

Air Conditioners Technical Data

Air-cooled selection procedure for RXYRQ-P

Air Conditioners Technical Data

Air-cooled selection procedure for RXYRQ-P

TABLE OF CONTENTS

II Air-cooled selection procedure for RXYRQ-P

1	Air-cooled selection procedure for RXYRQ-P 2
	System lay-out
	Connectable indoor units 2
	System limitations
	Selection procedure
	a central controller 5
2	Indoor unit capacity correction factor7

1 - 1 System lay-out

1 - 2 Connectable indoor units

1 - 2 - 1 Stylish/residential indoor units

Following residential indoor units are connectable through the BPMK-box:

											Capacity
	Туре	Model	Productname		20	25	35	42	50	60	71
MOUNTED	nounted ette	Round flow cassette (incl. autoclean function ²)	FCQ-C8	1							
	CEILING N CASS	4-way blow ceiling mounted cassette	FFQ-BV	÷							
_	EALED	Slim concealed ceiling unit	FDXS-E/C	A A							
CONCE	CONCI	Concealed ceiling unit with inverter driven fan	FBQ-C								
_	ËD	Daikin Emura Wall mounted unit	FTXG-J CTXG-J								
NEW	LL MOUNT	Wall mounted unit	FTXS-J								
NEW	MA	Wall mounted unit	FTXS-G								
	Ceiling Suspended	Ceiling suspended unit	FHQ-B								
	DING	Nexura floor standing unit	FVXG-K								
OR STAND	Floor standing unit	FVXS-F									
	FLO	Flexi type unit	FLXS-B								

NOTES

1 The indoor units in the table above are only connectable to RXYRQ-P, RXYSQ-P8V1 and RXYSQ-P8Y1, in case of RXYRQ-P these indoor units can be combined with standard VRV[®] indoor units in the same system

2 Decoration panel BYCQ140CG + BRC1E51A needed

1 - 2 Connectable indoor units

1 - 2 - 2 VRV[®] indoor units

All R-410A $\mathsf{VRV}^{\mathbb{R}}$ indoor units are connectable

The RXYRQ-P units are designed to operate with residential and VRV[®] indoor units connected. Do not connect only VRV[®] units.

1 - 3 System limitations

∕!∖

- Connection ratio: 80-130%
- · No automatic charging & leak check function available

1 - 4 Selection procedure

The RXYRQ units are designed to operate at an evaporating temperature of 9° C, which is the normal evaporating temperature of Sky Air and residential indoor units, whereas the standard evaporating temperature for VRV[®] units is 6° C. Thus a capacity correction factor for the VRV[®] indoor unit needs to be used.

To select an RXYRQ system you need the capacity tables of the outdoor unit at the various correction factors for mixed connection and the table with correction factors for VRV[®] indoor units when connected to an RXYRQ system. The capacity tables of the outdoor unit are available in the RXYRQ databook chapter, the correction factors for VRV[®] indoor units can be found in this databook (cfr. chapter 2).

1 - 4 - 1 Total capacity index of indoor units

To determine the toal capacity index and consequently the connection ratio of the VRV system, make the sum of the capacity indexes of the connected VRV indoor units and the capacity classes of the connected RA indoor units.

Example: 2 x FFQ35 + 2 x FXFQ100P9

FFQ35 capacity class : 35

FXFQ100P9 capacity index: 100

⇒ Total capacity index: 2 x 100 + 2 x 35 = 270

1 - 4 - 2 Select outdoor unit

The capacity index of the outdoor unit is the same as for standard VRV ranges. Take into account that the connection ratio of RXYRQ should be between 80% and 130%.

Example:

RXYRQ8P: 270 / 200 = $135\% \rightarrow \text{not}$ allowed RXYRQ10P: 270 / 250 = $108\% = 114\% \rightarrow \text{allowed}$ RXYRQ12P: 270 / 300 = $90\% \rightarrow \text{allowed}$

1 - 4 Selection procedure

1 - 4 - 3 Determine the correction factor for mixed connection

The formula for the outdoor unit correction factor can be used when a mix of VRV and residential indoor units are connected or when only residential indoor units are connected. Do not connect only VRV units to an RXYRQ-P outdoor unit.

 Σ (VRV indoor unit capacity index x correction factor for $T_e 9^\circ$) + Σ (RA indoor unit capacity index)

 Σ (VRV indoor unit capacity index) + Σ (RA indoor unit capacity index)

In the numerator the sum is made of the VRV indoor unit capacity indexes multiplied with the correction factor at nominal conditions and the RA capacity classes. In the denominator all capacity indexes are added.

Example:

Indoor design conditions: 18° CWB Outdoor design conditions: 35° CDB OU correction factor = $(2 \times 100 \times 0.79) + (2 \times 35) = 0.84$ $(2 \times 100) + (2 \times 35)$

1 - 4 - 4 Correct outdoor unit capacity by the correction factor for mixed connection

The correction factor calculated in the previous step can now be used to determine the outdoor unit capacity. For every outdoor unit 5 different capacity tables are given:

- Correction factor for mixed connection 1
- Correction factor for mixed connection 0.9
- Correction factor for mixed connection 0.8
- Correction factor for mixed connection 0.7
- Correction factor for mixed connection 0.6

The outdoor unit capacity at a certain connection ratio and with a certain correction factor for mixed connection can be calculated by interpolating first between the capacity ratios and then between the different correction factors.

Example:

Connection ratio = 108% Correction factor for mixed connection = 0.85

STEP 1: Interpolate between connection ratios for each correction factor

Calculate the outdoor unit capacity at 114% connection ratio at correction factor 0,9 and at correction factor 0,8.

• At correction factor 0.9:

connection ratio	100	108	110
cooling capacity	23.6	?	25.9

? = 23,6 kW + (108 - 100) x (25,9 kW - 23,6 kW) / (110-100) = 25,44 kW

• At correction factor 0.8

connection ratio	100	108	110
cooling capacity	20.9	?	23

? = 20,9 kW + (108 – 100) x (23 kW – 20,9 kW) / (110-100) = 22,58 kW

STEP 2: Interpolate between the different correction factors

Correction factor	0.8	0.84	0.9
cooling capacity	22.85	?	25.44

? = 22,58 kW + (0,84 - 0,8) x (25,44 kW - 22,58 kW) / (0,9-0,8) = 23,72 kW

Now the capacity of the outdoor unit still needs to be corrected for refrigerant piping length. When the actual outdoor capacity is known the actual capacity of each indoor unit can be calculated to check if the delivered capacity satisfies the cooling demand. If this is not the case a larger unit needs to be selected and the calculation restarts.

1 - 5 Limitations on the number of indoor units connectable to a central controller

Because the RXYRQ units are connected to VRV[®] indoor units, BP-boxes and RA indoor units, the communication is higher than for normal VRV[®] systems. Therefore the number of connectable units to a central controller is limited. In below table an overview is given showing the different connection possibilities for the number of residential and VRV[®] indoor units depending on the number of outdoor systems.

Total outdoor unit Q'ty: 10	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) *	79	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	14	30	47	63	79	95	111	128
Total outdoor unit Q'ty	10	10	10	10	10	10	10	10	10
: BPMK Q'ty can be ignored.			1					1	
			1		r				
Total outdoor unit Q'ty: 9	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) *	81	70	60	50	40	30	20	10	0
Tatal autologn unit Oliv	0	1/	33	48	64	80	96	112	128
	y	ÿ	9	9	9	9	ÿ	9	9
: BPMK Q'ty can be ignored.									
Total outdoor unit Q'ty: 8	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) *	82	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	18	34	49	65	81	96	112	128
Total outdoor unit Q'ty	8	8	8	8	8	8	8	8	8
€: BPMK Q'ty can be ignored.									
Total outdoor unit O'tv. 7	FX 1	FX 2	FX 3	FY 4	EX 5	EX 6	FX 7	FY 8	Normal case
Indoor for (Sky Air + RA) *	84	70	60	50	40	30	20	10	normai case
Indoor for normal VRV	0	21	36	51	67	82	97	112	128
Total outdoor unit Q'tv	7	7	7	7	7	7	7	7	7
: BPMK Q'tv can be ignored.									
. Di nint & ty ban bo ignorou.									
Total outdoor unit Q'ty: 6	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) *	86	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	23	38	53	68	83	98	113	128
Total outdoor unit Q'ty	6	6	6	6	6	6	6	6	6
₭: BPMK Q'ty can be ignored.									
Total outdoor unit Q'ty: 5	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) 💥	88	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	26	40	55	69	84	98	113	128
Total outdoor unit Q'ty	5	5	5	5	5	5	5	5	5
₭: BPMK Q'ty can be ignored.									
Total outdoor unit O'tu: 1	EV 1	EVO	EV 2	EV 4	EVE	EVA	EV 7	EVO	Normalagoo
Indoor for (Sky Air + RA) *	EA.1 80	E۸.2 70	EA.3 60	EA.4 50	EA.0	20	20	10	normal case
Indoor for normal VRV	09	27	<u></u>	56	70	84	00	113	128
Total outdoor unit Q'tv	4	4	4	4	4	4	4	4	4
BPMK Q'tv can be ignored	I .	· ·	<u>I '</u>	I	<u> </u>	I .		I .	. ·
Si mit e ly our de lynoreu.			1		Î		ï		-
Total outdoor unit Q'ty: 3	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) ₩	91	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	29	43	57	71	85	99	113	128
Total outdoor unit Q'ty	3	3	3	3	3	3	3	3	3
₭: BPMK Q'ty can be ignored.									
Total outdoor unit Q'ty: 2	EX.1	EX.2	EX.3	EX.4	EX.5	EX.6	EX.7	EX.8	Normal case
Indoor for (Sky Air + RA) *	93	70	60	50	40	30	20	10	0
Indoor for normal VRV	0	31	45	59	72	86	100	114	128
Tetal autolean unit Oltu	<u> </u>		1	1	1 .	<u> </u>	l	 	1 .

1 - 5 Limitations on the number of indoor units connectable to a central controller

Example:

When 3 outdoor units are connected to a central controller, it is possible to connect:

- + 70 Sky Air or residential indoor units and 29 $\mathsf{VRV}^{\textcircled{R}}$ indoor units
- OR 60 Sky Air or residential indoor units and 43 $\text{VRV}^{\text{®}}$ indoor units
- OR 50 Sky Air or residential indoor units and 57 VRV[®] indoor units
- ...

It is possible to interpolate between the different examples, but you always have to round down. For example if you want to connect 3 outdoor units and 65 Sky Air or residential indoor units to a central controller, you can connect $36 \text{ VRV}^{\$}$ indoor units ($29 + (70-65)/(70-60) \times (43 - 29) = 36$).

2 Indoor unit capacity correction factor

RXYRQ-P

	Te=9°C							
	Indoor air	14.0 °CWB	16.0 °CWB	18.0 °CWB	19.0 °CWB	20.0 °CWB	22.0 °CWB	24.0 °CWB
	temperature	20.0 °CDB	23.0 °CDB	26.0 °CDB	27.0 °CDB	28.0 °CDB	30.0 °CDB	32.0 °CDB
EXA020	TC	0.687	0.692	0.742	0.759	0.780	0.813	0.836
FAQ20	SHF	1.132	1.194	1.139	1.116	1.093	1.061	1.046
EVAO25	TC	0.691	0.692	0.739	0.759	0.780	0.814	0.836
FAAQZD	SHF	1.123	1.193	1.140	1.115	1.093	1.061	1.046
EVA022	TC	0.700	0.692	0.736	0.760	0.781	0.815	0.836
FAAQ32	SHF	1.107	1.190	1.140	1.089	1.091	1.059	1.050
EXAC/0	TC	0.681	0.684	0.748	0.772	0.792	0.824	0.853
FAAQ40	SHF	1.142	1.192	1.127	1.101	1.081	1.058	1.037
	TC	0.688	0.690	0.751	0.775	0.797	0.832	0.854
FAAQOU	SHF	1.119	1.182	1.122	1.097	1.077	1.053	1.052
EXAO62	TC	0.694	0.690	0.753	0.781	0.806	0.833	0.853
FAAQ03	SHF	1.102	1.181	1.121	1.095	1.074	1.054	1.050
	TC	0.650	0.709	0.767	0.788	0.808	0.842	0.866
FALQ20	SHF	1.205	1.160	1.108	1.090	1.073	1.046	1.029
	TC	0.650	0.711	0.769	0.791	0.812	0.844	0.867
FALQ25	SHF	1.206	1.158	1.108	1.088	1.071	1.046	1.029
	TC	0.647	0.709	0.767	0.787	0.807	0.842	0.866
FXLQ32	SHF	1.212	1.160	1.109	1.090	1.073	1.045	1.028
E)/1 0 10	TC	0.661	0.714	0.775	0.797	0.814	0.844	0.867
FXLQ40	SHF	1.184	1.154	1.103	1.084	1.071	1.047	1.036
51/1 050	TC	0.654	0.709	0.768	0.790	0.809	0.842	0.865
FXLQ50	SHF	1.194	1.160	1.107	1.088	1.073	1.046	1.029
51/1 0.00	TC	0.662	0.713	0.773	0.795	0.813	0.843	0.866
FXLQ63	SHF	1,179	1,155	1,103	1.084	1.071	1.049	1.039
	TC	0.650	0.709	0.767	0.788	0.808	0.842	0.866
FXNQ20	SHF	1.205	1.160	1.108	1.090	1.073	1.046	1.029
	TC	0.650	0.711	0.769	0.791	0.812	0.844	0.867
FXNQ25	SHF	1.206	1.158	1,108	1.088	1.071	1.046	1.029
	TC	0.647	0.709	0.767	0.787	0.807	0.842	0.866
FXNQ32	SHF	1.212	1,160	1,109	1.090	1.073	1.045	1.028
-	TC	0.661	0.714	0.775	0.797	0.814	0.844	0.867
FXNQ40	SHF	1.184	1.154	1.103	1.084	1.071	1.047	1.036
	TC	0.654	0.709	0.768	0.790	0.809	0.842	0.865
FXNQ50	SHF	1,194	1,160	1.107	1.088	1.073	1.046	1.029
	TC	0.662	0.713	0.773	0.795	0.813	0.843	0.866
FXNQ63	SHF	1.179	1,155	1.103	1.084	1.071	1.049	1.039
	TC	0.697	0.694	0.754	0.776	0.795	0.827	0.854
FXSQ20	SHF	1,112	1,173	1,117	1.093	1.075	1.053	1.057
	TC	0.684	0.705	0.764	0.790	0.812	0.837	0.859
FXSQ25	SHF	1,130	1,159	1,107	1.084	1.067	1.051	1.054
EV/0	TC	0.686	0.706	0.766	0.792	0.814	0.837	0.859
FXSQ32	SHF	1.126	1.159	1.106	1.083	1.066	1.051	1.054
	TC	0.689	0.714	0.781	0.801	0.816	0.840	0.863
FXSQ40	SHF	1,124	1,151	1.098	1.080	1,067	1.051	1.050
	TC	0.689	0.714	0.781	0.801	0.816	0.840	0,863
FXSQ50	SHF	1.124	1.151	1.098	1.080	1.067	1.051	1.050
	TC	0.677	0.708	0.766	0.791	0.811	0.838	0.861
FXSQ63	SHF	1,145	1,157	1,105	1.083	1,068	1.054	1,051
	TC	0.686	0.710	0.775	0.799	0.815	0.839	0.861
FXSQ80	SHE	1 128	1 15/	1 101	1 080	1 067	1 050	1.052
	тс	0.679	0.707	0.766	0.702	0.812	0.838	0.861
FXSQ100		1 140	1 157	1 106	1.083	1.067	1.050	1.05/
		0.687	0.700	0.773	0.700	0.815	0.838	0.861
FXSQ125		0.007	0.709	0.773	1.090	1.067	0.030	1.052
	2115	1.120	1.100	I.IUZ	1.080	1.067	1.051	1.052

NOTES

How to use this table. Capacity : Total capacity for High sensible mode = Total capacity for normal capacity table X TC ratio. SHF : SHF for High sensible mode = SHF for normal capacity table X SHF ratio. In case of SHF is bigger than 1, SHF is "1"

4TW33912-6(1)

Indoor unit capacity correction factor 2

RXYRQ-P

		Te=9°C								
]	Indoor air	14.0 °CWB	16.0 °CWB	18.0 °CWB	19.0 °CWB	20.0 °CWB	22.0 °CWB	24.0 °CWB		
ļ	temperature	20.0 °CDB	23.0 °CDB	26.0 °CDB	27.0 °CDB	28.0 °CDB	30.0 °CDB	32.0 °CDB		
FXMQ20		0.684	0.705	0.764	0.790	0.812	0.837	0.859		
	TC	0.684	0.705	0.764	0.790	0.812	0.837	0.859		
FXMQ25	SHF	1.130	1.159	1.107	1.084	1.067	1.051	1.054		
EVMO22	TC	0.686	0.706	0.766	0.792	0.814	0.837	0.859		
FXINQ32	SHF	1.126	1.159	1.106	1.083	1.066	1.051	1.054		
FXMQ40	TC	0.689	0.714	0.781	0.801	0.816	0.840	0.863		
	SHF	1.124	1.151	1.098	1.080	1.067	1.051	1.050		
FXMQ50		0.674	0.707	0.766	0.788	0.808	0.838	0.861		
	TC	0.677	0 708	0.766	0.791	0.811	0.838	0.861		
FXMQ63	SHF	1.145	1.157	1.105	1.083	1.068	1.054	1.051		
	TC	0.686	0.710	0.775	0.799	0.815	0.839	0.861		
	SHF	1.128	1.154	1.101	1.080	1.067	1.050	1.052		
FXMQ100	TC	0.679	0.707	0.766	0.792	0.812	0.838	0.861		
	SHF	1.140	1.157	1.106	1.083	1.067	1.053	1.054		
FXMQ125	SHE	1 126	1 155	1 102	1.080	1.067	1 051	1.052		
	TC	0.679	0.701	0.762	0.788	0.810	0.836	0.859		
FXMQ200	SHF	1.136	1.164	1.109	1.085	1.070	1.060	1.051		
EXMO250	TC	0.687	0.717	0.781	0.800	0.815	0.841	0.864		
	SHF	1.129	1.151	1.099	1.081	1.069	1.053	1.056		
FXDQ20M9	TC	0.682	0.696	0.757	0.783	0.807	0.833	0.856		
		1.131	0.706	0.775	0.797	0.812	0.838	0.861		
FXDQ25M9	SHF	1 133	1 164	1 105	1.085	1 071	1 054	1.048		
	TC	0.685	0.694	0.755	0.778	0.802	0.833	0.855		
FXDQ15p7	SHF	1.124	1.176	1.118	1.094	1.074	1.053	1.048		
EXDO20n7	TC	0.685	0.694	0.755	0.778	0.802	0.833	0.855		
T XD Q20p7	SHF	1.124	1.176	1.118	1.094	1.074	1.053	1.048		
FXDQ25p7		0.685	0.694	0.755	0.778	0.802	0.833	0.855		
	TC	0.688	0.703	0.754	0.770	0.788	0.818	0.840		
FXDQ32p7	SHF	1.130	1.171	1.122	1.101	1.083	1.065	1.055		
	TC	0.677	0.699	0.758	0.780	0.798	0.826	0.857		
FXDQ40p7	SHF	1.155	1.169	1.113	1.090	1.074	1.062	1.043		
FXDQ50p7	TC	0.680	0.698	0.758	0.781	0.799	0.830	0.857		
	SHF	1.143	1.169	1.113	1.090	1.073	1.063	1.047		
FXDQ63p7		0.073	0.700	0.707	0.793	1.069	0.039	0.002		
	TC	0.696	0.741	0.794	0.813	0.831	0.861	0.884		
FXFQ20	SHF	1.156	1.151	1.107	1.091	1.077	1.053	1.037		
EXEO25	TC	0.696	0.741	0.794	0.813	0.831	0.861	0.884		
17(10220	SHF	1.156	1.151	1.107	1.091	1.077	1.053	1.037		
FXFQ32		0.673	0.728	0.784	0.803	0.820	0.851	0.874		
		0.681	0.732	0.786	0.805	0.821	0.852	0.875		
FXFQ40	SHF	1.165	1.152	1.106	1.090	1.077	1.053	1.036		
EVEOS	TC	0.662	0.692	0.755	0.779	0.800	0.834	0.858		
FAFQOU	SHF	1.173	1.183	1.121	1.096	1.079	1.054	1.035		
FXFQ63	TC	0.664	0.693	0.756	0.781	0.803	0.834	0.858		
	SHF	1.168	1.182	1.121	1.095	1.078	1.054	1.035		
FXFQ80		0.670	0.693	0.756	0.784	0.80/	0.834	0.858		
	TC.	0.678	0.697	0.763	0 790	0.810	0.834	0.858		
FXFQ100	SHF	1.140	1.174	1.115	1.089	1.073	1.060	1.048		
EXEC 125	TC	0.680	0.697	0.763	0.790	0.810	0.834	0.858		
	SHF	1.136	1.175	1.115	1.089	1.072	1.061	1.049		
FXZQ15	TC	0.655	0.695	0.757	0.779	0.797	0.832	0.860		
	SHF	1.196	1.1/9	1.118	1.095	1.080	1.052	1.031		
FXZQ20	SHF	1 196	1 179	1 118	1.095	1.080	1 0.032	1 0.000		
EVZOOF	TC	0.655	0.695	0.757	0.779	0.797	0.832	0.860		
FXZQ25	SHF	1.196	1.179	1.118	1.095	1.080	1.052	1.031		
FX7032	TC	0.656	0.694	0.757	0.779	0.797	0.833	0.876		
	SHF	1.194	1.180	1.119	1.095	1.080	1.051	1.032		
FXZQ40	TC	0.666	0.687	0.751	0.775	0.794	0.826	0.856		
		1.1/4	1.189	1.125	1.099	1.081	1.056	1.034		
FXZQ50	SHF	1 150	1 182	1 121	1.096	1 077	1 0.55	1.036		
	UII	1.100	1.102	1.121	1.030	1.011	1.000	1.000		

I NOTES

How to use this table.

Capacity : Total capacity for High sensible mode = Total capacity for normal capacity table X TC ratio. SHF : SHF for High sensible mode = SHF for normal capacity table X SHF ratio.

In case of SHF is bigger than 1, SHF is "1"

Indoor unit capacity correction factor 2

RXYRQ-P

					Te=9°C			
	Indoor air	14.0 °CWB	16.0 °CWB	18.0 °CWB	19.0 °CWB	20.0 °CWB	22.0 °CWB	24.0 °CWB
	temperature	20.0 °CDB	23.0 °CDB	26.0 °CDB	27.0 °CDB	28.0 °CDB	30.0 °CDB	32.0 °CDB
EV0000	TC	0.667	0.697	0.748	0.767	0.788	0.817	0.844
FXCQ20	SHF	1.172	1.184	1.130	1.106	1.084	1.061	1.039
EVOODE	TC	0.681	0.690	0.741	0.766	0.787	0.817	0.842
FAGQ25	SHF	1.147	1.192	1.135	1.108	1.086	1.061	1.041
FXCQ32	TC	0.681	0.690	0.741	0.766	0.787	0.817	0.842
FXCQ32	SHF	1.147	1.192	1.135	1.108	1.086	1.061	1.041
FXCQ40	TC	0.671	0.687	0.748	0.772	0.792	0.821	0.854
FXCQ40	SHF	1.167	1.191	1.128	1.101	1.082	1.059	1.035
EXCOSO	TC	0.663	0.690	0.753	0.777	0.795	0.831	0.857
FACQOU	SHF	1.177	1.185	1.123	1.097	1.081	1.054	1.034
EVCOG2	TC	0.682	0.692	0.740	0.763	0.784	0.815	0.840
FACQ03	SHF	1.144	1.191	1.138	1.111	1.088	1.061	1.042
	TC	0.707	0.689	0.752	0.776	0.795	0.830	0.856
FACQOU	SHF	1.166	1.187	1.124	1.098	1.080	1.055	1.035
EVC0125	TC	0.683	0.691	0.753	0.776	0.796	0.831	0.855
FACQ125	SHF	1.132	1.180	1.121	1.096	1.077	1.054	1.043
EVUO22	TC	0.707	0.692	0.745	0.768	0.788	0.819	0.844
FARQ32	SHF	1.098	1.181	1.127	1.102	1.082	1.055	1.042
	TC	0.695	0.702	0.749	0.772	0.791	0.821	0.844
1 /11/200	SHF	1.120	1.169	1.122	1.098	1.079	1.058	1.060
	TC	0.690	0.697	0.757	0.779	0.798	0.829	0.856
T XIIQ100	SHF	1.123	1.169	1.114	1.091	1.073	1.055	1.057
	TC	0.694	0.692	0.751	0.774	0.794	0.822	0.851
T XNQ25	SHF	1.118	1.176	1.119	1.095	1.076	1.055	1.041
EXK032	TC	0.694	0.692	0.751	0.774	0.794	0.821	0.852
I ANQUE	SHF	1.118	1.176	1.119	1.095	1.076	1.054	1.041
EXKONO	TC	0.696	0.691	0.751	0.774	0.794	0.827	0.852
	SHF	1.107	1.176	1.118	1.095	1.076	1.052	1.037
EXKO63	TC	0.690	0.693	0.753	0.776	0.795	0.822	0.853
1 /11/2000	SHF	1.126	1.174	1.117	1.094	1.075	1.066	1.052
EXUO71	TC	0.675	0.702	0.762	0.784	0.804	0.836	0.859
170011	SHF	1.149	1.164	1.110	1.088	1.072	1.061	1.046
EXUO100	TC	0.678	0.707	0.770	0.795	0.813	0.839	0.862
1 /00/100	SHF	1.144	1.159	1.105	1.082	1.069	1.060	1.049
EXUO125	TC	0.683	0.722	0.783	0.803	0.817	0.844	0.867
1 /00/120	SHF	1.142	1.148	1.098	1.081	1.070	1.056	1.051

NOTES

How to use this table.

Capacity : Total capacity for High sensible mode = Total capacity for normal capacity table X TC ratio. SHF : SHF for High sensible mode = SHF for normal capacity table X SHF ratio. In case of SHF is bigger than 1, SHF is "1"

4TW33912-6(3)

Dalkin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Dalkin has had the intention to become a leader in the provision of products that have limited impact on the environment. This challenge demands the eco design and development of a wide range of products and an energy management system, resulting in energy conservation and a reduction of waste.

VRV® products are not within the scope of the Eurovent certification programme.

Daikin products are distributed by:

The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. Daikin Europe N.V. has compiled the content of this publication to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe NV. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe NV.