,4	50,1	37,5	72,5	93,7
C11	68,8	62,0	69,1	74,3	61,7	58,1	49,8	37,2	72,2	94,3
C12	68,9	62,1	69,2	74,4	61,8	58,2	49,9	37,3	72,3	94,5
C13	68,9	62,1	69,2	74,4	61,8	58,2	49,9	37,3	72,3	94,5
C14	69,1	62,3	69,4	74,6	62,0	58,4	50,1	37,5	72,5	94,6
C15	69,1	62,3	69,4	74,6	62,0	58,4	50,1	37,5	72,5	94,6

ПРИМЕЧАНИЯ

Жидкость: Вода + этиленгликоль 30%

Примечание: Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°C, наружная температура 35°C, работа при полной нагрузке

NSL_1-2-3_Rev.00_3

9 - 1 Способ монтажа

Примечания по установке

Предупреждение

Установка и техобслуживание блока должны производиться только квалифицированными специалистами, знающими местные положения и правила и имеющими опыт работы с данным оборудованием. Необходимо избегать установки агрегата на местах, где проведение технического обслуживания может быть опасным.

Обращение

Необходимо избегать небрежного обращения с блоком или ударов при падении. Не толкайте и не тяните блок на опорах, отличных от его основной рамы. Не допускайте падения блока во время разгрузки или перемещения, поскольку это может привести к значительному повреждению. Для подъема агрегата используйте проушины на опорной раме. Траверсу и тросы следует расположить так, чтобы избежать повреждения змеевика конденсатора или корпуса блока.

Расположение

Блоки выпускаются для наружной установки на крыше, на полу или ниже уровня поверхности земли при условии, что в месте установки нет препятствий для циркуляции воздуха для конденсатора. Блок должен находиться на прочном и ровном основании; в случае установки на крыше или на полу рекомендуется использовать подходящие балки для распределения весовых нагрузок. В случае установки блоков на земле необходимо подготовить бетонное основание, ширина и длина которого превышает установочные размеры блока, по меньшей мере, на 250 мм. К тому же, этот фундамент должен выдержать вес агрегата, указанный в таблице технических характеристик.

Требования по размещению

Блоки охлаждаются воздухом, поэтому важно соблюдать минимальные расстояния, которые обеспечивают наилучшую вентиляцию змеевиков конденсаторов. Пространственные ограничения, снижающие поток воздуха, могут привести к значительному снижению охлаждающей способности и повышению потребления электроэнергии.

При определении места для блока нужно обеспечить достаточный воздушный поток через поверхность передачи тепла конденсатора. Для наилучшего функционирования агрегата необходимо избегать: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

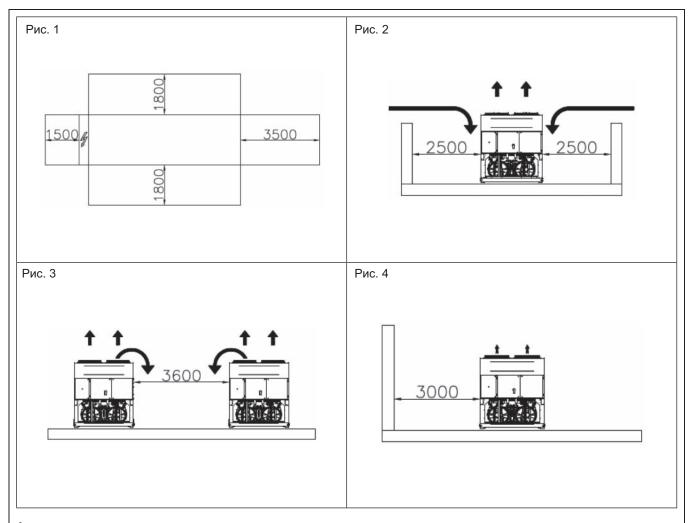
Оба эти условия приводят к увеличению давлений конденсации, которые уменьшают эффективность работы блока и его мощность.

Более того, уникальный микропроцессор способен определять параметры среды работы воздушно-охлаждаемого охладителя и оптимальную нагрузку в случае нестандартных условий.

После установки каждая из сторон блока должна быть доступна для периодического обслуживания. На рис.1 показаны минимальные рекомендуемые расстояния.

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если блоки располагаются в местах, окруженных стенками или препятствиями той же высоты, что и блоки, то блоки должны, по крайней мере, на 2500 мм отделяться от препятствий (рис. 2). В случае, если препятствия выше блоков, блоки должны быть, по меньшей мере, на 3000 мм выше (рис. 4). Блоки, установленные ближе к стене или к другой вертикальной конструкции, чем минимально рекомендуемое расстояние, могут испытывать ограниченную подачу воздуха к змеевику и рециркуляцию теплого воздуха, что снижает их производительность и эффективность. Микропроцессорное управление проактивно реагирует на "нештатное состояние". В случае наличия одного или нескольких видов влияния, ограничивающих поток воздуха, микропроцессор будет подавать команды таким образом, чтобы компрессор(ы) продолжал(и) работать (при пониженной мощности), вместо того, чтобы выключаться при высоком давлении на выходе.


Если два или более блока расположены рядом друг с другом, рекомендуем располагать змеевики конденсаторов на расстоянии, по меньшей мере, 3600 мм друг от друга (рис. 3); сильный ветер может быть причиной рециркуляции теплого воздуха.

Для получения информации о других решениях по установке просьба обращаться к нашим техническим специалистам.

Приведенные выше рекомендации касаются общего случая установки. Специальная оценка выполняется подрядчиком на основании конкретной ситуации.

INN 1-2 Rev.00 1

9 - 1 Способ монтажа

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение

Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная температура окружающей среды: -20°C Максимальная температура окружающей среды: +57°C

Максимальная относительная влажность: 95% без конденсации

INN_1-2_Rev.00_2

9 - 2 Заправка, расход и количество воды

		Охла	аждающая	вода				Нагрета	я вода (2)		
lозиции _{(1) (5)}		Сис	гема ляции	Однократный поток	Охлажден	ная вода	Низ темпеј	кая	Выс темпер		Тенденция в случае несоответстви
,,,,		Циркулирующая вода	Поступающая вода ₍₄₎	Проточная вода	Циркулирующая вода [Ниже 20°C]	Поступающая вода (4)	Циркулирующая вода [20°С ~ 60°С]	Поступающая вода ₍₄₎	Циркулирующая вода [60°С ~ 80°С]	Поступающая вода ₍₄₎	критериям
pH	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,8 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия + накипь
Электропроводность	[мСм/м] при 25°C	Менее 80	Менее 30	Менее 40	Менее 80	Менее 80	Менее 30	Менее 30	Менее 30	Менее 30	Коррозия + накипь
<u>.</u>	(мкСм/см) при 25°C	(Менее 800)	(Менее 300)	(Менее 400)	(Менее 800)	(Менее 800)	(Менее 300)	(Менее 300)	(Менее 300)	(Менее 300)	Коррозия + накипь
Ионы хлоридов Ионы сульфата	[MrCl ²⁻ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
Ионы сульфата	[MrSO ² - ₄ /л]	Менее 200	Менее 50	Менее 50	Менее 200	Менее 50	Менее 50	Менее 50	Менее 30	Менее 30	Коррозия
	[мгСаСо₃/л]	Менее 100	Менее 50	Менее 50	Менее 100	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
Общая жесткость	[мгСаСо₃/л]	Менее 200	Менее 70	Менее 70	Менее 200	Менее 70	Менее 70	Менее 70	Менее 70	Менее 70	Накипь
Кальциевая жесткость	[мгСаСо₃/л]	Менее 150	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Менее 50	Накипь
Уоны силикатов	[MrSiO_/л]	Менее 50	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Менее 30	Накипь
Общая жесткость Капьциевая жесткость Ионы силикатов Киспород Размер частиц Общее соделжание	(мг О2 /л)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Коррозия
Размер частиц	(MM)	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Менее 0,5	Менее 0,6	Эрозия
Общее содержание растворенных твердых веществ	(мг/л)	Менее 1000	Менее 1000	Менее 1000	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Менее 1000	Менее 1001	Эрозия
Этилен, пропиленгликоль	(мас. конц.)	Менее 60%	Менее 60%		Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	Менее 60%	
Ионы нитрата	(мг NO3- /л)	Менее 100	Менее 100	Менее 100	Менее 100	Менее 101	Менее 100	Менее 101	Менее 100	Менее 101	Коррозия
ТОС Общее содержание органического углерода Железо	(MF/II)	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Накипь
Железо	[MrFe/л]	Менее 1,0	Менее 0,3	Менее 1,0	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Менее 1,0	Менее 0,3	Коррозия + накипь
	[мгСи/л]	Менее 0,3	Менее 0,1	Менее 1,0	Менее 1,0	Менее 1,0	Менее 1,0	Менее 0,1	Менее 1,0	Менее 0,1	Коррозия
Ионы сульфитов	[MrS ² -/л]	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Не обнаруживается	Коррозия
	[мгNH+ ₄ /л]	Менее 1,0	Менее 0,1	Менее 1,0	Менее 1,0	Менее 0,1	Менее 0,3	Менее 0,1	Менее 0,1	Менее 0,1	Коррозия
Остаточные хлориды	[MrCL/л]	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,3	Менее 0,25	Менее 0,3	Менее 0,1	Менее 0,3	Коррозия
Ионы аммония Остаточные хлориды Свободный карбид	[MrCO ₂ /л]	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 4,0	Менее 0,4	Менее 4,0	Менее 0,4	Менее 4,0	Коррозия
Показатель устойчивости		6,0 ~ 7,0				-		-			Коррозия + накипь

waflowqua_1-2_Rev.00_1

9 - 2 Заправка, расход и количество воды

Содержание воды в охлаждающих контурах

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

При каждом пуске компрессора избыточное количество масла поступает из картера компрессора. Одновременно с этим наблюдается повышение температуры статора двигателя компрессора вследствие повышенного тока пуска.

Во избежание повреждения компрессоров Daikin предусмотрено устройство, ограничивающее частые остановы и пуски

В течение одного часа предусматривается не более 6 запусков компрессора. Таким образом, на стороне установки необходимо обеспечить, чтобы содержание воды допускало более постоянное функционирование блока и, следовательно, более комфортные условия.

Минимальное содержание воды в устройстве рассчитывается по следующей упрощенной формуле:

Для агрегата с 2 компрессорами

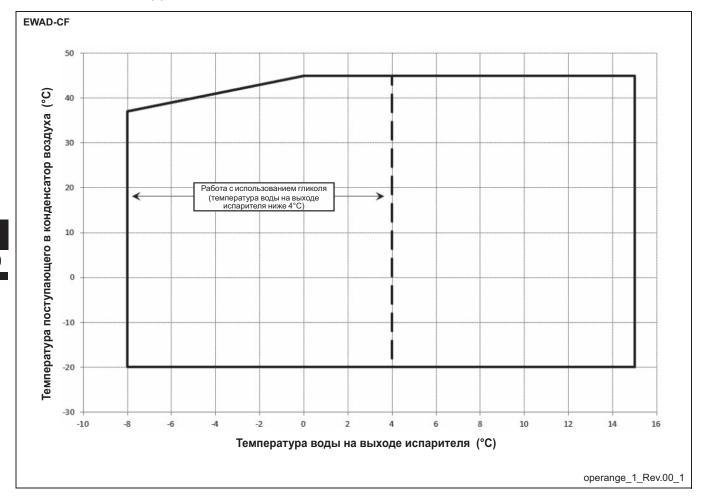
 $M(π) = (0.1595 \times ΔT(°C) + 3.0825) \times P(κBτ)$

где:

М минимальное содержание воды в одном блоке, выраженное в литрах

Р Охлаждающая способность блока, выраженная в кВт

ΔT разность температур воды на входе/выходе из испарителя в °C


Данная формула подходит для:

- стандартных параметров микропроцессора

Для более точного определения количества воды рекомендуем обратиться к проектировщику установки.

10 Рабочий диапазон

10 - 1 Рабочий диапазон

11 - 1 Описание технических характеристик

Технические характеристики охладителя с воздушным охлаждением

Охладитель разработан и изготовлен в соответствии со следующими Европейскими директивами:

	Конструкция аппарата высокого давления	97/23/EC (PED)
	Директива об оборудовании	2006/42/EC
	Низкое напряжение	2006/95/EC
	Электромагнитная совместимость	2004/108/EC
	Электротехнические требования и правила техники безопасности	EN 60204-1 / EN 60335-2-40
	Стандарты качества производства	UNI – EN ISO 9001:2004

Аппарат проверяется при полной нагрузке на заводе-изготовителе (при номинальных рабочих условиях и номинальной температуре воды). Охладитель будет доставлен на место работы полностью собранным и заправленным хладагентом и маслом. Установка охладителя должна выполняться в соответствии с инструкциями изготовителя по подъему оборудования и обращению с ним.

Устройство способно осуществлять пуск и работать (стандартно) при полной нагрузке:

- при температуре снаружи от	°С до	°C
- температуре жидкости на выходе испарителя между	°С и	°C

Хладагент

Можно использовать только R-134a.

Рабочие характеристики

- ✓ Количество винтовых охладителей с воздушным охлаждением
 ✓ Охлаждающая способность одного охладителя
 ✓ Потребляемая мощность одного охладителя в режиме охлаждения
 ✓ Температура воды на входе теплообменника в режиме охлаждения
 ° С
 ✓ Поток воды в теплообменнике
 ✓ Поток воды в теплообменнике
 ✓ Номинальная наружная рабочая температура окружающей среды в режиме охлаждения
 ° С
- ✓ Диапазон рабочего напряжения должен быть 400 В ±10%, 3 ф, 50 Гц, рассогласованность напряжения макс. 3%, без нейтрали, одна точка подключения к электросети.

Описание блока

В стандартной конфигурации охладитель включает, по меньшей мере: два независимых контура хладагента, полугерметические ассиметричные ротационные одновинтовые компрессоры, электронное расширительное устройство (EEXV), кожухотрубный теплообменник прямого расширения хладагента, охлаждаемый воздухом конденсатор, хладагент R134a, система смазки, пусковое устройство для двигателя, запорный клапан на сливной линии, система управления и все компоненты, необходимые для безопасной и стабильной работы аппарата.

Охладители собирают на заводе-изготовителе на крепкой опорной раме, сделанной из оцинкованной стали и покрытой эпоксидной краской.

Уровень шума и вибрации

Уровень давления звука на расстоянии 1 м в открытом полусферическом пространстве не будет превышать ... дБ(A). Уровни давления звука измеряются в соответствии с ISO 3744. Другие способы измерений неприменимы. Уровень вибрации опорной рамы не должен превышать 2 мм/с.

Габаритные размеры:

Размеры блока не превышают следующих значений:

- Длина блока	 ΜN
- Ширина блока	 MN
- Высота блока	 MN

Компоненты охладителя

Компрессоры

- ✓ Полугерметические, одновинтовые, ассиметричные, с одним главным винтовым ротором, взаимодействующим с двумя диаметрально противоположными ведомыми роторами. Контактные элементы ведомых роторов изготовляют из композитных материалов с длительным сроком службы. Электродвигатель: 2-полюсный, полугерметический, асинхронный, с короткозамкнутым ротором, охлаждаемый всасываемым газом.
- ✓ Для достижения высокого показателя энергетической эффективности (EER) в компрессорах применяется впрыск масла. Высокие показатели обеспечиваются даже при высоком давлении конденсации. Низкий уровень звукового давления обеспечивается при всех нагрузках.
- Компрессор имеет встроенный высокоэффективный маслоотделитель сетчатого типа и масляный фильтр.
- ✓ Перепад давления в системе хладагента обеспечивает впрыск масла на все движущиеся части компрессора для их надлежащей смазки. Система смазки с электрическим масляным насосом недопустима.

 SPC 1-2-3 Rev.00 1

11 - 1 Описание технических характеристик

- ✓ Охлаждение компрессора осуществляется путем подачи жидкого хладагента. Не допускается использование внешнего специального теплообменника и дополнительного трубопровода для подачи масла от компрессора в теплообменник и наоборот.
- ✓ Компрессор имеет прямой привод, без зубчатой передачи между винтом и электромотором.
- ✓ Корпус компрессора оснащается портами для возможности осуществления экономически выгодных циклов хладагента.
- ✓ Компрессор имеет защиту в виде датчика температуры (от высокой температуры на выходе) и термистора электродвигателя (от перегрева обмоток)
- Компрессор оборудован электрическим нагревателем для масла.
- ✓ Необходимо обеспечить возможность полного обслуживания компрессора на месте. Не допускается использование компрессоров, которые необходимо демонтировать и возвращать на завод-изготовитель для обслуживания.

Система управления охлаждающей способностью

- √ Каждый охладитель имеет микропроцессор для регулирования положения вентиля-задвижки компрессора.
- ✓ Управление производительностью блока является бесступенчатым от 100% до 25% для каждого контура (от 100% до 12,5% полной нагрузки для блока с 2 компрессорами. Охладитель обеспечивает стабильную работу до минимум 12,5% полной нагрузки без вывода горячего газа.
- ✓ Система управляет блоком на основании температуры воды на выходе испарителя, которая контролируется PID (пропорциональноинтегрально-дифференциальный) логикой.
- ✓ Логика управления блоком управляет задвижками компрессора таким образом, чтобы обеспечивать точное соответствие необходимой нагрузке установки для поддержания постоянной установки температуры охлажденной воды.
- ✓ Микропроцессорное управление блока обнаруживает состояния, близкие к защитным пределам, и принимает меры до возникновения аварийного сигнала. Система автоматически снижает производительность охладителя, когда любой их следующих параметров выходит за пределы нормального рабочего диапазона:
 - о Высокое давление конденсации
 - о Низкая температура испарения хладагента

Испаритель

- ✓ Блоки имеют кожухотрубный испаритель непосредственного расширения с медными трубками, помещенными внутрь стальных оболочек для труб. Испарители относятся к однопроходному типу (как на стороне хладагента, так и на стороне воды). Это обеспечивает теплообмен только за счет противотока и низкие значения падения давления хладагента.
- ✓ Внешний слой соединен с электрообогревателем, управляемым термостатом, и покрыт изоляцией из полиуретанового материала с закрытыми порами (толщиной 20 мм) для предотвращения замораживания при температуре окружающей среды до -28°C.
- ✓ Каждый испаритель имеет 2 однопроходных контура хладагента, по одному на каждый компрессор.
- ✓ Для соединений трубок для воды в стандартной комплектации используются фитинги ФЛАНЦЕВОГО типа, которые обеспечивают быстрое механическое отсоединение аппарата от гидронической сети.
- ✓ Испаритель изготовлен в соответствии с директивой EC о напорном оборудовании (PED).

Змеевик конденсатора

- Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Расстояние между ребрами увеличивает поверхность соприкосновения с трубами, защищая их от наружной коррозии.
- ✓ Змеевик имеет встроенный суб-охлаждающий контур, который обеспечивает достаточное субохлаждение для предотвращения неоднородного течения жидкости и увеличения эффективности работы аппарата на 5-7% без увеличения потребляемой мошности.
- Змеевик конденсатора проверяют на утечки и испытывают под давлением с применением сухого воздуха.

Вентиляторы конденсатора

- Вентиляторы, используемые вместе с охлаждающими змеевиками, должны быть пропеллерными, с лопатками из усиленной стеклом смолы для обеспечения более высокой эффективности и снижения шума. Каждый вентилятор должен иметь защитное ограждение.
- ✓ Отвод воздуха должен осуществляться по вертикали, и каждый вентилятор должен быть соединен с электромотором, стандартно поставляемым с защитой IP54 и способным работать при внешней температуре от -20°C до +65°C.
- ✓ Защита должна включать стандартную внутреннюю термозащиту двигателя и выключатель-автомат внутри электрической панели.

Контур хладагента

- ✓ Блок должен иметь несколько независимых контуров хладагента.
- ✓ В стандартной конфигурации каждый контур включает: электронное расширительное устройство, управляемое блоком микропроцессора, запорный клапан на линии выпуска из компрессора, фильтр-осушитель с заменяемым фильтрующим элементом, указатель уровня с индикатором влажности и изолированную линию всасывания.

Контроль конденсации

- ✓ Блоки оснащаются автоматической системой контроля давления конденсации, которая обеспечивает работу при низких внешних температурах вплоть до -...°С при поддержании давления конденсации.
- Компрессор автоматически отключает нагрузку при обнаружении слишком высокого давления конденсации, чтобы предотвратить
 отключение контура хладагента (выключение блока) вследствие вызванного высоким давлением отказа.

SPC 1-2-3 Rev.00 2

11 - 1 Описание технических характеристик

Варианты исполнения блока с пониженным шумом (на заказ)

- ✓ Компрессоры агрегата необходимо монтировать к металлической опорной раме при помощи резиновых антивибрационных опор для предотвращения передачи вибраций на все металлические элементы агрегата, таким образом контролируя уровень шума.
- ✓ В охладителе для компрессора предусмотрен специальный акустический корпус. Этот корпус состоит из легкого, устойчивого к коррозии алюминия и металлических панелей. Звукоизоляция компрессора гарантируется использованием внутренних гибких многослойных материалов высокой плотности.

Гидронный комплект (опция, на заказ)

- ✓ Гидронный модуль устанавливается на раму охладителя, не увеличивая его размеров. Комплект включает: центробежный водяной насос с трехфазным двигателем, оснащенным внутренней защитой от перегрева, предохранительный клапан, устройство для заполнения.
- ✓ Водяные трубы защищены от коррозии и имеют пробки для очистки и сушки. Заказчик должен предоставить соединения типа Victaulic. Трубопровод должен быть полностью изолирован во избежание конденсации (изоляция насоса осуществляется с применением полиуретановой пены).
- ✓ Для блока с 2 компрессорами предлагается на выбор один из вариантов насосов:
 - о один насос
 - о два насоса

Панель управления

- ✓ Подключение к электросети на месте, выводы блокировок управления, система управления аппарата должны быть централизованными и находиться на электропанели (IP54). Контроллеры напряжения и запуска отделены от средств безопасности и органов управления, находясь в разных отделениях одной панели.
- ✓ Пусковое устройство относится к типу "звезда-треугольник" (Y- Δ).
- Органы управления и средства защиты включают средства энергосбережения; кнопку аварийного останова; защиту от перегрузки для двигателя компрессора; выключатели высокого и низкого давления (для каждого контура хладагента); антифризный термостат; выключатель для каждого компрессора.

Вся информация касательно работы агрегата отображается на дисплее. Встроенные календарь и часы могут отключать и запускать агрегат в любое время.

- ✓ Предусмотрены следующие функции:
 - сброс установки температуры воды на выходе путем контроля Δt температуры воды, сигналом дистанционного управления 4-20 мA пост. тока или путем контроля внешней температуры;
 - о функция плавного пуска для защиты от перегрузки во время понижения температуры охлажденной жидкости;
 - о защита критических параметров системы паролем;
 - таймеры запуска и остановки для обеспечения минимального времени простоя компрессора с максимальной защитой двигателя;
 - о возможность сообщения с ПК или дистанционным контролем;
 - управление давлением на выходе путем задания цикла работы вентиляторов конденсатора;
 - выбор опережения или задержки вручную или автоматически в зависимости от рабочих часов контура;
 - о двойная установка для морской версии агрегата;
 - программирование годового расписания пусков и остановов при помощи внутреннего датчика времени, включая выходные и праздники.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

Охладитель может обмениваться данными с BMS (Системой управления зданием), используя наиболее распространенные протоколы:

- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark
- Сертификация BacNet BTP для IP и MS/TP (класс 4) (нативный)
- · Ethernet TCP/IP.

Настоящий каталог составлен только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.

Компания Daikin Europe N.V. принимает участие в Программе сертификации Eurovent для кондиционеров (АС), жидкостных холодильных установок (ССР), вентиляционных установок (АНU) и фанкойлов (FCU). Проверьте текущий срок действия сертификата онлайн: www.eurovent-certification.com или перейдите к: www.certiflash.com

Продукция компании Daikin распространяется компанией:

ECDRUI 2-435 • CD • 11/11 • Copyright Dalkin
Pacneuranelo Bentrum компанией Lannoo (кижмЫаппорліпі be), которая заболится об окружаюцей среде
согласно Pernawerry EC по системе экополического менеджинетла и адудита EMAS и системам ISO 14001.
Orвественный мадагель: Dalkin Europe N.V., Zandvoordestraat 300, B-8400 Osstende (Остенд)