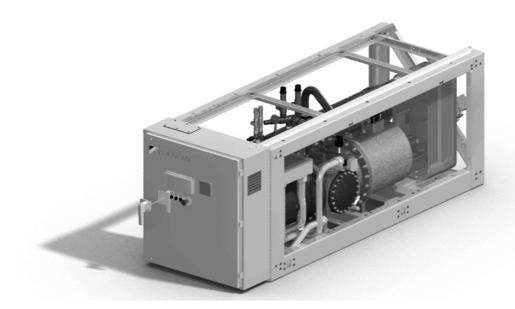


Чиллеры

технические характеристики

Чиллер с водяным охлаждениемохлаждением

www daikin eu


СОДЕРЖАНИЕ

EWWD-J-SS

1	характеристики	2
2	Технические характеристики Технические параметры Электрические параметры	3
3	Характеристики и преимущества	
4	Общие характеристики	
5	Обозначения Обозначения	
6	Таблицы производительностиТаблицы холодопроизводительности	
7	Перепад давленияПерепад давления испарителя	
8	Размерные чертежи	
9	Данные об уровне шума Данные об уровне шума	
10	Установка Способ монтажа Заправка, расход и количество воды	25
11	Рабочий диапазон Рабочий диапазон	
12	Описание технических характеристик	

1 Характеристики

- Компактный дизайн содействует установке оборудования в помещении и его модификациям
- Одновинтовой компрессор с плавной регулировкой производительности
- Высокая эффективность в режиме полной или частичной нагрузки
- Температура охлажденной воды до -10°C для стандартных блоков
- Оптимизирован для работы с хладагентом R-134a
- Пульт MicroTech III

2-1 Техниче	ские парамет	гры			EWWD120J- SS	EWWD140J- SS	EWWD150J- SS	EWWD180J- SS	EWWD210J- SS	EWWD250J- SS
Холодопроизвод ительность	Ном.	-		кВт	120 (1)	146 (1)	155 (1)	178 (1)	208 (1)	256 (1)
Теплопроизводи тельность	Ном.			кВт	142 (2)	172 (2)	188 (2)	216 (2)	249 (2)	305 (2)
Регулирование	Способ						Бесст	упенч.	l .	
мощности	Минимальная м	иощность		%			2	25		
Входная	Охлаждение	Ном.		кВт	27,3 (1)	33,3 (1)	38,5 (1)	44,2 (1)	49,3 (1)	58,7 (1)
мощность	Нагрев	Ном.		кВт	32,9 (2)	40,1 (2)	46,4 (2)	53,5 (2)	59,57 (2)	71,68 (2)
EER					4,40 (1)	4,38 (1)	4,03	3 (1)	4,22 (1)	4,37 (1)
COP					4,32 (2)	4,29 (2)	4,05 (2)	4,04 (2)	4,18 (2)	4,26 (2)
ESEER					5,01	4,	67	4,66	4,75	5,20
Корпус	Цвет						Слонова	я кость_	l .	
	Материал					Оцинког	занный и покра	шенный сталы	ной лист	
Размеры	Блок Высота			ММ		<u> </u>	1.0)20		
-		Ширина		ММ			9	13		
		Глубина		ММ			2.6	684		
Bec	Блок	<u> </u>		КГ	1.177	1.233	1.334	1.366	1.416	1.600
	Эксплуатацион	ный вес		КГ	1.211	1.276	1.378	1.415	1.473	1.663
Вод. теплообменник	Тип			ı		Пая	ный пластинча	тый, один на ко	энтур	<u>l</u>
Водяной	Объем воды			Л	14	18	14	17	20	26
теплообменник -	Расход воды	Ном.		л/сек	5,73	6,98	7,41	8,50	9,94	12,25
испаритель	Спад номинального давления	Охлаждение	Теплообменник	кПа	15	13	40	38	36	28
	ВОДЫ							25.522		
Водяной	Изоляционный Тип	материал						ая пора		
водянои теплообменник -		Ном.		л/сек	7.04	0.57	двухходовой н 9,25	ожухотрубный		15.00
конденсатор	Расход воды Спад			кПа	7,04 20	8,57 12	9,25	10,62 11	12,30	15,06 16
	номинального давления воды	Охлаждение		киа	20	12				10
	Изоляционный	материал					Закрыт	ая пора		
	Модель	Количество						1		
Уровень звукового давления	Охлаждение	Ном.		дБ(А)			71,4 (3)			70,0 (3)
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)			88,6 (3)			87,2 (3)
Компрессор	Тип						Одновинтово	й компрессор		
	Количество_							1		
	Масло	Объем заправки		Л		1	3			-
Рабочий	Испаритель	Охлаждение	Мин.	°CDB				10		
диапазон			Макс.	°CDB			1	5		
	Конденсатор Охлаждение Мин.		°CDB			2	23			
				°CDB				60		
Хладагент	Тип			1			R-1	34a		
	Заправка			КГ	18	20	33	34	36	38
	Контуры	Количество		1	1				1	
Подсоединения				MM			76	5,2		
труб		цы конденсатора (C	DD)	1	2" 1/2			4"		
	1 .,,		,							

2-1 Техниче	еские парамет	гры	EWWD120J- SS	EWWD140J- SS	EWWD150J- SS	EWWD180J- SS	EWWD210J- SS	EWWD250J- SS
Защитные	Оборудование	01		Высокое	давление нагн	етания (реле д	авления)	
устройства		02		Высокое д	давление нагне	тания (датчик ,	давления)	
		03		Низкое да	авление всасы	вания (датчик д	цавления)	
		04		3	Ващита двигате	ля компрессор	а	
		05		Ві	ысокая темпера	атура нагнетан	Р	
		06			Низкое давл	пение масла		
		07		Cod	отношение для	низкого давле	Р	
		08		Сильно	е падение давл	ения масла в с	рильтре	
		09			Фазоин	дикатор		
		10			Кнопка аварий	ного останова		
		11		Контр	оллер защиты	от замерзания	воды	

2-1 Техниче	ские параме	тры		EWWD280J- SS	EWWD310J- SS	EWWD330J- SS	EWWD360J- SS	EWWD380J- SS	EWWD400J- SS
Холодопроизвод ительность	Ном.		кВт	285 (1)	310 (1)	334 (1)	357 (1)	386 (1)	416 (1)
Теплопроизводи тельность	Ном.		кВт	340 (2)	377 (2)	405 (2)	432 (2)	466 (2)	499 (2)
Регулирование	Способ		I I		1	Бесст	упенч.		
мощности	Минимальная м	иощность	%	25			12,5		
Входная	Охлаждение	Ном.	кВт	68,3 (1)	77 (1)	82,7 (1)	88,4 (1)	98,	6 (1)
мощность	Нагрев	Ном.	кВт	80,75 (2)	92,88 (2)	99,9 (2)	107 (2)	113 (2)	119 (2)
EER				4,18 (1)	4,03 (1)	4,0	4 (1)	3,91 (1)	4,22 (1)
COP				4,21 (2)	4,06 (2)	4,05 (2)	4,04 (2)	4,12 (2)	4,19 (2)
ESEER				4,46	4,80	4,84	5,00	4,79	5,17
Корпус	Цвет				•	Слонова	я кость_		
	Материал				Оцинко	ванный и покра	шенный сталь	ной лист	
Размеры	Блок	Высота	MM	1.020			2.000		
		Ширина	MM			9	13		
		Глубина	MM			2.0	684		
Bec	Блок		КГ	1.607	2.668	2.700	2.732	2.782	2.832
	Эксплуатацион	ный вес	КГ	1.675	2.755	2.792	2.830	2.888	2.946
Вод. теплообменник	Тип				Пая	ный пластинча	тый, один на ко	онтур	
Водяной	Объем воды		Л	26	29	31	33	37	41
теплообменник -	Расход воды	Ном.	л/сек	13,63	14,81	15,96	17,06	18,44	19,88
испаритель	Спад номинального давления воды	Охлаждение Теплообменн	ик кПа	33	4	10	3	38	36
	Изоляционный	материал	•	Закрытая пора					•
Водяной	Тип					Двухходовой і	ожухотрубный		
теплообменник -	Расход воды	Ном.	л/сек	16,89	18,49	19,91	21,28	23,15	24,59
конденсатор	Спад номинального давления воды	Охлаждение	кПа	26			11		
	Изоляционный	материал				Закрыт	ая пора		
	Модель	Количество					1		
Уровень звукового давления	Охлаждение	дБ(А)	70,0 (3)			74,4 (3)			
Уровень звуковой мощности	Охлаждение	дБ(А)	87,2 (3)			92,4 (3)			
Компрессор	Тип			Одновинтовой компрессор					
	Количество_			1			2		
	Масло	Объем заправки	Л		-		2	26	

2-1 Техниче	ские параме	тры			EWWD280J- SS	EWWD310J- SS	EWWD330J- SS	EWWD360J- SS	EWWD380J- SS	EWWD400J- SS	
Рабочий	Испаритель	Охлаждение	Мин.	°CDB		•		10	•		
диапазон			Макс. °CDВ				1	5			
	Конденсатор	Охлаждение	Мин.	°CDB			2	3			
			Макс.	°CDB			6	0			
Хладагент	Тип						R-1	34a			
	Заправка кг				38	66	67	68	70	72	
	Контуры	Количество			1			2			
Подсоединения	Вход/выход вод	од/выход воды из испарителя мм				76,2					
труб	Вход/выход вод	ды конденсатора(OD)		4"						
Защитные	Оборудование	01				Высокое	давление нагн	етания (реле д	авления)		
устройства		02				Высокое ,	давление нагне	тания (датчик ,	давления)		
		03			Низкое давление всасывания (датчик давления)						
		04				3	Ващита двигате	ля компрессор	а		
		05				В	ысокая темпера	атура нагнетан	Р		
		06					Низкое давл	пение масла			
		07				Со	отношение для	низкого давле	РИН		
		08				Сильно	е падение давл	ения масла в с	рильтре		
		09					Фазоин	дикатор			
		10					Кнопка аварий	іного останова			
		11				Контр	оллер защиты	от замерзания	воды		

2-1 Техниче	ские парамет	гры		EWWD450J-SS	EWWD500J-SS	EWWD530J-SS	EWWD560J-SS			
Холодопроизвод ительность	Ном.			кВт	464 (1)	513 (1)	541 (1)	570 (1)		
Теплопроизводи тельность	Ном.			кВт	554 (2)	610 (2)	645 (2)	681 (2)		
Регулирование	Способ					Бесст	упенч.	•		
мощности	Минимальная м	иощность		% 12,5			2,5			
Входная	Охлаждение	Ном.		кВт	108 (1)	117 (1)	127 (1)	137 (1)		
мощность	Нагрев	Ном.		кВт	131 (2)	143 (2)	152 (2)	162 (2)		
EER				1	4,30 (1)	4,38 (1)	4,26 (1)	4,16 (1)		
COP					4,22 (2)	4,26 (2)	4,23 (2)	4,22 (2)		
ESEER					5,27	5,37	5,25	4,81		
Корпус	Цвет				,	·	я кость_	· · · · · · · · · · · · · · · · · · ·		
	Материал				(Эцинкованный и покра		т		
Размеры	Блок Высота			ММ		2.000				
·	Ширина Глубина		ММ	913						
			ММ		2.6	684				
Bec	Блок			КГ	3.016	3.200	3.207	3.215		
	Эксплуатацион	ный вес		КГ	3.136	3.327	3.338	3.350		
Вод. теплообменник	Тип			•		Паяный пластинча	тый, один на контур			
Водяной	Объем воды			Л	46 52					
теплообменник -	Расход воды	Ном.		л/сек	22,17	24,51	25,85	27,23		
испаритель	Спад номинального давления воды	Охлаждение	Теплообменник	кПа	36	2	8	33		
	Изоляционный	материал		•		Закрыт	ая пора			
Водяной	Тип					Двухходовой н	ожухотрубный			
теплообменник -	Расход воды	Ном.		л/сек	27,33	30,10	31,92	33,78		
конденсатор С	Спад номинального давления воды	Охлаждение		кПа	11	1	6	26		
	Изоляционный	Изоляционный материал				Закрыт	ая пора			
	Модель	Количество					1			

2-1 Техниче	ские параме	гры			EWWD450J-SS	EWWD500J-SS	EWWD530J-SS	EWWD560J-SS		
Уровень звукового давления	Охлаждение	Ном.		дБ(А)	73,8 (3)		73,0 (3)			
Уровень звуковой мощности	Охлаждение	Ном.		дБ(А)	91,8 (3)	91,0 (3)				
Компрессор	Тип					Одновинтово	ой компрессор			
	Количество_						2			
	Масло	Объем заправк	И	Л	29		32			
Рабочий	Испаритель	Охлаждение	Мин.	°CDB		-	10			
диапазон			Макс.	°CDB		•	15			
	Конденсатор	Охлаждение	Мин.	°CDB			23			
			Макс.	°CDB		60				
Хладагент	Тип		•	•		R-	134a			
	Заправка			КГ	74		76			
	Контуры	Количество		•		2				
Подсоединения	Вход/выход вод	цы из испарителя	1	ММ		76,2				
труб	Вход/выход вод	цы конденсатора	(OD)	•	4"					
Защитные	Оборудование	01			Высокое давление нагнетания (реле давления)					
устройства		02			В	ысокое давление нагн	етания (датчик давлен	ия)		
		03			Н	изкое давление всась	вания (датчик давлен	1Я)		
		04				Защита двигате	еля компрессора			
		05				Высокая темпер	атура нагнетания			
		06				Низкое дав	ление масла			
		07				Соотношение для	низкого давления			
		08				Сильное падение дав.	пения масла в фильтр	е		
		09				Фазоин	ндикатор			
		10				Кнопка авари	йного останова			
		11					от замерзания воды			

2-2 Электрические параметры					EWWD140J- SS	EWWD150J- SS	EWWD180J- SS	EWWD210J- SS	EWWD250J- SS
Компрессор	Фаза					;	3		
	Напряжение		V			4	00		
	Диапазон	Мин.	%			-	10		
	напряжений	Макс.	%			1	0		
	Максимальный рабочий ток		Α	80	96	107	121	145	161
	Способ запуска				Т	ройниковое со	единение - Del	ta	
Электропитание	ие Фаза				3~				
	Частота		Гц	50					
	Напряжение		V	400					
	Диапазон	Мин.	%	-10					
	напряжений	Макс.	%			1	0		
Блок	Максимальный	стартовый ток	А	1:	51		195		288
	Номинальный рабочий ток	Охлаждение	А	47 (6)	57 (6)	68 (6)	75 (6)	85 (6)	99 (6)
	Максимальный	рабочий ток	Α	80	96	107	121	145	161
	Макс. ток блока для размеров проводов		Α	88	106	118	133	160	177

2-2 Электр	2-2 Электрические параметры					EWWD330J- SS	EWWD360J- SS	EWWD380J- SS	EWWD400J- SS
Компрессор	Компрессор Фаза				3~		,	3	
	Напряжение		V			4	00		
	Диапазон	Мин.	%			-10			
	напряжений	Макс.	%			1	0		
	Максимальный	й рабочий ток	A	182	10	07	1:	21	145
	Способ запуска				T	ройниковое со	единение - Del	ta	

2-2 Электри	ческие пара	метры	EWWD280J- SS	EWWD310J- SS	EWWD330J- SS	EWWD360J- SS	EWWD380J- SS	EWWD400J- SS		
Электропитание	Фаза					3	~			
	Частота		Гц		50					
	Напряжение	Напряжение				40	00			
	Диапазон	Мин.	%		-10					
	напряжений	Макс.	%			1	0			
Блок	Максимальный	і стартовый ток	Α	288	281	29	92	3.	11	
	Номинальный рабочий ток	Охлаждение	А	113 (6)	135 (6)	143 (6)	150 (6)	160 (6)	169 (6)	
	Максимальный	і рабочий ток	Α	182	214	228	242	266	290	
	Макс. ток блок	а для размеров проводов	Α	200	235	251	266	293	319	

2-2 Электри	ческие параг	иетры		EWWD450J-SS	EWWD500J-SS	EWWD530J-SS	EWWD560J-SS		
Компрессор	Фаза			3					
	Напряжение		V	400					
	Диапазон	Мин.	%	-10					
	напряжений	Макс.	%	10					
	Максимальный рабочий ток		Α	145	10	61	182		
	Способ запуска				Тройниковое со	единение - Delta			
Электропитание Ф	Фаза				3	}~			
	Частота		Гц	50					
	Напряжение		V	400					
	Диапазон	Мин.	%	-10					
	напряжений	Макс.	%		1	10			
Блок	Максимальный	стартовый ток	Α	404	417	4	34		
	Номинальный рабочий ток	Охлаждение	А	183 (6)	197 (6)	212 (6)	226 (6)		
	Максимальный	Максимальный рабочий ток А			322	343	364		
	Макс. ток блока	для размеров проводов	Α	337	354	377	400,4		

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки.
- (2) Нагрев: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 40°C; темп. воды конденсатора на выходе 45°C; работа блока при полной нагрузке
- (3) Уровни шума измеряются при темп. воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; работа в режиме полной нагрузки; стандарт: ISO3744
- (4) Допуск напряжения ± 10%. Разбаланс напряжений между фазами должен быть в пределах ± 3%.
- (5) Максимальный стартовый ток: стартовый ток самого большого компрессора + ток другого компрессора при 75 % максимальной нагрузки
- (6) Номинальный ток в режиме охлаждения: температура воды испарителя на входе 12°C; температура воды испарителя на выходе 7°C; темп. воды конденсатора на входе 30°C; темп. воды конденсатора на выходе 35°C; компрессоры.
- (7) Максимальный рабочий ток основан на макс. потребляемом токе компрессора в своей области
- (8) Максимальный ток блока для размеров проводки основан на минимально-допустимом напряжении.
- (9) Максимальный ток блока для размеров проводов: ток полной нагрузки компрессора х 1,1
- (10) Максимальный пусковой ток: пусковой ток самого большого компрессора + ток другого компрессора при 75 % максимальной нагрузки + ток вентиляторов

3 - 1 Характеристики и преимущества

Характеристики и преимущества

Чиллеры с водяным охлаждением EWWD-J с 1 или 2 одновинтовыми компрессорами выполнены для удовлетворения требованиям консультантов и конечных пользователей. Блоки разработаны для сведения к минимуму расходов на энергию и улучшения холодопроизводительности.

. Дизайн чиллеров Daikin и выдающиеся характеристики EWWD-J не имеют себе равных во всей промышленной отрасли.

Бесшумность функции сезонной эффективности

Одновинтовой компрессор и два ротора обеспечивают постоянный поток газа. Этот процесс сжатия полностью устраняет пульсацию газа. Впрыск масла содействует значительному сокращению механического шума.

Отводные камеры газового компрессора разработаны для работы в качестве редукторов давления, исходя из принципа гармонической волны с деструктивной интерференцией, которая всегда равняется нулю. Очень низкий уровень шума компрессора позволяет использовать чиллер EWWD-J в любых помещениях.

Сокращенное количество вибраций, производимых чиллером EWWD-J, обеспечивает удивительно тихую работу, устраняя передачу шума по конструкции и системе трубопровода охлажденной воды.

Регулирование производительности не ограничено

Управление холодопроизводительностью может быть абсолютно неограниченным посредством одновинтового компрессора, управляемого микропроцессорной системой. Каждый блок имеет непрерывное регулирование мощности от 100% до 25% (один компрессорный блок), или до 12,5% (два компрессорных блока).

Такая модуляция обеспечивает точное соответствие мощности компрессора и нагрузки охлаждения здания без какого-либо изменения температуры воды на выходе испарителя.

Колебания температуры охлажденной воды можно избежать только при помощи плавного регулирования.

При ступенчатом регулировании нагрузки компрессора, во время частичных нагрузок фактическая мощность компрессора будет слишком высокой или слишком низкой по сравнению с нагрузкой охлаждения здания. В результате растут расходы на энергию чиллера, в особенности в режиме частичной нагрузки, в котором чиллер работает большую часть времени.

Неустойчивость EWLT с плавным регулированием производительности

Неустойчивость EWLT с шаговым регулированием производительности (4 ступени)

Блоки с плавным регулированием предлагают преимущества, которых не имеют блоки с шаговым регулированием. Возможность следить за энергопотреблением системы в любое время и возможность обеспечить стабильность температуры воды на выходе без отклонений от заданного значения - это две характеристики, которые позволяют вам понять степень соответствия оптимальным рабочим условиям системы при использовании блока с плавным регулированием.

Требования кода - Безопасность и соблюдение законов/директив

Все блоки с водяным охлаждением разработаны и изготовлены в соответствии с применимой выборкой следующих элементов:

Конструкция оборудования, работающего под давлением	97/23/EC (PED)
Директива для машинного оборудования	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические нормы и нормы безопасности	EN 60204-1/EN 60335-2-40
Стандарты качества изготовления	UNI - EN ISO 9001:2004

FTA_1-2_Rev.00_1

3 Характеристики и преимущества

3 - 1 Характеристики и преимущества

Сертификации

Все блоки имеют отметку СЕ и соответствуют действующим европейским директивам, имеющим отношение к производству и безопасности. Блоки могут быть изготовлены по индивидуальному заказу в соответствии с действующим законодательством стран, не являющихся членами Европейского Союза (ASME, ГОСТ и др.), а также для других мест назначения, например, для морских суден (RINA, и др.).

Модели

EWWD-J - в наличии модель стандартной эффективности:

S: Стандартная эффективность

16 размеров, охватывающих диапазон холодопроизводительности от 121 до 571 кВт, EER до 4,41 и ESEER до 5,37.

EER (коэффициент полезного действия) - это соотношение холодопроизводительности и потребляемой мощности блока. Потребляемая мощность подразумевает: потребляемая мощность работы компрессора, потребляемая мощность всех устройств управления и защиты.

ESEER (Европейский коэффициент сезонной энергоэффективности) - это взвешенная формула, учитывающая изменение EER и коэффициент нагрузки, а также изменение температуры водовпуска в конденсаторе.

$$\mathsf{ESEER} = \mathsf{A} \ \mathsf{x} \ \mathsf{EER}_{100\%} + \mathsf{B} \ \mathsf{x} \ \mathsf{EER}_{75\%} + \mathsf{C} \ \mathsf{x} \ \mathsf{EER}_{50\%} + \mathsf{D} \ \mathsf{x} \ \mathsf{EER}_{25\%}$$

	А	В	С	D
Коэффициент	0.03 (3%)	0.33 (33%)	0.41 (41%)	0.23 (23%)
Температура воды на входе конденсатора (°С)	30	26	22	18

Акустическая конфигурация

EWWD-J - в наличии модель стандартной конфигурации уровня шума:

S: Стандартный уровень шума

FTA_1-2_Rev.00_2

4 - 1 Общие характеристики

Общие характеристики

Шкаф и конструкция

Шкаф выполнен из листовой оцинкованной стали и окрашен в целях повышения коррозионной стойкости. Цвета слоновой кости (код Манселла 5Y7.5/1) (±RAL7044). Основная рама имеет крюк с ушком для подъема блока при помощи каната для простой установки. Равное распределение веса по профилям основания обеспечивает устойчивость агрегата.

Винтовые компрессоры

Компрессор - полугерметичный, одновинтовой, с ведомыми роторами из композитного сконструированного материала, насыщенного углеродом. Компрессор имеет одну заслонку, которая управляется микропроцессором блока с целью бесконечной модуляции производительности от 100% до 25%. Встроенный высокоэффективный маслоочиститель максимально увеличивает отделение масла, стандартный пуск - соединение по схеме звезда-треугольника (Y-△).

Экологически безвредный хладагент НFC 134a

Компрессоры разработаны для работы с хладагентом R-134a, экологически безвредным с нулевым значением ODP (потенциала озонного истощения) и очень низким значением GWP (потенциала глобального потепления), а это значит низкое значение TEWI (общего эквивалентного воздействия потепления).

Испаритель

Блоки оснащены испарителем непосредственного охлаждения от плиты к плите, по одной на контур. Этот теплообменник сделан из спаянных пластин из нержавеющей стали и покрыт изоляционным материалом с герметичным элементом (10 мм). Испаритель изготовлен в соответствии с утверждением PED. Соединения воды на выходе испарителя предоставлены в комплекте Victaulic (стандарт).

Конденсатор

Блоки оснащены кожухотрубным конденсатором непосредственного охлаждения с медными трубками, завернутыми в стальные трубные листы. Блок имеет независимые конденсаторы, по одному на контур. Конденсатор изготовлен в соответствии с утверждением PED.

Конденсаторы оборудованы запорным вентилем для жидкости и подпружиненным предохранительным клапаном.

Соединения воды на выходе конденсатоар предоставлены в комплекте Victaulic (стандарт).

Электронный расширительный клапан

Агрегат оборудован современными электронными расширительными клапанами, которые обеспечивают точный контроль потока массы хладагента. Поскольку существующая система требует повышенной энергоэффективности, более точного регулирования температуры и более широкого рабочего диапазона, а также имеет такие функции как дистанционный контроль и диагностика, применение электронных расширительных клапанов становится обязательным требованием.

Электронный расширительный клапан обладает рядом уникальных характеристик: малое время открытия и закрытия; высокая разрешающая способность; возможность закрытия даже после отключения электроэнергии, что устраняет необходимость в дополнительном электромагнитном клапане; высокая линейная пропускная способность; постоянное регулирование потока массы без нагрузки на контур хладагента и корпус из нержавеющей стали с высокой коррозионной стойкостью

Достоинством электронных расширительных клапанов является возможность работать с небольшими перепадами давления между стороной высокого и низкого давления, по сравнению с термостатическими расширительными клапанами. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (в зимнее время) без возникновения каких-либо проблем с расходом хладагента, а также обеспечивает прекрасное регулирование температуры охлажденной воды на выходе.

Контур хладагента

Каждый блок имеет независимые контуры хладагента, каждые из которых включает в себя:

- Одновинтовой компрессор со встреонным маслоочистителем
 Спаянный плиточный испарительный агрегат
- Кожухотрубный конденсатор
- Датчик давления масла
- Реле высокого давления
- Датчик высокого давления
- Датчик низкого давления
- Индикатор наличия влаги
- Сменный фильтр-осушитель с сердечником
- Электронный расширительный клапан

GNC_1-2-3-4_Rev.00_1

4 - 1 Общие характеристики

Электрический пульт

Питание и управление активизируются на главной панели, защищенной от любых погодных условий. Электрическая панель IP54 внутри защищена (при открытии дверей) панелью из органического стекла от возможного случайного контакта с электрическими компонентами (IP20). Главная панель оборудована сблокированной дверью на главном выключателе.

Секция питания

В двигательном отсеке расположены предохранители компрессоров и трансформатор цепи управления.

Пульт MicroTech III

Пульт MicroTech III - это стандартный компонент; он может быть использован для изменения заданных значений блока и проверки параметров управления. На встроенном дисплее выводится рабочее состояние чиллера, температурные значения, давление воды, хладагенты, программируемые значения, заданные координаты. Усовершенствованное программное обеспечение с предсказывающей логикой выбирает самую энергоэффективную комбинацию компрессоров и электронного расширительного вентиля для поддержания устойчивых рабочих условий и максимального увеличения энергоэффективности и надежности чиллера. Пульт MicroTech III защищает ответственные элементы, исходя из системы внешних знаков (например, температуры двигателя, газа хладагента и давления масла, правильного чередования фаз, реле давления и испарителя). Ввод на реле высокого давления устраняет любой цифровой вывод контроллера не более, чем за 50мсек, это дополнительная защита оборудования.

Быстрый цикл программы (200мсек) для точного мониторинга системы. Вычисления с плавающей точкой для улучшения точности в конверсиях P/T.

Секция управления - основные характеристики:

- Управление плавным регулированием компрессора.
- Чиллер может работать в режиме частичного сбоя.
- Полная плановая работа при следующих условиях:
 - высокое значение температуры окружающей среды
 - Высокая тепловая нагрузка
 - Высокая температура воды на входе испарителя (запуск)
- Вывод температуры воды на входе/выходе испарителя.
- Вывод температуры и давления конденсации-испарения, температуры перегрева на линии всасывания и нагнетания для каждого контура.
- Регулирование температуры воды испарителя на выходе. Допуск по температуре = 0,1°С.
- Счётчик числа часов компрессора и насосов испарителя.
- Вывод состояния защитных устройств.
- Количество пусков и рабочее время компрессора.
- Оптимизированное управление нагрузкой компрессора.
- Перезапуск в случае сбоя питания (Автоматический / Ручной).
- Мягкая нагрузка (оптимизированное управление нагрузкой компрессора во время запуска).
- Пуск при высокой температуре воды испарителя.
 Сброс возврата (Сброс заданного значения, исходанного значения.
- Сброс возврата (Сброс заданного значения, исходя из температуры обратной воды).
- Сброс заданного значения параметра (доп.)
- Использование и обновление системы с добавлением коммерческих карт SD.
- Порт Ethernet для удаленного и локального обслуживания с использованием стандартных Web-браузеров.
- Для облегчения восстановления можно сохранить две разные конфигурации параметров по умолчанию.

Защитное устройство / логическая схема для каждого контура хладагента

- Высокое давление (реле давления).
- Высокое давление (преобразователь).
- Низкое давление (преобразователь).
- Высокая температура нагнетания компрессора.
- Высокая температура обмотки электродвигателя.
- Фазоиндикатор.
- Соотношение для низкого давления.
- Сильное падение давления масла
- Низкое давление масла.
- При запуске не изменено давление

GNC_1-2-3-4_Rev.00_2

4 - 1 Общие характеристики

Безопасность системы

- Фазоиндикатор
- Блокировка низкой температуры среды
- Защита от замораживания.

Тип регулирования

Пропорциональное + интегральное + вторичное регулирование воды испарителя на выходе.

Microtech III

Встроенный пульт MicroTech III имеет следующие характеристики:

- 164х44 точечный ЖК-дисплей с черно-белой подсветкой. Поддерживает шрифты Уникода для разных языков.
- Клавиатура из 3 клавиш
- Практичность использования благодаря типу управления Push'n'Roll.
- Память для защиты данных.
- Реле аварийного сигнала при общей неисправности.
- Защита доступа к настройкам паролем.
- Защита от вскрытия или использования аппаратуры посторонними людьми.
- Отчет о работе, с выводом всех рабочих часов и общих условий.
- Сохранение аварийных сигналов в памяти, что упрощает анализ неисправностей.

Системы контроля (по запросу)

Пульт ДУ MicroTech III

Пульт MicroTech III может связываться с BMS (система диспетчеризации инженерного оборудования здания) на основании самых распространенных протоколов:

- ModbusRTU.
- LonWorks, сейчас также основанный на профиле чиллера международного стандарта 8040 и технологии LonMark.
- BacNet BTP сертификация IP и MS/TP (класс 4) (Родной).

Цикловое управление чиллерами

Пульт управления MicroTech III позволяет легко применять цикловую технологию посредством цифровой или серийной панели.

Цифровая цикловая панель

Эта панель представляет собой инструмент для введения шаговых параметров, который включает/выключает до 11 блоков (чиллеры или тепловые насосы работают в том же режиме охлаждения/нагрева) в зависимости от выделенной заданной координаты, блоки соединяются с панелью при помощи специальных стандартных кабелей. Серийный кабель не требуется.

Панель последовательного цикла

В сущности, эта панель задает последовательность блока чиллера путем включения/выключения блоков (до 7 чиллеров) с учетом их рабочего времени и требуемой нагрузки установки, для того чтобы оптимизировать количество рабочих блоков в любых условиях; платы последовательного доступа и экранированный кабель необходимы для соединения панели с блоками, и, если установлена, системы BMS.

Стандартные аксессуары (в комплекте основного агрегата)

Комплект испарителя Victaulic - Гидравлическая муфта с прокладкой для легкого и быстрого подключения водопровода.

Изоляция испарителя 20мм

Комплект конденсатора Victaulic

Расчетное давление на стороне воды конденсатора 16 бар

Конденсатор 2 шага (△t 4-8°C)

Запорный клапан линии всасывания - Для облегчения техобслуживания на стороне вытяжки компрессора установлен вытяжной запорный вентиль.

Запорные вентили линии нагнетания - Для облегчения техобслуживания на стороне нагнетания компрессора установлен нагнетательный запорный вентиль.

Электронный расширительный клапан

GNC_1-2-3-4_Rev.00_3

4 - 1 Общие характеристики

Манометры высокого давления

Стартер Y-D - Стартер Star Delta - стандартный тип.

Двойная заданная координата - Двойные заданные координаты температуры воды на выходе.

Фазоиндикатор - Индикатор фазы контролирует правильность последовательности фаз и потерю фаз.

Реле протока испарителя для водопровода.

Счетчик работы в часах - Цифровой счетчик времени работы компрессоров (в час.).

Контактор общей неисправности - Контактор для аварийного предупреждения

Блокировка главного выключателя

Аварийный останов

Дополнительные функции (поставляемые по заказу)

Версия с тепловым насосом

Версия с рассолом - Позволяет блоку работать при температуре жидкости на выходе до -8°C (требуется антифриз).

Тепловое реле перегрузки компрессора - Защитные устройства от перегрузки двигателя компрессора, дополнительно к обычной предусмотренной защите электрическим подогревом.

Расчетное давление на стороне воды испарителя 16 бар

Изоляция конденсатора 20мм

Двухфланцевый комплект конденсатора

Дифференциальное реле давления воды на испарителе

Звукоизоляционная система - Звукозащита компрессора.

Резиновые противовибрационные крепления - Поставляются отдельно, размещаются под основанием агрегата во время установки. Идеально подходят для сокращения вибраций установленного на полу агрегата.

Комплект автопогрузчика

Манометры низкого давления

Два разгрузочных клапана на испарителе

Защита от пониженного/повышенного напряжения - Это устройство управляет значением напряжения электропитания и выключает чиллер, если это значение превышает допустимые рабочие пределы.

Электросчетчик - Это устройство позволяет измерить энергию, поглощаемую чиллером за время его срока действия.

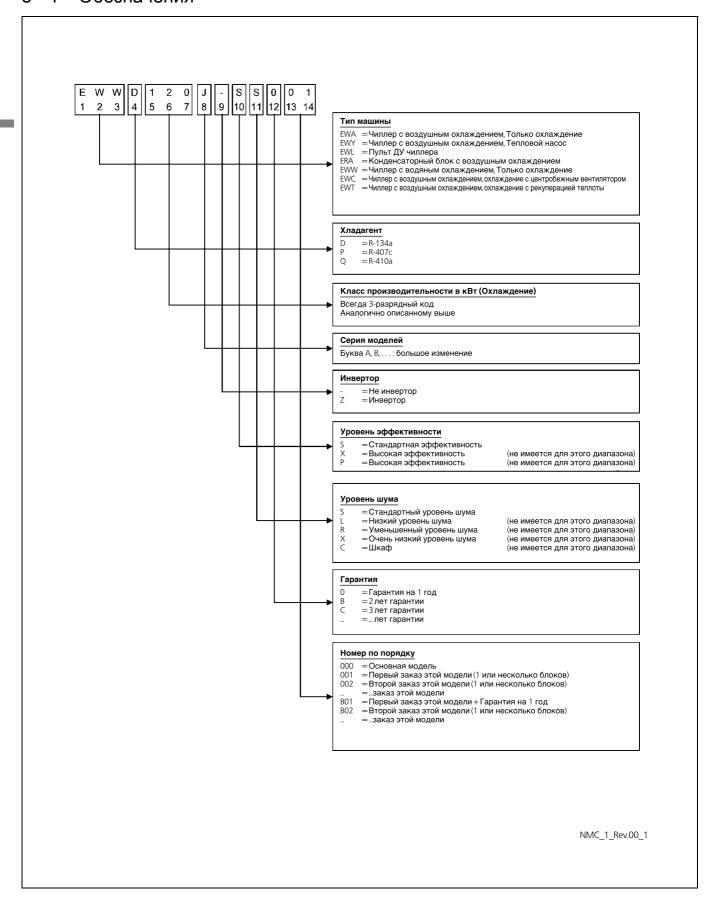
Оно устанавливается в блоке управления, установленном на поперечине DIN, и выводит на цифровой дисплей: линейное напряжение, фазный и средний ток, активную и реактивную мощность, активную энергию, частоту.

Поправочный коэффициент мощности конденсатора - Установлены на электрическом пульте для проверки выполнения требований установки. (Компания Daikin рекомендует максимум 0,9).

Отображение текущих ограничений

Испытания в присутствии заказчика - Каждый агрегат проходит испытание на испытательном стенде перед поставкой. По желанию заказчика могут быть проведены вторые испытания в его присутствии согласно процедурам, указанным в форме испытания.(Кроме агрегатов с водно-гликолевыми смесями)

Акустические испытания - По запросу могут проводиться испытания в присутствии заказчика (свяжитесь с производителем). (Эти испытания не проводятся для блоков с примесями гликоля).


Сброс заданного значения, заданный предел и сигнал тревоги на внешнем устройстве - 3аданное значение температуры воды на выходе может быть переписано со следующими опциями: 4-20м Δ из внешнего источника (пользователем), температура наружного воздуха; температура воды испарителя Δ t. Более того, это устройство позволяет пользователю ограничить нагрузку блока посредством сигнала 4-20м Δ или сетевой системы. Микропроцессор может получать сигналы тревоги из внешних источников (насос и др... - пользователь может решить: остановит этот сигнал тревоги блок или нет).

Автоматические выключатели

GNC_1-2-3-4_Rev.00_4

5 Обозначения

5 - 1 Обозначения

6 - 1 Таблицы холодопроизводительности

EWWD120~250J-SS

- 1	EWLT					Темп. і	воды на вход	е конденсат	opa (°C)				
Установка	(°C)		15			20		3 .	25			30	
установка		Сс (кВт)	Рі (кВт)	Нс(кВт)	Сс(кВт)	Pi (ĸBt)	Нс (кВт)	Сс(кВт)	Pi (kB t)	Нс(кВт)	Сс (кВт)	Рі (кВт)	Нс (кВт)
ļ	4),		118	21.7	139	113	23.9	137	108	26.4	135
	5				122	22.0	144	117	24.2	141	112	26.7	139
	6				126	22.3	148	121	24.5	145	116	27.0	143
- 1	7	1	8 8	- 1	130	22.6	152	125	24.8	150	120	27.3	147
- 1	8		3		134	22.9	157	129	25.1	154	124	27.6	152
120	9				138	23.2	161	133	25.4	159	128	27.9	156
	10							137	25.8	163	132	28.2	160
- 1	11							142	26.1	168	136	28.6	165
- 1	12							146	26.4	172	140	28.9	169
- 1	13			- 1				150	26.7	177	145	29.2	174
- [14			9			1 3	155	27.1	182	149	29.6	179
	15							159	27.4	186	153	29.9	183
	4				143	26.5	169	137	29.2	166	131	32.2	163
[5				148	26.8	174	142	29.6	172	136	32.6	168
- [6				153	27.2	180	147	29.9	177	141	32.9	174
- 1	7		()	- 3	158	27.5	185	152	30.3	182	146	33.3	179
1	8		1		163	27.9	191	157	30.6	188	151	33.6	184
[9		į.		168	28.2	197	162	31.0	193	156	34.0	190
140	10							168	31.4	199	161	34.4	195
1	11						1	173	31.8	205	166	34.8	201
t	12		9 8					178	32.1	210	171	35.2	207
- 1	13						2 3	184	32.5	216	177	35.6	212
l l	14		1 5					189	32.9	222	182	36.0	218
t	15							195	33.3	228	188	36.4	224
	4				153	30.8	183	147	34.1	181	141	37.5	179
1	5		-		157	31.1	188	152	34.4	186	146	37.9	184
ı	6				162	31.4	193	156	34.7	191	151	38.2	189
1	7				167	31.7	198	161	35.0	196	155	38.5	194
1	8				171	32.1	203	166	35.4	201	160	38.9	199
1	9				176	32.4	209	171	35.7	206	165	39.3	204
150	10				110	02.4	200	176	36.1	212	169	39.6	209
ŀ	11		-	_				180	36.5	217	174	40.0	214
- 1	12							186	36.8	222	179	40.4	220
1	13			_				191	37.2	228	184	40.8	225
ŀ	14		1 1	-				196	37.6	233	189	41.1	230
- 1	15			_			-	201	38.0	239	194	41.6	236
-	4		-		476	35.2	240	169	38.9	208	162	43.0	205
1			-		175		210						
1	5				181	35.6	216	174	39.4	214	167	43.4	211
- 1	6				186	36.0	222	180	39.8	220	173	43.8	217
- 1	7			-	192	36.4	228	185	40.2	225	178	44.2	222
- 1	8		8 9	- 3	198	36.8	234	191	40.6	231	184	44.7	229
180	9			-	203	37.3	241	197	41.0	238	190	45.1	235
- 1	10							202	41.4	244	195	45.5	241
- 1	11							208	41.9	250	201	46.0	247
	12							214	42.3	257	207	46.5	253
- 1	13		1					221	42.8	263	213	46.9	260
- 1	14		8 8	-			1	227	43.3	270	219	47.4	266
	15							233	43.7	277	225	47.9	273
	4				205	39.2	244	197	43.5	240	189	47.9	237
Į	5				211	39.6	251	203	43.9	247	195	48.4	244
ļ	6				217	40.0	257	209	44.4	254	202	48.9	250
1	7		2 2		224	40.5	264	216	44.8	260	208	49.3	257
1	8		8 8	- 3	230	40.9	271	222	45.3	267	214	49.8	264
210	9		4		237	41.4	278	229	45.7	274	221	50.2	271
	10		. J				J	235	46.2	281	227	50.7	278
1	- 11							242	46.7	289	234	51.2	285
[12							249	47.2	296	240	51.7	292
[13		\$ \$	- 3			1	256	47.7	303	247	52.2	299
	14		9				1 8	263	48.2	311	254	52.7	307
	15							270	48.7	319	261	53.2	314
	4				252	46.4	299	242	51.5	294	233	57.2	290
1	5				261	46.9	308	250	52.0	302	239	57.6	297
1	6				270	47.4	317	259	52.6	312	248	58.2	306
- 1	7		3	- 1	279	47.8	327	268	53.1	321	256	58.7	315
1	8		1 5	- 5	287	48.3	335	277	53.6	331	265	59.3	325
	9				294	48.7	343	285	54.1	339	274	59.9	334
250	10				1943			293	54.6	347	282	60.4	343
1	-11		n n					300	55.0	355	290	60.9	351
1	12		7 9					308	55.5	364	298	61.4	359
ŀ	13		1					317	56.0	373	306	62.0	368
- 1	14		1 3	- 3			- 0	325	56.5	381	314	62.5	376
	14		3										
- 1	15							333	57.0	390	322	63.0	385

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Рі (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176 M^2 °C/кВт степени загрязнения испарителя Данные относятся к 0,0440 M^2 °C/кВт степени загрязнения конденсатора САРСООL_1-2-3-4-5-6_Rev.00_

CAPCOOL_1-2-3-4-5-6_Rev.00_1

6 - 1 Таблицы холодопроизводительности

EWWD120~250J-SS

1	EWLT	<u> </u>	35		_	Темп. в 40	оды на вход	е конденсато	ppa (°C) 45			50	
/становка	(°C)	Сс (кВт)	Pi (кВт)	Нс (кВт)	Сс(кВт)	Pi (KBT)	Нс(кВт)	Сс(кВт)	Pi (kBt)	Нс (кВт)	Сс(кВт)	Pi (кВт)	Нс (кВт)
-	4	103	29.0	132	98.1	31.9	130	92.5	35.1	128	86.7	38.6	125
- t	5	107	29.3	136	102	32.3	134	95.9	35.4	131	90.0	38.9	129
1	6	111	29.6	140	105	32.6	138	99.5	35.7	135	93.3	39.2	133
ı	7	115	30.0	145	109	32.9	142	103	36.1	139	96.7	39.5	136
1	8	119	30.3	149	113	33.2	146	107	36.4	143	100	39.9	140
120	9	123	30.6	153	117	33.6	150	111	36.8	147	104	40.2	144
120	10	127	31.0	158	121	33.9	155	114	37.1	152	108	40.6	148
1	11	131	31.3	162	125	34.2	159	118	37.5	156	112	40.9	152
1	12	135	31.6	166	129	34.6	163	122	37.8	160	115	41.3	157
	13	139	32.0	171	133	35.0	168	126	38.2	165	119	41.7	161
	14	143	32.3	175	137	35.3	172	131	38.6	169	123	42.0	165
	15	147	32.7	180	141	35.7	177	135	38.9	173	127	42.4	170
	4	125	35.5	161	118	39.0	157	111	42.9	154	104	47.1	151
Į.	5	130	35.8	165	123	39.4	162	116	43.2	159	108	47.4	156
1	6	134	36.2	170	127	39.7	167	120	43.6	164	112	47.8	160
L	7	139	36.5	175	132	40.1	172	125	44.0	169	117	48.2	165
L	8	144	36.9	181	137	40.5	177	129	44.3	173	121	48.6	170
140	9	149	37.3	186	142	40.8	182	134	44.7	178	126	48.9	175
-	10	154	37.7	192	146	41.2	188	139	45.1	184	130	49.3	180
Į.	11	159	38.1	197	152	41.6	193	143	45.5	189	135	49.8	185
1	12	164	38.5	203	157	42.1	199	148	45.9	194	140	50.2	190
L	13	170	38.9	209	162	42.5	204	154	46.4	200	145	50.6	195
L	14	175	39.3	214	167	42.9	210	159	46.8	206	150	51.0	201
	15	180	39.7	220	172	43.3	216	164	47.3	211	155	51.5	206
1	4	135	41.2	176	128	45.3	174	122	49.9	172	114	54.9	169
1	5	140	41.6	181	133	45.7	178	126	50.3	176	118	55.3	174
- 1	6	144	42.0	186	137	46.1	183	130	50.6	181	123	55.7	178
1	7	149	42.3	191	142	46.4	188	135	51.0	186	127	56.1	183
1	8	154	42.7	196	147	46.8	194	139	51.4	191	131	56.5	188
150	9	158	43.1	201	151	47.2	199	144	51.8	196	136	56.9	193
- 1	10	163	43.4	206	156	47.6	204	149	52.2	201	140	57.3	198
- 1	- 11	168	43.8	211	161	48.0	209	153	52.6	206	145	57.8	203
-	12	173	44.2	217	165	48.4	214	158	53.0	211	150	58.2	208
- 1	13	177	44.6	222	170	48.8	219	163	53.4	216	155	58.6	213
1	14	182	45.0	227	175	49.2	224	167	53.9	221	159	59.1	218
	15	187	45.4	233	180	49.6	230	172	54.3	227	164	59.5	223
- +	5	155 160	47.4 47.8	202	147	52.2 52.6	199	140	57.5 57.9	197	131	63.1	194
1	6	165	48.2	214	152 157	53.0	210	149	58.3	202	141	64.1	205
1	7	171	48.7	220	163	53.5	216	154	58.7	213	146	64.5	210
1	8	176	49.1	225	168	54.0	222	159	59.2	219	150	64.9	215
- 1	9	182	49.6	231	174	54.4	228	165	59.7	225	155	65.4	221
180	10	187	50.0	237	179	54.9	234	170	60.2	231	161	65.9	227
1	11	193	50.5	244	185	55.3	240	176	60.7	237	166	66.4	233
1	12	199	50.9	250	191	55.8	246	182	61.1	243	172	66.9	239
1	13	205	51.4	256	196	56.3	253	187	61.6	249	177	67.4	245
l t	14	211	51.9	263	202	56.8	259	193	62.1	255	183	67.9	251
F	15	217	52.4	269	208	57.3	265	199	62.7	261	189	68.5	257
	4	181	52.7	233	172	58.2	230	161	64.3	225	148	71.5	219
l l	5	187	53.2	240	178	58.6	236	167	64.8	232	153	72.0	225
1	6	193	53.7	247	184	59.1	243	173	65.3	238	159	72.5	232
1	7	200	54.2	254	190	59.6	249	178	65.8	244	165	73.0	238
- 1	8	206	54.6	260	196	60.1	256	184	66.3	251	171	73.6	245
,,, I	9	212	55.1	267	202	60.6	263	191	66.8	257	177	74.1	251
210	10	218	55.6	274	209	61.1	270	197	67.4	264	182	74.6	257
1	11	225	56.1	281	215	61.6	277	203	67.9	271	188	75.2	264
1	12	231	56.6	288	221	62.1	283	209	68.4	278	195	75.8	271
1	13	238	57.1	295	228	62.6	290	216	69.0	285	201	76.4	278
1	14	245	57.6	302	234	63.2	298	222	69.6	292	207	76.9	284
	15	252	58.2	310	241	63.7	305	228	70.1	299	213	77.5	291
	4	223	63.4	286	211	70.2	282	200	77.7	277	187	86.1	273
1	5	230	63.9	294	219	70.7	290	207	78.2	285	194	86.5	281
1	6	237	64.3	301	226	71.2	298	214	78.7	293	201	87.0	288
	7	245	64.9	309	233	71.7	305	222	79.2	301	209	87.5	296
1	8	253	65.5	318	240	72.2	313	229	79.7	309	216	88.0	304
250	9	262	66.0	328	249	72.8	322	236	80.2	316	224	88.5	312
	10	270	66.7	337	257	73.4	331	243	80.8	324	231	89.0	320
1	11	279	67.3	346	266	74.0	340	252	81.4	333	238	89.5	327
	12	287	67.8	355	275	74.7	350	260	82.1	343	246	90.1	336
L	177.51	295	68.3	363	283	75.3	358	269	82.7	352	254	90.8	345
ł	13	200											
ŀ	13	303	68.9	371	291	75.8	366	278	83.4	361	263	91.5	354
				371 380	291 298	75.8 76.4	366 375	278 286	83.4 84.0	361 370	263 271	91.5 92.2	354 364

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Рі (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176м² °С/кВт степени загрязнения испарителя Данные относятся к 0,0440м² °С/кВт степени загрязнения конденсатора САРСООL_1-2-3-4-5-6_Rev.00_2

CAPCOOL_1-2-3-4-5-6_Rev.00_2

6 - 1 Таблицы холодопроизводительности

EWWD280~400J-SS

ı	EWLT	-	15			20	воды на вход	е конденсато	25		T	30	
тановка	(°C)	Сс(кВт)	Pi (KBT)	Нс (кВт)	Сс (кВт)	Pi (KBT)	Нс (кВт)	Сс (кВт)	Pi (kBt)	Нс (кВт)	Сс (кВт)	Pi (KBT)	Hc (kB
-	4	CC(KBT)	PI(KBT)	HC(KBT)	281	56.0	337	271	60.5	331	259	65.7	324
1	5				289	56.8	346	280	61.4	341	268	66.6	334
1	6				297	57.6	355	287	62.2	350	277	67.5	345
ł	7				305	58.5	364	295	63.0	358	285	68.3	353
1	8				314	59.3	373	304	63.9	367	293	69.1	362
- 1	9				322	60.2	382	312	64.7	376	301	69.9	371
280	10		_		322	00.2	302	320	65.6	386	309	70.8	380
- 1	11							328	66.5	395	317	71.6	389
- 1													-
- }	12			_				337	67.4	404	326	72.5	398
- 1	13							346	68.4	414	334	73.5	408
- 1	14							354	69.3	424	343	74.4	417
$\overline{}$	15		-		***	01.0	0.00	363	70.3	433	351	75.3	427
- 1	4				305	61.6	367	294	68.2	363	282	75.0	357
- }	5				314	62.2	377	304	68.8	372	292	75.8	368
- 1	6				324	62.8	386	313	69.4	382	301	76.4	378
- 1	7				333	63.4	397	322	70.0	392	310	77.0	387
- 1	8		3 9	4	343	64.2	407	331	70.8	402	320	77.8	398
310	9				352	64.8	417	341	71.4	413	329	78.6	408
	10							351	72.2	423	339	79.2	418
- 1	11							361	73.0	434	349	80.0	429
[12							371	73.6	445	358	80.8	439
- [13		3	1 1				381	74.4	456	368	81.6	450
1	14		9 3	8			4	392	75.2	467	379	82.2	461
	15							402	76.0	478	389	83.2	472
	4				328	66.0	394	316	73.0	389	303	80.5	384
Ī	5				338	66.7	404	326	73.8	400	313	81.3	395
1	6		ř î		348	67.4	415	336	74.5	411	324	82.0	406
- 1	7				358	68.1	426	346	75.2	421	334	82.7	416
- 1	8		(369	68.9	438	357	76.0	433	344	83.6	427
1	9				380	69.7	449	367	76.7	444	354	84.4	439
330	10							378	77.5	456	365	85.1	450
Ì	11							389	78.4	467	375	86.0	461
1	12							400	79.1	479	386	86.9	473
- 1	13							411	80.0	491	397	87.7	485
- 1	14		(0					423	80.9	504	408	88.5	49
1	15							434	81.7	516	420	89.5	509
	4				350	70.4	421	337	77.8	415	324	86.0	410
1	5				361	71.2	432	349	78.8	427	335	86.8	42
ŧ	6	-			372	72.0	444	359	79.6	439	346	87.6	433
1	7		-		384	72.8	456	371	80.4	451	357	88.4	445
- 1	8				395	73.6	469	382	81.2	463	368	89.4	45
	9				407	74.6	481	393	82.0	475	379	90.2	469
360	10				107	14.0	401	405	82.8	488	390	91.0	48
1	11							417	83.8	501	402	92.0	494
1	12					-		429	84.6	513	414	93.0	50
ł	13							441	85.6	527	426	93.8	520
ł								454	86.6	540	426	93.8	530
1	14			1				466		554			546
_	15		1		300	74.4	AFA		87.4		451	95.8	
	4			-	380	74.4	454	366	82.4	448	351	90.9	443
1	5				392	75.2	467	377	83.3	461	362	91.8	454
- 1	6				403	76.0	479	389	84.2	473	375	92.7	46
	7				416	76.9	492	401	85.0	486	386	93.5	480
- 1	8				428	77.7	505	413	85.9	499	398	94.5	492
380	9		3)		440	78.7	519	425	86.7	512	410	95.3	508
	10							438	87.6	525	422	96.2	518
	11							450	88.6	539	435	97.2	532
- 1	12							463	89.5	553	447	98.2	545
ļ	13							476	90.5	567	460	99.1	559
- 1	14							490	91,5	581	473	100	573
	15		ž – 33	0 3				503	92.4	595	486	101	58
1	4		, b		410	78.4	488	394	87.0	481	378	95.8	474
1	5				422	79.2	501	406	87.8	494	390	96.8	487
[6				435	80.0	515	419	88.8	507	403	97.8	501
1	7				447	81.0	528	431	89.6	521	416	98.6	514
- [8		1		460	81.8	542	444	90,6	535	428	99.6	528
400	9		9 9	6 0	474	82.8	557	457	91.4	549	441	100	54
400	10							471	92.4	563	454	101	555
1	11							484	93.4	577	467	102	570
t	12							497	94.4	592	481	103	584
ł	13		-	-				511	95.4	607	494	104	599
	14			7 0				526	96.4	622	508	105	613
- 1								220	99.4	022	900	100	014

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Рі (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176м² °C/кВт степени загрязнения испарителя Данные относятся к 0,0440м² °C/кВт степени загрязнения конденсатора САРСООL_1-2-3-4-5-6_Rev.00_3

CAPCOOL_1-2-3-4-5-6_Rev.00_3

6 - 1 Таблицы холодопроизводительности

EWWD280~400J-SS

Г	EWLT		35			Темп. в	воды на вход	е конденсато	opa (°C) 45		1	50	
Установка	(°C)	Сс(кВт)	Pi (KBT)	Нс (кВт)	Сс(кВт)	Pi (ĸBt)	Нс(кВт)	Сс (кВт)	Pi (kBt)	Нс (кВт)	Сс (кВт)	Pi (ĸBt)	Нс (кВт)
	4	246	71.6	318	235	78.4	313	223	86.1	309	209	94.5	304
1 1	5	255	72.4	328	242	79.1	321	230	86.7	317	217	95.2	312
1 [6	264	73.3	337	251	79.9	331	237	87.4	325	225	95.9	321
1 [7	273	74.2	348	260	80.8	340	245	88.1	333	232	96.6	329
1	8	282	75.1	357	269	81,6	350	254	89.0	343	239	97.2	336
280	9	290	75.9	366	278	82.6	360	263	89.9	353	248	98.0	346
l 1	10	298	76.7	374	286	83.4	369	272	90.8	363	256	98.9	355
I 1	11	306	77.5	383	294	84.2	378	281	91.6	372	265	99.8	365
l 1-	12	314 322	78.4 79.3	392 402	302 310	85.0 85.9	387 396	289 297	92.5 93.3	381 390	274 283	101	375 384
l 1	13	331	80.2	402	318	86.7	405	305	94.1	399	290	102	393
I 1	15	339	81.1	420	326	87.7	414	313	95.0	408	298	102	402
 	4	270	82.4	352	257	90.6	347	243	99.8	343	228	110	337
l t	5	279	83.2	362	266	91.4	357	252	101	352	236	111	347
l 1	6	289	84.0	373	275	92.2	367	260	101	361	245	111	357
	7	298	84.6	383	284	92.8	377	269	102	371	254	112	366
1 1	8	307	85.4	393	294	93.6	387	278	103	381	262	113	375
310	9	316	86.2	403	303	94.4	397	288	104	391	271	114	385
J	10	326	86.8	413	312	95.2	407	297	104	402	281	115	395
[11	335	87.6	423	321	96.0	417	307	105	412	290	116	406
[12	345	88.4	433	331	96.8	428	316	106	422	300	116	416
	13	355	89.2	444	341	97.6	438	325	107	432	309	117	426
	14	365	90.0	455	350	98.4	449	335	108	443	318	118	436
\vdash	15	375	90.8	466	360	99.2	459	345	109	453	328	119	447
-	4	289	88.6	378	276	97.5	373	261	107	369	245	118	363
	5	299	89.4 90.2	389 400	285 295	98.3	383 394	270 279	108	378	254 263	119	373 383
l 1	7	310 320	91.0	411	305	99.1 99.9	405	289	110	388 398	263	120	393
l b	8	330	91.8	422	315	101	416	298	111	409	281	121	403
l 1	9	340	92.7	433	325	102	427	309	112	420	291	122	413
330	10	350	93.4	444	335	103	438	319	112	432	301	123	424
l 1	11	361	94.3	455	346	103	449	329	113	443	311	124	436
1 1	12	372	95.1	467	356	104	460	339	114	454	322	125	447
1 1	13	382	96.0	478	367	105	472	350	115	465	332	126	458
1 [14	393	96.9	490	377	106	483	360	116	476	342	127	469
	15	404	97.8	502	388	107	495	371	117	488	353	128	481
	4	309	94.8	404	295	104	399	279	115	394	261	126	388
l 1	5	320	95.6	415	304	105	409	289	116	405	271	127	399
1 1	6	331	96.4	427	315	106	421	298	117	415	281	128	410
l 1	7	342	97.4	439	325	107	432	308	117	425	291	129	420
l F	9	353 364	98.2 99.2	451 463	337 348	108	445 457	319 330	118	437 449	301 311	130	430 441
360	10	375	100	475	359	110	468	341	120	461	322	132	453
l 1	11	386	101	487	370	111	480	352	121	473	333	133	465
l t	12	398	102	500	381	112	493	363	122	485	344	134	478
l t	13	410	103	513	393	113	505	374	123	498	355	135	490
	14	422	104	525	404	114	518	386	124	510	366	136	502
	15	434	105	539	416	115	531	397	125	523	377	137	514
	4	335	100	435	319	110	430	301	122	423	278	135	413
[5	347	101	448	330	111	441	312	123	434	289	136	425
	6	358	102	460	341	112	453	322	124	446	300	137	437
	7	370	103	473	353	113	466	332	125	457	311	138	448
	8	382	104	486	364	114	479	344	126	469	321	139	460
380	10	394 406	105 106	499 511	376 388	115 116	491 504	356 367	127	482 495	332 343	140 141	471 484
· · · ·	11	418	106	511	400	117	517	367	128	508	343	141	484
H	12	430	107	538	412	118	530	391	130	520	367	143	509
H	13	443	109	551	424	119	543	403	131	533	379	144	522
	14	456	110	565	436	120	556	415	132	547	390	145	535
	15	469	111	579	449	121	570	427	133	560	402	146	548
	4	362	105	467	344	116	460	322	129	451	295	143	438
1	5	374	106	480	355	117	473	334	130	464	307	144	451
1 1	6	386	107	494	367	118	485	346	131	476	318	145	463
	7	399	108	507	380	119	499	357	132	489	330	146	476
[412	109	521	392	120	512	369	133	502	342	147	489
- E	8		110	534	405	121	526	381	134	515	353	148	501
400	9	424		-			540	394	135	529	365	149	514
400	9 10	437	111	548	417	122							
400	9 10 11	437 450	111 112	562	430	123	553	406	136	542	377	150	527
400	9 10 11 12	437 450 463	111 112 113	562 576	430 443	123 124	553 567	406 419	136 137	542 556	377 390	150 152	527 541
400	9 10 11 12 13	437 450 463 476	111 112 113 114	562 576 590	430 443 455	123 124 125	553 567 581	406 419 431	136 137 138	542 556 569	377 390 402	150 152 153	527 541 555
400	9 10 11 12	437 450 463	111 112 113	562 576	430 443	123 124	553 567	406 419	136 137	542 556	377 390	150 152	527 541

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Рі (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176м² °C/кВт степени загрязнения испарителя данные относятся к 0,0440м² °C/кВт степени загрязнения конденсатора САРСООL_1-2-3-4-5-6_Rev.00_-

CAPCOOL_1-2-3-4-5-6_Rev.00_4

6 - 1 Таблицы холодопроизводительности

EWWD450~560J-SS

Г						Темп.	воды на вход	е конденсато	opa (°C)				
- 1	EWLT		15			20			25	0		30	
′становка	(°C)	Сс (кВт)	Pi (кВт)	Нс(кВт)	Сс (кВт)	Pi (кВт)	Нс (кВт)	Сс(кВт)	Pi (kBt)	Нс (кВт)	Сс(кВт)	Pi (κBτ)	Нс (кВт)
	4				457	85.6	543	439	95.0	534	421	105	527
	5				472	86.5	559	454	95.9	550	435	106	541
	6				487	87.4	575	468	97.0	565	449	107	557
	7				503	88.3	591	484	97.9	581	464	108	572
П	8				517	89.2	606	499	98.9	598	479	109	588
450	9				531	90.1	621	513	100	613	495	110	605
450	10							528	101	629	509	111	620
- 1	11							542	102	644	524	112	636
- 1	12							557	103	660	538	113	651
	13		()				8 8	572	104	676	553	114	667
- 1	14							587	105	692	568	115	683
- 1	15							603	106	709	583	116	699
	4				505	92.8	598	484	103	587	465	114	580
- 1	5				522	93.8	616	501	104	605	479	115	594
- 1	6				540	94.8	635	518	105	623	496	116	612
- 1	7		6 3		558	95.6	653	536	106	642	513	117	630
- 1	8				573	96.6	670	554	107	661	530	119	649
	9				589	97.4	686	570	108	678	548	120	668
500	10							585	109	694	565	121	685
- 1	-11							601	110	711	580	122	702
- 1	12							617	111	728	596	123	719
- 1	13							633	112	745	612	124	736
- 1	14							649	113	762	628	125	753
- 1	15							666	114	780	644	126	770
_	4				534	102	636	513	112	625	491	123	614
- 1	5				550	104	654	530	113	643	507	124	631
- 1	6				567	105	672	547	115	661	525	126	651
- 1	7				584	106	690	563	116	679	541	127	668
- 1	8				600	108	708	581	118	698	558	128	687
- 1	9		-		616	109	725	596	119	715	575	130	705
530	10				010	109	723	613	120	733	591	131	703
- 1	11				_			629	122	750	607	133	740
- 1	12							645	123	768	624	134	757
- 1	13							662	123	786	640	136	776
- 1	14						-	679		805	657	137	794
- 1	15	t.						696	126	823	673	137	812
-	4				700	440	675				517		649
- 1	5		-	-	563 578	112	692	541 559	121	662 682	536	131	669
- 1	10.50								123				
- 1	6				594	115	710	575		699	554	135	689
- 1	7				611	117	728 746	591	126	717	570 586	137	707
- 1	8				627	119	117.17.47	607	128	735		138	724
560	9				644	120	764	623	129	753	602	140	742
-	10						2	640	131	771	618	142	760
-	- 11							657	133	790	635	143	778
1	12							674	135	809	651	145	796
-	13		1 0				10 %	691	137	828	668	147	815
L	14		3					709	139	847	686	149	834
	15							726	141	867	703	151	853

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Pi (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176м² °C/кВт степени загрязнения испарителя Данные относятся к 0,0440м² °C/кВт степени загрязнения конденсатора

CAPCOOL_1-2-3-4-5-6_Rev.00_5

EWWD450~560J-SS

- 1						Темп.	воды на вход	е конденсато	opa (°C)				
.	EWLT (°C)		35	n: 5		40	12		45	0		50	s-35
становка	()	Сс (кВт)	Pi (кВт)	Нс(кВт)	Сс (кВт)	Pi (кВт)	Нс (кВт)	Сс (кВт)	Pi (кВт)	Нс (кВт)	Сс (кВт)	Pi (кВт)	Нс (кВт)
	4	404	116	520	383	128	512	361	142	503	335	158	492
	5	417	117	534	397	129	526	374	143	517	348	159	506
	6	430	118	548	410	130	540	387	144	531	361	160	520
	7	444	119	563	423	131	554	400	145	545	374	161	534
	8	459	120	579	437	132	569	414	146	560	387	162	549
450	9	474	121	595	451	133	585	427	147	574	400	163	563
750	10	489	122	611	466	135	600	440	148	589	413	164	577
	11	504	123	627	481	136	617	455	149	604	426	165	591
	12	518	124	643	496	137	633	470	151	620	440	166	606
	13	533	125	658	511	138	649	485	152	637	455	167	622
	14	547	127	674	525	139	664	500	153	653	470	168	638
	15	562	128	690	539	140	679	514	154	668	485	170	654
	4	446	127	572	423	140	563	399	155	554	374	172	546
1	5	460	128	587	438	141	579	413	156	570	388	173	561
	6	473	129	602	453	142	595	428	157	586	403	174	577
	7	489	130	619	467	143	610	444	158	602	417	175	592
- 1	8	506	131	637	481	144	625	458	159	618	432	176	608
500	9	523	132	655	497	146	643	472	160	632	448	177	625
500	10	541	133	674	514	147	661	487	162	649	461	178	639
1	11	558	135	693	532	148	680	504	163	667	475	179	654
- 1	12	574	136	709	550	149	699	521	164	685	491	180	671
- 1	13	589	137	726	566	151	716	538	165	704	508	182	690
- 1	14	605	138	743	581	152	733	556	167	723	525	183	708
- 1	15	621	139	760	597	153	750	571	168	739	543	184	727
-	4	469	135	604	446	149	594	423	164	586	396	181	577
1	5	485	136	621	461	150	611	437	165	602	411	182	593
- 1	6	501	138	638	477	151	628	452	166	618	426	183	609
- 1	7	518	139	657	493	153	645	467	167	635	441	184	625
- 1	8	535	141	675	509	154	663	483	169	652	455	185	640
[9	551	142	693	527	155	682	499	170	669	471	187	658
530	10	568	143	712	543	157	700	516	172	687	487	188	675
- 1	11	585	145	730	559	158	718	533	173	706	503	189	692
1	12	601	146	747	576	160	736	549	175	724	520	191	711
- 1	13	617	148	764	593	161	754	566	176	742	537	192	729
- 1	14	633	149	782	609	163	771	583	178	760	553	194	747
	15	650	151	800	625	164	789	598	179	777	570	196	765
	4	493	143	636	469	157	626	446	172	618	418	189	607
1	5	510	145	655	484	158	643	460	173	634	434	190	624
1	6	528	147	675	502	160	661	475	175	649	450	192	642
- 1	7	547	148	695	519	162	681	491	176	667	464	193	657
- 1	8	564	150	714	537	163	700	508	178	686	478	194	673
h	9	579	152	731	556	165	721	526	180	706	495	196	691
560	10	595	153	749	571	167	738	544	182	726	513	198	710
1	11	612	155	767	587	168	756	562	183	745	530	200	730
1	12	628	157	785	603	170	773	577	185	762	549	201	750
- 1	13	645	159	803	619	172	791	593	187	780	565	203	768
- 1	14	661	160	822	636	173	809	609	188	797	581	205	786
- 1	15	678	162	841	653	175	828	625	190	815	597	207	803

ПРИМЕЧАНИЯ

Сс (холодопроизводительность) - Pi (потребляемая мощность блока) - ELWT (температура воды на выходе испарителя - \triangle t 5°C) - Температура воды конденсатора \triangle t 5°C Данные относятся к 0,0176м² °C/кВт степени загрязнения испарителя Данные относятся к 0,0440м² °C/кВт степени загрязнения конденсатора

CAPCOOL_1-2-3-4-5-6_Rev.00_6

7

7 Перепад давления

7 - 1 Перепад давления испарителя

Перепад давления испарителя и конденсатора

EWWD~J-SS

	120	140	150	180	210	250	280	310	330	360
Мощность охлаждения (кВт)	120	146	155	178	208	256	285	310	334	357
Расход воды (л/сек) - Испаритель	5.73	6.98	7.41	8.50	9.94	12.25	13.63	14.81	15.96	17.06
Перепад давления испарителя (кПа)	15	13	40	38	36	28	33	40	40	38
Расход воды (л/сек) - Конденсатор	7.04	8.57	9.25	10.62	12.30	15.06	16.89	18.49	19.91	21.28
Перепад давления конденсатора (кПа)	20	12	11	11	11	16	26	11	11	11

ПРИМЕЧАНИЯ

Расход воды и перепад давления относятся к номинальному режиму: вода на входе/выходе испарителя: 12/7°С - вода на входе/выходе конденсатора: 30/35°С

	380	400	450	500	530	560
Мощность охлаждения (кВт)	386	416	464	513	541	570
Расход воды (л/сек) - Испаритель	18.44	19.88	22.17	24.51	25.85	27.23
Перепад давления испарителя (кПа)	38	36	36	28	28	33
Расход воды (л/сек) - Конденсатор	23.15	24.59	27.33	30.10	31.92	33.78
Перепад давления конденсатора (кПа)	11	11	11	16	16	26

ПРИМЕЧАНИЯ

Расход воды и перепад давления относятся к номинальному режиму∶вода на входе/выходе испарителя: 12/7°С - вода на входе/выходе конденсатора: 30/35°С

Перепад давления испарителя и конденсатора

Перепад давления испарителя или конденсатора различных моделей или в различных рабочих режимах определяется по следующей формуле

$$PD_{2}(\textbf{k} \boldsymbol{\Pi} \textbf{a}) \!=\! PD_{1}(\textbf{k} \boldsymbol{\Pi} \textbf{a}) \times \left(\begin{array}{c} & \textbf{Q}_{2}(\textbf{I/s}) \\ \hline & \textbf{Q}_{1}(\textbf{I/s}) \end{array} \right)^{\textbf{1.8}}$$

где

PD₂ Перепад давления, подлежащий установлению (кПа) PD_1 Перепад давления в номинальном режиме (кПа) расход воды в новом рабочем режиме (л/сек) Q_2 расход воды в номинальном режиме (л/сек)

Как использовать формулу: Пример (Испаритель)

Блок EWWD280J-SS был выбран для работы в следующих условиях:

- вода на входе/выходе испарителя: 11/6°C
- вода на входе/выходе конденсатора: 30/35°C

Холодопроизводительность в данном рабочем режиме: 277 кВт

Расход воды испарителя в данном рабочем режиме: 13.23 л/сек

Блок EWWD280J-SS в номинальном рабочем режиме обладает следующими характеристиками:

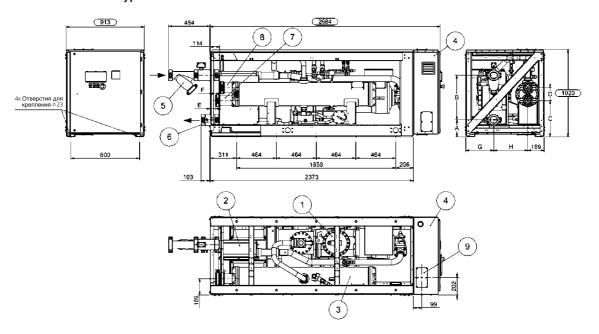
- -вода на входе/выходе испарителя: 12/7°C
- вода на входе/выходе конденсатора: 30/35°C

Холодопроизводительность в данном рабочем режиме : 285 кВт

Расход воды испарителя в данном рабочем режиме: 13.62 л/сек

Перепад давления испарителя в данном рабочем режиме: 33 кПа

Перепад давления испарителя в выделенном рабочем режиме:


PD₂(
$$\kappa\Pi a$$
) = 33 ($\kappa\Pi a$) x $\left[\begin{array}{c} -13,23 \text{ (l/s)} \\ \hline 13.62 \text{ (l/s)} \end{array}\right]^{1.5}$ PD₂($\kappa\Pi a$) = 31 ($\kappa\Pi a$)

Примечание: Если подсчитанное значение перепада давления воды испарителя ниже 10 кПа или выше 100 кПа, необходимо связаться с производителем для заказа специального испарителя.

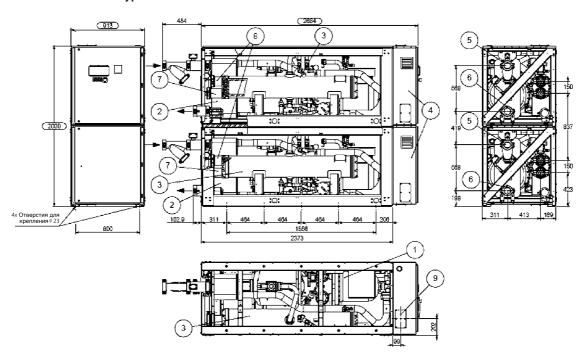
ECPD_1_Rev.00_1

8 - 1 Размерные чертежи

EWWD~J-SS / 1 контур

Модели				Разме	ры (мм)			
EWWD~J -SS	A	В	C	D	E	F	G	Н
120	198	519	445	115	54	104	326	398
140	198	519	422	150	64	114	326	398
150	198	568	422	150	64	114	311	413
180	198	568	422	150	64	114	311	413
210	198	568	422	150	64	114	311	413
250	198	568	422	150	64	114	311	413
280	198	568	422	150	64	114	311	413

Условные обозначения


- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Электрическая панель
- 5 Вход воды испарителя
- 6 Выход воды испарителя
- 7 Соединение для воды на входе конденсатора
- 8 Соединение для воды на выходе конденсатора
- 9 Паз для подсоединений электропитания

DMN_1-2_Rev.00_1

8 Размерные чертежи

8 - 1 Размерные чертежи

EWWD~J-SS / 2 Контуры

Примечание: Размеры относятся к блокам с 2 контурами (размер от 310-560).

Условные обозначения

- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Электрическая панель
- 5 Вход воды испарителя
- 6 Выход воды испарителя
- 7 Соединение для воды на входе конденсатора
- 8 Соединение для воды на выходе конденсатора
- 9 Паз для подсоединений электропитания

DMN_1-2_Rev.00_2

9 Данные об уровне шума

9 - 1 Данные об уровне шума

Уровни шума

$\textbf{EWWD}{\sim}\textbf{J-SS}$

T	Уровен	ь звукового д	авления на р	асстоянии 1	м от блока в	полусфериче	ском свобод	ном поле (2 х	10 ⁻⁵ Πa)	питание
Типоразмер	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
120	57.0	61.5	66.5	70.9	66.0	63.6	51.0	48.1	71.4	88.6
140	57.0	61.5	66.5	70.9	66.0	63.6	51.0	48.1	71.4	88.6
150	57.0	61.5	66.5	70.9	66.0	63.6	51.0	48.1	71.4	88.6
180	57.0	61.5	66.5	70.9	66.0	63.6	51.0	48.1	71.4	88.6
210	57.0	61.5	66.5	70.9	66.0	63.6	51.0	48.1	71.4	88.6
250	58.3	58.3	63.8	68.8	63.3	64.3	53.3	49.8	70.0	87.2
280	58.3	58.3	63.8	68.8	63.3	64.3	53.3	49.8	70.0	87.2
310	60.0	64.5	69.5	73.9	69.0	66.6	54.0	51.1	74.4	92.4
330	60.0	64.5	69.5	73.9	69.0	66.6	54.0	51.1	74.4	92.4
360	60.0	64.5	69.5	73.9	69.0	66.6	54.0	51.1	74.4	92.4
380	60.0	64.5	69.5	73.9	69.0	66.6	54.0	51.1	74.4	92.4
400	60.0	64.5	69.5	73.9	69.0	66.6	54.0	51.1	74.4	92.4
450	60.7	63.2	68.4	73.0	67.9	67.0	55.3	52.0	73.8	91.8
500	61.3	61.3	66.8	71.8	66.3	67.3	56.3	52.8	73.0	91.0
530	61.3	61.3	66.8	71.8	66.3	67.3	56.3	52.8	73.0	91.0
560	61.3	61.3	66.8	71.8	66.3	67.3	56.3	52.8	73.0	91.0

ПРИМЕЧАНИЯ

- 1 Значения соответствуют ISO 3744 и относятся к следующим компонентам. испаритель 12/7° С, конденсатор 30/35° С, работа в режиме полной нагрузки.
- 2 Вышеуказанный уровень звукового давления уменьшится на 4дБ(А) при установке звукозащитного элемента компрессора (опция).

Поправочный коэффициент уровня звукового давления для различных расстояний

_			Pacci	ояние		
Типоразмер	1 м	5 м	10 м	15 м	20 м	25 м
120	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
140	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
150	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
180	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
210	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
250	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
280	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
310	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
330	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
360	0.0	-7.9	-12.7	-15.8	-18.1	-19.8
380	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
400	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
450	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
500	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
530	0.0	-7.5	-12.2	-15.3	-17.5	-19.3
560	0.0	-7.5	-12.2	-15.3	-17.5	-19.3

ПРИМЕЧАНИЯ

1 Значения даны в дБ(А) (уровень звукового давления).

NSL_1_Rev.00_1

10 Установка

10 - 1 Способ монтажа

Инструкции по установке

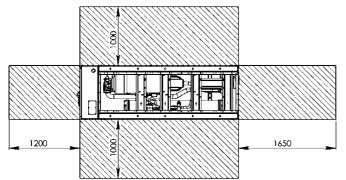
Предупреждение

Установка и техническое обслуживание должны выполняться только квалифицированным персоналом, который знает местные нормы и правила, и который имеет опыт в работе с этим типом оборудования. Нужно избегать установки блока в местах, которые считаются опасными для всех операций технического обслуживания.

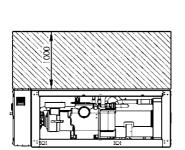
Погрузочно-разгрузочные операции

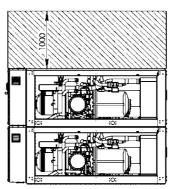
Чиллер смонтирован на массивных деревянных направляющих, чтобы защитить блок от случайного повреждения и обеспечить легкую погрузку-разгрузку и перемещение. Рекомендуется, чтобы все транспортировочные работы выполнялись с направляющими, расположенными под блоком, когда это возможно, и чтобы направляющие не удалялись до тех пор, пока блок не будет установлен в конченом положении.

При необходимости подъема блока следует поднимать его посредством кабеля или цепей, закрепленных в отверстиях для подъема в трубной решетке испарителя. Нужно использовать раздвижные планки для защиты шкафа управления и других секций чиллера.


Место

Требуется горизонтальное и достаточно прочное основание. При необходимости следует предусмотреть дополнительные конструктивные элементы для передачи веса блока ближайшим балкам.


Резиновые изоляторы поставляются и устанавливаются на месте под каждым углом комплекта. Под изоляторами следует использовать резиновую противоскользящую подушку, если не используются анкерные болты. На всех водопроводах, подключенных к чиллеру, рекомендуется виброизолятор, чтобы не допустить деформирования труб и передачи вибрации и шума.


Минимальные требования к площади установки

Необходимо обеспечить доступ к машине со всех сторон для техобслуживания после установки. Требуемое минимальное пространство указано на следующем чертеже:

Вид сверху

Вид сбоку

Требования минимального пространства для техобслуживания машины

INN_1_Rev.00_1

10 Установка

10 - 2 Заправка, расход и количество воды

Заправка, расход и количество воды

		O	клаждающая во	да	Охлажде	нная вода		Нагрета	я вода ₍₂₎			
комг	ЮНЕНТЫ _{(1) (5)}		Циркуляцион	ная система	Поток			Низкая те	мпература	Высокая т	емпература	Тенденция при
(1) (5)		Циркуляционная вода	Подаваемая вода(4)	Проточная вода	Циркуляционная вода [Ниже 20°C]	Подаваемая вода(4)	Циркуляционная вода [20°С ~ 60°С]	Подаваемая вода(4)	Циркуляционная вода [80°С−80°С]	Подаваемая вода(4)	невыполнении критериев	
	ph	при 25°C	6.5 ~ 8.2	6.0 ~ 8.0	6.0 ~ 8.0	6.8 ~ 8.0	6.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	Коррозия+ Окалина
	Электрическая проводимость	[mS/m] при 25°C	Ниже 80	Ниже 30	Ниже 40	Ниже 80	Ниже 80	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Коррозия+ Окалина
		(µS/cm) при 25°C	(Ниже 800)	(Ниже 300)	(Ниже 400)	(Ниже 800)	(Ниже 800)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	Коррозия+ Окалина
7	Ион хлора	[mgCl ²⁻ /l]	Ниже 200	Ниже 50	Ниже 50	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
емент	Ион сульфата	[mgSO ²⁻ 4/l]	Ниже 200	Ниже 50	Ниже 50	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
Проверяемые элементы:	Щелочность М (рН4.8)	[mgCaCO ₃ /1]	Ниже 100	Ниже 50	Ниже 50	Ниже 100	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина
оверя	Общая жесткость	[mgCaCO ₃ /l]	Ниже 200	Ниже 70	Ниже 70	Ниже 200	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Окалина
Ę.	Жесткость кальция	[mgCaCO ₃ /l]	Ниже 150	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина
	Ион кремнезема	[mgSiO ₂ /l]	Ниже 50	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Окалина
	Кислород	[mgO2 /l]	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Коррозия
	Размер частицы	(MM)	Ниже 0.5	Ниже 0.5	Ниже 0.5	Ниже 0.5	Ниже 0.6	Ниже 0.5	Ниже 0.6	Ниже 0.5	Ниже 0.6	Эрозия
	Полностью растворенные твердые вещества	(mg / l)	Ниже 1000	Ниже 1000	Ниже 1000	Ниже 1000	Ниже 1001	Ниже 1000	Ниже 1001	Ниже 1000	Ниже 1001	Эрозия
	Этилен, пропиленгли по массе)	коль (концентрация	Ниже 60%	Ниже 60%	Ниже	Ниже 60%	Ниже 60%	Ниже 60%	Ниже 60%	Ниже 60%	Ниже 60%	
	Нитрат-ионы	(mg NO3-/I)	Ниже 100	Ниже 100	Ниже 100	Ниже 100	Ниже 101	Ниже 100	Ниже 101	Ниже 100	Ниже 101	Коррозия
	ТОС Общий органический углерод	(mg/l)	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Окалина
HTb:	Железо	[mgFe/l]	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Коррозия+ Окалина
ношио	Медь	[mgCu/l]	Ниже 0.3	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Коррозия
Ссылочные компоненты:	Ион сульфита	[mgS ²⁻ /l]	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Коррозия
CCBITTO	Ион аммония	[mgNH+ ₄ /I]	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 0.3	Ниже 0.1	Ниже 0.1	Ниже 0.1	Коррозия
	Остаточный хлорид	[mgCL/l]	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.25	Ниже 0.3	Ниже 0.1	Ниже 0.3	Коррозия
	Свободный карбид	[mgC0 ₂ /I]	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 0.4	Ниже 4.0	Ниже 0.4	Ниже 4.0	Коррозия
	Индекс устойчивость	•	6.0 - 7.0									Коррозия + Окалина

ПРИМЕЧАНИЯ

- 1 Названия, определения и единицы соответствуют требованиям JIS К 0101. Единицы и значения в скобках являются старыми единицами, приведенными только для справки.
- При использовании нагретой воды (более 40°C) обычно повышается уровень коррозии.
 Особенно если металл непосредственно контактирует с водой без защитных экранов; желательно выполнять измерения уровня коррозии, например, действие химических элементов.
- 3 Если воды охлаждается в градирне закрытого типа, вода закрытого контуры соответствует стандарту для нагретой воды, и вода открытого контура стандарту охлаждающей воды.
- 4 Подаваемая вода считается питьевой, промышленной или грунтовой водой; подаваемая вода не считается чистой, нейтральной или мягкой водой
- 5 Вышеуказанные компоненты относятся к случаям, связанным с появлением коррозии и ржавчины.
- 6 Выше/казанные ограничения должны учитываться как рекомендации в общем и не могут полностью гарантировать отсутствие коррозии и эрозии. Некоторые особые комбинации элементов или присутствие компонентов, не перечисленных в таблице, или не учтенные факторы могут стать причиной коррозии.

WAFLOWQUA_1-2_Rev.00_1

10 Установка

10 - 2 Заправка, расход и количество воды

Объем воды в контурах охлаждения

Контуры распределения охлажденной воды должны иметь минимальный объем воды, чтобы избежать слишком частых пусков и остановок компрессора.

Фактически, каждый раз при запуске компрессора, из сборника компрессора поступает избыточное количество масла; одновременно происходит повышение температуры статора двигателя компрессора из-за пускового тока.

Во избежание повреждения компрессоров предусмотрено использование устройства для ограничения частых остановов и запусков.

В течение одного часа должно быть не более 6 пусков компрессора. Поэтому со стороны блока нужно предусмотреть такой общий объем воды, чтобы обеспечить более постоянную работу блока и, как следствие, лучшие условия окружающей среды. Минимальное содержание воды в одном блоке должно быть подсчитано, используя эту упрощенную формулу:

На 1 компрессорную установку $M(\text{литр}) = (0.94 \times \Delta \text{T}(^{\circ}\text{C}) + 5.87) \times P(\text{кBt})$

На 2 компрессорные установки М (литр) = ($0.1595 \times \Delta T(^{\circ}C) + 3.0825$) $\times P(\kappa B\tau)$

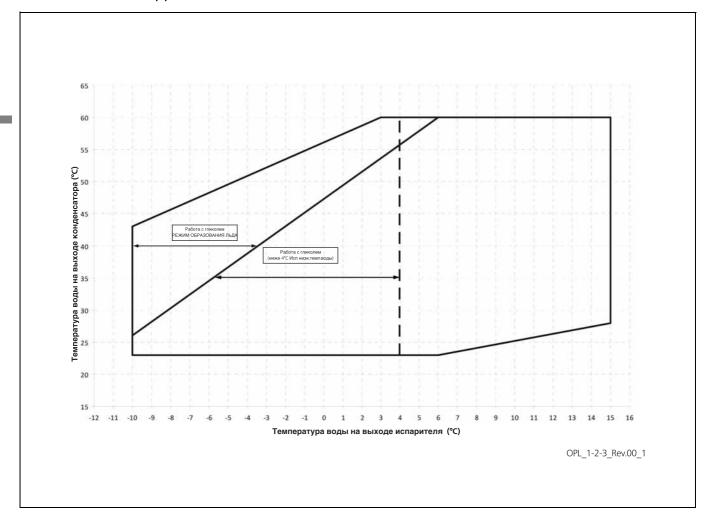
где:

М минимальное содержание воды в одном блоке выражено в литрах

Р холодопроизводительность блока выражена в кВт

△Т разница температуры воды на входе/выходе испарителя выражена в °С

Эта формула действительна для:


- стандартных параметров микропроцессора

Для более точного расчета объема воды рекомендуется обратиться к архитектору предприятия.

WAFLOWQUA_1-2_Rev.00_2

11 Рабочий диапазон

11 - 1 Рабочий диапазон

11 Рабочий диапазон

11 - 1 Рабочий диапазон

Таблица 1 - Испаритель/Конденсатор минимум и максимум ∆t

Макс. воды испарителя △Т	°C	8
Мин. воды испарителя △Т	°C	4
Мин. воды конденсатора △Т	°C	4
Макс. воды конденсатора △Т	°C	8

Таблица 2 - Коэффициенты загрязнения испарителя

Коэффициенты загрязнения m ² °C / кВт	Коэффициенты загрязнения поправочный коэффициент для мощности охлаждения		Поправочный коэффициент EER		
0.0176	1.000	1.000	1.000		
0.0440	0.978	0.986	0.992		
0.0880	0.957	0.974	0.983		
0.1320	0.938	0.962	0.975		

Минимальное содержание гликоля для низкой температуры воды 3 - Степень загрязнения конденсатора

• • •			•		
Коэффициенты загрязнения m²∘C / кВт	Поправочный коэффициент для мощности охлаждения	Поправочный коэффициент для входной мощности	Поправочный коэффициент EER		
0.0176	1.000	1.000	1.000		
0.0440	0.978	0.986	0.992		
0.0880	0.957	0.974	0.983		
0.1320	0.938	0.962	0.975		

Таблица 4.1 - Степень загрязнения конденсатора

Температура воды на выходе испарителя °C	2	0	-2	-4	-6	-8
Этиленгликоль (%)	10	20	20	20	30	30
Пропиленгликоль (%)	10	20	20	30	30	30

Примечание: Минимальное содержание гликоля применяется при температуре воды на выходе испарителя ниже 4°С для предупреждения замораживания водяного контура.

Таблица 4.2 - Минимальное содержание гликоля для низкой температуры воздуха

Температура наружного воздуха (°C) (2)	-3	-8	-15	-23	-35
Этиленгликоль (%) (1)	10%	20%	30%	40%	50%
Температура наружного воздуха (°C) (2)	-3	-7	-12	-20	-32
Пропиленгликоль (%) (1)	10%	20%	30%	40%	50%

Примечание (1): Минимальное содержание гликоля для предупреждения замораживания водяного контура при указанной температуре наружного воздуха. Примечание (2): Температура наружного воздуха превышает рабочие пределы блока, так как может понадобиться защита водяного контура зимой при неиспользовании.

Таблица 5 - Поправочные коэффициенты в случае низкой температуры воды на выходе испарителя

Температура воды на выходе испарителя °C	2	0	-2	-4	-6	-8
Мощность охлаждения	0.842	0.785	0.725	0.670	0.613	0.562
Входная мощность компрессора	0.950	0.940	0.920	0.890	0.870	0.840

Примечание: Поправочные коэффициенты должны использоваться в рабочих условиях: температура воды на выходе испарителя 7°С.

Таблица 6 - Поправочные коэффициенты для смеси воды и гликоля

	Этиленгликоль (%)	10%	20%	30%	40%	50%
	Мощность охлаждения	0.991	0.982	0.972	0.961	0.946
Этиленгликоль	Входная мощность компрессора	0.996	0.992	0.986	0.976	0.966
O THIS ISSUED	Расход воздуха (△t)	1.013	1.04	1.074	1.121	1.178
	Перепад давления испарителя	1.070	1.129	1.181	1.263	1.308
	Мощность охлаждения	0.985	0.964	0.932	0.889	0.846
	Входная мощность компрессора	0.993	0.983	0.969	0.948	0.929
Этиленгликоль	Расход воздуха (△t)	1.017	1.032	1.056	1.092	1.139
	Перепад давления испарителя	1.120	1.272	1.496	1.792	2.128

OPL_1-2-3_Rev.00_2

11 Рабочий диапазон

11 - 1 Рабочий диапазон

Как использовать поправочные коэффициенты, предложенные в предыдущих таблицах

А) Смесь воды и гликоля---Температура воды на выходе испарителя >4°C

- в зависимости от типа и процентного соотношения (%) гликоля, заправленного в контуре (см. таблицу 4.2 и 6)
- умножьте холодопроизводительность, потребляемую мощность компрессора на поправочный коэффициент в Таблице 6
- -исходя из этого нового значения холодопроизводительности, подсчитайте расход воздуха (л/сек) и перепад давления испарителя (кПа)
- сейчас умножьте новое значение расхода воздуха и новое значение перепада давления испарителя на поправочные коэффициенты в Таблице 6

Пример Типоразмер: EWWD120J-SS

Смесь:

Вода ELWT 12/7°C - CLWT 30/35°C Рабочий режим

 Мощность охлаждения: 121 kBT - Входная мощность: 27.3 кВт - Расход воздуха (△t 5°C): 15кПа - Перепад давления испарителя:

Смесь: Вода+Этиленгликоль 30% (зимой при температуре воздуха до -15°C)

ELWT 12/7°C - CLWT 30/35°C 121 x 0.972 = 118 kBt Рабочий режим: - Мощность охлаждения: 27.3 x 0.986 = 26.9 кВт Входная мошность:

- Расход воздуха (△t 5°C): 5.64 л/сек (относится к 118 кВт) x 1.074 = 6.06 л/сек - Перепад давления испарителя: 16 (относится к 6.06 л/сек) \times 1.181 = 19 κ Па

В) Смесь воды и гликоля---Температура воды на выходе испарителя < 4°C

- в зависимости от типа и процентного соотношения (%) гликоля, заправленного в контуре (см. таблицу 4.1, 4.2 и 6)
- в зависимости от температуры воды на выходе испарителя (смю таблицу 5)
- умножьте холодопроизводительность, потребляемую мощность компрессора на поправочный коэффициент в Таблице 5 и 6
- -исходя из этого нового значения холодопроизводительности, подсчитайте расход воздуха (л/сек) и перепад давления испарителя (кПа)
- сейчас умножьте новое значение расхода воздуха и новое значение перепада давления испарителя на поправочные коэффициенты в Таблице б

Пример

Типоразмер EWWD120J-SS

ELWT 12/7°C - CLWT 30/35°C Рабочий режим:

- Мощность охлаждения: 121 **кВт** - Входная мощность: 27.3 **кВт** Расход воздуха (△t 5°C): - Перепад давления испарителя: 15кПа

Вода+Этиленгликоль 30% (для низкой температуры воды на выходе испарителя 0/-5°C) Смесь

ELWT 0/-5°C - CLWT 30/35°C Рабочий режим: - Мощность охлаждения: $121 \times 0.641 \times 0.972 = 75.4 \text{ kBT}$ - Входная мощность:

 $27.3 \times 0.880 \times 0.986 = 23.7 \, \text{кВт}$ $3.60 \, \text{л/сек} \, (\text{относится к } 75.4 \, \text{кВт}) \times 1.074 = 3.87 \, \text{л/сек}$ - Расход воздуха (△t 5°C): - Перепад давления испарителя: $7 \, \kappa \Pi a \, (\text{относится } \kappa \, 3.87 \, \text{л/се} \kappa) \, x \, 1.181 = 9 \kappa \Pi a$

OPL_1-2-3_Rev.00_3

12 Описание технических характеристик

12 - 1 Описание технических характеристик

Технические характеристики винтовых чиллеров с водяным охлаждением

Общие сведения

Винтовой чиллер с водяным охлаждением разрабатывается и производится в соответствии со следующими Европейскими директивами:

Конструкция оборудования, работающего под давлением	97/23/EC (PED)
Директива для машинного оборудования	2006/42/EC
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические нормы и нормы безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества изготовления	UNI - EN ISO 9001:2004

Блок испытывается на заводе с полной нагрузкой при номинальных рабочих условиях и температурах воды. Перед поставкой выполняются полные испытания, чтобы избежать каких-либо потерь.

Чиллер будет поставлен на рабочую площадку полностью собранным и заправленным хладагентом и маслом. При такелажных операциях, разгрузке и перемещении оборудования нужно выполнять инструкции изготовителя.

Блок может включаться и работать в стандартном режиме при полной нагрузке и температуре жидкости на входе конденсатора от.... $^{\circ}$ С до $^{\circ}$ С , и температуре жидкости на выходе испарителя от $^{\circ}$ С до $^{\circ}$ С

Все указанные характеристики блоков должны быть сертифицированы организацией Eurovent.

Хладагент

Допускается только НFC 134а.

Защита от замораживания

- ✓ Количество винтовых чиллеров с водяным охлаждением:
- ✓ Холодопроизводительность одновинтового чиллера с водяным охлаждением:кВт
- ✓ Потребляемая мощность одновинтового чиллера с водяным охлаждением в режиме охлаждения: кВт
- ✓ Температура воды на входе пластинчатого испарителя в режиме охлаждения:°С
- ✓ Температура воды на выходе пластинчатого испарителя в режиме охлаждения:°С
- ✓ Расход воды пластинчатого испарителя:л/сек
- ✓ Температура воды на входе кожухотрубного конденсатора в режиме охлаждения:°С
- ✓ Температура воды на выходе кожухотрубного конденсатора в режиме охлаждения:°С
- ✓ Расход воды кожухотрубного конденсатора:л/сек
- ✓ Блок должен работать в диапазоне электричества $400B \pm 10\%$, 3ф., 50Гц без нейтрали и должен иметь всего одну точку соединения в цепи питания.

Описание блока

Чиллер в стандартном исполнении должен включать: 1 или 2 независимых контура хладагента, полугерметичные ротационные одновинтовые компрессоры, электронный расширительный вентиль (EEXV), пластинчатый испаритель непосредственного охлаждения и кожухотрубный конденсатор, хладагент R134a, система смазки, компоненты пуска двигателя, система управления и все компоненты, необходимые для безопасного и стабильного функционирования блока.

Чиллер собирается на заводе на надежной раме-основании из оцинкованной стали, защищенной эпоксидной краской.

Уровень шума и вибрация

Уровень звукового давления на расстоянии 1 метр в полусферическом свободном поле не должен превышать дБ(A). Уровни звукового давления должны определяться в соответствии с ISO 3744. Другие типы номинальных значений неприемлемы. Уровень вибрации не должен превышать 2 мм/с.

Размер

Размеры блока не должны превышать следующие значения:

- ✓ длина блока: мм,
- ✓ ширина блока: мм,
- ✓ высота блока: мм.

SPC_1-2-3_Rev.00_1

12 Описание технических характеристик

12 - 1 Описание технических характеристик

Компоненты чиллера

Компрессоры

- ✓ Полугерметичный, одновинтовой, с одним главным спиральным роторным сцеплением, с заслонкой. Заслонка изготовляется из специализированного композитного материала, импрегнированного углеродом. Опоры заслонки изготавливаются из чугуна.
- ✓ Впрыск масла используется для обеспечения высокого значения ЕЕR (эффективности использования энергии) при высоком давлении конденсации и низком уровне звукового давления в любом режиме нагрузки.
- ✓ Перепад давления системы хладагента должен обеспечивать поток масла во время замены деталей при обслуживании, 0,5 микрон, полный поток, выдвижной масляный фильтр внутри компрессора.
- ✓ Перепад давления системы хладагента должен обеспечивать впрыск масла на всех подвижных деталях компрессора, чтобы правильно выполнять их смазку. Система смазки с электрическим масляным насосом неприемлема.
- ✓ При необходимости нужно обеспечить охлаждение масла компрессора впрыском жидкого хладагента. Специальный внешний теплообменник и дополнительная трубная обвязка для перемещения масла из компрессора в теплообменник и обратно, неприемлемы.
- ✓ Компрессор должен иметь внешний высокоэффективный маслоотделитель циклонного типа со встроенным патронным масляным фильтром.
- 🗸 Компрессор должен иметь прямой электрический привод без зубчатой передачи между винтовым и электрическим пневмомотором
- Должно быть предусмотрено два термисторных устройства тепловой защиты от высокой температуры температурный датчик для защиты электродвигателя, и температурный датчик для защиты блока и смазочного масла от высокой температуры газа на выходе.
- ✓ Компрессор должен быть оснащен электрическим картерным нагревателем масла
- ✓ Компрессор должен быть полностью приспособлен к обслуживанию на месте. Компрессор, который нужно снимать и возвращать на завод для
 обслуживания, неприемлем.

Система управления производительностью охлаждения

- Каждый блок должен иметь микропроцессор для управления положением золотникового клапана компрессора и текущим значением частоты вращения двигателя.
- ✓ Мощность блока должна быть модулирующей от 100% до 25% на каждом контуре (от 100% до 12,5% полной нагрузки одного блока с 2 компрессорами). Чиллер должен устойчиво работать минимум до 12,5% полной нагрузки без байпаса горячего газа.
- ✓ Ступенчатая разгрузка недопустима вследствие колебаний температуры воды на выходе испарителя и низкой эффективности блока при частичной нагрузке.
- ✓ Система должна управлять агрегатом на основании колебаний температуры воды на выходе испарителя, которая контролируется контуром РID-регулирования.
- ✓ Логика управления блоком должна обеспечивать уровень частоты электродвигателя компрессора, точно соответствующий запросу на нагрузку установки, чтобы сохранять постоянным заданное значение температуры подаваемой охлажденной воды. При таких рабочих условиях, логика управления блоком должна регулировать уровень частоты в диапазоне, ниже или выше номинального значения электрической сети с постоянной частотой 50 Гц.
- Микропроцессорное управление блоком должно определять условия приближения к предельным значениям защиты, и выполнять саморегулирование до выдачи аварийного сигнала. Система должна автоматически уменьшать мощность чиллера, когда какой-либо из следующих параметров окажется за пределами нормального рабочего диапазона:
 - Высокое давление конденсатора
 - о Низкая температура испарения хладагента
 - Высокий ток двигателя компрессора

Испаритель

- ✓ Блоки должны быть оснащены пластинчатым испарителем непосредственного охлаждения с медными трубками, покрытыми стальными листами.
- ✓ К внешнему корпусу должен быть подведен электрический нагреватель во избежание замерзания при температуре наружного воздуха до -28°С, который управляется посредством терморегулятора. Он должен быть защищен гибким изоляционным полиуретановым материалом с замкнутым элементом (толщиной 10 мм).
- ✓ Испаритель имеет 1 контур
- Соединения воды должны быть резьбовыми, как правило, для обчеспечения быстрого механического разъединения блока и водопроводной сети.
- ✓ Испаритель выполняется в соответствии с утверждением PED.

SPC_1-2-3_Rev.00_2

12 Описание технических характеристик

12 - 1 Описание технических характеристик

Конденсаторы

- ✓ Конденсаторы должны быть кожухотрубного типа, очищаемые через трубы.
- ✓ Блок должен иметь независимые конденсаторы, по одному на контур.
- ✓ Каждый конденсатор должен иметь высокоэффективные бесшовные медные трубки с внутренним оребрением, расширяющиеся и входящие в толстые трубные решетки из углеродистой стали.
- Водоприемники должны быть съемные, и включать воздушные и сливные пробки.
- ✓ Конденсаторы будут поставляться в комплекте с запорным клапаном для жидкости, подпружиненным перепускным клапаном.

Контур хладагента

В стандартном исполнении каждый контур должен содержать по меньшей мере следующее: электронное расширительное устройство, управляемое микропроцессором агрегата, запорный клапан линии выпуска компрессора, запорный клапан линии всасывания, фильтр-осушитель с заменяемым сердечником, смотровое стекло с индикатором наличия влаги и изолированная линия всасывания.

Панель управления

- ✓ Соединение участка в цепи питания, терминалы блокировки управления и система управления блоком должны располагаться в центре электрической панели (IP 54). Блок управления запуском и подачей питания и блок управления работой и системой защиты должны находиться в разных точках этой же панели.
- ✓ Стандартный запуск представляет собой соединение по схеме звезда-треугольник.
- ✓ Блок управления работой и системой защиты включает в себя блок управления энергосбережением, кнопку аварийного останова, защиту от перегрузки двигателя компрессора, выключатель высокого и низкого давления (на каждом контуре хладагента); термостат против замерзания, выключатель каждого компрессора.
- ✓ Вся информация, связанная с блоком, будет выдаваться на дисплей, включая внутренний встроенный календарь и часы для ВКЛ/ВЫКЛ блока в течение всего годового цикла.
- ✓ Должны быть включены следующие характеристики и функции:
 - Сброс температуры охлажденной воды по температуре возвратной воды или по удаленному сигналу 4-20 мА пост.т., или по температуре наружного воздуха;
 - Функцию мягкой нагрузки для предотвращения работы при полной нагрузке в период уменьшения расхода охлажденной жидкости;
 - Защиту паролем критически важных параметров управления;
 - Таймеры пуск-пуск и останов-пуск для обеспечения минимального времени переключения компрессора при максимальной защите двигателя;
 - Возможность связи с ПК или дистанционным наблюдением;
 - регулирование давления нагнетания на основе микропроцессорного управления циклом работы вентиляторов конденсатора;
 - Выбор стабилизирующей функции вручную или автоматически по количеству часов работы контура;
 - Двойное заданное значение для варианта блока с рассолом;
 - Планирование по внутренним часам, позволяющая программировать годовой график пусков-остановов с учетом выходных дней и праздников.

Дополнительный интерфейс связи с протоколом высокого уровня

Контроллер должен обеспечивать данные, приведенные в вышеуказанном списке, используя следующие опци:

- RS485 Плата послед. связи.
- RS232 Плата послед. связи.
- Интерфейс LonWorks с приемопередатчиком FTT10A.
- Совместимость с Bacnet
- Использование Compass Points (продукция компании North Communications) для обеспечения связи с Honeywell, Satchwell, Johnson Controls, Trend и др.

SPC_1-2-3_Rev.00_3

Компания Daikin Europe N.V. принимает участие

помінания Ізвікп вигоре NV. принимает участив в Программе сертификации Ецгочент для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FCU). Проверьте гекущий срох действии сертификата онлайн: www.eurovent-certification.com или перейдите к www.certiflash.com*

CERTIFIED PERFORMANCE

Продукция компании Daikin распространяется:

Компания Daikin занимает уникальное положение в области производства оборудования для

в области производства оборудования для кондиционирования воздуха, компрессоров и хондагнетов. Это стало причной ее активного участия в решении экологических проблем. В течение нескольких лет, деятельность компании Daikin была направлена на то, чтобы достичь пидирующего положения по поставкам продукции, которая в минимальной степени впилет на окружающую среду. Эта задача требует, чтобы разработка и проектирование широкого спектра продуктов и систем управления выполнялись с учетом экологических требований, и были направлены на сохранение энергии и снижение объема отходов.

"Настоящая публикация составлена только для справочных целей, и не является предложением, обязательным для выполнения компанией Dalkin Europe N.V. Содержание этой публикации составлено компанией Dalkin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели содержания публикации и продуктов (и услуг), представленных в ней. Технические характеристики (и цень) могут быть изменены без предварительного уведомления. Компания Dalkin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенныех убытих, понимаемые в самом широком смысле, вытеквощие, вытеквощей прямого или косвенного использования и/или трактовки данной публикации. На все содержание распространяется авторское право Dalkin Europe N.V."

In all of us,

a green heart