

Applied Systems Technical Data

Air cooled chiller, high efficiency, standard sound

EEDEN13-414

EWAD-D-XS

TABLE OF CONTENTS EWAD-D-XS

1	Features 2
2	Specifications3Technical Specifications3Technical Specifications3Electrical Specifications4Electrical Specifications5
3	Features and advantages 6 Features and Advantages 6
4	General Characteristics 9 General characteristics 9
5	Nomenclature
6	Capacity tables
7	Dimensional drawings
8	Sound data
9	Installation
10	Operation range
11	Hydraulic performance.33Pump Characteristics33Partial Heat Recovery Pressure Drop37Total Heat Recovery Pressure Drop38
12	Specification text

1 Features

High efficiency

- Standard sound level configuration: condenser fan rotating at 900 rpm (EWAD250-350D-XS) and 890 rpm (EWAD380-620D-XS), rubber antivibration under compressor
- Stepless single-screw compressor
- Optimised for use with R-134a
- MicroTech III controller
- Large operation range (ambient temperature down to -18°C)

2 Specifications

2-1 Technical S	pecifications				EWAD 250D-XS	EWA D280D-XS	EWAD300D-XS	EWAD330D-XS	EWAD350D-XS	EW AD 380 D-XS
Cooling capacity	Nom.			kW	246 (1)	274 (1)	300 (1)	326 (1)	350 (1)	374 (1)
Capacity control	Method						Step	oless		
	Minimumcapacity			%			1	3		
Power input	Cooling	Nom.		kW	80.1 (1)	88.2 (1)	95.4 (1)	105 (1)	114 (1)	121 (1)
EER					3.07 (1)	3.11 (1)	3.15 (1)	3.10(1)	3.06 (1)	3.08 (1)
ESEER					3.41	3.45	3.47	3.69	3.51	3.42
IPLV					3.98	4.	00	4.08	4.07	4.06
Casing	Colour						Ivory	white		
	Material						Galvanized and p	painted steel shee	et	
Dimensions	Unit	Height		mm			2,3	355		
		Width		mm		_	2,3	234		
		Depth		mm	3,138			4,040		
Weight	Unit			kg	2,905	3,	285	3,235	3,2	240
	Operation weight			kg	3,000			3,400		
Water heat exchanger	Туре							shell & tube		
	Water volume			1	95		15	165		50
	Nominal water flow	Cooling		l/s	11.8	13.1	14.4	15.6	16.7	17.9
	Nominal water pres sure drop	Cooling	exchan	kPa	48	45	49	46	51	58
	Insulation material		ger				Close	ed cell		
Air heat exchanger	Туре					Higheffici		type with integral	subcooler	
Fan	Quantity				6		,	8		
	Туре						Direct	oropeller		
	Diameter			mm			710	•		800
	Air flow rate	Nom.		I/s	22,302	30,591		29,736		43,001
	Speed			rpm			900			890
Fanmotor	Drive			<u> </u>			Direct	on line		
	Input	Cooling		W	7,400		9,	800		14,000
Sound power level	Cooling	Nom.		dBA			97			99
Sound pressure level	Cooling	Nom.		dBA			78			79
Compressor	Туре					Se	mi-hermetic sing	e screw compres	sor	
	Quantity							2		
	Oil	Charged	volume	1			2	6		
Operation range	Water side	Cooling	Min.	°CDB			-1	15		
			Max.	°CDB			1	5		
	Air side	Cooling	Min.	°CDB			-1	18		
			Max.	°CDB			4	8		
Refrigerant	Туре			•			R-1	34a		
	Circuits	Quantity						2		
Refrigerantcircuit	Charge			kg	58	66		76		73
Piping connections	Evaporator water inle	et/outlet(O	D)				1	1"		-
Safety devices	Item	01				Hig	hdischarge press	sure (pressure sw	itch)	
		02				-		e (pressure trans		
		03				Low		e (pressure transd	ucer)	
		04						notor protection		
		05						e temperature		
		06					Low oil	pressure		
		07						sure ratio		
		08						pressure drop		
		09						monitor		
		10					Water freeze pro	tection control ler		

2-2 Technical S	Specifications			EWAD 400D-XS	EWA D470D-XS	EWAD520D-XS	EWAD580D-XS	EW AD620 D-XS
Cooling capacity	Nom.		kW	399 (1)	467 (1)	522(1)	573(1)	620(1)
Capacity control	Method					Stepless		
	Minimumcapacity		%			13		
Power input	Cooling	Nom.	kW	129 (1)	152 (1)	169(1)	183 (1)	196 (1)

2 **Specifications**

2-2 Technical S	pecifications				EWAD400D-XS	EWAD470D-XS	EW AD520 D-XS	EW AD580 D-XS	EW AD62 0D-X
EER					3.10 (1)	3.07(1)	3.09(1)	3.12 (1)	3.16 (1)
E SEE R					3.41	3.68	3.79	3.82	3.75
IPLV					3.98	4.16	4.81	4.83	4.61
Casing	Colour					•	Ivory white		•
	Material					Galvar	ized and painted stee	el sheet	
Dimensions	Unit	Height		mm	2,355		2,2	223	
		Width		mm			2,234		
		Depth		mm	4,0	040		4,940	
Weight	Unit			kg	3,240	3,510	4,670	4,6	585
0	Operation weight			kg	3,400	3,780		4,940	
Water heat exchanger	Туре			3			ingle pass shell & tub		
······································	Water volume			1	160		70		55
	Nominal water flow	Cooling		l/s	19.1	22.4	25.0	27.4	29.7
	Nominal water	Cooling	Heat	kPa	64	47	63	56	38
	pressure drop	ocoming	exchan	ki u					
	Insulation material		ger				Closed cell		
Air heat exchanger	Туре					High efficiency fi	n and tube type with i	nteoral subcooler	
Fan	Quantity					8		10	
	Туре					-	Direct propeller	. •	
	Diameter			mm			800		
	Air flow rate	Nom.		l/s	42,306	43,696		54,620	
	Speed	Nom.		rpm	-12,000	-0,070	890	34,020	
Fan motor	Drive			1 pm			Direct on line		
1 annioloi	Input	Cooling		W	1/	000		17,500	
Sound power level	Cooling	Nom.		dBA	14,	000	99	17,500	
Sound pressure level	Cooling	Nom.		dBA	1		79		
	-	NUIII.		UDA	Comi hormati	c single screw		tria cingle corowe on	a pr co co r
Compressor	Туре					ressor	_	etric single screw.con	npi es soi
	Quantity						2		
	Oil	Charged		I	2	26		32	
Operation range	Water side	Cooling		°CDB			-15		
			Max.	°CDB			15		
	Air side	Cooling	Min.	°CDB			-18		
			Max.	°CDB			48		
Refrigerant	Туре						R-134a		
	Circuits	Quantity					2		
Refrigerant circuit	Charge			kg	76	86		100	
Pipingconnections	Evaporator water inle)D)		4"		6		
Safetydevices	Item	01				e e	narge pressure (press		
		02				•	ge pressure (pressur		
		03					n pressure (pressure		
		04				Cor	mpressor motor prote	ction	
		05				Hię	gh discharge tempera	ture	
		06					Low oil pressure		
		07					Low pressure ratio		
		08			1	Hig	ghoil filter pressure d	rop	
		09					Phasemonitor		
		10			1	Wate	r freeze protection co	ntroller	

2-3 Electrical	Specifications			EWAD250D-XS	EWAD280D-XS	EWAD300 D-XS	EW AD 330 D-XS	EW AD 350 D-XS	EWAD380D-XS
Compressor	Phase					3	~		
	Voltage		V			4	00		
	Voltagerange	Min.	%			-1	0		
		Max.	%			1	0		
	Maximum running	gcurrent	A	8	2	9	9	1	10
	Starting method					Wye	delta		
Compressor 2	Maximum running	gcurrent	А	82	9	9	1	10	125

2 Specifications

2-3 Electrical	Specifications			EWAD 250D-XS	EWA D280D-XS	EWAD300D-XS	EWAD330D-XS	EW AD350D - XS	EW AD380 D-XS
Power supply	Phase				-	3	}~		
	Frequency		Hz			Ę	50		
	Voltage		V			4	00		
	Voltage range	Min.	%			-	10		
		Max.	%			1	0		
Unit	Maximum starting of	current	А	224	24	40	283	292	311
	Nominal running current (RLA)	Cooling	A	132	145	158	172	185	203
	Maximum running (current	А	177	199	216	227	238	267
	Max unit current for	wiressizing	А	195	219	237	250	262	294
Fans	Nominal running cu	rrent (RLA)	А	13.44		17	.92		32

Notes

(1) Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.

(2) Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (3) Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.

(4) Maximum starting current: starting current of biggest compressor + 75% of maximum current of the other compressor + fans current for the circuit at 75%

(5) Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.

(6) Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current

(7) Maximum unit current for wires sizing is based on minimum allowed voltage.

(8) Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1

2-4 Electrical	Specifications			EWAD 400D-XS	EWA D470D-XS	EW AD520D -XS	EWAD580D-XS	EWAD620 D-XS
Compres sor	Phase					3~	•	
	Voltage		V			400		
	Voltage range	Min.	%			-10		
		Max.	%			10		
	Maximum running	current	A	125	147	162	1	85
	Starting method		•			Wye-delta	•	
Compressor 2	Maximum running	current	А	125	147	1	62	185
Power supply	Phase		•			3~		
	Frequency		Hz			50		
	Voltage		V			400		
	Voltagerange	Min.	%			-10		
		Max.	%			10		
Unit	Maximum starting	current	A	311	422	480	4	98
	Nominal running current (RLA)	Cooling	A	213	253	283	305	324
	Maximum running	current	A	283	327	364	387	409
	Max unit current fo	rwiressizing	A	311	360	401	425	450
Fans	Nominal running c	urrent (RLA)	А	3	32		40	-

Notes

(1) Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.

(2) Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (3) Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.

(4) Maximum starting current: starting current of biggest compressor + 75% of maximum current of the other compressor + fans current for the circuit at 75%

(5) Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.

(6) Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current

(7) Maximum unit current for wires sizing is based on minimum allowed voltage.

(8) Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1

3 Features and advantages

3 - 1 Features and Advantages

Features and advantages

Low operating cost

This chiller range is the result of careful design, aimed to optimize the energy efficiency of the chillers, with the objective of bringing down operating costs and improving installation profitability, effectiveness and economical management.

The chillers feature a high efficiency single rotor screw compressor design, large condenser coil surface area for maximum heat transfer and low discharge pressure, advanced technology condenser fans and a 'plate to plate' or 'shell&tube' evaporator with low refrigerant pressure drops.

Low operating sound levels

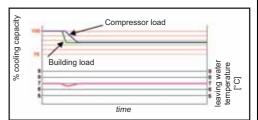
Very low sound levels both at full load and part load conditions are achieved by the latest compressor design and by a unique new fan that moves large volume of air at exceptionally low sound levels and by the virtually vibration-free operation.

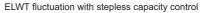
Excellent serviceability

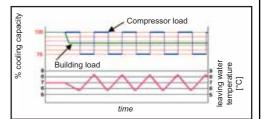
Field serviceability has not been sacrificed to meet design performance objectives. The compressor is equipped with discharge, liquid and suction shut off valves. The compressor and serviceable components such as filter-driers are located on the outside edges of the base allowing, together with the shape of the coil, an easy access for inspection and service. Moreover, the MicroTech III controller gives detailed information on the causes of an alarm or fault.

Proven reliability

Full factory testing of every unit with water hook-up helps in providing a trouble-free start-up. Extensive quality control checks during testing means that each equipment protection and operating control is properly adjusted and operates correctly before it leaves the factory.


Infinite capacity control


Cooling capacity control is infinitely variable by means of a single screw compressor controlled by microprocessor system. Each unit has infinitely variable capacity control from 100% down to 12.5%. This modulation allows the compressor capacity to exactly match the building cooling load. Chilled water temperature fluctuation is avoided only with a stepless control.


In the case that the compressor with load step control is used, the compressor capacity, at partial loads, will be too high or too low compared to the building cooling load. The result is an increase in chiller energy costs, particularly at the part-load conditions at which the chiller operates most of the time.

Units with stepless regulation offer benefits that the units with step regulation are unable to match.

Only a chiller with step-less regulation, is able to follow the system cooling demand at any time and to deliver chilled water at set-point.

ELWT fluctuation with steps capacity control (4 steps)

Superior control logic

The new MicroTech III controller provides an easy to use control environmental. The control logic is designed to provide maximum efficiency and a history of unit operation. One of the greatest benefits is the easy interface with LonWorks, Bacnet, Ethernet TCP/ IP or Modbus communications.

3 Features and advantages

3 - 1 Features and Advantages

Code requirements – Safety and observant of laws/directives

The range is designed and manufactured in accordance with applicable selections of the following:

Construction of pressure vessel	97/23/EC (PED)
Machinery Directive	2006/42/EC
Low Voltage	2006/95/EC
Electromagnetic Compatibility	2004/108/EC
Electrical & Safety codes	EN 60204–1 / EN 60335-2-40
Manufacturing Quality Stds	UNI – EN ISO 9001:2004

Certifications

All units manufactured by Daikin are CE marked, complying with European directives in force, concerning manufacturing and safety. On request units can be produced complying with laws in force in non-European countries (ASME, GOST, etc.), and for other applications, such as naval (RINA, etc.).

Efficiency and sound configuration

The range is available in multiple efficiency and sound versions:

		Sound	level	
Efficiency level	Standard	Low	Reduced	Extra low
Standard efficiency	EWAD~D-SS	EWAD~D-SL	EWAD~D-SR	EWAD~D-SX
High efficiency	EWAD~D-XS	N.A.	EWAD~D-XR	N.A.
High ambient	EWAD~D-HS	N.A.	N.A.	N.A.

Versions

The range is available in three versions:

S: Standard efficiency

7 sizes to cover a range from 389 up to 578 kW with an EER up to 2.03 and an ESEER up to 3.56 (data refers to Standard sound configuration)

X: High efficiency

11 sizes to cover a range from 247 up to 622 kW with an EER up to 3.20 and an ESEER up to 4.01 (data refers to Standard sound configuration)

H: High ambient temperature

15 sizes to cover a range from 195 up to 587 kW with an EER up to 3.07 and an ESEER up to 3.79 (data refers to Standard sound configuration)

The EER (Energy Efficiency Ratio) is the ratio of the Cooling Capacity to the Power Input of the unit. The Power Input includes: the power input for operation of the compressor, the power input of all control and safety devices, the power input for fans.

The ESEER (European Seasonal Energy Efficiency Ratio) is a weighted formula enabling to take into account the variation of EER with the load rate and the variation of air inlet condenser temperature.

ESEER = (A x EER100%) + (B x EER75%) + (C x EER50%) + (D x EER25%)

	А	В	С	D
Coefficient	0.03 (3%)	0.33 (33%)	0.41 (41%)	0.23 (23%)
Air inlet condenser temperature	35°C	30°C	25°C	20°C

FTA_1-2-3a_Rev.01_2

3 Features and advantages

3 - 1 Features and Advantages

Sound levels

The range is available in four different sound level configurations:

S: Standard sound

Condenser fan rotating at 890 rpm, rubber antivibration under compressor

L: Low sound

Condenser fan rotating at 900 rpm (EWAD180-370D-SL) and 705 rpm (EWAD400-530D-SL), rubber antivibration under compressor.

R: Reduced sound

Condenser fan rotating at 680 rpm (EWAD180-370D-SR) and 705 rpm (EWAD400-530D-SR), rubber antivibration under compressor, compressor sound enclosure.

X: Extra low sound

Condenser fan rotating at 500 rpm, rubber antivibration under compressor, compressor and evaporator sound enclosure.

4 - 1 General characteristics

General characteristics

Cabinet and structure

The cabinet is made of galvanized steel sheet and painted to provide a high resistance to corrosion. Colour Ivory White (Munsell code 5Y7.5/1) (±RAL7044). The base frame has an eye-hook to lift the unit with ropes for an easy installation. The weight is uniformly distributed along the profiles of the base and this facilitates the arrangement of the unit.

Screw compressors with integrated oil separator

The range features two types of single-screw compressors:

A) The compressor is semi-hermetic, single-screw type with gate-rotors made of carbon impregnated engineered composite material. The compressor has one slide managed by the unit microprocessor for infinitely modulating the capacity between 100% to 25%. An integrated high efficiency oil separator maximizes the oil separation and standard start is Wye-delta (Y- Δ) type.

This compressor is offered on following models: - EWAD180~370D-SL

- EWAD180~370D-SE - EWAD180~370D-SR - EWAD210~310D-SX - EWAD250~400D-XS - EWAD240~390D-XR - EWAD200~380D-HS

B) The compressor is semi-hermetic, single-screw type with gate-rotor made with the latest high-strength fibre reinforced star material. The compressor has an asymmetric slide regulation managed by the unit controller for infinitely modulating capacity from 100% to 25%. An integrated high efficiency oil separator maximizes the oil separation and standard start is Wye-delta (Y- Δ) type.

This compressor is offered on following models: - EWAD390~580D-SS

- EWAD390~580D-SS - EWAD400~530D-SL - EWAD400~530D-SR - EWAD370~490D-SX - EWAD470~620D-XS - EWAD460~600D-XR - EWAD420~590D-HS

Ecological R-134a refrigerant

The compressors have been designed to operate with R-134a, ecological refrigerant with zero ODP (Ozone Depletion Potential) and very low GWP (Global Warming Potential), resulting in low TEWI (Total Equivalent Warming Impact).

Evaporator

For size EWAD180~200D-SL, EWAD180~190D-SR and EWAD200~210D-HS

The units are equipped with a direct expansion plate to plate type evaporator. This heat exchanger is made of stainless steel brazed plates and is covered with a 20mm closed cell insulation material. The exchanger is equipped with a heater for protection against freezing down to –28°C and evaporator water outlet connections of 3". Each evaporator has 2 circuits, one for each compressor and is manufactured in accordance to PED approval. Water pressure differential switch on evaporator standard factory mounted. Water filter is standard.

All the other units are equipped with a Direct Expansion shell&tube evaporator with copper tubes rolled into steel tubesheets. The evaporators are single-pass on both the refrigerant and water sides for pure counter-flow heat exchange and low refrigerant pressure drops. Both attributes contribute to the heat exchanger effectiveness and total unit's outstanding efficiency.

The external shell is covered with a 10mm closed cell insulation material and the evaporator water outlet connections are provided with victaulic kit (as standard). Each evaporator has 2 circuits, one for each compressor and is manufactured in accordance to PED approval.

Condenser coils

The condenser is manufactured with internally enhanced seamless copper tubes arranged in a staggered row pattern and mechanically expanded into lanced and rippled aluminium condenser fins with full fin collars. An integral sub-cooler circuit provides sub-cooling to effectively eliminate liquid flashing and increase cooling capacity without increasing the power input.

GNC_1a-2-3-4-5-6_Rev.01_1

4 - 1 General characteristics

Condenser coil fans

Fan 710 mm diameter

The condenser fans are propeller type with wing-profile blades for achieving better performance. Each fan is protected by a guard.

Fan 800 mm diameter

4

The condenser fans are propeller type with high efficiency design blades to maximize performances. The material of the blades is glass reinforced resin and each fan is protected by a guard.

Fan motors are protected by circuit breakers (installed inside the electrical panel as a standard) and are IP54.

Electronic expansion valve

The unit is equipped with the most advanced electronic expansion valves to achieve precise control of refrigerant mass flow. As today's system requires improved energy efficiency, tighter temperature control, wider range of operating conditions and incorporate features like remote monitoring and diagnostics, the application of electronic expansion valves becomes mandatory.

Electronic expansion valves possess unique features: short opening and closing time, high resolution, positive shut-off function to eliminate use of additional solenoid valve, continuous modulation of mass flow without stress in the refrigerant circuit and corrosion resistance stainless steel body.

Electronic expansion valves are typically working with lower ΔP between high and low pressure side, than a thermostatic expansion valve. The electronic expansion valve allows the system to work with low condenser pressure (winter time) without any refrigerant flow problems and with a perfect chilled water leaving temperature control.

Refrigerant circuit

Each unit has 2 independent refrigerant circuits and each one includes:

- Compressor with integrated oil separator
- Air Cooled Condenser
- Electronic expansion valve
- Evaporator
- Discharge line shut off valve
- Liquid line shut off valve
- Suction line shut off valve
- Sight glass with moisture indicator
- Filter drier
- Charging valves
- High pressure switch
- High and low pressure transducers

Electrical control panel

Power and control are located in the main panel that is manufactured to ensure protection against all weather conditions. The electrical panel is IP54 and (when opening the doors) internally protected with plexiglas panel against possible accidental contact with electrical components (IP20). The main panel is fitted with a main switch interlocked door.

Power Section

The power section includes compressors fuses, fan circuit breaker, fan contactors and control circuit transformer.

MicroTech III controller

MicroTech III controller is installed as standard; it can be used to modify unit set-points and check control parameters. A builtin display shows chiller operating status plus temperatures and pressures of water, refrigerant and air, programmable values, set-points.

A sophisticated software with predictive logic, selects the most energy efficient combination of compressors, EEXV and condenser fans to keep stable operating conditions to maximise chiller energy efficiency and reliability.

MicroTech III is able to protect critical components based on external signs from its system (such as motor temperatures, refrigerant gas and oil pressures, correct phase sequence, pressure switches and evaporator). The input coming from the high pressure switch cuts all digital output from the controller in less than 50ms, this is an additional security for the equipment. Fast program cycle (200ms) for a precise monitoring of the system. Floating point calculations supported for increased accuracy in P/T conversions.

4 - 1 General characteristics

Control section - main features

- Management of the compressor stepless capacity and fans modulation.
- Chiller enabled to work in partial failure condition.
- Full routine operation at condition of:
 - high ambient temperature value
 - high thermal load
 - high evaporator entering water temperature (start-up)
- Display of evaporator entering/leaving water temperature.
- Display of Outdoor Ambient Temperature.
- Display of condensing-evaporating temperature and pressure, suction and discharge superheat for each circuit.
- Leaving water evaporator temperature regulation (temperature tolerance = 0.1°C)
- Compressor and evaporator pumps hours counter.
- Display of Status Safety Devices.
- Number of starts and compressor working hours.
- · Optimized management of compressor load.
- Fan management according to condensing pressure.
- Re-start in case of power failure (automatic / manual).
- · Soft Load (optimized management of the compressor load during the start-up).
- Start at high evaporator water temperature.
- · Return Reset (Set Point Reset based on return water temperature).
- OAT (Outside Ambient temperature) Reset.
- Set point Reset (optional).
- Application and system upgrade with commercial SD cards.
- Ethernet port for remote or local servicing using standard web browsers.
- Two different sets of default parameters could be stored for easy restore.

Safety device / logic for each refrigerant circuit

- High pressure (pressure switch).
- High pressure (transducer).
- Low pressure (transducer).
- Fans circuit breaker.
- High compressor discharge temperature.
- · High motor winding temperature.
- Phase Monitor.
- Low pressure ratio.
- High oil pressure drop
- Low oil pressure.
- No pressure change at start.

System security

- Phase monitor.
- Low Ambient temperature lock-out.
- Freeze protection.

Regulation type

Proportional + integral + derivative regulation on the evaporator leaving water output probe.

GNC_1a-2-3-4-5-6_Rev.01_3

4 - 1 General characteristics

Condensing pressure

Condensing pressure can be controlled in according to the entering air temperature to the condenser coil. The fans can be managed either with steps, or with a 0/10V modulating signal or with a mixed 0/10V + Steps strategy to cover all possible operational conditions.

MicroTech III

MicroTech III built-in terminal has the following features:

- 164x44 dots liquid crystal display with white back lighting. Supports Unicode fonts for multi-lingual.
- Key-pad consisting of 3 keys.
- Push'n'Roll control for an increased usability.
- Memory to protect the data.
- General faults alarm relays.
- · Password access to modify the setting.
- Application security to prevent application tampering or hardware usability with third party applications.
- · Service report displaying all running hours and general conditions.
- Alarm history memory to allow an easy fault analysis.

Supervising systems (on request)

MicroTech III remote control

MicroTech III is able to communicate to BMS (Building Management System) based on the most common protocols as:

- ModbusRTU
- · LonWorks, now also based on the international 8040 Standard Chiller Profile and LonMark Technology
- BacNet BTP certifief over IP and MS/TP (class 4) (Native)
- Ethernet TCP/IP.

Standard options (supplied on basic unit)

Evaporator victaulic kit – Not available on units EWAD180~200D-SL, EWAD180~190D-SR and EWAD200~210D-HS Evaporator water design pressure (10Bar)

Discharge line shut off valves – Installed on the discharge port of the compressor to facilitate maintenance operation. **Suction line shut off valve** – Installed on the suction port of the compressor to facilitate maintenance operation.

Wye-Delta Compressors starter (Y-\Delta) – For low inrush current and reduced starting torque.

Double set-point – Dual leaving water temperature set-points.

Phase monitor – The phase monitor controls that phases sequence is correct and controls phase loss.

Water pressure differential switch on evaporator – Not available on units EWAD390~580D-SS, EWAD230~530D-SL, EWAD220~530D-SR, EWAD210~490D-SX, EWAD250~620D-XS, EWAD240~600D-XR, EWAD230~590D-HS

Evaporator electric heater type – Electric heater controlled by a thermostat to protect the evaporator from freezing down to -28°C ambient temperature, providing the power supply is on.

Electronic expansion device

20 mm evaporator insulation – Only for EWAD180~200D-SL, EWAD180~190D-SR, EWAD210D-SX and EWAD200~210D-HS Ambient outside temperature sensor and set-point reset

Hour run meter

 $\label{eq:General fault contactor} \textbf{General fault contactor} - A larm relay.$

Set-point reset – The leaving water temperature set-point can be overwritten with the following options: 4-20mA from external source (by user); outside ambient temperature; evaporator water temperature Δt .

Demand limit – User can limit the load of the unit by 4-20mA signal or by network system

Alarm from external device – Microprocessor is able to receive an alarm signal from an external device (pump etc...). User can decide if this alarm signal will stop the unit or not.

Fans circuit breakers - Safety device against motor overloading and short circuit

Main switch interlock door

4 - 1 General characteristics

Options (on request)

Total heat recovery – Provided with plate to plate heat exchangers to produce hot water.

Total heat recovery (1 circuit)

Partial heat recovery – Plate to plate heat exchangers installed between the compressor discharge and the condenser coil, allowing producing hot water.

Brine version – Allows the unit to operate down to -15°C leaving liquid temperature (antifreeze required).

Evaporator flanged connections – Not available for EWAD180~200D-SL, EWAD180~190D-SR, EWAD210D-SX and EWAD200~210D-HS

Condenser coil guards

Cu-Cu condensing coils – To give better protection against corrosion by aggressive environments.

Cu-Cu-Sn condensing coils – To give better protection against corrosion in aggressive environments and by salty air.

Alucoat condensing coils - Fins are protected by a special acrylic paint with a high resistance to corrosion.

Hydronic Kit (single water pump - low or high lifting) – (N.A. on EWAD210~490D-SX) Hydronic kit consists of: single direct driven centrifugal pump, water filling system with pressure gauge, safety valve, drain valve. The pump motor is protected by a circuit breaker installed in control panel. The kit is assembled and wired to the control panel. The pipe and pump are protected from freezing with an additional electrical heater.

Hydronic Kit (twin water pumps - low or high lifting) – (N.A. on EWAD180~190D-SR and on EWAD210~490D-SX). Hydronic kit consists of: twin direct driven centrifugal pumps, water filling system with pressure gauge, safety valve, drain valve. The motor pump is protected by a circuit breaker installed in control panel. The kit is assembled and wired to the control panel. The pipe and pumps are protected from freezing with an additional electrical heater.

Double pressure relief valve with diverter

Soft starter - Electronic starting device to reduce the mechanical stress during compressor start-up.

Compressor thermal overload relays – Safety devices against compressor motor overloading. This device together with internal motor protection (standard) guarantee the best safety system for compressor motor.

Under/Overvoltage control – This device control the voltage value of power supply and stop the chiller if the value exceeds the allowed operating limits.

Energy Meter – This device allows to measure the energy absorbed by the chiller during its life. It is installed inside the control box mounted on a DIN rail and show on a digital display: Line-to-Line Voltage, Phase and Average Current, Active and Reactive Power, Active Energy, Frequency.

Capacitors for power factor correction – To increase the operating power factor of the unit at nominal operating conditions. The capacitors are "dry" self-regenerating type with over pressure disconnecting safety device insulated with a no toxic dielectric mix with no PCB or PCT.

Current limit – To limit maximum absorbed current of the unit whenever is required.

Fan silent mode

Speedtrol – (N.A. on EWAD210~490D-SX) Continuous fan speed modulation on the first fan of each circuit. It allows the unit working with air temperature down to –18°C.

Evaporator flow switch – Supplied separately to be wired and installed on the evaporator water piping (by the customer).

High pressure side manometers (one per circuit)

Compressors circuit breakers

Fan speed regulation – Standard option for EWAD~D-SX

To control the fan speed revolution for smooth operating control of the unit. During low ambient temperature operation, this option improves also the sound level of the unit. With "Fan speed regulation" option, by different microprocessor setting, it is also possible to set the "Fan Silent Mode" configuration. It means that the microprocessor clock switches the fan at low speed according to the client setting (i.e. Night & Day), providing that the ambient temperature/condensing pressure is allowing the speed change. It allows a perfect condensing control down to -10° C.

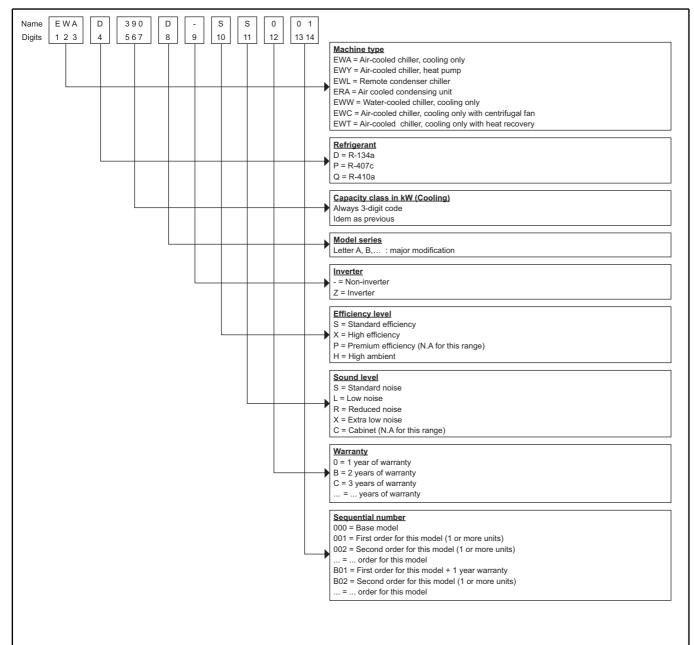
4 - 1 General characteristics

Rubber type anti vibration mounts – Supplied separately, these are positioned under the base of the unit during installation to reduce vibrations.

Spring type anti vibration mounts – Supplied separately, these are positioned under the base of the unit during installation. Ideal for dampening vibrations for installation on roofs and metallic structures.

External tank without cabinet (500 L / 1000 L)

External tank with cabinet (500 L / 1000 L)


Container kit

Witness test – Every unit is always tested at the test bench prior to the shipment. On request, a second test can be carried out, at customer's presence, in accordance with the procedures indicated on the test form (please contact the factory) (This test is not available for units with glycol mixtures).

Acoustic test – On request, a test can be carried out, at customer's presence (please contact the factory) (This test is not available for units with glycol mixtures).

5 Nomenclature

5 - 1 Nomenclature

6 - 1 Cooling Capacity Tables

EWAD250-380D-XS

													Id. C	CC: (Cooling	t air ten capaci	nperatu ty; PI:I	re; Iw Poweri	out: Eva nput; q	aporato w: Fluid	d flow ra	g water ate; dp	w: Fluid	pressu	re dro
	Condenser												Tw	out											
	inlet air			5			7				ç)			1	1				3			1	5	
	temperature	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw	CC	PI	qw	dpw
Size	Ta	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa	kW	kW	l/s	kPa
	25	244	65.0	11.7	47	257	66.6	12.3	52	270	68.2	13.0	57	284	70.0	13.6	63	298	71.9	14.3	68	312	73.8	15.0	75
	30	239	71.4	11.4	46	252	73	12.1	50	265	74.7	12.7	55	279	76.5	13.4	61	293	78.4	14.1	66	307	80.4	14.8	72
250	35	233	78.4	11.1	44	246	80.1	11.8	48	259	81.9	12.4	53	273	83.7	13.1	58	287	85.7	13.8	64	301	87.8	14.5	70
200	40	225	86	10.8	41	239	87.8	11.4	46	252	89.7	12.1	50	266	91.6	12.8	55	279	93.6	13.4	61	293	95.8	14.1	67
	43	220	90.7	10.5	39	233	92.7	11.2	44	247	94.6	11.8	49	260	96.6	12.5	54	274	98.7	13.2	59	288	101.0	13.9	64
	46	214	95.7	10.2	37	227	97.7	10.9	42	241	99.7	11.6	47	255	102.0	12.2	51	268	104.0	12.9	57	282	106.0	13.6	62
	25	271	71.9	13.0	44	285	73.5	13.6	48	298	75.1	14.3	53	312	76.8	15.0	57	326	78.5	15.7	62	341	80.3	16.4	67
	30	266	78.8	12.7	43	280	80.4	13.4	47	294	82.1	14.1	51	308	83.8	14.8	56	322	85.6	15.5	60	336	87.4	16.2	65
200	35	260	86.5	12.4	41	274	88.2	13.1	45	288	89.9	13.8	49	302	91.6	14.5	54	316	93.5	15.2	58	330	95.4	15.9	63
280	40	253	94.8	12.1	39	267	96.6	12.8	43	281	98.4	13.5	47	295	100.0	14.1	51	309	102.0	14.8	56	323	104.0	15.5	61
	43	248	100.0	11.8	37	262	102.0	12.5	41	276	104.0	13.2	46	290	106.0	13.9	50	304	108.0	14.6	54	318	110.0	15.3	59
	46	242	106.0	11.6	36	256	107.0	12.3	40	270	109.0	12.9	44	284	111.0	13.6	48	298	113.0	14.3	53	312	116.0	15.0	57
	25	297	77.7	14.2	48	313	79.5	15.0	52	328	81.4	15.7	57	343	83.3	16.5	62	359	85.3	17.3	68	375	87.3	18.0	73
	30	291	85.1	13.9	46	307	87.1	14.7	51	323	89.0	15.5	56	338	90.9	16.2	61	354	92.9	17.0	66	369	95.0	17.8	71
	35	284	93.4	13.6	44	300	95.4	14.4	49	316	97.4	15.2	54	332	99.4	15.9	59	347	101.0	16.7	64	363	104.0	17.5	69
300	40	276	102.0	13.2	42	292	104.0	14.0	46	308	107.0	14.8	51	324	109.0	15.6	56	339	111	16.3	61	355	113	17.1	66
	40	270	102.0	12.9	40	286	110.0	13.7	45	302	112.0	14.5	49	318	115	15.3	54	334	117	16.1	59	350	119	16.8	65
	40	263	114.0	12.5	38	279	116	13.4	43	296	112.0	14.2	48	312	121	15.0	53	328	123	15.8	57	344	125	16.5	63
	25	322	85.3	15.4	45	340	87.5	16.3	50	359	89.8	17.2	55	378	92.2	18.1	60	397	94.8	19.1	66	416	97.4	20.0	72
	30	316	93.5	15.4	43	334	95.8	16.0	48	359	98.2	16.9	53	378	92.2	17.8	59	390	94.0	18.8	64	410	106.0	19.7	70
	35	307	103.0	14.7	41	326	105.0	15.6	46	344	107.0	16.5	51	363	110.0	17.4	56	382	113.0	18.4	62	403	116.0	19.3	68
330	40	297	103.0		39		105.0			334		16.0	48		120	17.4	50 54		123		62 59	391	126		65
				14.2		316		15.1	44		117			353				372		17.9				18.8	
	43	291	118	13.9	37	309	121	14.8	42	327	124	15.7	47	346	127	16.6	52	365	130	17.5	57	384	133	18.5	62
	46	283	125	13.5	36	301	128	14.4	40	320	130	15.3	45	338	133	16.2	50	357	136	17.2	55	376	139	18.1	60
	25	347	92.5	16.6	50	366	94.9	17.5	55	385	97.5	18.5	61	405	100.0	19.5	67	425	103.0	20.4	73	446	106.0	21.5	79
	30	339	102.0	16.2	48	358	104.0	17.2	53	378	107.0	18.1	59	398	109.0	19.1	65	418	112.0	20.1	71	438	115.0	21.1	77
350	35	330	111.0	15.8	46	350	114	16.7	51	369	117	17.7	56	389	120.0	18.7	62	409	123.0	19.6	68	429	126.0	20.6	74
	40	319	122	15.3	43	339	125	16.2	48	358	128	17.2	53	378	131	18.1	59	398	134	19.1	65	418	137	20.1	71
	43	311	129	14.9	41	331	132	15.8	46	350	135	16.8	51	370	138	17.8	57	390	141	18.7	62	410	144	19.7	68
	46	303	136	14.5	39	322	139	15.4	44	342	142	16.4	49	362	145	17.4	54	382	149	18.3	60	401	152	19.3	66
	25	370	99.2	17.7	56	390	102.0	18.7	62	410	104.0	19.7	68	431	107.0	20.7	75	452	109.0	21.8	82	474	112.0	22.8	89
	30	363	109.0	17.4	54	383	111.0	18.4	60	403	114.0	19.4	66	424	116.0	20.4	72	445	119.0	21.4	79	467	122.0	22.5	86
380	35	354	119	16.9	52	374	121	17.9	58	395	124	18.9	64	415	127	20.0	70	436	130	21.0	76	458	133	22.1	83
500	40	343	130	16.4	49	364	133	17.4	55	384	136	18.4	61	405	138	19.5	67	426	141	20.5	73	447	144	21.5	80
	43	336	137	16.1	47	356	140	17.1	53	377	143	18.1	58	398	146	19.1	64	418	149	20.1	71	440	152	21.2	78
	46	327	144	15.7	45	348	147	16.7	51	369	150	17.7	56	389	153	18.7	62	410	157	19.7	68	431	160	20.8	75
Flui Flui Yγρ Líqι Flui Vlo	DTES - ANI id: Water id: Wasser ɔć: Nɛpó uido: agua uido: agua uido: Acqua eistof: Water iдкость: Вода		KUNG	EN - 3	Σημε	:ιώσ	-	2 F F P P V	or work ür Arbe α τις σ ara las our les er le co oor beo	ting cor itsbedir υνθήκε condici condition drijfsom	nditions ngunge ς εργαα iones d ons de ni d'esel standig	where n mit kι σίας όπ e funcio travail l rcizio ir heden	dpw val ursiv ge ou oi tij onamier orsque i cui i va met sch	lues are druckte μές dpv nto en la les vale alori dpv nuinged	e in itali n dpw- ν είναι α as que eurs dp w sono rukte d	c, pleas Werten σε πλάγ los valo w sont riportat pw-waa	se conta , wende για γραφ pres dpv en italic ti in cors arden, g	act fact en Sie s φή, πα v están ue, vei sivo, co elieve	ory. sich bitte oακαλο en curs uillez co ntattare contact	e an de ύμε επι siva, pó ontacter e il prod op te n	κοινων ongase l'usine luttore. lemen r	ήστε με en con e. met de t	το εργα tacto cc fabriek. ιзготови	n la fáb	

6 - 1 Cooling Capacity Tables

EWAD400-620D-XS

	ir	ondenser			-				,					Tw	out		4								-	
Ta KW KW Vis kPa KW KW KW KW KV K	tom																									
2 38 100		· L																			· ·					
30 387 115 18.5 60 408 118 19.6 66 429 120 20.6 73 451 123 21.7 80 474 126 22.8 87 496 129 23.9 95 35 378 126 18.1 58 399 129 19.1 64 420 132 21.3 77 445 138 22.3 84 487 141 25.5 66 338 141 18.6 60 499 144 19.6 67 431 147 20.7 73 453 150 21.8 80 474 126 22.8 87 407 161 122.5 88 446 330 153 167 123 25 66 130 125 66 530 130 26.5 64 130 27.9 70 609 132 23.3 21.7 23.3 21.9 21.1 33																										
35 378 126 18.1 58 399 129 19.1 64 420 132 20.2 70 442 135 21.3 77 464 138 22.3 84 477 141 23.5 94 40 366 172 52 380 149 182 58 160 12.5 23.3 144 18.6 60 133 14.3 18.4 18.4 18.5 20.3 77 453 150 21.4 78 467 161 22.5 88 46 350 153 16.7 50 371 156 17.8 56 393 160 18.8 62 414 145 13.2 170 25.1 56 531 153 26.5 445 150 13.3 27.3 53 510 151 27.3 58 544 165 23.3 57 170 25.1 53 440 130 24.2 <td>-</td> <td></td>	-																									
40 366 138 17.5 54 388 141 18.6 60 409 144 19.6 67 431 147 20.7 73 453 150 21.8 80 475 153 22.9 80 443 356 164 17.2 50 371 156 17.8 56 393 160 18.8 62 143 163 19.0 88 46 166 10.0 71 445 158 21.4 78 467 161 22.5 82 40 457 152 23 50 511 18.8 62 451 153 22.9 61 151 22.5 85 141 180 22.5 85 151 143 22.4 47 152 22.4 489 170 25.5 151 143 29.5 141 180 21.2 43 440 191 22.0 53 511 143																										
43 358 146 17.2 52 380 149 182 58 401 152 19.3 64 423 155 20.3 71 445 158 21.0 75 459 170 21.3 85 46 350 153 16.7 150 371 156 178 56 391 160 188 62 414 163 19.9 68 450 160 150 160 150 160 160 150 160 150 160 150 160 160 160 160 160 160 160	00																									
46 350 153 16.7 50 371 156 17.8 56 393 160 18.8 62 414 163 19.9 68 436 166 21.0 75 459 170 22.1 82 25 467 123 22.3 47 494 122 23.7 53 522 131 25.0 56 591 147 25.0 56 547 155 27.3 60 147 27.6 68 40 418 163 20.0 39 443 167 21.2 43 468 171 22.4 48 493 176 23.7 53 519 181 24.9 58 544 186 26.2 161 25.0 58 547 151 23.4 40 449 197 21.6 44 464 146 24.9 68 544 180 22.7 45 46 380																										
25 467 123 22.3 47 494 127 23.7 53 522 131 250 56 551 135 26.5 64 580 139 27.9 70 609 143 29.3 77 30 457 135 21.9 46 484 139 23.2 51 511 143 24.5 56 539 147 25.9 62 567 151 27.3 68 544 168 20.0 30 443 163 20.0 30 443 167 12.2 48 493 176 23.7 53 19 181 23.9 53 522 196 25.1 66 433 401 172 19.2 36 426 192 20.4 40 449 197 21.6 44 464 149 130 28.3 77 73 58 162 28.3 84 640 187 30.5																									22.1	
30 457 135 21.9 46 484 139 23.2 51 11 143 24.5 56 539 147 25.9 62 567 151 27.3 68 596 156 28.7 74 35 441 148 21.1 43 467 152 22.4 47 494 156 23.7 52 50 161 25.0 58 547 165 26.3 63 544 186 26.4 26.7 20.4 401 17.1 23.6 63 541 180 21.6 44 37.8 64.4 180 21.6 44 464 196 23.4 47 191 22.7 45. 46 380 182 18.8 26.4 69 582 141 27.9 77 612 145 29.4 84 643 149 31.0 92 65.7 15.8 17.1 17.9 77.9 161		25	467	123	22.3	47	494	127		53	522		25.0	58		135	26.5	64	580	139		70	609	143		77
35 441 148 21.1 43 467 152 22.4 47 494 156 23.7 52 520 161 25.0 58 547 165 26.3 63 57.4 170 27.6 65.0 40 418 163 20.0 39 443 167 21.2 43 468 171 22.4 48 493 176 23.7 53 519 181 24.9 58 544 180 26.2 65 43 401 172 19.2 36 425 177 20.3 40 449 181 21.7 49 497 191 23.9 53 52.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 103 25.1 <			457				484																	156		
40 418 163 20.0 39 443 167 21.2 43 468 171 22.4 48 493 176 23.7 53 519 181 24.9 58 544 186 26.2 65 43 401 172 19.2 36 425 177 20.3 40 449 181 21.5 44 473 186 22.7 49 497 191 23.9 53 522 196 25.1 155 46 380 182 18.2 33 403 187 19.3 26.4 69 582 11 27.9 77 612 145 29.4 84 643 10.9 28.8 659 17.0 31.7 97 30 508 150 24.3 60 537 152 163 551 173 26.4 70 580 177 27.9 77 610 182 29.3	70	35	441		21.1	43	467	152	22.4	47	494	156				161	25.0	58	547			63	574	170	27.6	69
46 380 182 18.2 33 403 187 19.3 36 426 192 20.4 40 449 197 21.6 44 464 196 22.3 47 472 191 22.7 44 25 521 135 24.9 63 551 138 26.4 69 582 141 27.9 73 598 162 28.7 81 628 166 30.2 89 659 170 31.7 97 35 493 165 23.6 57 522 189 25.0 63 551 173 26.4 65 580 171 27.7 610 182 29.3 84 640 187 20.0	/0	40	418	163	20.0		443	167		43	468	171	22.4	48	493	176		53	519	181	24.9		544	186		
25 521 135 24.9 63 551 138 26.4 69 582 141 27.9 77 612 145 29.4 84 643 149 31.0 92 675 153 32.5 10 30 508 150 24.3 60 537 154 25.8 66 567 158 27.2 73 598 162 28.7 81 628 166 30.2 89 659 170 31.7 97 40 474 182 22.7 53 501 185 24.0 59 530 189 25.4 65 588 194 26.8 71 587 198 28.2 78 616 203 29.7 84 46 443 207 21.2 47 469 210 22.5 524 496 213 23.8 57 523 217 251 63 551 22.2																										
30 508 150 24.3 60 537 154 25.8 66 567 158 27.2 73 598 162 28.7 81 628 166 30.2 89 659 170 31.7 97 35 493 165 23.6 57 522 169 25.0 63 551 173 26.4 70 580 177 27.9 77 610 182 29.3 84 640 187 30.8 92 40 474 182 22.7 53 501 185 24.0 59 530 189 25.4 65 558 194 26.8 71 587 198 28.2 78 616 203 29.7 86 43 460 193 22.0 50 487 197 23.3 55 514 201 24.7 61 542 205 56.0 68 570 299																										
35 493 165 23.6 57 522 169 25.0 63 551 173 26.4 70 580 177 27.9 77 610 182 29.3 84 640 187 30.8 92 40 474 182 22.7 53 501 185 24.0 59 530 189 25.4 65 558 194 26.8 71 587 198 28.2 78 616 203 29.7 86 43 460 193 22.0 50 487 197 23.3 55 514 201 24.7 61 542 205 26.0 68 570 209 27.4 74 599 21.4 28.8 81 466 443 207 21.2 47 469 21.0 22.5 52 496 21.3 23.8 57 52.3 21.7 25.1 63 55.1 22.1																										
40 474 182 22.7 53 501 185 24.0 59 530 189 25.4 65 558 194 26.8 71 587 198 28.2 78 616 203 29.7 866 43 460 193 22.0 50 487 197 23.3 55 514 201 24.7 61 542 205 26.0 68 570 209 27.4 74 599 214 28.8 81 46 443 207 21.2 47 469 210 22.5 52 496 213 23.8 57 523 217 25.1 63 551 22.2 26.5 70 579 26 27.8 78 616 63 71 53 51 222 26.5 70 579 226 27.8 78 611 211 29.9 66 658 176 31.6 73																										
40 474 182 22.7 53 501 185 24.0 59 530 189 25.4 65 558 194 26.8 71 587 198 28.2 78 616 203 29.7 866 43 460 193 22.0 50 487 197 23.3 55 514 201 24.7 61 542 205 26.0 68 570 209 27.4 74 599 21.4 28.8 81 46 443 207 21.2 47 469 210 22.5 52 496 21.3 23.8 57 52.3 21.7 25.1 63 551 22.2 26.5 70 579 22.6 27.8 76 30 559 163 26.7 54 591 167 28.3 60 624 171 29.9 66 658 16 161 31.6 73 691	20																									
46 443 207 21.2 47 469 210 22.5 52 496 213 23.8 57 52.3 217 25.1 63 551 222 26.5 70 579 226 27.8 76 25 574 146 27.5 56 607 150 29.1 63 641 154 30.8 69 675 158 32.4 76 710 163 34.1 83 743 167 35.8 91 30 559 163 26.7 54 591 167 28.3 60 624 171 29.9 66 688 176 31.6 73 691 181 32.2 75 702 203 33.8 62 40 519 198 24.8 47 549 202 26.3 52 580 206 27.4 58 611 211 29.3 63 642 216	-																									
25 574 146 27.5 56 607 150 29.1 63 641 154 30.8 69 675 158 32.4 76 710 163 34.1 83 743 167 35.8 91 30 559 163 26.7 54 591 167 28.3 60 624 171 29.9 66 658 176 31.6 73 691 181 33.2 79 724 186 34.9 87 40 519 198 24.8 47 549 202 26.3 52 580 206 27.8 58 611 211 29.3 63 642 216 30.9 70 674 221 32.4 76 43 502 211 24.0 44 531 215 25.4 49 561 219 26.9 54 591 224 28.4 60 622 28 <									23.3								26.0								28.8	
30 559 163 26.7 54 591 167 28.3 60 624 171 29.9 66 658 176 31.6 73 691 181 33.2 79 724 186 34.9 87 35 541 179 25.9 51 573 183 27.4 56 604 188 29.0 62 637 193 30.6 68 669 198 32.2 75 702 203 33.8 82 40 519 198 24.8 47 549 202 26.3 52 580 206 27.8 58 611 211 29.3 63 642 216 30.9 70 674 21 32.4 76 43 502 211 24.0 44 51 215 254 49 561 219 264 70 55 578 20 27.8 58 507 79																										
35 541 179 25.9 51 573 183 27.4 56 604 188 29.0 62 637 193 30.6 68 669 198 32.2 75 702 203 33.8 82 40 519 198 24.8 47 549 202 26.3 52 580 206 27.8 58 611 211 29.3 63 642 216 30.9 70 674 221 32.4 76 43 502 211 24.0 44 531 215 25.4 49 561 219 26.9 54 591 224 28.4 60 622 28 29.9 66 653 23.4 31.4 72 46 481 226 23.0 41 510 229 24.4 46 539 233 25.9 51 563 234 27.0 55 578 230									29.1			104					31.6								34.0	
40 519 198 24.8 47 549 202 26.3 52 580 206 27.8 58 611 211 29.3 63 642 216 30.9 70 674 221 32.4 76 43 502 211 24.0 44 531 215 25.4 49 561 219 26.9 54 591 224 28.4 60 622 228 29.9 66 653 23.4 76 46 481 226 23.0 41 510 229 24.4 46 539 233 25.9 51 563 234 27.0 55 578 230 27.8 58 587 224 28.2 599 25 623 157 29.8 38 657 161 31.5 42 693 165 33.2 46 727 169 34.9 51 763 174 36.6	-																									
43 502 211 24.0 44 531 215 25.4 49 561 219 26.9 54 591 224 28.4 60 622 228 29.9 66 653 23.4 31.4 722 46 481 226 23.0 41 510 229 24.4 46 539 233 25.9 51 563 234 27.0 55 578 230 27.8 58 587 22.4 28.4 60 622 28.4 50 537 230 27.8 58 587 22.4 28.4 50 537 <td>80</td> <td></td>	80																									
46 481 226 23.0 41 510 229 24.4 46 539 233 25.9 51 563 234 27.0 55 578 230 27.8 58 587 224 28.2 553 25 623 157 29.8 38 657 161 31.5 42 693 165 33.2 46 727 169 34.9 51 763 174 36.6 55 799 179 38.4 600 30 607 174 29.0 36 640 178 30.6 40 674 183 32.3 44 709 188 34.0 48 743 192 35.7 53 777 198 37.4 57 35 587 192 28.1 34 620 196 29.7 38 653 201 31.3 42 686 206 32.9 46 719 211																										
25 623 157 29.8 38 657 161 31.5 42 693 165 33.2 46 727 169 34.9 51 763 174 36.6 55 799 179 38.4 60 30 607 174 29.0 36 640 178 30.6 40 674 183 32.3 44 709 188 34.0 48 743 192 35.7 53 777 198 37.4 57 35 587 192 28.1 34 620 196 29.7 38 653 201 31.3 42 686 206 32.9 46 719 211 34.5 50 752 216 36.2 54 40 562 212 26.9 32 594 217 28.4 35 626 221 30.0 39 657 226 31.5 42 690 231		46	481							46																
35 587 192 28.1 34 620 196 29.7 38 653 201 31.3 42 686 206 32.9 46 719 211 34.5 50 752 216 36.2 54 40 562 212 26.9 32 594 217 28.4 35 626 221 30.0 39 657 226 31.5 42 690 231 33.1 46 722 237 34.7 50 43 544 227 26.0 30 574 231 27.5 33 605 236 29.0 36 637 240 30.5 40 668 245 32.1 44 700 251 33.6 47		25	623	157	29.8	38	657	161	31.5	42	693	165	33.2			169		51	763	174		55	799	179		60
40 562 212 26.9 32 594 217 28.4 35 626 221 30.0 39 657 226 31.5 42 690 231 33.1 46 722 23.7 34.7 500 43 544 227 26.0 30 574 231 27.5 33 605 236 29.0 36 637 240 30.5 40 668 245 32.1 44 700 251 33.6 47		30	607		29.0		640	178		40						188						53		198		
40 562 212 26.9 32 594 217 28.4 35 626 221 30.0 39 657 226 31.5 42 690 231 33.1 46 722 237 34.7 50 43 544 227 26.0 30 574 231 27.5 33 605 236 29.0 36 637 240 30.5 40 668 245 32.1 44 700 251 33.6 47	20																									
		40	562																							
<u>46</u> <u>521</u> <u>244</u> <u>24.9</u> <u>28</u> <u>551</u> <u>248</u> <u>26.4</u> <u>31</u> <u>581</u> <u>252</u> <u>27.8</u> <u>34</u> <u>604</u> <u>252</u> <u>29.0</u> <u>36</u> <u>606</u> <u>240</u> <u>29.1</u> <u>37</u> <u>594</u> <u>222</u> <u>28.5</u> <u>35</u>																										
		43																								

6 - 2 Partial Heat Recovery Capacity tables

tial Heat Reco AD~D-X	very Ratings						
EWC / LWC	"Model EWAD~D-XS"	"Model EWAD~D-XR"	Cc (kW)	Pi (kW)	Hc (kW)	% Hc	EER Hc
	250	240	220	72.2	102	35%	4.47
	280	270	246	87.0	117	35%	4.17
	300	300	270	98.6	129	35%	4.04
	330	320	292	108	140	35%	3.98
	350	350	313	118	151	35%	3.93
50/60	380	370	336	125	138	30%	3.79
	400	390	359	134	128	26%	3.63
	470	460	409	158	198	35%	3.85
	520	510	463	175	223	35%	3.93
	580	560	507	190	209	30%	3.76
	620	600	548	207	196	26%	3.59

NOTES

Cc (cooling capacity

Pi (unit power input) Hc (heating heat recovery capacity)

Data refers to: LWE (Leaving water evaporator) = 7°C Same evaporator flow as for nominal cooling operation Condenser Inlet Air Temperature = 35°C 0.0176 m² °C/kW evaporator fouling factor

%Hc (percentage heat recovered) EER Hc (coefficent of performance during heat recovery = (cooling+ heating capacity) / power input) EWC (Entering water heat recovery condenser) LWC (Leaving water heat recovery condenser)

6 - 3 Total Heat Recovery Capacity Tables

EWC / LWC	"Model EWAD~D-XS"	"Model EWAD~D-XR"	Cc (kW)	Pi (kW)	Hc (kW)	% Hc	EER Hc
EWC/LWC							
	250	240	231	69.3	255	85%	7.02
	280	270	258	83.5	291	85%	6.57
	300	300	283	95.8	322	85%	6.31
	330	320	306	105	350	85%	6.22
	350	350	328	114	376	85%	6.15
40/45	380	370	353	121	356	75%	5.83
	400	390	376	130	329	65%	5.42
	470	460	429	153	495	85%	6.03
	520	510	486	170	558	85%	6.14
	580	560	532	185	537	75%	5.78
	620	600	575	201	504	65%	5.36
	250	240	220	70.1	247	85%	6.67
	280	270	246	84.4	281	85%	6.25
	300	300	270	96.7	311	85%	6.01
	330	320	292	106	338	85%	5.92
	350	350	313	116	364	85%	5.85
40/50	380	370	336	123	344	75%	5.54
	400	390	359	131	318	65%	5.15
	470	460	409	155	479	85%	5.74
	520	510	463	172	540	85%	5.85
	580	560	507	187	520	75%	5.50
	620	600	548	203	488	65%	5.10
	250	240	220	70.9	175	60%	5.58
	280	270	246	85.3	199	60%	5.22
	300	300	270	97.6	220	60%	5.02
	330	320	292	107	239	60%	4.94
	350	350	313	117	258	60%	4.89
45/55	380	370	336	124	230	50%	4.57
	400	390	359	133	211	43%	4.30
	470	460	409	156	339	60%	4.79
	520	510	463	173	382	60%	4.88
	580 620	560 600	507 548	189 205	348 324	50% 43%	4.53

NOTES

Cc (cooling capacity

Pi (unit power input)

Hc (heating heat recovery capacity)

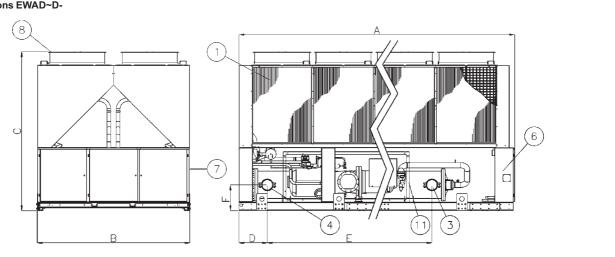
%Hc (percentage heat recovered)

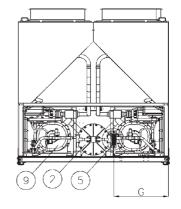
EER Hc (coefficent of performance during heat recovery = (cooling+ heating capacity) / power input) EWC (Entering water heat recovery condenser)

LWC (Leaving water heat recovery condenser)

Data refers to:

LWE (Leaving water evaporator) = 7°C Same evaporator flow as for nominal cooling operation Condenser Inlet Air Temperature = 35°C 0.0176 m² °C/kW evaporator fouling factor 6


OPT_1-2-3-4-5a-6-7-8_Rev.01_1 (2/3)


7 Dimensional drawings

7 - 1 Dimensional Drawings

Dimensions EWAD~D-

7

Models				Dimensions (mm)			
EWAD	A	В	С	D	E	F	G
EWAD390D-SS	3139	2234	2223	392	1875	339	873
EWAD440~580D-SS	4040	2234	2223	392	2450	339	855
EWAD230~300D-SL	3139	2234	2355	374	1911	339	873
EWAD320D-SL	4040	2234	2355	374	2486	339	873
EWAD400~530D-SL	4040	2234	2223	392	2450	339	855
EWAD220~280D-SR	3139	2234	2355	374	1911	339	873
EWAD310D-SR	4040	2234	2355	374	2486	339	873
EWAD400~530D-SR	4040	2234	2223	392	2450	339	855
EWAD210D-SX	3139	2234	2420	374	1911	339	873
EWAD230~310D-SX	4040	2234	2420	374	2486	339	873
EWAD370~490D-SX	4040	2234	2420	392	2450	339	873
EWAD250D-XS	3138	2234	2355	374	1911	339	873
EWAD280~400D-XS	4040	2234	2355	374	2486	339	873
EWAD470D-XS	4040	2234	2223	414	2412	379	873
EWAD520~620D-XS	4940	2234	2223	414	2412	379	815
EWAD240D-XR	3138	2234	2355	374	1911	339	873
EWAD270~390D-XR	4040	2234	2355	374	2486	339	873
EWAD460D-XR	4040	2234	2223	414	2412	379	873
EWAD510~600D-XR	4940	2234	2223	414	2412	379	815
EWAD230~310D-HS	3339	2234	2223	374	1911	339	873
EWAD340~380D-HS	4040	2234	2223	374	2486	339	873
EWAD420~590D-HS	4040	2234	2223	392	2450	339	873

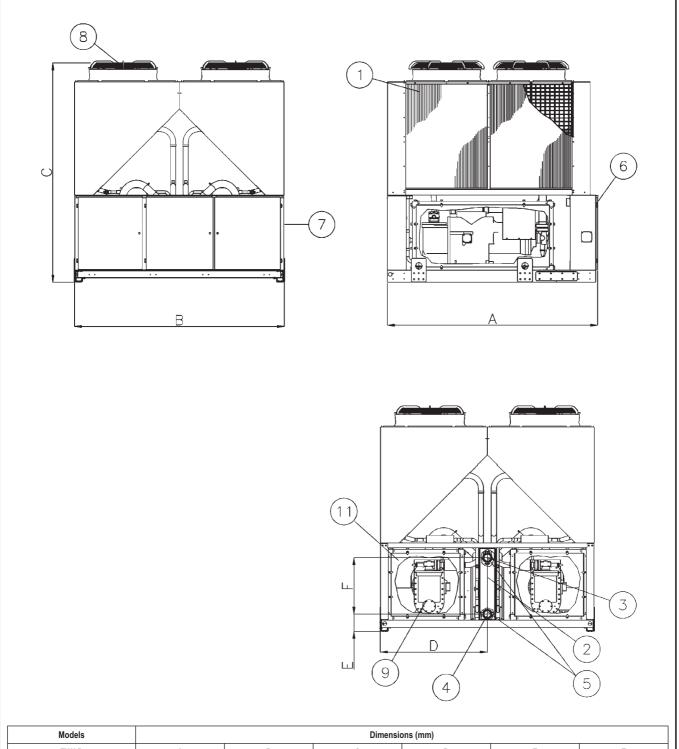
LEGEND

- 1 Condenser Coil
- 2 Water heat exchanger (evaporator)

3 - Evaporator water inlet

4 - Evaporator water outlet

- 5 Victaulic connection
- 6 Operating and control panel7 Slot for power and control connection


8 – Fan

9 - Compressor

DMN_1a-2a_Rev01_1

7 Dimensional drawings

7 - 1 Dimensional Drawings

Models	Dimensions (mm)								
EWAD	А	В	С	D	E	F			
EWAD180~200D-SL	2239	2234	2355	1117	181	590			
EWAD180~190D-SR	2239	2234	2355	1117	181	590			
EWAD200~210D-HS	2223	2234	2223	1117	181	590			

- LEGEND
 - 1 Condenser Coil
 - 2 Water heat exchanger (evaporator)
 - 3 Evaporator water inlet 4 – Evaporator water outlet
 - 5 Victaulic connection
 - 6 Operating and control panel
 - 7 Slot for power and control connection
 - 8 Fan 9 – Compressor

DMN_1a-2a_Rev.01_2

8 Sound data

8 - 1 Sound Level Data

Unit size			Sound pressure	e level at 1 m fron	n the unit in sem	ispheric free field	d (rif. 2 x 10 ^{.₅} Pa)			Power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
210	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.3
230	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
250	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
270	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
290	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
300	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
310	68.5	60.1	65.1	65.1	57.9	55.4	42.3	35.8	65.0	84.7
370	62.0	60.0	63.5	63.0	60.0	58.0	47.0	36.5	65.0	84.7
410	62.0	60.0	63.5	63.0	60.0	58.0	47.0	36.5	65.0	84.7
450	63.5	59.5	63.5	62.5	60.5	59.5	46.5	37.0	65.5	85.7
490	62.0	59.0	64.0	65.0	59.5	59.0	50.5	39.5	66.0	86.2

L NOTES

The values are according to ISO 3744 and are referred to: evaporator 12/7° C, air ambient 35° C, full load operation

EWAD~D-XS

Unit size			Sound pressure	e level at 1 m fror	n the unit in sem	ispheric free fiel	d (rif. 2 x 10 ^{.₅} Pa)			Power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
250	79.5	74.9	72.9	79.2	68.7	65.9	57.3	51.4	77.5	96.8
280	79.5	74.9	72.9	79.2	68.7	65.9	57.3	51.4	77.5	97.2
300	79.5	74.9	72.9	79.2	68.7	65.9	57.3	51.4	77.5	97.2
330	79.5	74.9	72.9	79.2	68.7	65.9	57.3	51.4	77.5	97.2
350	79.5	74.9	72.9	79.2	68.7	65.9	57.3	51.4	77.5	97.2
380	81.0	76.4	74.4	80.7	70.2	67.4	58.8	52.9	79.0	98.7
400	81.0	76.4	74.4	80.7	70.2	67.4	58.8	52.9	79.0	98.7
470	64.5	73.5	73.0	78.5	71.5	73.0	60.0	53.0	79.0	98.7
520	64.5	73.5	73.5	78.5	71.5	73.0	60.0	53.0	79.0	99.2
580	64.5	73.5	73.5	78.5	71.6	73.1	60.0	53.0	79.0	99.2
620	64.5	73.5	73.5	78.5	71.5	73.0	60.0	53.0	79.0	99.2

NOTES

The values are according to ISO 3744 and are referred to: evaporator 12/7° C, air ambient 35° C, full load operation

EWAD~D-XR

11-14-1			Sound pressure	level at 1 m from	n the unit in sem	ispheric free field	d (rif. 2 x 10 ^{.₅} Pa)			Power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
240	78.9	72.4	69.2	73.4	65.6	61.2	54.2	47.4	72.5	91.8
270	78.9	72.4	69.2	73.4	65.6	61.2	54.2	47.4	72.5	92.2
300	78.9	72.4	69.2	73.4	65.6	61.2	54.2	47.4	72.5	92.2
320	78.9	72.4	69.2	73.4	65.6	61.2	54.2	47.4	72.5	92.2
350	78.9	72.4	69.2	73.4	65.6	61.2	54.2	47.4	72.5	92.2
370	79.1	73.4	70.2	74.4	66.6	62.2	55.2	48.4	73.5	93.2
390	79.1	73.4	70.2	74.4	66.6	62.2	55.2	48.4	73.5	93.2
460	59.0	68.0	67.5	73.0	66.0	67.5	54.5	47.5	73.5	93.2
510	59.0	68.0	68.0	73.0	66.0	67.5	54.5	47.5	73.5	93.7
560	59.0	68.0	68.0	73.0	66.1	67.6	54.5	47.5	73.5	93.7
600	59.0	68.0	68.0	73.0	66.0	67.5	54.5	47.5	73.5	93.7

NOTES

I

The values are according to ISO 3744 and are referred to: evaporator 12/7° C, air ambient 35° C, full load operation

8 Sound data

8 - 1 Sound Level Data

Unit size	Distance										
Unit size	1m	5m	10m	15m	20m	25m	50m				
210	0.0	-8.0	-12.8	-15.9	-18.2	-20.0	-25.7				
230	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
250	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
270	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
290	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
300	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
310	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
370	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
410	0.0	-7.7	-12.4	-15.5	-17.8	-19.6	-25.3				
450	0.0	-7.4	-12.1	-15.2	-17.4	-19.2	-24.9				
490	0.0	-7.4	-12.1	-15.2	-17.4	-19.2	-24.9				

NOTES

Values are dB(A) (pressure level)

EWAD~D-XS

11-14-1-1				Distance			
Unit size	1m	5m	10m	15m	20m	25m	50m
250	0.0	-8.0	-12.9	-16.0	-18.2	18.2	-25.8
280	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
300	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
330	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
350	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
380	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
400	0.0	-7.7	-12.5	-15.6	-17.8	17.8	-25.3
470	0.0	-7.8	-12.6	-15.7	-17.9	17.9	-25.4
520	0.0	-7.5	-12.3	-15.3	-17.6	17.6	-25.0
580	0.0	-7.5	-12.3	-15.3	-17.6	17.6	-25.0
620	0.0	-7.5	-12.3	-15.3	-17.6	17.6	-25.0

NOTES

Values are dB(A) (pressure level)

EWAD~D-XR

Unit size				Distance			
Unit Size	1m	5m	10m	15m	20m	25m	50m
240	0.0	-8.0	-12.9	-16.0	-18.2	-20.0	-25.8
270	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
300	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
320	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
350	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
370	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
390	0.0	-7.7	-12.5	-15.6	-17.8	-19.6	-25.3
460	0.0	-7.8	-12.6	-15.7	-17.9	-19.7	-25.4
510	0.0	-7.5	-12.3	-15.3	-17.6	-19.3	-25.0
560	0.0	-7.5	-12.3	-15.3	-17.6	-19.3	-25.0
600	0.0	-7.5	-12.3	-15.3	-17.6	-19.3	-25.0

NOTES

Values are dB(A) (pressure level)

9 Installation

9 - 1 Installation Method

Installation notes

Warning

9

Installation and maintenance of the unit must to be performed only by qualified personnel who have knowledge with local codes and regulations, and experience with this type of equipment. The unit must be installed to allow all the maintenance operations.

Handling

Care should be taken to avoid rough handling or shock due to dropping of the unit. Do not push or pull the unit from anything other than the base frame. Never allow the unit to fall during unloading or moving as this may result in serious damage. To lift the unit, rings are provided in the base frame of the unit. Spreader bar and cables should be arranged to prevent damage to the condenser coil or unit cabinet.

Location

The units are produced for outside installation on roofs, floors or below ground level on condition that the area is free from obstacles for the passage of the condenser air. The unit should be positioned on solid foundations and perfectly level; in the case of installation on roofs or floors, it may be advisable to arrange the use of suitable weight distribution beams. When the units are installed on the ground, a concrete base at least 250 mm wider and longer than the unit's footprint should be laid. Furthermore, this base should withstand the unit weight mentioned in the technical data table.

Space requirements

The units are air-cooled, then it is important to respect the minimum distances which guarantee the best ventilation of the condenser coils. Limitations of space reducing the air flow could cause significant reductions in cooling capacity and an increase in electricity consumption.

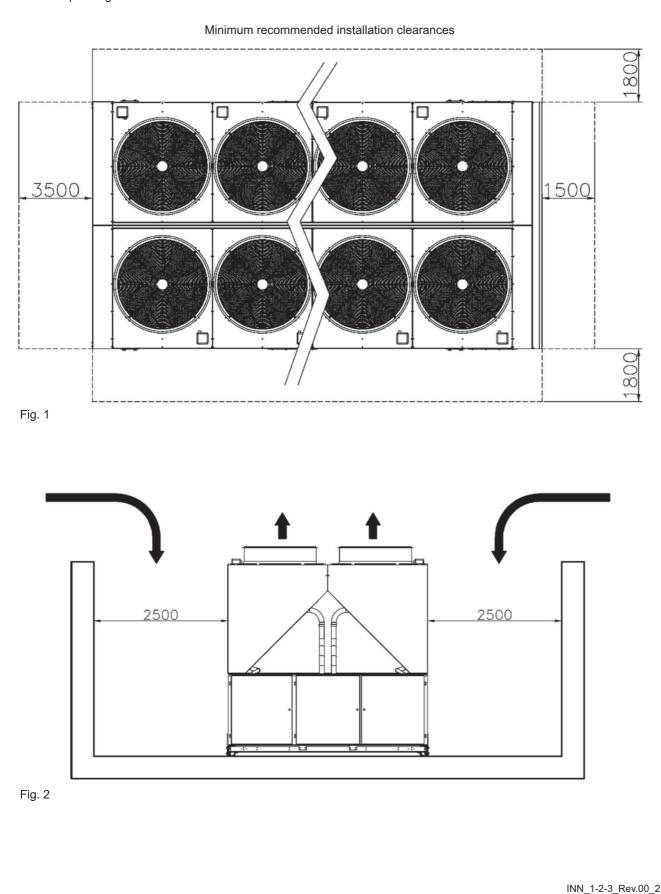
To determinate unit placement, careful consideration must be given to assure a sufficient air flow across the condenser heat transfer surface. Two conditions must be avoided to achieve the best performance: warm air recirculation and coil starvation. Both these conditions cause an increase of condensing pressures that result in reductions in unit efficiency and capacity.

Moreover the unique microprocessor has the ability to analyse the operating environment of the air cooled chiller and to optimize its performance to stay on-line during abnormal conditions.

Each side of the unit must be accessible after installation for periodic service. Fig.1 shows you minimum recommended clearance requirements.

Vertical condenser air discharge must be unobstructed because the unit would have its capacity and efficiency significantly reduced.

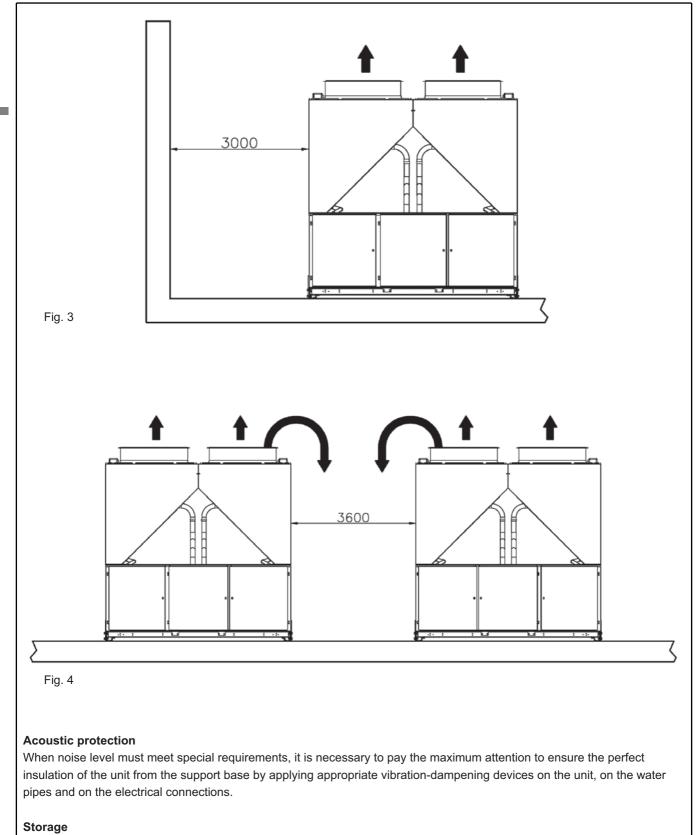
If the units are positioned in places surrounded by walls or obstacles of the same height as the units, the units should be at least 2500 mm from obstacles (Fig.2). In the event the obstacles are higher than the units, the units should be at least 3000 mm from the obstacle (Fig.3). Units installed closer than the minimum recommended distance to a wall or other vertical riser may experience a combination of coil starvation and warm air recirculation, thus causing reduction in unit capacity and efficiency reductions. The microprocessor control is proactive in response "of design condition". In the case of single or compounded influences restricting airflow to the unit, the microprocessor will act to keep the compressor running (at reduced capacity) rather than allowing a shut-off on high discharge pressure.


When two or more units are positioned side by side it is recommended that the condenser coils are at least 3600 mm distance from one another (Fig.4); strong wind could be the cause of air warm recirculation.

For other installation solutions, consult our technicians.

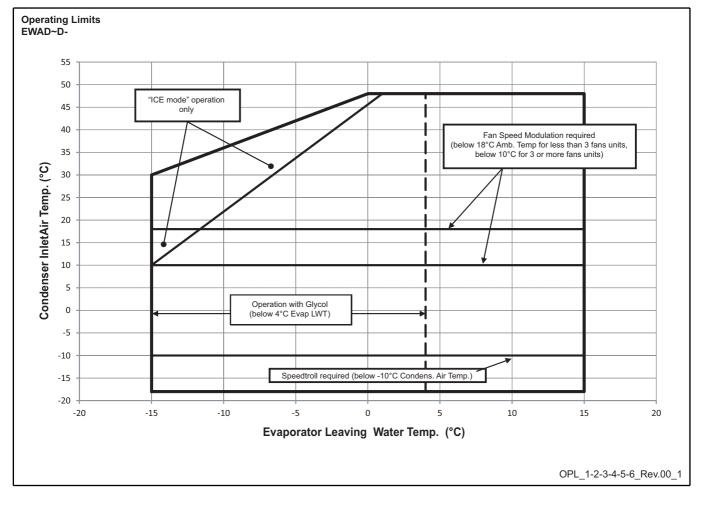
9 Installation

9 - 1 Installation Method


The above recommended information are representative for general installation. A specific evaluation should be done by contractor depending on the case.

9 Installation

9


9 - 1 Installation Method

The environment conditions have to be in the following limits:

Minimum ambient temperature:	-20°C
Maximum ambient temperature:	+57°C
Maximum R.H.:	95% not condensing

10 - 1 Operation Range

10 - 1 Operation Range

Table 1 - Evaporator minimum and maximum water Δt		
Max evaporator water ∆t	°C	8
Min evaporator water Δt	°C	4

Table 2 - Evaporator fouling factors

10

Fouling factors m² °C / kW	Cooling capacity correction factor	Power input correction factor	EER correction factor
0.0176	1.000	1.000	1.000
0.0440	0.978	0.986	0.992
0.0880	0.957	0.974	0.983
0.1320	0.938	0.962	0.975

Table 3 - Air heat exchanger - Altitude correction factors

Elevation above sea level (m)	0	300	600	900	1200	1500	1800
Barometric pressure (mbar)	1013	977	942	908	875	843	812
Cooling capacity correction factor	1.000	0.993	0.986	0.979	0.973	0.967	0.960
Power input correction factor	1.000	1.005	1.009	1.015	1.021	1.026	1.031

- Maximum operating altitude is 2000 m above sea level.

- Contact factory in case the unit has to be installed at altitudes between 1000 and 2000 m above sea level.

Table 4.1 - Minimum glycol percentage for low water temperature

EWLT (°C)	2	0	-2	-4	-6	-8	-10	-12	-15
Ethylene glycol (%)	10	20	20	20	30	30	30	40	40
Propylene glycol (%)	10	20	20	30	30	30	40	40	40

- ELWT (Evaporator Leaving Water Temperature (°C).

- Minimum glycol percentage to be used with evaporator leaving water temperature below 4°C to prevent freezing of water circuit.

Table 4.2 - Minimum glycol percentage for low air ambient temperature

Air Ambient Temperature (°C) (2)	-3	-8	-15	-20
Ethylene glycol (%) (1)	10%	20%	30%	40%
Air Ambient Temperature (°C) (2)	-3	-7	-12	-20
Propylene glycol (%) (1)	10%	20%	30%	40%

- Minimum glycol percentage to prevent freezing of water circuit at indicated air ambient temperature.

- Air ambient temperature do exceed the operating limits of the unit, as protection of water circuit may be needed in winter season at non-working conditions.

Table 5 - Correction factors for low evaporator leaving water temperature (EWLT < 4°C)

EWLT (°C)	-4	-6	-8	-10	-12	-15
Cooling Capacity	0.670	0.613	0.562	0.510	0.455	0.375
Compressor Power Input	0.890	0.870	0.840	0.798	0.755	0.680

- ELWT (Evaporator Leaving Water Temperature (°C).

- Correction factors have to be applied at working conditions: evaporator leaving water temperature 7°C.

Table 6 - Correction factors for water and glycol mixture

	Ethylene Glycol (%)	10%	20%	30%	40%	50%
	Cooling Capacity	0.991	0.982	0.972	0.961	0.946
Ethylene Glycol	Compressor Power Input	0.996	0.992	0.986	0.976	0.966
Ethylene Grycon	Flow Rate (Δt)	1.013	1.04	1.074	1.121	1.178
	Evaporator Pressure Drop	1.070	1.129	1.181	1.263	1.308
	Cooling Capacity	0.985	0.964	0.932	0.889	0.846
Propulana Chucal	Compressor Power Input	0.993	0.983	0.969	0.948	0.929
Propylene Glycol	Flow Rate (Δt)	1.017	1.032	1.056	1.092	1.139
	Evaporator Pressure Drop	1.120	1.272	1.496	1.792	2.128

- Contact factory for water temperature out of operating limits.

10 - 1 Operation Range

How to use the Correction factors proposed in the previous tables

A) Mixture Water and Glycol --- Evaporator leaving water temperature > 4°C

- depending from the type and percentage (%) of glycol filled in the circuit (see table 4.2 and 6)

- multiply the Cooling Capacity, the Compressor Power Input by the Correction factor of Table 6
- starting from this new value of Cooling Capacity, calculate the Flow Rate (I/s) and the Evaporatore Pressure Drop (kPa)

- now multiply the new Flow Rate and the new Evaporator Pressure Drop by the Correction Factors of Table 6

Example Unit Size:

EWAD390D-SS

Mixture:	Water
Working condition:	ELWT 12/7°C – Condenser inlet air temperature 35°C
- Cooling capacity:	389 kW
- Power input:	152 kW
- Flow rate (∆t 5°C):	18.60 l/s
- Evaporator pressure drop:	46 kPa
Mixture:	Water + Ethylene Glycol 30% (for a winter air temperature up to -15°C)
Working condition:	ELWT 12/7°C – Condenser inlet air temperature 35°C
- Cooling capacity:	389 x 0.972 = 378 kW
- Power input:	152 x 0.986 = 150 kW
- Flow rate (∆t 5°C):	18 (referred to 378 kW) x 1.074 = 19.33 l/s
- Evaporator pressure drop:	49 (refererd to 19.33 l/s) x 1.181 = 58 kPa

B) Mixture Water and Glycol --- Evaporator leaving water temperature < 4°C

- depending from the type and percentage (%) of glycol filled in the circuit (see table 4.1 and 4.2 and table 6)

- depending from the evaporator leaving water temperature (see table 5)
- multiply the Cooling Capacity, the Compressor Power Input by the Correction factor of Table 5 and Table 6
- starting from this new value of Cooling Capacity, calculate the Flow Rate (I/s) and the Evaporatore Pressure Drop (kPa)
- now multiply the new Flow Rate and the new Evaporator Pressure Drop by the Correction Factors of Table 6

Example Unit Size:

EWAD390D-SS

Mixture:	Water
Standard working condition	ELWT 12/7°C – Condenser inlet air temperature 30°C
- Cooling capacity:	412 kW
- Power input:	139 kW
- Flow rate (∆t 5°C):	19.7 l/s
- Evaporator pressure drop:	51 kPa
Mixture:	Water + Glycol 30% (for a low evaporator leaving temperature of -1/-6°C)
Working condition:	ELWT -1/-6°C – Condenser inlet air temperature 30°C
- Cooling capacity:	412 x 0.613 x 0.972 = 245 kW
- Power input:	139 x 0.870 x 0.986 = 119 kW
- Flow rate (∆t 5°C):	11.71 l/s (referred to 245 kW) x 1.074 = 12.58 l/s
- Evaporator pressure drop:	23 kPa (referred to 12.58 l/s) x 1.181 = 27 kPa

10 - 1 Operation Range

"External Static Pressure (Pa)"	0	10	20	30	40	50	60	70	80	90	100
"Cooling Capacity (kW) Correction factor"	1.000	0.998	0.996	0.995	0.993	0.992	0.991	0.989	0.986	0.985	0.982
"Compr. Power Input (kW) Correction factor"	1.000	1.004	1.009	1.012	1.018	1.021	1.024	1.027	1.034	1.039	1.045
Reduction of Max CIAT (°C)	1.000	-0.3	-0.5	-0.7	-1.0	-1.1	-1.3	-1.6	-1.8	2.1	-2.4

CIAT: Condenser Inlet Air Temperature

ESP table refers to fan diameter Ø800, available on units as follows:

EWAD390~580D-SS EWAD470~620D-XS EWAD420~590D-HS

Table 7.2 - Available fan static pressure correction factors

"External Static Pressure (Pa)"	0	10	20	30	40	50	60	70
"Cooling Capacity (kW) Correction factor"	1.000	0.996	0.991	0.985	0.978	0.97	0.954	0.927
"Compr. Power Input (kW) Correction factor"	1.000	1.005	1.012	1.02	1.028	1.039	1.058	1.092
Reduction of Max CIAT (°C)	1.000	-0.3	-0.7	-1.1	-1.6	-2.2	-3.3	-5.1

CIAT: Condenser Inlet Air Temperature

ESP table refers to fan diameter Ø800, available on units as follows:

EWAD320~530D-SL/SR EWAD460~600D-XR

How to use the Correction factors proposed in the previous tables Example

Unit Size:

EWAD390D-SS

- External static pressure	0 Pa
- Working condition:	ELWT 12/7°C – Condenser inlet air temperature 35°C
- Cooling capacity:	389 kW
- Power input:	152 kW
- Maximum CIAT	48°C (see graphic operating limit)
- External static pressure	40 Pa

- Working condition:

- Cooling capacity:

- Power input:

- Maximum CIAT

40 Pa ELWT 12/7°C – Condenser inlet air temperature 35°C 389 x 0.993 = 386 kW 152 x 1.018= 155 kW 48 - 1.0 = 47°C

10 - 1 Operation Range

Water charge, flow and quality

				Cooling Water		Coolor	Watar		Heated	water (2)		
Item	IS (1) (5)		Circulating System Once Flow		Coolec	Cooled Water		Low temperature		perature	Tendency if out of criteria	
	(1)(0)		Circulating water	Supply water (4)	Flowing water	Circulating water [Below 20°C]	Supply water (4)	Circulating water [20°C ~ 60°C]	Supply water (4)	Circulating water [60°C ~ 80°C]	Supply water (4)	out of criteria
	pН	at 25°C	6.5 ~ 8.2	6.0 ~ 8.0	6.0 ~ 8.0	6.0 ~ 8.0	6.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	Corrosion + Scale
÷	Electrical	[mS/m] at 25°C	Below 80	Below 30	Below 40	Below 40	Below 30	Below 30	Below 30	Below 30	Below 30	Corrosion + Scale
controlled:	conductivity	(µS/cm) at 25°C	(Below 800)	(Below 300)	(Below 400)	(Below 400)	(Below 300)	(Below 300)	(Below 300)	(Below 300)	(Below 300)	Corrosion + Scale
ontr	Chloride ion	[mgCl ²⁻ /l]	Below 200	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 30	Below 30	Corrosion
be c	Sulfate ion	[mgSO ²⁻ 4/l]	Below 200	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 30	Below 30	Corrosion
2	M-alkalinity (pH4.8)	[mgCaCO ₃ /l]	Below 100	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Scale
Items	Total hardness	[mgCaCO ₃ /l]	Below 200	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Scale
lte	Calcium harness	[mgCaCO ₃ /l]	Below 150	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Scale
	Silca ion	[mgSiO ² /I]	Below 50	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Scale
ţ	Iron	[mgFe/l]	Below 1.0	Below 0.3	Below 1.0	Below 1.0	Below 0.3	Below 1.0	Below 0.3	Below 1.0	Below 0.3	Corrosion + Scale
	Copper	[mgCu/l]	Below 0.3	Below 0.1	Below 1.0	Below 1.0	Below 1.0	Below 1.0	Below 0.1	Below 1.0	Below 0.1	Corrosion
referred	Sulfite ion	[mgS ²⁻ /l]	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Corrosion
bere	Ammonium ion	[mgNH+ ₄ /l]	Below 1.0	Below 0.1	Below 1.0	Below 1.0	Below 0.1	Below 0.3	Below 0.1	Below 0.1	Below 0.1	Corrosion
9	Remaining chloride	[mgCL/l]	Below 0.3	Below 0.3	Below 0.3	Below 0.3	Below 0.3	Below 0.25	Below 0.3	Below 0.1	Below 0.3	Corrosion
Items	Free carbide	[mgCO ₂ /l]	Below 4.0	Below 4.0	Below 4.0	Below 4.0	Below 4.0	Below 0.4	Below 4.0	Below 0.4	Below 4.0	Corrosion
Ite	Stability index		6.0 ~ 7.0									Corrosion + Scale

I NOTES

Names, definitions and units are according to JIS K 0101. Units and figures between brackets are old units published as reference only. 1.

2. In case of using heated water (more than 40°C), corrosion is generally noticeable.

Especially when the iron materials is in direct contact with water without any protection shields, it is desireable to give the valid measure for corrosion. E.g. chemical measure. 3. In the cooling water using hermetic cooling tower, close circuit water is according to heated water standard, and scattered water is according to cooling water standard.

Supply water is considered drink water, industrial water and ground water except for genuine water, neutral water and soft water.

Supply water is considered drink water, industrial water and ground mater. Success
 The above mentioned items are representable items in corrosion and scale cases.

OPL_1-2-3-4-5-6_Rev.00_5

10 - 1 Operation Range

Water content in cooling circuits

The cooled water distribution circuits should have minimum water content to avoid excessive compressors start and stop. In fact, each time the compressor starts up, an excessive quantity of oil goes from the compressor sump and simultaneously there is a rise in the temperature of the compressor motor's stator due to the inrush current during the start-up. To prevent damage to the compressors, it has been envisaged the application of a device to limit frequent stops and restarts.

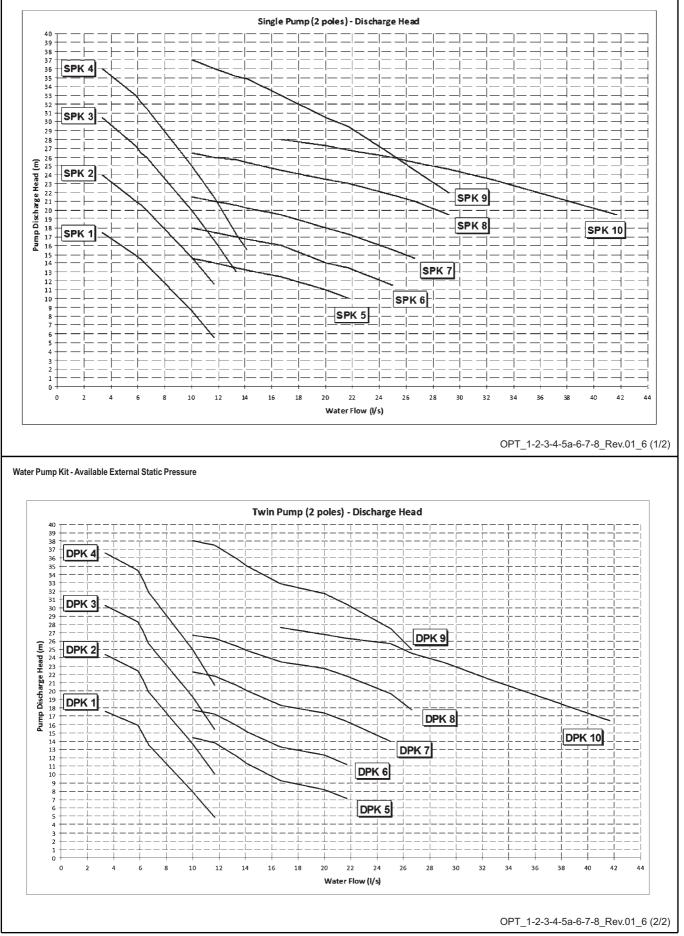
During the span of one hour there will be no more than 6 starts of the compressor. The plant side should therefore ensure that the overall water content allows a more constant functioning of the unit and consequently greater environmental comfort. The minimum water content per unit should be calculated using this simplified formula:

<u>For 2 compressors unit</u> M (liters) = (0.1595 x ΔT(°C) + 3.0825) x P(kW)

where:

10

Μ	minimum water content per unit expressed in litres
Р	Cooling Capacity of the unit expressed in kW
ΔΤ	evaporator entering / leaving water temperature difference expressed in °C


This formula is valid for:

- standard microprocessor parameters

For more accurate determination of quantity of water, it is advisable to contact the designer of the plant.

11 - 1 Pump Characteristics

11 - 1 Pump Characteristics

Water Pump Kit - Technical Information

		Pump Motor Power	Pump Motor Current	Power supply	PN	Motor	Insulation	Working Temp.
		(kW)	(A)	(V-ph-Hz)		Protection	(Class)	(°C)
	SPK 1	1.5	3.5	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
	SPK 2	2.2	5.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
-	SPK 3	3.0	6.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Pump	SPK 4	4.0	8.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Ъ	SPK 5	3.0	6.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Single	SPK 6	4.0	8.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Sin	SPK 7	5.5	10.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
	SPK 8	7.5	13.7	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
i i	SPK 9	11.0	20.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
	SPK 10	11.0	20.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
	DPK 1	1.5	3.5	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
l .	DPK 2	2.2	5.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
~	DPK 3	3.0	6.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Pump	DPK 4	4.0	8.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Ъ Г	DPK 5	3.0	6.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
Double	DPK 6	4.0	8.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
l l	DPK 7	5.5	10.1	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
	DPK 8	7.5	13.7	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
1	DPK 9	11.0	20.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130
1	DPK 10	11.0	20.0	400V-3ph-50hz	PN10	IP55	F	-10 ~ 130

NOTES

- when using mixture of water and glycol please contact the factory as above specification can change

OPT_1-2-3-4-5a-6-7-8_Rev.01_7

11 - 1 Pump Characteristics

Water Pump Kit - Combination Matrix

	SPK 1	SPK 2	SPK 3	SPK 4	SPK 5	Pump SPK 6	SPK 7	SPK 8	SPK 9	SPK 1
			0.110			X	X	X	X	X
						X	Х	Х	Х	X
						X	X	X	X	X
_						Х	X	X	X	X
_							X	X X	X	X
							~	X	X	X X
	Х	Х	Х	Х						
	Х	Х	Х	Х						
		Х	X	Х		X	X	Х	X	
_			X	X		X	X	Х	X	
-			X	X	Х	X	X	X X	X	
-			^	^			X	x	X	
-					X	X	X	X	X	
1					X	X	X	X	X	Х
1					Х	Х	Х	Х	Х	X X
						Х	Х	Х	X	Х
						Х	Х	Х	Х	X
						Х	X	X	X	X
		V		V			Х	Х	Х	X
	X	X	X X	X						
	<u> </u>	X	X	X		Х	Х	Х	X	
		X	X	X		X	X	X	X	-
			X	x		x	X	X	X	
			X	X		X	X	X	X	
			X	X		Х	X	Х	X	
					Х	X	X	X	Х	
					X X	Х	Х	Х	X X	Х
					Х	Х	Х	Х	X	Х
						X	X	Х	X	X
						X	X	X	X	Х
						Х	X	X X	X	X
		v	v	V			Å	X	Х	Х
ł		X	X	X	Х	Х	Х	Х	X	
ŀ		^	X				X	X		
			X	X	X	X X	X	X X	X	
			~	X	X	X	X	X	X	
					Х		Х	Х	Х	
					Х	X X	Х	Х	Х	
E					Х	Х	Х	X	X	X
					Х	Х	Х	Х	Х	X
ŀ					X	X	X	X	X	X
			N N	Y Y	X	X	X	X	X	Х
ļ			X	X	X	X X	X	X	X	
			^	^	X	X	x	X	X	
					X	X	X	X	X	
					X	X	X	X	X	Х
					Х	Х	Х	Х	Х	X
					Х	Х	X	Х	Х	X
						X	X	X	X	X
						Х	Х	X	X	X
		+						Х	Х	X
	L	X	X	v	Х	Х	Х	Х	Х	X
		^	X	X	X	X	X	X	x	+
		1	<u> </u>	<u> </u>	Х	Х	X	Х	X	
					X	X	X	X	X	
					Х	Х	Х	Х	Х	
					Х	Х	Х	X	X	X
		1			Х	X	X	X	X	X
						X	X	X	X	X
						Х	Х	X	X	X
		+						X	X	X
	L	X	X	Х				^	^	X
		X							1	
		x	X X	X	Х	Х	Х	Х	Х	-
			X	Х	X	X	X	X	X	
		1	X	X	X	X	X	X	X	
				X	Х	Х	X	Х	Х	
					X	X	X	Х	Х	
L					Х	Х	Х	Х	X	
					Х	Х	Х	Х	Х	Х
L					Х	Х	Х	Х	Х	Х
						Х	X	Х	X	X
						X	X	X	X	X
						Х	X	X	X	XXX
ļ		+		-			Х	X	X	<u> </u>
L		1		1			1	Х	1 ^	Х

11

OPT_1-2-3-4-5a-6-7-8_Rev.01_8 (1/2)

11 - 1 Pump Characteristics

Water Pump Kit - Combination Matrix

		Double Pump									
Version	Size	DPK 1	DPK 2	DPK 3	DPK 4	DPK 5	DPK 6	DPK 7	DPK 8	DPK 9	DPK 10
<i>"</i>	390 440						X	X	X	X	X
EWAD~D-SS	470						~	X	Х	Х	Х
Ś.	510 530							Х	X X	X	X
	560								X	X	Х
	580 180	X	X	x	X						X
L L	200	X	Х	Х	Х						
-	230 250 260		Х	Х	Х		Х	X	X	X	
	260							Х	X X	X X	
EWAD~D-SL	280					X	X	X	X	X	
ģ	300 320 370					~	Х	Х	X	X	
8	370 400						X X	X X	X X	XXX	X
	400 440 480						x	X	Х	Х	X
	480							X	X	X	X
	510 530							^	X X	x	x
-	180 190	X X	X	X	X						
ŀ	220		Х	Х	Х		Х	Х	Х	Х	
F	220 240 250		Х	Х	Х		X X	X X	X X	X X	
R,	270							X	X	X	
EWAD~D-SR	280							Х	Х	Х	
MAI	280 310 370							X	X X	X	Х
	400							Х	Х	Х	Х
ŀ	440 480							X	X	X	X
	510 530							X	X	Х	Х
	530		x	x	x				Х	Х	Х
E	210 230		X	Х	Х	Х	Х	Х	Х	Х	
	250			X	X	X	X	X	X	X	
ŝ	270 290			^	X	X	X	X	X	X	
EWAD~D-SX	300 310 370					Х	Х	X	X	Х	
Ē	310					X	X	X	X X	X	Х
	410					Х	Х	X	Х	Х	Х
ŀ	450 490					X	X	X	X	X	X
	250						Х	Х	Х	X	
ŀ	280					X	X	X	X	X	
ŝ	300 330					X	X	Х	X	X	
EWAD~D-XS	350 380						X	X X	X X	XX	X
AAD 1	400 470						X	X	X	X	X X
ш -	470 520							X X	X	XXX	X
E	580							^	^	^	Х
	620 240		X	X	X		Х	X	X	X	Х
ŀ	270		^	^	^	Х	Х	Х	Х	Х	
~ F	300 320					X X	X X	X X	X X	XX	
1×	350					^	Х	Х	X	Х	
EWAD~D-XR	370						Х	Х	Х	Х	X X
EW	390 460						X	X	X X	X	X
Ľ	510							X	x	x	Х
ŀ	560 600							+			X
	200 210 230 260	X	X	X	X						
ŀ	210	Х	X	X	X X		х	x	x	x	
Ľ	260		~	<u>^</u>	~			Х	Х	Х	
	270					X	X	X	X	X	
ž	310					^	Х	Х	Х	Х	
EWAD~D-HS	290 310 340 380 420 450						Х	X	Х	Х	~
ĒŴ	420						X	X	X X	X	X
F							Х	Х	Х	Х	Х
ŀ	480 510							X	X	X	X
ļ	510 550 590	-							Х	Х	X
	590				L			1		1	Х

11 - 2 Partial Heat Recovery Pressure Drop

Partial Heat Recovery pressure drops

EWAD~D-XS	250	280	300	330	350	380	400	470	520	580	620
EWAD~D-XR	240	270	300	320	350	370	390	460	510	560	600
Heating Capacity (kW)	102	117	129	140	151	138	128	198	223	209	196
Water Flow (I/s)	4.89	5.57	6.16	6.69	7.20	6.61	6.12	9.48	10.67	9.99	9.38
Heat Recovery Pressure Drops (kPa)	5	6	7	7	7	6	5	8	3	3	2

NOTES

Water flow and pressure drop referred to nominal codition: evaporator water in/out: 12/7°C - condenser air inlet 35°C - water heat recovery in/out 50/60°C

OPT_1-2-3-4-5a-6-7-8_Rev.01_4 (2/3)

11 - 3 Total Heat Recovery Pressure Drop

Total Heat Recovery pressure drops

EWAD~D-XS	250	280	300	330	350	380	400	470	520	580	620
EWAD~D-XR	240	270	300	320	350	370	390	460	510	560	600
Heating Capacity (kW)	255	291	322	350	376	356	329	495	558	537	504
Water Flow (I/s)	12.21	13.88	15.37	16.70	17.97	16.99	15.72	23.65	26.64	25.68	24.10
Heat Recovery Pressure Drops (kPa)	26	32	34	37	37	31	25	41	17	15	11

NOTES

Water flow and pressure drop referred to nominal codition: evaporator water in/out: 12/7°C - saturated discharge temperature 45°C - water heat recovery in/out 40/45°C

OPT_1-2-3-4-5a-6-7-8_Rev.01_3 (2/3)

Total and Partial Heat Recovery Pressure Drops

To determinate the pressure drop for different versions or at different working condition, please refer to the following formula:

1.80 **Q**₂ (l/s) $PD_{2}(kPa) = PD_{1}(kPa) x$ Q, (I/s) where PD. Pressure drop to be determinate (kPa) PD, Pressure drop at nominal condition (kPa) water flow at new working condition (I/s) Q, water flow at nominal condition (l/s) Q, How to use the formula: Example The unit EWAD390D-SS has been selected for working at the following conditions: - Total heat recovery leaving water temperature 40/50°C The heating capacity at these working conditions is: 415 kW The water flow at these working conditions is: 9.91 l/s The unit EWAD390D-SS at nominal working conditions has the following data: - Total heat recovery leaving water temperature 40/45°C - condenser air inlet: 35°C The heating capacity at these working conditions is: 427 $\ensuremath{\mathsf{kW}}$ The water flow at these working conditions is: 20.41 l/s The pressure drop at these working conditions is: 37 kPa The pressure drop at the selected working condition will be: 1.80 9.91 (l/s) PD₂ (kPa) = 37 (kPa) x 20.41 (l/s) PD, (kPa) = 10 (kPa)

OPT_1-2-3-4-5a-6-7-8_Rev.01_5

12 - 1 Specification Text

Technical Specification for Water Cooled Screw Chiller

GENERAL

The air cooled screw chiller will be designed and manufactured in accordance with following European directives:

Construction of pressure vessel	97/23/EC (PED)
Machinery Directive	2006/42/EC
Low Voltage	2006/95/EC
Electromagnetic Compatibility	2004/108/EC
Electrical & Safety codes	EN 60204–1 / EN 60335-2-40
Manufacturing Quality Stds	UNI – EN ISO 9001:2004

To avoid any losses, the unit will be tested at full load in the factory (at the nominal working conditions and water temperatures). The chiller will be delivered to the job site completely assembled and charged with refrigerant and oil. The installation of the chiller must comply with the manufacturer's instructions for rigging and handling equipment.

The unit will be able to start up and operate (as stand - outside air temperature from - evaporator leaving fluid temperature between	°C to	°C		
REFRIGERANT				
Only R-134a can be used.				
PERFORMANCE				
✓ Number of air cooled screw chiller(s)		: unit(s)		
✓ Cooling capacity for single air cooled screw cl	niller	: kW		
✓ Power input for single air cooled screw chiller	in cooling mode	: kW		
✓ Heat exchanger entering water temperature ir	Heat exchanger entering water temperature in cooling mode			
✓ Heat exchanger leaving water temperature in	Heat exchanger leaving water temperature in cooling mode			
✓ Heat exchanger water flow		: l/s		

✓ Nominal outside working ambient temperature in cooling mode :.....°C

Operating voltage range should be 400V ±10%, 3ph, 50Hz, voltage unbalance maximum 3%, without neutral conductor and shall only have one power connection point.

UNIT DESCRIPTION

The chiller includes as standard not less than: two independent refrigerant circuits, semi-hermetic type rotary single screw compressor, electronic expansion device (EEXV), refrigerant 'plate to plate' or 'shell&tube' heat exchanger (depending on the size), air-cooled condenser section, R-134a refrigerant, lubrication system, motor starting components, discharge line shut-off valve, suction line shut-off valve, control system and all components necessary for a safe and stable unit operation. The chiller will be factory assembled on a robust base frame made of galvanized steel, protected by an epoxy paint.

NOISE LEVEL AND VIBRATIONS

Sound pressure level at 1 meter distance in free field, semispheric conditions, shall not exceeddB(A). The sound pressure levels must be rated in accordance to ISO 3744 (other types of rating can not be used). Vibration on the base frame should not exceed 2 mm/s.

12 - 1 Specification Text

DIMENSIONS

Unit dimensions shall not exceed following indications:	- Unit length	 mm
	- Unit width	 mm
	- Unit height	 mm

CHILLER COMPONENTS

Compressors

12

- ✓ The compressor is semi-hermetic, single-screw type with gate-rotors made of carbon impregnated engineered composite material or the latest high-strength fibre reinforced star material (depending on the size). The gaterotor supports will be constructed of cast iron.
- ✓ The oil injection shall be used in order to get high EER (Energy Efficiency Ratio) also at high condensing pressure and low sound pressure levels in each load condition.
- ✓ The compressor shall be provided with a built in, high efficiency, mesh type oil separator and oil filter.
- Refrigerant system differential pressure shall provide oil injection on all moving compressor parts to correctly lubricate them. Electrical oil pump lubricating system is not allowed.
- Compressor cooling must be done by refrigerant liquid injection. An external dedicated heat exchanger and additional piping to carry the oil from compressor to heat exchanger and viceversa is not allowed.
- ✓ The compressor shall be direct electrical driven, without gear transmission between the screw and the electrical motor.
- ✓ The compressor casing shall be provided with ports to realize economized refrigerant cycles.
- ✓ The compressor must be protected by a temperature sensor for high discharge temperature and an electrical motor thermistor for high winding temperature.
- \checkmark The compressor shall be equipped with an electric oil heater.
- ✓ The compressor shall be fully field serviceable. Compressor that must be removed and returned to the factory for service shall be unacceptable.

Cooling capacity control system

- ✓ Each chiller will have a microprocessor for the control of the compressor slide valve position.
- ✓ The unit capacity control shall be infinitely modulating, from 100% down to 25% for each circuit. The chiller shall be capable of stable operation to a minimum of 12.5% of full load without hot gas bypass.
- ✓ The system shall control the unit based on the leaving evaporator water temperature that shall be controlled by PID (Proportional Integral Derivative) logic.
- ✓ The unit control logic shall manage the compressor slides to exactly match the plant load request in order to keep constant the set point for delivered chilled water temperature.
- The microprocessor unit control shall detect conditions that approach protective limits and take self-corrective action prior to an alarm occurring. The system shall automatically reduce the chiller capacity when any of the following parameters are outside their normal operating range:
 - High condenser pressure
 - Low evaporating refrigerant temperature

Evaporator

- ✓ The units shall be equipped (depending on the size) with a 'plate to plate' or 'shell&tube' evaporator:
 - The 'plate to plate' evaporator is made of stainless steel brazed plates and is covered with a 20mm closed cell insulation material. The exchanger is equipped with a heater for protection against freezing down to -28°C and evaporator water outlet connections of 3". Each evaporator has 1 circuit (one compressor) and the water filter is standard.
 - The 'shell&tube' evaporator is made with copper tubes rolled into steel tubesheets. The evaporators are singlepass on both the refrigerant and water sides for pure counter-flow heat exchange and low refrigerant pressure drops. The external shell is covered with a 10mm closed cell insulation material and the evaporator water outlet connections are provided with victaulic kit (as standard). Each evaporator has 2 circuits, one for each compressor and the water filter is standard.
- The evaporator is manufactured in accordance to PED approval.

12 - 1 Specification Text

Condenser coil

- ✓ The condenser coils are constructed with internally finned seamless copper tubes and arranged in a staggered row pattern and mechanically expanded into lanced and rippled aluminium fins with full fin collars for higher efficiencies. The space between the fins is given by a collar that will increase the surface area in connection with the tubes, protecting them from ambient corrosion.
- ✓ The condenser coils will have an integral subcooler circuit that provides sufficient subcooling to effectively eliminate the possibility of liquid flashing and increase the unit's efficiency with 5% to 7% without increasing in energy consumption.
- \checkmark The condenser coils shall be leak-tested and submitted to a pressure test with dry air.

Condenser fans

- ✓ The condenser fans used in conjunction with the condenser coils, shall be propeller type with glass reinforced resin blades for higher efficiencies and lower sound. Each fan shall be protected by a fan guard.
- ✓ The air discharge shall be vertical and each fan must be coupled to the electrical motor, supplied as standard to IP54 and capable to work to ambient temperatures of 20°C to + 65°C.
- ✓ The condenser fans shall have as a standard a thermally protection by internal thermal motor protection and protected by circuit braker installed inside the electrical panel as a standard.

Refrigerant circuit

- ✓ The unit shall have two independent refrigerant circuits.
- Each circuit shall include as standard: electronic expansion device piloted by unit's microprocessor control, compressor discharge shut-off valve, suction shut-off valve, replaceable core filter-drier, sight glass with moisture indicator and insulated suction line.

Condensation control

- The units will be provided with an automatic control for condensing pressure which ensures the working at low external temperatures down to °C, to maintain condensing pressure.
- ✓ The compressor automatically unloads when abnormal high condensing pressure is detected. This to prevent the shutdown of the refrigerant circuit (shutdown of the unit) due to a high-pressure fault.

Low sound unit configurations (on request)

- ✓ The unit compressor shall be connected with unit's metal base frame by rubber antivibration supports to prevent the transmission of vibrations to all metal unit structure, in order to control the unit sound.
- ✓ The chiller shall be provided with an acoustical compressor enclosure. This enclosure shall be realized with a light, corrosion resisting aluminium structure and metal panels. The compressor sound-proof enclosure shall be internally fitted with flexible, multi-layer, high density materials.

Hydronic kit options (on request)

- ✓ The hydronic module shall be integrated in the chiller chassis without increasing its dimensions and includes the following elements: centrifugal water pump with three-phase motor equipped with internal over-temperature protection, safety relief valve and filling kit.
- ✓ The water piping shall be protected against corrosion and equipped with drain and purge plugs. The customer connections shall be Victaulic connections. The piping shall be fully insulated to prevent condensation (pump insulation using polyurethane foam).
- A choice of two pump types shall be available:
 - in-line single pump low and high lifting
 - \circ $\,$ in-line twin pumps low and high lifting

12 - 1 Specification Text

Control panel

12

- Field power connection, control interlock terminals and unit control system should be centrally located in an electric panel (IP 54). Power and starting controls should be separated from safety and operating controls in different compartments of the same panel.
- \checkmark Starting will be Wye-Delta type (Y- Δ).
- Operating and safety controls should include energy saving control, emergency stop switch, overload protection for compressor motor, high and low pressure cut-out switch (for each refrigerant circuit), anti-freeze thermostat, cut-out switch for each compressor.
- All of the information regarding the unit will be reported on a display, and with the internal built-in calendar and clock that will switch the unit ON/OFF during day time all year long.
- ✓ The following features and functions shall be included:
 - <u>leaving water temperature reset</u> by controlling the water temperature Δt, by a remote 4-20mA DC signal or by controlling the external ambient temperature;
 - soft load function to prevent the system from operating at full load during the chilled fluid pulldown period;
 - password protection of critical parameters of control;
 - start-to-start and stop-to-start timers to provide minimum compressor off-time with maximum motor protection;
 - o <u>communication capability</u> with a PC or remote monitoring;
 - <u>discharge pressure control</u> through intelligent cycling of condenser fans;
 - o <u>lead-lag selection</u> manual or automatically by circuit run hours;
 - <u>double set point</u> for brine unit version;
 - <u>scheduling</u> via internal time clock to allow programming of a yearly start-stop schedule accommodating weekends and holidays.

Optional High Level Communications Interface

- The chiller is able to communicate to BMS (Building Management System) based on the most common protocols as:
 - ModbusRTU
 - o LonWorks, now also based on the international 8040 Standard Chiller Profile and LonMark Technology
 - BacNet BTP certifief over IP and MS/TP (class 4) (Native)
 - Ethernet TCP/IP

Daikin's unique position as a manufacturer of air Daikin's unique position as a manufacturer of air conditioning equipment, com pressors and refriger-ants has led to its dose involvementin environmen-tal issues. For several years Daikin has had the intention to become a leader in the provision of products that have limited impact on the environ-ment. This chall enge demands the eco design and development of a widerange of products and an en-ergy management system, resulting in energy con-servation and a reduction of waste.

The present leaflet is drawn up byway of information only and does not constitute an offer binding upon Daikin Europe N.V.. Daikin Europe N.V. has compiled the content of this leaflet to the best of its knowledge. No has compiled the content of this leaflet to the best of its knowledge. No express or implied warranky is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this leaflet. All content is copyrighted by Daikin Europe N.V.

Daikin Europe N.V. participates in the Eurovent Certification programme for Air conditioners (AC). Liquid Chilling Packages (LCP) and Fan coil units (FCU). Check ongoing validity of certificate online: www.eurovent-certification.com α using: www.certifiash.com"

BARCODE

Daikin products are distributed by: