

Чиллеры

Технические Данные

Чиллер с возд. охлажд., многокомпр. спир.

ECDRII11-405

Чиллеры

Технические Данные

Чиллер с возд. охлажд., многокомпр. спир. **VDAIKIN** A

ECDRU11-405

EWAQ-DAYN EWYQ-DAYN

СОДЕРЖАНИЕ

EWAQ-DAYN

1	Характеристики	2
2	Технические характеристики Технические параметры Электрические параметры	3
3	Опции Опции	
4	Таблицы производительности Таблицы холодопроизводительности Поправочный коэффициент для производительности	. 12
5	Размерные чертежи Размерные чертежи	
6	Схемы трубопроводов	
7	Схемы внешних соединений	
8	Данные об уровне шума Спектр звуковой мощности	
9	Установка Крепление и фундаменты блоков Заправка, расход и количество воды	. 25
10	Рабочий диапазон Рабочий диапазон	
11	Характеристика гидравлической системы Кривая падения давления воды Испаритель Блок падения статического давления	31

1 Характеристики

- Широкий диапазон мощностей: от 80 до 260 кВт с 8 моделями только охлаждение
- Оптимизирован для работы с хладагентом R-410A
- Несколько контуров охлаждения и несколько компрессоров на контур
- Надежная и эффективная спираль с высокими значениями EER
- Алюминиевые теплообменники с антикоррозионной обработкой
- Низкий уровень шума при работе
- Легкая установка 'подключи и работай'
- Размеры блока позволяют его легко транспортировать
- Вентиляторы имеют защиту при сбое (4 8 вентиляторов, в зависимости от размера блока)
- Предохранительные клапаны в каждом контуре
- Электронные автоматические выключатели

- Электронный расширительный клапан
- Надежный паяный теплообменник с двойными пластинами
- Смотровое стекло
- Легкий доступ ко всем компонентам с 3 сторон (окружающий шкаф отсутствует)
- Отдельная распределительная коробка для легкого доступа
- Доступ к компрессорам и элементам управления со стороны блока
- Повышенная надежность благодаря 2 независимым контурам охлаждения
- Двухконтурный теплообменник (100 кВт и более)
- Негерметичный фильтр/осушитель
- Пульт управления Daikin (Pcaso) с дружественным и мощным ЖК-интерфейсом

2 Технические характеристики

Холодопроизводы Ном. КВТ 80 (1) 105 (1) 131 (1) 152 (1) 182 (1) 209 (1) 238 (адигальность % 0-50-100 0-25-50-75-100 21/29-42) 0-25-50- 22/2 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 50/57-71/ 75-100 57/8 57/8 50/57-71/ 75-100 57/8	2-1 Технич	еские пара	метры			EWAQ080DAYN	EWAQ100DAYN	EWAQ130DAYN	EWAQ150DAYN	EWAQ180DAYN	EWAQ210DAYN	EWAQ240DAYN	EWAQ260DAYN
одительность Ступени мощности Охлаждение Ном. КВТ 26,4 (2) 36,2 (2) 46,6 (2) 56,3 (2) 64,5 (2) 74,6 (2) 78			•		кВт	80 (1)	105 (1)	131 (1)	152 (1)	182 (1)	209 (1)	236 (1)	254 (1)
Водная мощность Бодь Б						()	, ,	. ()	. ()	. ()	,	,	. ()
Водинариальной разричений Ном. КВТ 26.4 (2) 36.2 (2) 46.6 (2) 56.3 (2) 64.5 (2) 74.6 (2) 82,	Ступени мощно	СТИ			%	0-50	-100	0-25-50	-75-100	21/29-43/	0-25-50-	22/28-40/	0-25-50-
MOULY MO											75-100	50/56-72/ 78-100	75-100
ESEER		Охлаждение	Ном.		кВт	26,4 (2)	36,2 (2)	46,6 (2)	56,3 (2)	64,5 (2)	74,6 (2)	82,8 (2)	94,0 (2)
Корпус Двет	EER	!	!			3,03	2,90	2,81	2,70	2,82	2,80	2,85	2,70
Размеры Блок Высота Ми 2.311 2.000	ESEER					4,12	4,00	4,34	4,22	4,36	4,32	4,20	4,00
Размеры	Корпус	Цвет						Слонов	ая кость (код	, Манселла:	5Y7.5/1)	•	
Вес							поли	эфирной по	краской Оци	нкованная ст	гальная плас	стина	
Вес блок кг 1.350 1.400 1.500 1.500 1.800 1.800 3. 3.081 1.000 1.000 1.500 1.800 1.800 3. 3. 3.081 1.000 1.000 1.000 1.000 1.000 3. 3.00	Размеры	Блок	Высота		MM				2.3	311			
Вес Блок кг 1.350 1.400 1.500 1.850 1.800 1.850 3 ЗКСПЛУЗТАЦИОННЫЙ ВЕС кг 1.366 1.415 1.517 1.569 1.825 1.877 3 ВОД. ТИП Принособменник Оцинкованный сетчатый фильтр Минь Минь объем воды в системе л 358 (3) 470 (3) 295 (3) 341 (3) 408 (3) 468 (3) 52 Расход воды Мин. л/мин 459 602 754 871 1.043 1.198 1.3 Номинальный расход воды Охлаждение л/мин 459 602 754 871 1.043 1.198 1.3 Спад дваления воды Охлаждение Итого кПа 59 58 52 49 52 53 5 Воздушный гетлообменних Тип РТ120 DV47 DV58 1 Тип Поперечные соединения ребер / трубки Ні-Х и полизтиленовое вафельно поды поды поды поды поды поды поды под			Ширина		MM				2.0	000			
Вод. Тип			Глубина		MM	2.5	666	2.6	331	3.0	081	4.8	350
Вод. Тип	Bec	Блок			КГ	1.350	1.400	1.500	1.550	1.800	1.850	3.150	3.250
Вод. теплообменник полообменник предости теплообменник полообменник полообменник полообменник полообменик полообм		Эксплуатацио	нный вес		КГ	1.365	1.415	1.517	1.569	1.825	1.877	3.189	3.292
теплообменник		Упакованный	блок		КГ	1.400	1.450	1.550	1.600	1.850	1.900	3.200	3.300
Диаметр отверстий ММ 1 1 1 1 1 1 1 1	Вод.	Тип							Паяные	пластины			
Минимальный объем воды в системе л 358 (3) 470 (3) 295 (3) 341 (3) 408 (3) 468 (3) 525 (3) 470 (3) 295 (3) 341 (3) 408 (3) 468 (3) 525 (3) 341 (3) 408 (3) 468 (3) 525 (3) 341 (3) 408 (3) 468 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 341 (3) 408 (3) 408 (3) 525 (3) 300 (3) 341 (3) 408 (3) 408 (3) 525 (300 (3) 341 (3) 408 (3) 408 (3) 525 (300 (3) 341 (3) 408 (3) 408 (3) 525 (300 (3) 341 (3) 408 (3) 408 (3) 525 (300 (3) 341 (3) 408 (400 (400 (400 (400 (400 (400 (400	теплообменник	Фильтр	Тип					Оци	інкованный (сетчатый фи	льтр		
Расход воды Мин. Мин. л/мин 115 151 188 218 261 300 3 Номинальн ый расход воды воды Охлаждение ый расход воды л/мин 459 602 754 871 1.043 1.198 1. Спад номинально го давления воды Охлаждение и номинально по давления воды Итого кПа 59 58 52 49 52 53 5 Воздушный теплообменник теплообменник Тип РТ120 DV47 DV58 1 1 DV58 1 1 Тольчество 3 1 Тольчество 3 56 48 56 1			стий	MM					1				
Макс. п/мин 459 602 754 871 1.043 1.198 1.1		Минимальный	й объем воды в	системе	Л				341 (3)			529 (3)	569 (3)
Номинальн ый расход воды Охлаждение ый расход воды Охлаждение ый расход воды Охлаждение ый расход воды Охлаждение Итого КПа 59 58 52 49 52 53 5 5 5 5 5 5 5 5		Расход воды			л/мин							339	364
ый расход воды Охлаждение номинально го давления воды Итого кПа 59 58 52 49 52 53 5 Изоляционный материал Синтетический эластомер, покрытый пенопластом Модель Тип PT120 DV47 DV58 Воздушный теплообменник теплообменник теплообменник Тип Поперечные соединения ребер / трубки Ні-Х и полиэтиленовое вафельно телей тиров до трупы 2 3 Ступени Количество 2 3 1.8 Лицевая сторона катушки м² 2,46 2,11 2,46 3,02 Компоненты гидравлической системы Количество 4 6 6 67 64 63 72 79 8 Вентилятор Количество КПа бе 66 67 64 63 72 79 8 Вентилятор воддуха Количество 4 6 6 6 6 6 6 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 </td <td></td> <td></td> <td>Макс.</td> <td></td> <td>л/мин</td> <td></td> <td></td> <td>754</td> <td></td> <td></td> <td>1.198</td> <td>1.355</td> <td>1.456</td>			Макс.		л/мин			754			1.198	1.355	1.456
номинально го давления воды Изоляционный материал Синтетический эластомер, покрытый пенопластом Модель Тип PT120 DV47 DV58 Воздушный теплообменики теплообменты теплообменики теплообменики теплообмений теплообмен		ый расход	Охлаждение		л/мин	229	301	377	436	522	599	677	728
Воздушный теплообменник Группы Тип РТ120 DV47 DV58 Количество Тип Поперечные соединения ребер / трубки Ні-Х и полиэтиленовое вафельного даминения ребер / трубки Ні-Х и полиэтиленовое даминения ребер / трубки Ні-Х и полизтиленовое даминения даминения ребер / трубки Ні-Х и полизтиленовое даминения дамин		номинально го давления воды		Итого	кПа	59	58	52	49	52	53	51	47
Воздушный теплообменник Тип		Изоляционны	й материал					Синтетическ	ий эластоме	р, покрытый	пенопласто	М	
Теплообменник Группы Количество 2 3 Ступени Количество 56 48 56 Шаг ребер мм 1,8 Лицевая сторона м² 2,46 2,11 2,46 3,02 Компоненты гидравлической системы Объем воды блока л 15 17 19 25 27 3 Номинальный перепад давлений воды Объем воды блока кПа 66 67 64 63 72 79 8 Вентилятор Количество 4 6		Модель				PT	120	D\		<u> </u> 1	D\	/58	
Ступени Количество 56 48 56 Шаг ребер мм 1,8 Лицевая сторона м² 2,46 2,11 2,46 3,02 Катушки Компоненты гидравлической системы Объем воды блока л 15 17 19 25 27 3 Номинальный перепад давлений воды Охлаждение кПа 66 67 64 63 72 79 8 Вентилятор Количество 4 6 <	Воздушный	Тип	•			Поперечные соединения ребер / трубки Ні-Х и полиэтиленовое вафельное оребрение							
Шаг ребер мм 1,8 Лицевая сторона м² 2,46 2,11 2,46 3,02 Катушки Количество 4 4 5 27 3 Компоненты гидравлической системы Номинальный перепад давлений воды Охлаждение кПа б6 б7 64 63 72 79 8 Вентилятор Количество 4 6	теплообменник	Группы	Количество										
Лицевая сторона м² 2,46 2,11 2,46 3,02 Компоненты гидравлической системы Объем воды блока л 15 17 19 25 27 3 Номинальный перепад давлений воды Охлаждение кПа 66 67 64 63 72 79 8 Вентилятор Количество 4 6 6 6 6 6 6 6 6 6 6 6 1.290 8 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290		Ступени	Количество			56		48		56		4	18
Катушки Количество 4 Компоненты гидравлической системы Номинальный перепад давлений воды Количество 4 Вентилятор Количество 4 Компоненты гидравлической системы КПа бб б7 б4 б3 72 79 8 КПа б6 б7 б4 б3 72 79 8 КПа б6 б7 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б6 б7 б4 б4 б3 72 79 6 КПа б7 б7 б4 б4 б3 72 79 6 КПа б7 б7 б4 б4 б4 б3 72 79 6 КПа б7 б7 б4		Шаг ребер	•		MM		1			1,8			
Компоненты гидравлической системы Объем воды блока л 15 17 19 25 27 3 Вентилятор Номичество КПа 66 67 64 63 72 79 8 Вентилятор Количество 4 6		Лицевая стор	она		M ²	2,	46	2,11	2,46	2,46 3,02		2,11	
гидравлической системы Номинальный перепад давлений воды Охлаждение кПа 66 67 64 63 72 79 8 Вентилятор Количество 4 6 6 Расход воздуха Ном. воздуха м³/ мин 780 800 860 1.290		Катушки	Количество					4	4				8
Системы ый перепад давлений воды Вентилятор Количество Расход ном. м³/ 780 800 860 1.290 воздуха	Компоненты	Объем воды б	 блока		Л	1	5	17	19	25	27	39	42
Вентилятор Количество 4 6 Расход воздуха Ном. м³/ мин 800 860 1.290		ый перепад давлений	Охлаждение		кПа	66	67	64	63	72	79	83	85
Расход Ном. м³/ 780 800 860 1.290 воздуха	Вентилятор		I					4		(6		8
	·	Расход	Ном.			78	30	800	860	1.2	290	1.0	600
		Направление	подачи						Верти	кальн.		1	
Скорость об/ 880 900 970 мин		Скорость				88	30	900		970		9	00
Двигатель Выход W 500 600 700	Двигатель	Выход			ļ	50	00	600		700		6	00
вентилятора Количество 4 6	вентилятора	Количество					4	4		(6		8
Привод Прямая передача		Привод							Прямая	передача			
Уровень звуковой мощности Охлаждение Ном. дБ(A) 86 88 89 90	звуковой	Охлаждение	Ном.		дБ(А)	8	6	88	89	g	90	Ş)1

2 Технические характеристики

2-1 Технич	еские пара	метры			EWAQ080DAYN	EWAQ100DAYN	EWAQ130DAYN	EWAQ150DAYN	EWAQ180DAYN	EWAQ210DAYN	EWAQ240DAYN	EWAQ260DAYN
Компрессор	Тип						•	Спиральный	компрессор)		
	Количество				2	2	4	4	2	4	2	4
	Модель				SJ180	SJ240	SJ161	SJ ²	180	SJ	240	SJ300
	Скорость			об/	2.900							
		1		МИН								
	Масло	Объем заправ	ки	Л	6	7	3,3			6,7		
Компрессор 2	Модель				-		2	-	2	-		
						-		SJ240	-	SJ300	-	
	Скорость			об/	-				2.900	-	2.900	-
	Масло	Объем заправки л							6,7		6,7	
Рабочий	Сторона	Охлаждение	ки Мин.	л °CDB			-			-	0,7	-
диапазон	ВОДЫ	Охлаждение	Макс.	°CDB								
дишиооп	Сторона	Охлаждение	Мин.	°CDB								
	воздуха	Охлаждение	Макс.	°CDB	43							
Хладагент	Тип	I.			R-410A							
<u> </u>	Заправка кг			3	3	19	25	29	28	3	9	
	Регулировани	Регулирование					Электр	онный расш	ирительный	клапан		
	Контуры	Количество			1 2							
Масло хладагента	Тип				FVC68D							
Подсоединения	Вход / выход	водяного тепло	обменника		3" НАР,Д, 3"							3"
труб	Слив водяног	о теплообменни	іка		1/2"G							
Защитные	Оборудование	01			Реле высокого давления							
устройства		02			Клапан сброса давления							
		03			Защита низкого давления							
		04			Защита от замораживания							
		05			Реле протока							
		06			Устройство температурной защиты на выходе							
		07			Стандартный контроллер последовательности фаз							
		08			Электронные модули защиты компрессора (только для SJ180, SJ240)							
		09				Per	пе максимал	ьного для ко	мпрессоров	и вентилято	ООВ	

2 Технические характеристики

2-2 Электр	Электрические параметры				EWAQ100DAYN	EWAQ130DAYN	EWAQ150DAYN	EWAQ180DAYN	EWAQ210DAYN	EWAQ240DAYN	EWAQ260DAYN
Компрессор	Пусковой ток		Α	195	215	158	19	95	2	15	260
	Номинальный	й рабочий ток	Α	25	31	19	2	5	31		40
	Максимальнь	ій рабочий ток	Α	39	51	35	39 51			i1	65
	Способ запус	ка	•		•		Пря	мой			•
	Картерный на	агреватель	W	7	75 65				75		
Компрессор 2	Пусковой ток		Α			-		215	-	260	-
	Номинальный рабочий ток А		Α			-		31	-	40	-
	Максимальный рабочий ток А		Α			-		51	-	65	-
	Способ запуска					-		Прямой	-	Прямой	-
	Картерный нагреватель W					-		75	-	75	-
Электропитание	Фаза						3	~		•	•
	Частота Гц			50							
	The state of the s		V	400							
	Диапазон	Мин.	%	-10							
	напряжений Макс. %						1	0			
Блок	Пусковой ток А		201	221	161	199	2	21	26	66	
	Максимальный стартовый ток		Α	240	272	269	320	357	368	426	468
	Ток	Z макс.	Списо к		Требования отс-т						
	Номинальн ый рабочий ток	Охлаждение	A	60	72	88	113	131	144	162	181
	Максимальнь	ій рабочий ток	Α	96	120	160	177	209	233	262	290
		ые плавкие предохранители в со стандартом IEC 269-2		3 x 125gL	3 x 160gL	3 x 2	200gL	3 x 2	250gL	3 x 300gL	3 x 355gL
Вентиляторы	Способ запус	ка									I
·	Максимальнь	ій рабочий ток	Α	1,5 1,4			2,1 1,6			,6	
Цепь	Фаза		1	1							
управления	Частота		Гц	50							
	Напряжение		٧				230	(6)			
Цепь	Способ запуска Максимальный рабочий ток Фаза Частота		Гц	1	,5	1			1	,6	

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; стандарт: Eurovent
- (2) Охлаждение: температура воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; стандарт: Eurovent; Входная мощность компрессоры + вентиляторы + цепь управления
- (3) Минимально необходимый объем воды для стандартных установок термостата при номинальных условиях.
- (4) Начальный пусковой ток = максимальный рабочий ток 4 вентилятора + пусковой ток 1 компрессор
- (5) Максимальный пусковой ток = максимальный рабочий ток 4 вентилятора + максимальный рабочий ток 1 компрессор + пусковой ток 1 компрессор
- (6) Поставляются с трансформаторами, устанавливаемыми на месте
- (7) Рабочий диапазон см. в отдельных чертежах
- (8) Максимальный пусковой ток = максимальный рабочий ток 4 вентилятора + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор
- (9) Начальный пусковой ток = максимальный рабочий ток 3 вентилятора (1 контур) + пусковой ток 1 компрессор
- (10) Максимальный пусковой ток = максимальный рабочий ток 6 вентиляторов + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор
- (11) Максимальный пусковой ток = максимальный рабочий ток 8 вентиляторов + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор

EWAQ080-100DAYN

		ХАРАКТЕРИСТИК					
OPSP							
Блоки			EWAQ080DAYN	EWAQ100DAYN			
Macca	Дополнительная масса оборудования	КГ	250	0			
	Дополнительная эксплуатационная масса	КГ	283	3			
	Дополнительная масса-брутто	КГ	250	0			
Hacoc	Тип		Одноступенчатые мн	югорядные насосы			
	Количество		1				
	Производитель		Grund	dfos			
	Модель		TP50-2	240/2			
	Эффективность		85,9	%			
	Уровень эффективности		IE3	3			
	Номинальная скорость	об/мин	2890-2	2910			
	Блок номинальной постоянной высоты	кПа	142	133			
Части	Буферный резервуар	Л	-				
гидравлической	Объем воды для дополнительного блока	Л	33	.			
системы	Расширительный бак	Л	35				
	Давление предварительной зарядки расш. бака	бар	1,5				
	Предохранительный клапан	бар	3				
OPHP							
Блоки			EWAQ080DAYN	EWAQ100DAYN			
Hacoc	Тип		Одноступенчатые мн	югорядные насосы			
	Количество		1				
	Производитель		Grund				
	Модель		TP50-430/2				
	Эффективность		89,2%				
	Уровень эффективности		IE3				
	Номинальная скорость	об/мин	2920-2940				
ĺ	Блок номинальной постоянной высоты	кПа	337	322			

ا	JU
Одноступенчатые м	ногорядные насосы
1	1
Grur	ndfos
TP50-	-240/2
85,	9%
IE	3
2890-	-2910
142	133
19	90
22	23
3	5
1,	,5
3	3
OPTP	
EWAQ080DAYN	EWAQ100DAYN
Одноступенчатые м	ногорядные насосы
1	1
Grur	ndfos
TP50-	-240/2
85,	9%
IE	3
2890-	-2910
См. С	OPSP

EWAQ100DAYN

OPSP + OPBT EWAQ080DAYN

3TW57571-1E

EWAQ080-100DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК				
OPSP / OPTP							
Блоки			EWAQ080DAYN	EWAQ100DAYN			
Стандартный насос	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	2,2				
	Максимальный рабочий ток	A	4,5				
	Пусковой ток	A	42				
OPHP							
Блоки			EWAQ080DAYN	EWAQ100DAYN			
Hacoc высокого ESP	Способ запуска		Прямой пусн	от сети			
	Номинальная мощность сети	кВт	5,5				
	Максимальный рабочий ток	Α	11,2				
	Пусковой ток	Α	131				
OP10							
Блоки			EWAQ080DAYN	EWAQ100DAYN			
Пенточный	Напряжение питания	В	230+/-1	0%			
нагреватель	Рекомендуемые плавкие предохранители	A	2x10				
	Мощность стандартной модели	Вт	1x300				
	Мощность модели с насосом	Вт	2x300				
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 + 1x150				

3TW57571-1E

3 - 1 Опции

EWAQ130-150DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИХ	(ХАРАКТЕРИСТИК				
OPSP					OPSP+	OPBT		
Блоки			EWAQ130DAYN	EWAQ150DAYN	1 🗆	EWAQ130DAYN	EWAQ150DAYN	
Macca	Дополнительная масса оборудования	КГ	25	0		30	0	
	Дополнительная эксплуатационная масса	КГ	28	6		526		
	Дополнительная масса-брутто	КГ	25	0		300		
Hacoc	Тип		Одноступенчатые м	ногорядные насосы		Одноступенчатые м	ногорядные насосы	
	Количество		1			1		
	Производитель		Grun	dfos		Grun	dfos	
	Модель		TP65-	230/2		TP65-	230/2	
	Эффективность		87,	1%		87,	1%	
	Уровень эффективности		IE			IE		
	Номинальная скорость	об/мин	2900-2920			2900-2920		
	Блок номинальной постоянной высоты	кПа	134	126		134	126	
Части	Буферный резервуар	Л	-			19	0	
гидравлической	Объем воды для дополнительного блока	Л	30	3		226		
системы	Расширительный бак	Л	3	5		35		
	Давление предварительной зарядки расш. бака	бар	1,	5		1,5		
	Предохранительный клапан	бар	3			3		
OPHP					OPTP			
Блоки			EWAQ130DAYN	EWAQ150DAYN		EWAQ130DAYN	EWAQ150DAYN	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы		Одноступенчатые м	ногорядные насосы	
	Количество		1			1		
	Производитель		Grun			Grun		
	Модель		TP65-			TPD65		
	Эффективность		89.2%			87,1%		
	Уровень эффективности		IE3			IE3		
		об/мин	2920-			2900-2920		
	Блок номинальной постоянной высоты	кПа	253	248		Cm. OPSP		

3TW57591-1D

EWAQ130-150DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК				
OPSP / OPTP							
Блоки			EWAQ130DAYN EWAQ15				
Стандартный насос	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	3				
	Максимальный рабочий ток	A	6,3				
	Пусковой ток	A	58				
OPHP							
Блоки			EWAQ130DAYN	EWAQ150DAYN			
Hacoc высокого ESP	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	5,5				
	Максимальный рабочий ток	Α	11,2 131				
	Пусковой ток	A					
OP10							
Блоки			EWAQ130DAYN	EWAQ150DAYN			
Ленточный	Напряжение питания	В	230+/-10	0%			
нагреватель	Рекомендуемые плавкие предохранители	A	2x10				
	Мощность стандартной модели	Вт	1x300				
	Мощность модели с насосом	Вт	2x300				
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 + 1x150				

3TW57591-1D

3 - 1 Опции

EWAQ180-210DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИ	Х ХАРАКТЕРИСТИК			
OPSP				7770 7111 710 7711	OPSP + OPBT		
Блоки			EWAQ180DAYN	EWAQ210DAYN	EWAQ180DAYN	EWAQ210DAYN	
Macca	Дополнительная масса оборудования	КГ	2	50	300		
	Дополнительная эксплуатационная масса	КГ	2	86	5	526	
	Дополнительная масса-брутто	КГ	2	50	3	800	
Hacoc	Тип		Одноступенчатые м	іногорядные насосы	Одноступенчатые і	иногорядные насосы	
	Количество			1		1	
	Производитель		Grui	ndfos	Gru	ndfos	
	Модель		TP65	-260/2	TP65	5-260/2	
	Эффективность		88	1%	88	1,1%	
	Уровень эффективности			3		E3	
	Номинальная скорость	об/мин		-2940)-2940	
	Блок номинальной постоянной высоты	кПа	142	120	142	120	
Части	Буферный резервуар	Л		-		90	
гидравлической	Объем воды для дополнительного блока	Л		6	226		
системы	Расширительный бак	Л	3	5		35	
	Давление предварительной зарядки расш. бака бар		1	,5	1,5		
	Предохранительный клапан	бар		3	3		
OPHP					OPTP		
Блоки			EWAQ180DAYN	EWAQ210DAYN	EWAQ180DAYN	EWAQ210DAYN	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	Одноступенчатые і	иногорядные насосы	
	Количество			1		1	
	Производитель			ndfos		ndfos	
	Модель		TP65	-410/2	TPD6	5-260/2	
	Эффективность			4%		3,1%	
	Уровень эффективности		IE	3	IE3		
	Номинальная скорость	об/мин		-2920	2920-2940		
	Блок номинальной постоянной высоты	кПа	296	278	См.	OPSP	

3TW57611-1D

EWAQ180-210DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК				
OPSP / OPTP							
Блоки			EWAQ180DAYN EWAQ210D				
Стандартный насос	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	4				
	Максимальный рабочий ток	A	8				
	Пусковой ток	A	98				
OPHP							
Блоки			EWAQ180DAYN	EWAQ210DAYN			
Hacoc высокого ESP	Способ запуска		Прямой пус	к от сети			
	Номинальная мощность сети	кВт	7,5				
	Максимальный рабочий ток	Α	15,2				
	Пусковой ток	A	169				
OP10							
Блоки			EWAQ180DAYN	EWAQ210DAYN			
Пенточный	Напряжение питания	В	230+/-1	10%			
нагреватель	Рекомендуемые плавкие предохранители	A	2x10				
	Мощность стандартной модели	Вт	1x300				
	Мощность модели с насосом	Вт	2x300				
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 +	1x150			

3TW57611-1D

3 - 1 Опции

EWAQ240-260DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИ	Х ХАРАКТЕРИСТИК			
OPSP					OPSP + OPBT		
Блоки			EWAQ240DAYN	EWAQ260DAYN	EWAQ240DAYN	EWAQ260DAYN	
Macca	Дополнительная масса оборудования	КГ	2	50	1	300	
	Дополнительная эксплуатационная масса	КГ	2	71		511	
	Дополнительная масса-брутто	КГ	2	50		300	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	Одноступенчатые	многорядные насосы	
	Количество			1		1	
	Производитель		Grui	ndfos	Gr	undfos	
	Модель		TP65	-260/2	TP6	5-260/2	
	Эффективность		88	1%	8	8,1%	
	Уровень эффективности		IE	3		IE3	
	Номинальная скорость	об/мин	2920	-2940	2920-2940		
	Блок номинальной постоянной высоты	кПа	126	117	126	117	
Части	Буферный резервуар	Л		-		190	
гидравлической	Объем воды для дополнительного блока	Л	2	1		211	
системы	Расширительный бак	Л	5	i0		50	
	Давление предварительной зарядки расш. бака	бар	1	,5	1,5		
	Предохранительный клапан	бар		3		3	
OPHP					OPTP		
Блоки			EWAQ240DAYN	EWAQ260DAYN	EWAQ240DAYN	EWAQ260DAYN	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	Одноступенчатые	многорядные насосы	
	Количество			1		1	
	Производитель		Grui	ndfos	Gr	undfos	
	Модель		TP65	-410/2	TPD	65-260/2	
	Эффективность			4%	88,1%		
	Уровень эффективности		IE	E3	IE3		
	Номинальная скорость	об/мин	2910	-2920	2920-2940		
	Блок номинальной постоянной высоты	кПа	288	280	См	. OPSP	

3TW57631-1C

EWAQ240-260DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК				
OPSP / OPTP							
Блоки			EWAQ240DAYN	EWAQ260DAYN			
Стандартный насос	Способ запуска		Прямой пус	к от сети			
	Номинальная мощность сети	кВт	4				
	Максимальный рабочий ток	A	8				
	Пусковой ток	A	98				
OPHP							
Блоки			EWAQ240DAYN	EWAQ260DAYN			
Hacoc высокого ESP	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	7,5	i			
	Максимальный рабочий ток	Α	15,	2			
	Пусковой ток	A	169	9			
OP10							
Блоки			EWAQ240DAYN	EWAQ260DAYN			
Ленточный	Напряжение питания	В	230+/-	10%			
нагреватель	Рекомендуемые плавкие предохранители	A	2x1	0			
	Мощность стандартной модели	Вт	1x30	00			
	Мощность модели с насосом	Вт	2x30	00			
ı	Мощность модели с насосом и буферным резервуаром	Вт	2x300 +	1x150			

3TW57631-1C

3 - 1 Опции

Дополнительное оборудование для EWAQ-DAYN

Мощность: 080-260 kW

EWAQ150DAYNN EWAQ180DAYNN EWAQ210DAYNN EWAQ080DAYNN EWAQ100DAYNN EWAQ130DAYNN EWAQ240DAYNN EWAQ260DAYNN

Номер			Наличие							
дополнительной функции	Описание дополнительных функций	080	100	130	150	180	210	240	260	наличие
	Стандартный блок	0	0	0	0	0	0	0	0	
OPSC	Контактор для одного насоса	0	0	0	0	0	0	0	0	Заводской монтаж
OPTC	Контактор для двух насосов	0	0	0	0	0	0	0	0	Заводской монтаж
OPSP	Один насос	0	0	0	0	0	0	0	0	Заводской монтаж
OPTP	Два насоса (1 корпус насосов, два двигателя)	0	0	0	0	0	0	0	0	Заводской монтаж
OPHP	высоконапорный насос (только один насос)	0	0	0	0	0	0	0	0	Заводской монтаж
OPBT	Накопительный бак	0	0	0	0	0	0	0	0	Заводской монтаж
OPIF	Инверторные вентиляторы для низких температур наружного воздуха (-15 °C)	0	0	0	0	0	0	0	0	Заводской монтаж
OPZL	Гликоль 0°C/-10°C	0	0	0	0	0	0	0	0	Заводской монтаж
OP03	Двойной перепускной клапан	0	0	0	0	0	0	0	0	Заводской монтаж
OP10	ленточный нагреватель испарителя	0	0	0	0	0	0	0	0	Заводской монтаж
OP12	дополнительные клапаны (на стороне нагнетания, на линии для жидкости и запорный клапан на всасывании)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	Заводской монтаж
OP57	Амперметр, вольтметр	0	0	0	0	0	0	0	0	Заводской монтаж
OPLN	Низкий уровень шума = 0PIF + корпус компрессора	0	0	0	0	0	0	0	0	Заводской монтаж
OPCG	Защитные решетки конденсатора	0	0	0	0	0	0	0	0	Заводской монтаж
	Поставляемые комплекты									
EKLONPG	Межсетевой интерфейс для L0№	0	0	0	0	0	0	0	0	Комплект
EKBNPG	Межсетевой интерфейс для BACNET*	0	0	0	0	0	0	0	0	Комплект
EKACPG	Адресная карта, включая	0	0	0	0	0	0	0	0	Комплект
	Система конфигурации чиллеров Daikin (DICN)									
	Последовательный канал связи (Modbus)									
EKRUPG	дистанционный интерфейс пользователя	0	0	0	0	0	0	0	0	Комплект
EKGN210	Комплект водопровода	0	0	0	0	0	0	-	-	Комплект
EKGN260	Комплект водопровода	-	-	-	-	-	-	0	0	Комплект


Примечания

Для установки EKLONPG м EKBNPG => на блок требуется установить EKACPG. За руководством по проектированию EKLONPG и EKBNPG обратитесь к своему дилеру.

Имеется
Не имеется в наличии
дополнительное оборудование, требуемое в соответствии с национальным законодательством Швеции SNFS1992:16 (S)

3TW57579-8B

3 - 1 Опции

СТАНПАРТ

4 Таблицы производительности

Таблицы холодопроизводительности

EWAQ-DAYN

						СТАНД	<u> IAPT</u>						
Tout) (°C)	l 2	20	1 2	25	1 3	30	3	5	I /	-0	Ι /	-3
LWE	Размер	CC	PI	CC	PI	CC	PI	CC	PI	CC	PI	CC	PI
LVVL	080	83,6	20,3	79,9	22,0	76,2	23,9	72,2	26,1	67,9	28,5	65,2	30,2
	100	110	27.0	105	29,5	100	32,3	94,9	35,5	89.0	39,0	85,2	41,4
i	130	138	34,8	132	38.0	126	41,5	119	45,5	111	49,9	106	52,9
i	150	164	42,2	156	46,1	147	50,5	138	55,4	128	60,9	122	64,5
4	180	191	48,5	183	52,9	174	57,9	164	63,4	154	69,7	148	73,8
i	210	225	56,8	214	61,4	203	66,6	191	73,1	178	80,4	169	85,2
i	240	252	62,4	240	68,0	228	74,3	215	81,3	201	89,1	191	94,3
	260	267	71,3	256	77,6	244	84,6	230	92,3	215	101	206	107
	080	92,3	20,6	88,4	22,3	84,4	24,3	80,0	26,4	75,3	28,9	72,3	30,5
İ	100	122	27,7	117	30,2	111	33,0	105	36,2	98,4	39,7	94,2	42,1
	130	153	35,8	146	39,1	139	42,6	131	46,6	123	51,0	117	54,0
	150	180	43,2	171	47,1	162	51,5	152	56,3	141	62,0	134	65,6
7	180	211	49,5	202	54,0	192	58,9	182	64,5	171	70,8	163	74,9
l	210	246	58,2	234	62,8	222	68,0	209	74,6	195	81,9	186	86,7
	240	276	63,7	264	69,4	251	75,7	236	82,8	220	90,7	210	95,9
	260	295	72,7	282	79,1	269	86,2	254	94,0	237	103	227	108
	080	102	20,9	97,6	22,7	93,2	24,6	88,4	26,8	83,3	29,3	80,0	30,9
İ	100	134	28,5	128	31,0	122	33,8	116	36,9	108	40,5	104	42,8
İ	130	168	36,9	161	40,2	153	43,8	144	47,8	135	52,2	129	55,2
l	150	198	44,3	188	48,3	178	52,7	167	57,7	155	63,3	147	66,9
10	180	233	50,7	223	55,1	212	60,1	201	65,7	188	72,0	180	76,1
ĺ	210	269	59,8	256	64,4	243	69,6	228	76,2	213	83,5	203	88,3
	240	303	65,3	289	71,0	275	77,3	259	84,5	241	92,4	230	97,6
ĺ	260	325	74,3	311	80,8	296	87,9	279	95,9	261	105	249	110
	080	112	21,3	108	23,1	103	25,1	97,5	27,3	91,8	29,7	88,2	31,3
	100	147	29,4	141	31,8	134	34,6	127	37,8	119	41,3	114	43,6
	130	185	38,1	177	41,5	168	45,1	158	49,0	148	53,5	141	56,5
13	150	216	45,4	206	49,5	194	54,1	182	59,1	169	64,7	161	68,4
13	180	256	52,0	245	56,4	233	61,4	221	67,0	207	73,3	198	77,5
	210	293	61,7	279	66,2	265	71,4	249	77,9	232	85,3	221	90,1
	240	331	67,0	317	72,7	300	79,1	283	86,3	264	94,2	252	99,4
	260	356	76,1	341	82,6	325	89,8	306	97,8	286	107	273	112
	080	123	21,7	118	23,5	113	25,5	107	27,7	101	30,2	96,9	31,8
l	100	161	30,4	154	32,8	147	35,5	139	38,7	130	42,2	125	44,5
	130	203	39,4	193	42,7	184	46,4	173	50,4	161	54,9	154	57,9
16	150	235	46,7	224	50,9	211	55,5	198	60,6	184	66,3	96	32,4
l '`	180	281	53,4	269	57,9	256	62,9	242	68,5	227	74,8	217	79,0
	210	318	63,7	304	68,2	288	73,3	271	79,9	252	87,2	241	92,0
	240	362	68,9	345	74,7	328	81,1	309	88,3	288	96,2	275	101,4
	260	390	78,0	373	84,6	355	91,9	335	99,9	313	109	299	115
	080	139	22,4	133	24,2	127	26,2	121	28,5	114	30,9	59,8	15,1
	100	180	31,8	173	34,2	164	36,9	155	40,0	146	43,5	76,5	21,3
l	130	227	41,1	217	44,5	206	48,3	193	52,3	180	56,9	94,2	27,8
20	150	262	48,6	249	52,9	235	57,7	220	62,9	204	68,6	106	33,5
	180 210	315 354	55,6 66,7	302 338	60,1 71,2	287 320	65,1	271 301	70,7 82,8	254 281	77,1	133 147	37,7 44,0
		405					76,2				90,1		
	240 260	405	71,8	386 419	77,6	366 398	84,0	345	91,2	322 350	99,2 112	168 183	48,5
	260	438	80,8	419	87,5	398	94,9	375	103	350	112	183	54,7

ОБОЗНАЧЕНИЯ

: Мощность охлаждения (кВт) : Входная мощность (кВт)

: Температура вытекающей воды из испарителя (°C)

Tamb : Температура окружающей среды (°C)

ПРИМЕЧАНИЯ

1. Мощность охлаждения (кВт)

Показатель согласно стандарту Eurovent 6/C/003-2006, действителен для охлажденной воды в диапазоне Dt = 3 - 8°C

2. Входная мощность (кВт)

Входная мощность является полной мощностью согласно стандарту Eurovent 6/C/003-2006: Компрессор + вентиляторы + схема управления

3. Для блоков с интегрированным тепловым насосом

Значения СС умножаются на 0,99, чтобы компенсировать входное тепло насоса

4. Дополнительное ESP может быть добавлено к показателю на выходе вентиляторов Необходимо учитывать влияние следующих факторов на рабочие характеристики

ESP CC % (Па) 25 99 101 50 98 103 75 105

ESP = Внешнее статическое давление при номинальном воздушном потоке в блоке.

3TW57572-1D

4 Таблицы производительности

4 - 1 Таблицы холодопроизводительности

EWAQ-DAYN

	OPZL												
Тамһ	(°C)	2	0	2	5		30	3	5	4	.0	4	3
LWE	Размер	CC	PI	CC	PI	CC	PI	CC	PI	CC	PI	CC	PI
	080	52,8	19,2	49.7	21,0	46,7	23,0	43,8	25,2	40,7	27,8		
	100	67,7	24,8	64,3	27,3	60,9	30.0	57,3	33,0	53,6	36,4		
	130	88,1	31,0	83,8	34,1	79,4	37,6	74,6	41,6	69,5	46,1		
	150	100	38,7	93,6	42,6	87,7	46,9	81,8	51,8	75,6	57,4		
-10	180	117	45,2	111	49,6	105	54,4	98,2	59,9	91,6	66,1		
	210	143	51,9	136	56,5	128	61,5	120	67,7	111	74,7		
	240	163	57,7	155	63,0	146	69,0	137	75,7	127	83,2		
	260	170	66,1	162	72,0	153	78,6	144	86,0	134	94		
	080	58,0	19,4	54,9	21,2	51,9	23,1	48,8	25,3	45,6	27,8		
	100	75,2	25,2	71,6	27,7	67,9	30,4	64,0	33,5	59,9	36,9		
	130	96,7	31,6	92,2	34,8	87,5	38,3	82,4	42,2	76,9	46,8		
_	150	111	39,3	105	43,1	99,0	47,4	92,5	52,3	85,8	57,8		
-7	180	130	45,7	123	50,1	117	55,0	110	60,5	103	66,7		
	210	158	52,7	150	57,3	142	62,4	133	68,8	124	75,8		
	240	179	58,5	170	63,9	161	70,0	151	76,8	141	84,4		
	260	187	67,1	178	73,0	169	79,7	160	87,2	149	96		
	080	61,9	19,5	58,8	21,3	55,7	23,2	52,5	25,4	49,1	27,9	47.0	29,5
	100	80,6	25,4	76,8	27,9	73,0	30,7	68,9	33,8	64,5	37,3	61,7	39,6
	130	103	32,1	98,3	35,3	93,4	38,8	88,1	42,7	82,3	47,2	78,5	50,3
-	150	133	39,7	113	43,5	107	47,8	100	52,7	92,9	58,2	88,3	61,8
-5	180	140	46,1	133	50,5	126	55,4	119	60,9	111	67,1	106	71,2
	210	169	53,3	161	58,0	152	63,1	142	69,5	132	76,6	126	81,3
	240	190	59,1	181	64,6	172	70,7	161	77,5	150	85,2	143	90,2
	260	199	67,7	190	73,7	181	80,5	171	88,0	159	96	152	102
	080	68,4	19,7	65,1	21,5	61,8	23,4	58,4	25,6	54,8	28,1	52,6	29,7
	100	89,6	25,9	85,5	28,4	81,3	31,2	76,8	34,3	72,0	37,8	68,9	40,1
	130	113	32,9	108	36,1	103	39,6	97,3	43,5	91,0	48.0	86,9	51,0
2	150	133	40,4	127	44,3	119	48,5	112	53,4	104	58,9	99,0	62,5
-2	180	155	46,8	148	51,2	140	56,1	133	61,7	124	67,9	119	72,0
	210	186	54,3	177	59,0	167	64,1	157	70,6	146	77,8	140	82,5
	240	209	60,0	199	65,6	189	71,8	178	78,7	166	86,4	158	91,5
	260	219	68,8	210	74,9	200	81,7	189	89,3	176	98	168	103
	080	78,1	20,1	74,7	21,8	71,1	23,8	67,3	25,9	63,3	28,4	60,8	30.0
	100	103	26,6	98,4	29,1	93,6	31,9	88,5	35,1	83,0	38,6	79,5	40,9
	130	129	34,1	124	37,3	118	40,8	111	44,8	104	49,2	99,3	52,2
,	150	153	41,5	145	45,4	138	49,7	129	54,5	120	60,0	114	63,7
2	180	178	47,9	170	52,3	162	57,2	153	62,8	144	69,0	137	73,1
	210	211	55,9	201	60,5	190	65,7	179	72,2	167	79,5	159	84,3
	240	236	61,5	226	67,1	214	73,4	202	80,4	188	88,2	180	93,3
	260	250	70,4	240	76,6	228	83,5	216	91,3	202	100	192	106

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (кВт) РІ : Входная мощность (кВт)

LWE : Температура вытекающей воды из испарителя (°C)

Tamb : Температура окружающей среды (°C)

ПРИМЕЧАНИЯ

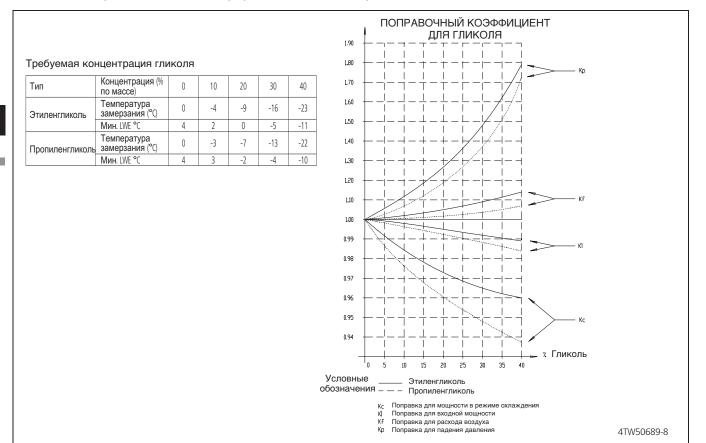
1. Мощность охлаждения (кВт)

Показатель согласно стандарту Eurovent 6/C/003-2006, действителен для охлажденной воды в диапазоне Dt = 3 - 8°C

2. Входная мощность (кВт)

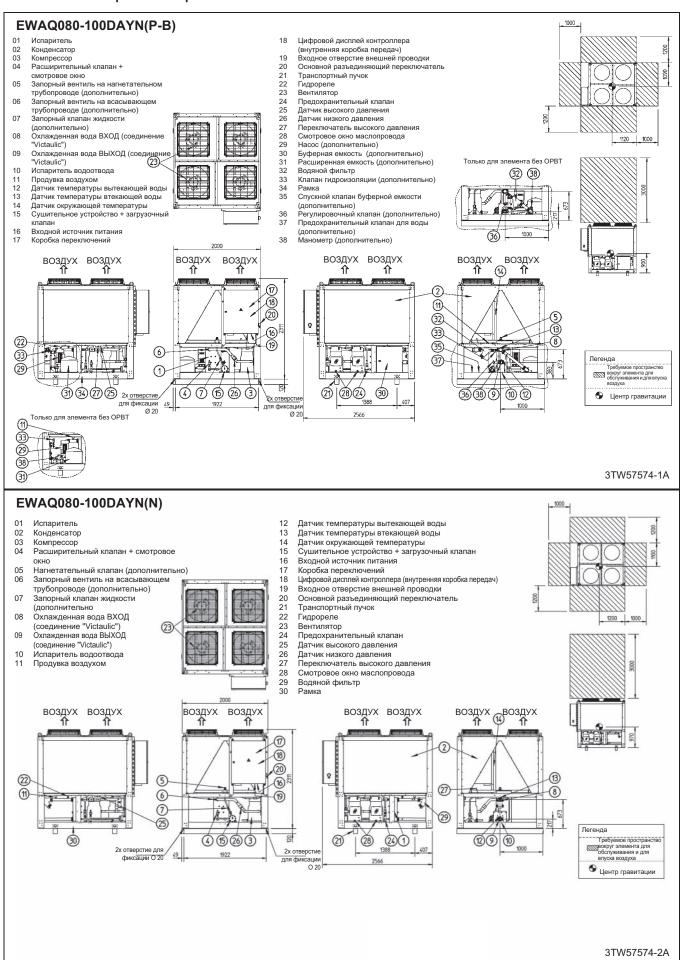
Входная мощность является полной мощностью согласно стандарту Eurovent 6/C/003-2006: Компрессор + вентиляторы + схема управления

3. Для блоков с интегрированным тепловым насосом


Значения СС умножаются на 0,99, чтобы компенсировать входное тепло насоса

4. Использование глюколя и других антифризов

Коэффициенты корректировки для СС и РІ применяются согласно типа и концентрации используемого антифриза

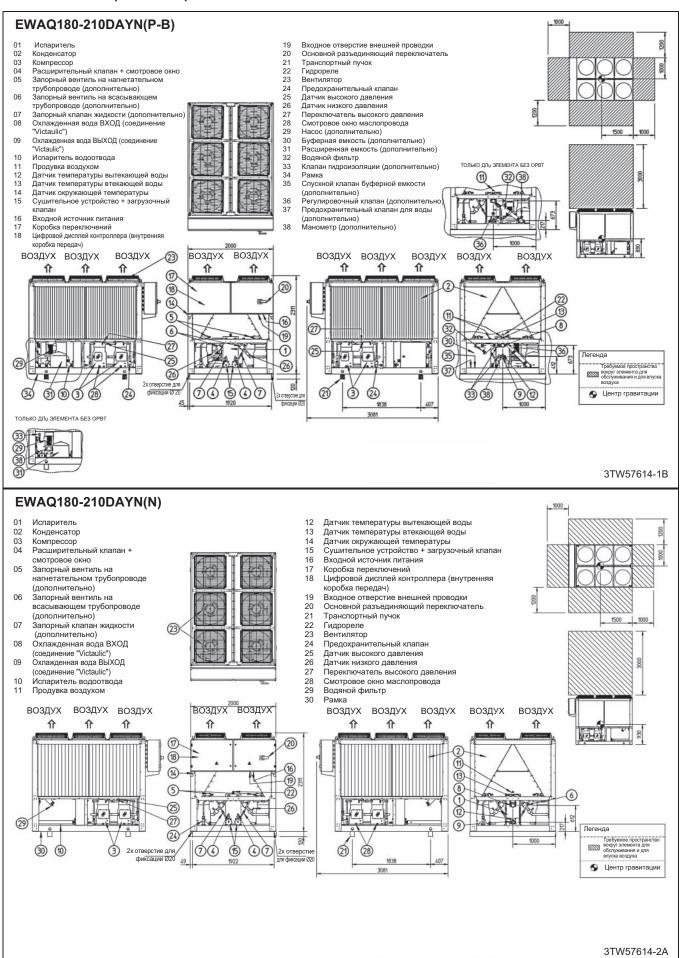

3TW57572-1D

4 - 2 Поправочный коэффициент для производительности

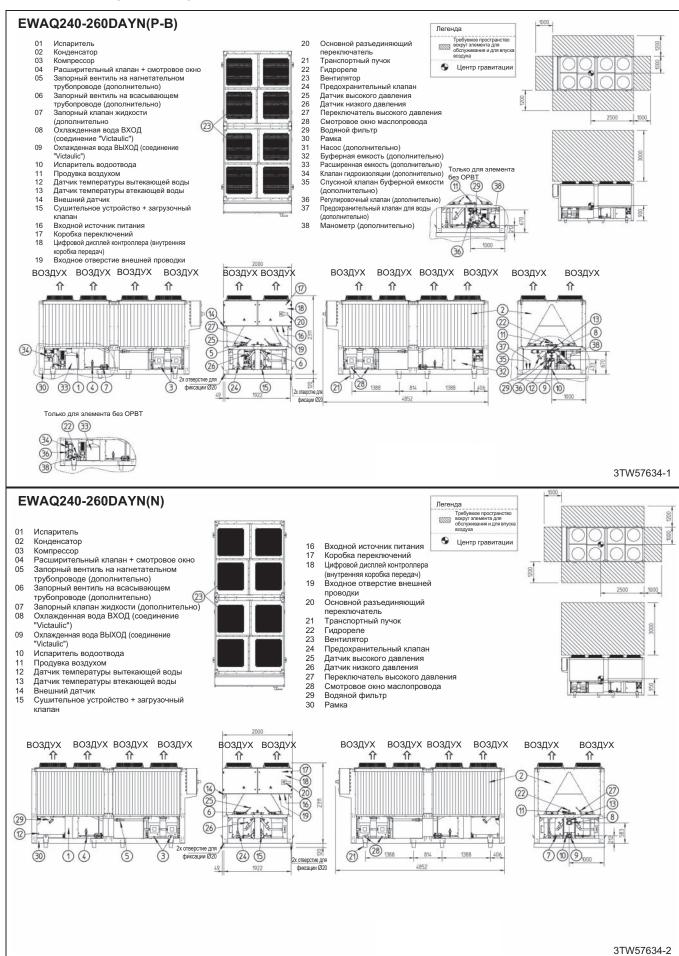
5 Размерные чертежи

5 - 1 Размерные чертежи

5 - 1 Размерные чертежи

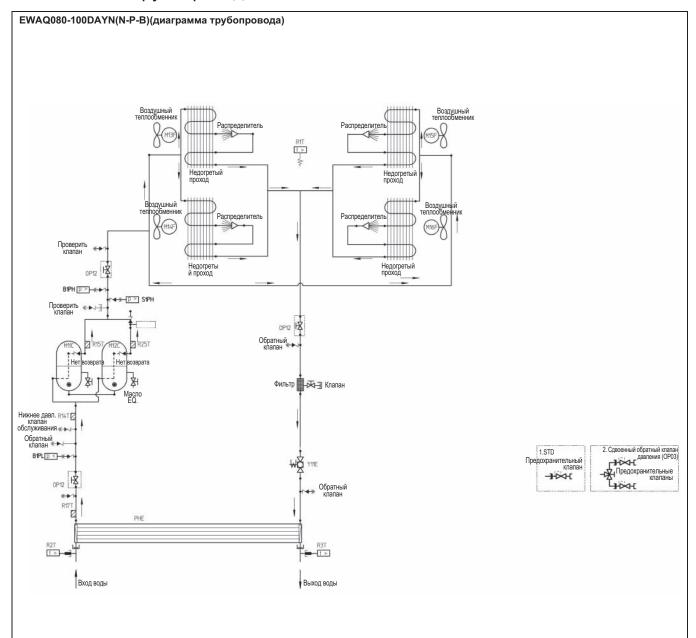

1000 EWAQ130-150DAYN(P-B) Испаритель Входное отверстие внешней проводки Конденсатор Основной разъединяющий переключатель 03 04 05 Компрессор Расширительный клапан + смотровое окно Цифровой дисплей контроллера (внутренняя 1000 коробка передач) Входное отверстие внешней проводки Запорный вентиль на нагнетательном трубопроводе (дополнительно) Запорный вентиль на всасывающем 20 21 22 Основной разъединяющий переключатель Транспортный пучок . Гидрореле трубопроводе (дополнительно) Запорный клапан жидкости (дополнительно) Охлажденная вода ВХОД (соединение "Victaulic") 23 24 25 Вентилятор Предохранительный клапан Предохранительный клапан Датчик высокого давления Охлажденная вода ВЫХОД (соединение "Victaulic") 26 27 28 Датчик низкого давления
Переключатель высокого давления 38 лля волы (дополнительно) Манометр (дополнительно) Смотровое окно маслопровода Испаритель водоотвода Продувка воздухом Датчик температуры вытекающей воды Датчик температуры втекающей воды 29 Насос (дополнительно) Буферная емкость (дополнительно) Расширенная емкость (дополнительно) ТОЛЬКО ДЛЏ ЭЛЕМЕНТА БЕЗ ОРВТ Датчик окружающей температуры Сушительное устройство + загрузочный клапан Водяной фильтр Клапан гидроизоляции (дополнительно) Рамка 32 33 34 Спускной клапан буферной емкости Входной источник питания 35 (дополнительно) Регулировочный клапан (дополнитель Коробка переключений Цифровой дисплей контроллера воздух (внутренняя коробка передач) воздух воздух воздух воздух воздух воздух воздух 11 1 17 介 ⇑ 介 ⇑ 17 (18) (14) 14) 11 (3) 16) (8) (32) 27) (6) (19) (30) 25) 27 1 35) 25) 26) (37) (26) 3 3 2 24 20 70607 3330000 Центр гравитации 3TW57594-1B EWAQ130-150DAYN(N) Датчик окружающей температуры Сушительное устройство + загрузочный клапан Испаритель 02 Конденсатор 0.3 Компрессор 16 17 Входной источник питания Расширительный клапан + смотровое окно Коробка переключений 05 Запорный вентиль на нагнетательном трубопроводе (дополнительно) 18 Цифровой дисплей контроллера (внутренняя коробка передач) 06 Входное отверстие внешней проводки Основной разъединяющий переключатель Запорный вентиль на всасывающем трубопроводе (дополнительно) 20 21 22 23 24 25 26 27 28 Запорный клапан жидкости (дополнительно) Транспортный пучок Гидрореле 07 Охлажденная вода ВХОД (соединение "Victaulic") Охлажденная вода ВЫХОД 08 Вентилятор . Предохранительный клапан 09 Датчик высокого давления (соединение "Victaulic") Датчик низкого давления Переключатель высокого давления Смотровое окно маслопровода Испаритель водоотвода Продувка воздухом 29 30 Датчик температуры вытекающей воды Водяной фильтр Датчик температуры втекающей воды ВОЗДУХ ВОЗДУХ воздух воздух воздух воздух воздух воздух 1 11 ⇑ 17 1 17 (18) (20) (B) (B) (T) 16 19 (12) 70 40 (28) 29 2х отверсти Центр гравитации 1388

1


3TW57594-2A

5 Размерные чертежи

5 - 1 Размерные чертежи

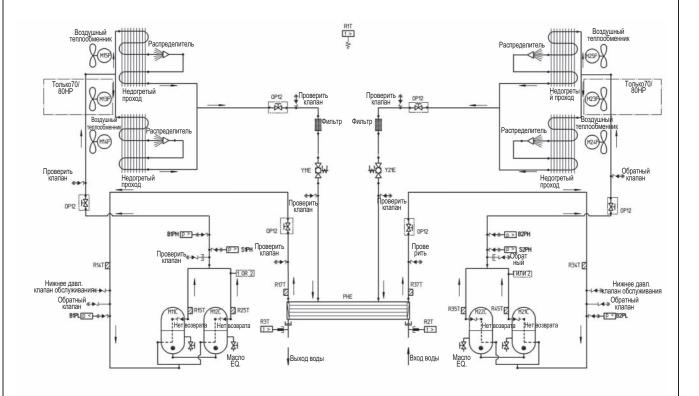

5 - 1 Размерные чертежи

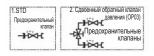
1

6 Схемы трубопроводов

6 - 1 Схемы трубопроводов

Марка	Обозначение		
M11-12C	компрессорные моторы	B1PH	Датчик высокого давления
M13-16F	Моторы вентиляторов	B1PL	Датчик низкого давления
R14T	Датчик температуры всасывания	Y11E	Электронный расширительный клапан охлаждения
R17T	Датчик температуры трубы хладагента	R1T	Датчик окружающей температуры
S1PH	Переключатель высокого давления	R2T	Датчик температуры воды на входе испарителя
R15T, R25T	Датчик температуры нагнетания	R3T	Датчик температуры воды на выходе из испарителя

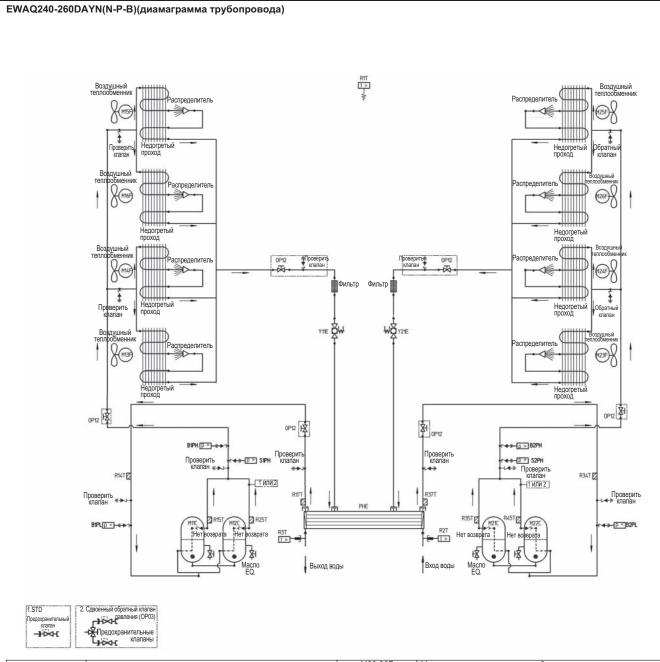

←▶ ↓	: Обратный клапан	-] E-	: Фланцевое соедин.
	: Расширенное соедин.	X	: Суженная труба
_]	: Винтовое соединение	\rightarrow	: Вращающаяся труба


3TW57575-1

6 - 1 Схемы трубопроводов

о - г Схемы грусопроводов

EWAQ130-210DAYN(N-P-B)(диаграмма трубопровода)

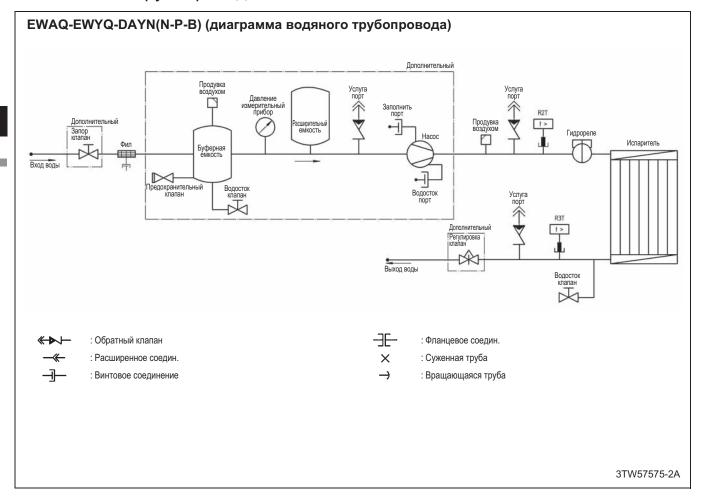

Марка	Обозначение	M23-25F	Моторы вентиляторов контура 2
M11-12C	Компрессорные моторы контура 1	R34T	Датчик температуры всасывания контур 2
M13-15F	Моторы вентиляторов контура 1	R37T	Датчик температуры трубы хладагента контур 2
R14T	Датчик температуры всасывания контур 1	S2PH	Датчик высокого давления контура 2
R17T	Датчик температуры трубы хладагента контур 1	R35T, R35T	Датчик температуры нагнетания контур 2
S1PH	Датчик высокого давления контура 1	B2PH	Датчик высокого давления контура 2
R15T, R25T	Датчик температуры нагнетания контур 1	B2PL	Датчик низкого давления контура 2
B1PH	Датчик высокого давления контура 1	Y21E	Электронный расширительный клапан охлаждения контур 2
B1PL	Датчик низкого давления контура 1	R1T	Датчик окружающей температуры
Y11E	Электронный расширительный клапан охлаждения контур 1	R2T	Датчик температуры воды на входе испарителя
M21-22C	Компрессорные моторы контура 2	R3T	Датчик температуры воды на выходе из испарителя
			-

: Обратный клапан
 : Фланцевое соедин
 : Расширенное соедин
 : Винтовое соединение
 : Вращающаяся труба
 : Вращающаяся труба

2TW57595-1

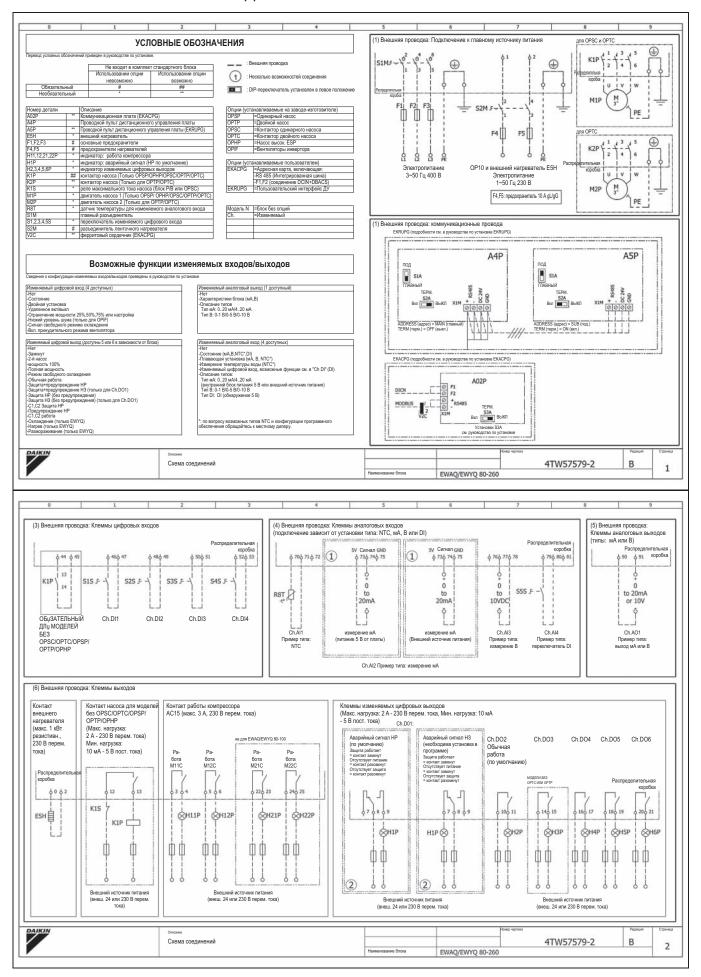
6 Схемы трубопроводов

6 - 1 Схемы трубопроводов


Обозначение	M23-26F	Моторы вентиляторов контура 2
Компрессорные моторы контура 1	R34T	Датчик температуры всасывания контур 2
Моторы вентиляторов контура 1	R37T	Датчик температуры трубы хладагента контур 2
Датчик температуры всасывания контур 1	S2PH	Датчик высокого давления контура 2
Датчик температуры трубы хладагента контур 1	R35T, R35T	Датчик температуры нагнетания контур 2
Датчик высокого давления контура 1	B2PH	Датчик высокого давления контура 2
Датчик температуры нагнетания контур 1	B2PL	Датчик низкого давления контура 2
Датчик высокого давления контура 1	Y21E	Электронный расширительный клапан охлаждения контур 2
Датчик низкого давления контура 1	R1T	Датчик окружающей температуры
Электронный расширительный клапан охлаждения контур 1	R2T	Датчик температуры воды на входе испарителя
Компрессорные моторы контура 2	R3T	Датчик температуры воды на выходе из испарителя
	Компрессорные моторы контура 1 Моторы вентиляторов контура 1 Датчик температуры всасывания контур 1 Датчик температуры трубы хладагента контур 1 Датчик высокого давления контура 1 Датчик температуры нагнетания контур 1 Датчик высокого давления контура 1 Датчик низкого давления контура 1 Датчик низкого давления контура 1 Электронный расширительный клапан охлаждения контур 1	Компрессорные моторы контура 1 R34T Моторы вентиляторов контура 1 R37T Датчик температуры всасывания контур 1 S2PH Датчик температуры трубы хладагента контур 1 R35T, R35T Датчик высокого давления контура 1 B2PH Датчик температуры нагнетания контур 1 B2PL Датчик температуры нагнетания контур 1 Y21E Датчик низкого давления контура 1 R1T Электронный расширительный клапан охлаждения контур 1 R2T

$\longleftarrow\!$: Обратный клапан	3E-	: Фланцевое соедин
	: Расширенное соедин	×	: Суженная труба
_]_	: Винтовое соединение	\rightarrow	: Вращающаяся труба

2TW57635-1


6 Схемы трубопроводов

6 - 1 Схемы трубопроводов

7 Схемы внешних соединений

7 - 1 Схемы внешних соединений

8 Данные об уровне шума

8 - 1 Спектр звуковой мощности

EWAQ-EWYQ-DAYN(N-P-B)

STD - 2 блока			Мощнос	ть звука L	.w на окта	ву (dBA)			Bcero (dBA)
LWE= 7°C / Tamb = 35°C	63	125	250	500	1000	2000	4000	8000	LwA
EW(A/Y)Q080DAYN*	64	69	72	82	81	77	71	62	86
EW(A/Y)Q100DAYN*	62	66	71	79	82	80	74	64	86
EW(A/Y)Q130DAYN*	64	70	73	81	85	80	72	61	88
EW(A/Y)Q150DAYN*	65	74	75	85	84	80	74	65	89
EW(A/Y)Q180DAYN*	70	75	79	85	86	82	75	64	90
EW(A/Y)Q210DAYN*	67	74	79	85	86	83	76	64	90
EW(A/Y)Q(230/240)DAYN*	71	72	77	87	86	83	77	67	91
EW(A/Y)Q(250/260)DAYN*	71	72	77	87	86	83	77	67	91

OPLN - 2 блока		Мощность звука Lw на октаву (dBA)									
LWE= 7°C / Tamb = 35°C	63	125	250	500	1000	2000	4000	8000	LwA		
EW(A/Y)Q080DAYN*	62	67	70	80	79	75	69	60	84		
EW(A/Y)Q100DAYN*	60	64	69	77	80	78	72	62	84		
EW(A/Y)Q130DAYN*	61	67	70	78	82	77	69	58	85		
EW(A/Y)Q150DAYN*	62	71	72	82	81	77	71	62	86		
EW(A/Y)Q180DAYN*	68	73	77	83	84	80	73	62	88		
EW(A/Y)Q210DAYN*	65	72	77	83	84	81	74	62	88		
EW(A/Y)Q(230/240)DAYN*	68	69	74	84	83	80	74	64	88		
EW(A/Y)Q(250/260)DAYN*	68	69	74	84	83	80	74	64	88		

OPLN - 2 блока		Мощность звука Lw на октаву (dBA)									
LWE= 7°C / Tamb = 25°C	63	125	250	500	1000	2000	4000	8000	LwA		
EW(A/Y)Q080DAYN*	61	66	69	79	78	74	68	59	83		
EW(A/Y)Q100DAYN*	59	63	68	76	79	77	71	61	83		
EW(A/Y)Q130DAYN*	60	66	69	77	81	76	68	57	84		
EW(A/Y)Q150DAYN*	60	69	70	80	79	75	69	90	84		
EW(A/Y)Q180DAYN*	66	71	75	81	82	79	72	60	86		
EW(A/Y)Q210DAYN*	63	70	75	81	82	79	72	60	86		
EW(A/Y)Q(230/240)DAYN*	67	68	73	83	82	79	73	63	87		
EW(A/Y)Q(250/260)DAYN*	67	68	73	83	82	79	73	63	87		

примечания

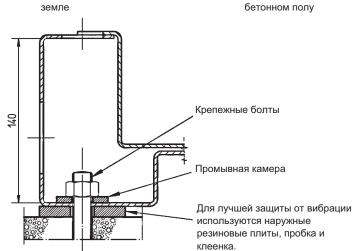
- 1 Значения Уровень мощности соответствуют ISO9614-2
- 2 LWE= Температурв вытекающей воды из испарителя (°C) Таmb= Температура окружающей среды

4TW57577-1C

9 Установка

EWAQ-EWYQ080-150DAYN(N-P-B)

9 - 1 Крепление и фундаменты блоков

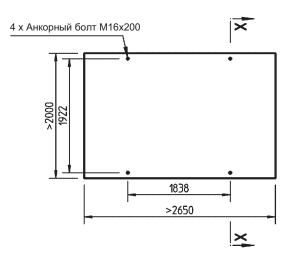

Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ

В дальнейшем, прочность пола должна быть достаточной, для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.

Основание установлено на земле Секция X-X

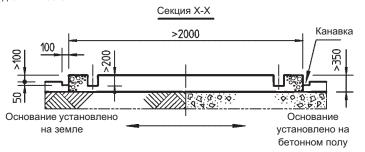
>2000

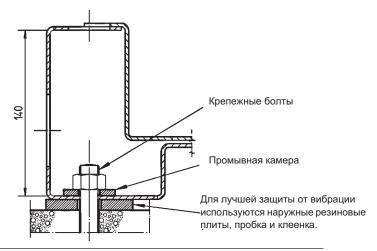
Канавка
Основание установлено на бетонном полу


примечания

- Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 3 Коэффициент добавки в бетон цемента: 1, песок: 2, гравий: 3, которые стандартны и включают железные решетки у 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

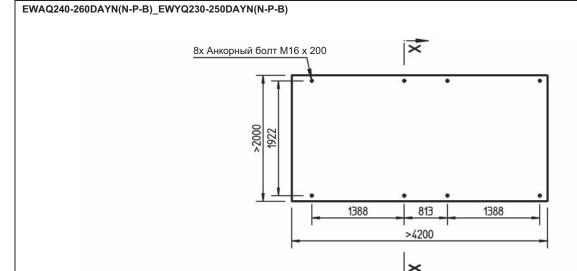
4TW57599-1


9 - 1 Крепление и фундаменты блоков


EWAQ-EWYQ180-210DAYN(N-P-B)

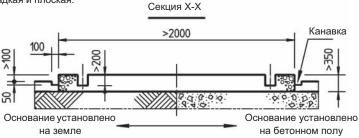
Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ. В дальнейшем, прочность пола должна быть достаточной,

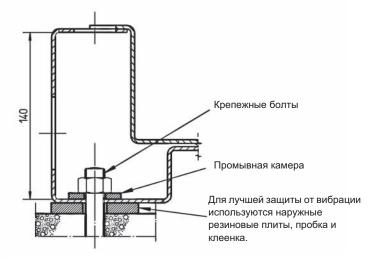
В дальнейшем, прочность пола должна быть достаточной, для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.


примечания

- 1 Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 3 Коэффициент добавки в бетон цемента: 1, песок: 2, гравий: 3, которые стандартны и включают железные решетки у 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

4TW57619-1


9 Установка


9 - 1 Крепление и фундаменты блоков

Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ. В дальнейшем, прочность пола должна быть достаточной,

для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.

примечания

- Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 3 Коэффициент добавки в бетон цемента: 1,песок: 2, гравий:3, которые стандартны и включают железные решетки у 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

4TW57639-1

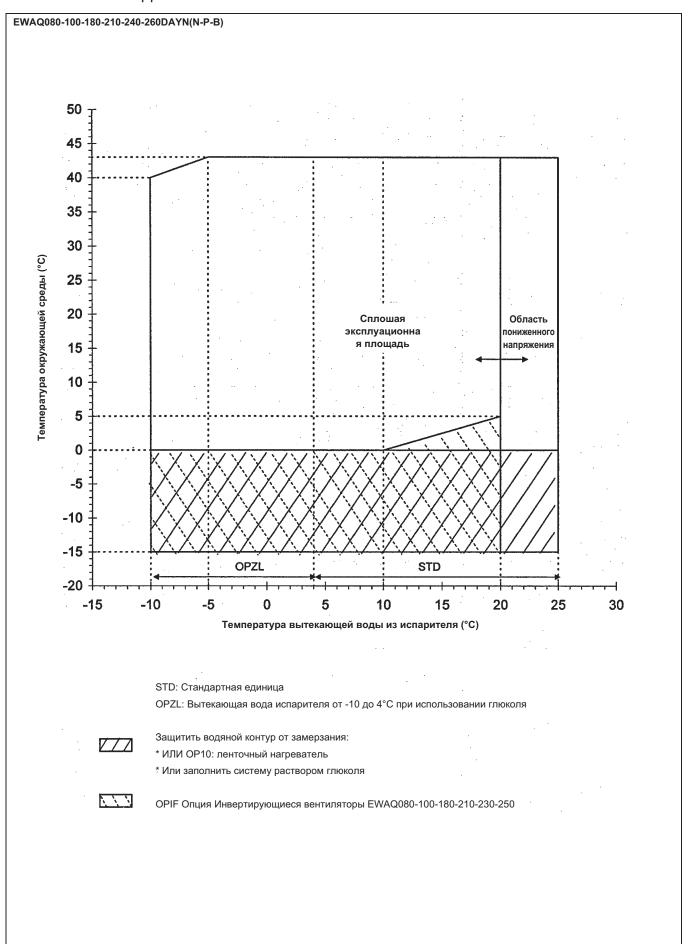
9 **Установка**

9 - 2 Заправка, расход и количество воды

KOMITOHEHTBI (1) (5)	1) (2)		Охлаж	Охлаждающая вс	ода (3)	Охлажденная вода	ная вода		Нагретая вода (2)	1 вода (2)		Тенденция при	
			Циркуляционная система	ционная ема	Поток			Низкая те	Низкая температура	Высокая температура	окая оатура	невыполнении критериев	
			Циркуляционная Подаваемая вода вода (4)	Подаваемая вода ₍₄₎	Проточная вода	Циркуляционная вода [Ниже №С]	Подаваемая вода ₍₄₎	Циркуляционная вода [20°С ~ 60°С]	Подаваемая вода ₍₄₎	Циркуляционная вода [60°С ~ 80°С]	Подаваемая вода ₍₄₎		
		at 25°C	6.5~8.2	6.0~8.0	6.8~8.0	6.8~8.0	6.8~8.0	7.0~8.0	7.0~8.0	7.0~8.0	7.0~8.0	Коррозия + окалина	
Электрическая	<u>"</u>]	[mS/m] at 25°C	08 ЭмиН	Ниже 30	Ниже 40	Ниже 40	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Коррозия + окалина	
проводимость	Su)	(µS/cm) at 25°C (1)	(Ниже 800)	(Ниже 300)	(Ниже 400)	(Ниже 400)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	Коррозия + окалина	
Ион хлора		[mgCl ⁻ /l]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия	
Ион сульфата		[mg50 ²⁻ _//]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия	
М-щелочность (рН4.8)	2H4.8)	[mgCaCO ₃ /l]	Ниже 100	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина	
Общая жесткость		[mgGaCO ₃ /l]	Ниже 200	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Окалина	
Жесткость кальция		[mgCaCO ₃ /l]	Ниже 150	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина	
Ион кремнезема		[mgSiO ₂ /l]	Ниже 50	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Окалина	
Железо		[mgFe/l]	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Коррозия + окалина	
Медь		[mgCu/l]	Ниже 0.3	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Коррозия	
Ион сульфита		[mgS ²⁻ /l]	не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Коррозия	
Ион аммония		[mgNH ⁺ _4/l]	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 0.3	Ниже 0.1	Ниже 0.1	Ниже 0.1	Коррозия	
Остаточный хлорид	рид	[mgCL/l]	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.25	Ниже 0.3	Ниже 0.1	Ниже 0.3	Коррозия	
Свободный карбид	2ид	[mgCO ₂ /l]	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 0.4	Ниже 4.0	Ниже 0.4	Ниже 4.0	Коррозия	
Индекс устойчивости	зости		6.0~7.0	ı	ı	1	1	1	;	ŀ	1	Коррозия + окалина	

3TW50179-1

Названия, определения и единицы соответствуют требованиям JIS К 0101. Единицы и значения в скобках являются старыми единицами, приведенными

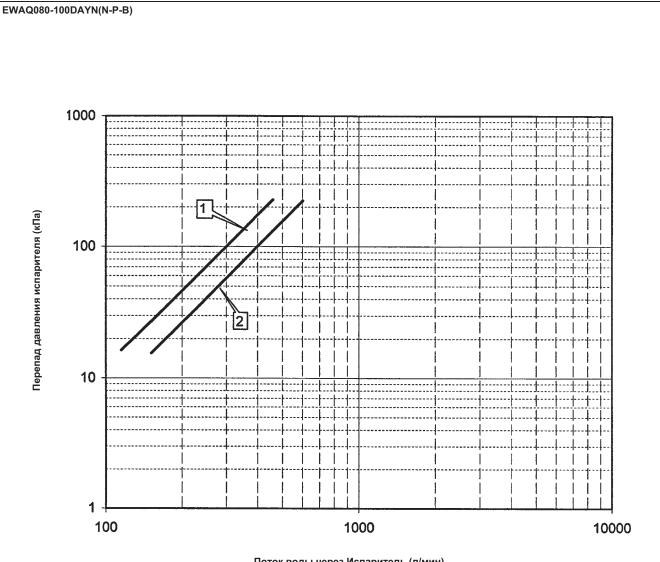

При использовании нагретой воды (более 40°С) обычно повышается уровень коррозии. Особенно если металл непосредственно контактирует с водой без защитных экранов; желательно выполнять измерения уровня коррозии, например, действие химических элементов. Если воды охлаждается в градирне закрытого типа, вода закрытого контуры соответствует стандарту для нагретой воды, и вода открытого контура

Подаваемая вода считается питьевой, промышленной или грунтовой водой; подаваемая вода не считается чистой, нейтральной или мягкой водой. стандарту охлаждающей воды.

Вышеуказанные компоненты относятся к случаям, связанным с появлением коррозии и ржавчины.

10 Рабочий диапазон

10 - 1 Рабочий диапазон



4TW57593-1B

10 - 1 Рабочий диапазон

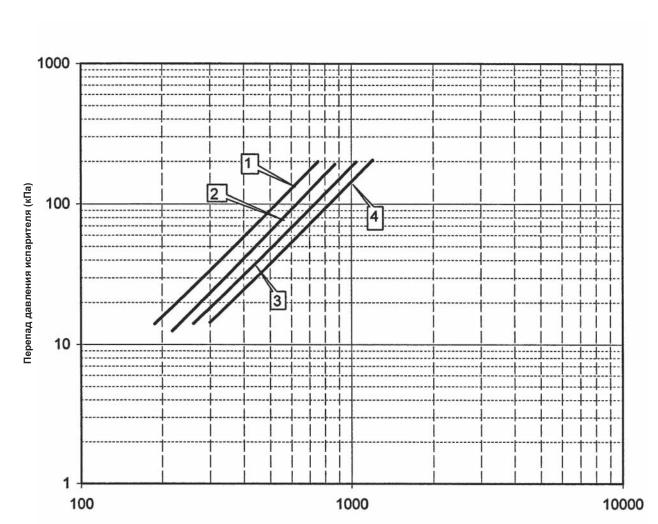
EWAQ130-150DAYN(N-P-B) 50 45 40 35 30 Температура окружающей среды (°C) 25 20 Сплошая Область эксплуационная пониженного площадь напряжения 15 10 5 0 -5 -10 -15 **OPZL** STD -20 -10 -15 -5 0 5 10 15 20 25 30 Температура вытекающей воды из испарителя (°C) STD: Стандартная единица OPZL: Вытекающая вода испарителя от -10 до 4°C при использовании глюколя Защитить водяной контур от замерзания: * ИЛИ ОР10: ленточный нагреватель * Или заполнить систему раствором глюколя OPIF Опция Инвертирующиеся вентиляторы EWAQ130-150 4TW57603-1A

11 - 1 Кривая падения давления воды Испаритель

Поток воды через Испаритель (л/мин)

- 1. EWAQ080DAYN*
- 2. EWAQ100DAYN*

Предупреждение:

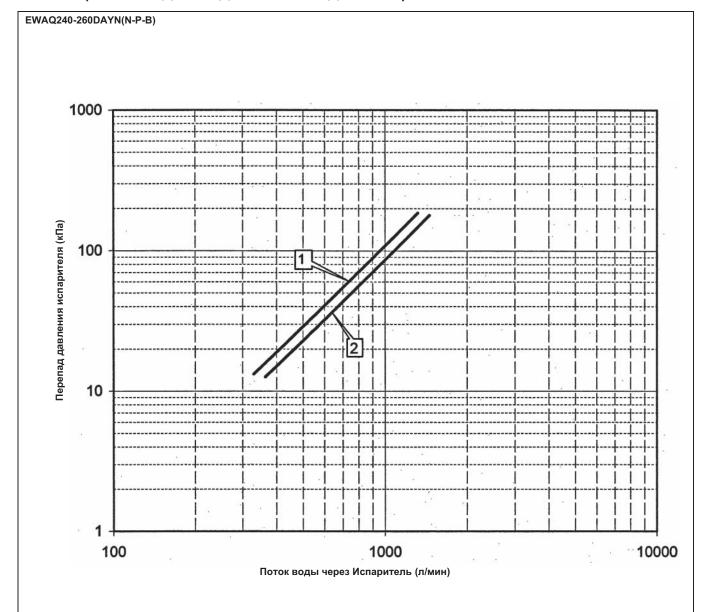

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57579-5

11 - 1 Кривая падения давления воды Испаритель

EWAQ130-210DAYN(N-P-B)

Поток воды через Испаритель (л/мин)

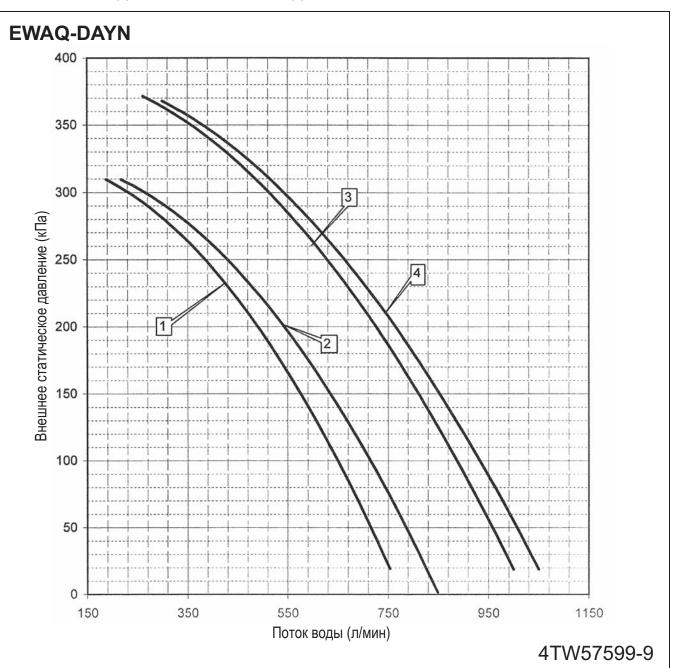

- 1. EWAQ130DAYN*
- 2. EWAQ150DAYN*
- 3. EWAQ180DAYN*
- 4. EWAQ210DAYN*

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57599-5

11 - 1 Кривая падения давления воды Испаритель


- 1. EWAQ240DAYN*
- 2. EWAQ260DAYN*

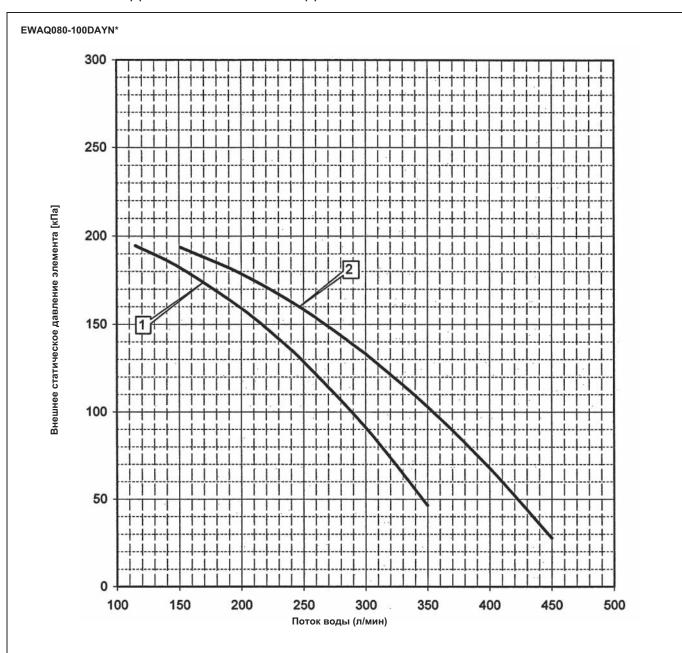
Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57639-5

11 - 2 Блок падения статического давления

ПРИМЕЧАНИЯ


- 1. EWAQ130DAYN* + OPHP
- 2. EWAQ150DAYN* + OPHP
- 3. EWAQ180DAYN* + OPHP
- 4. EWAQ210DAYN* + OPHP

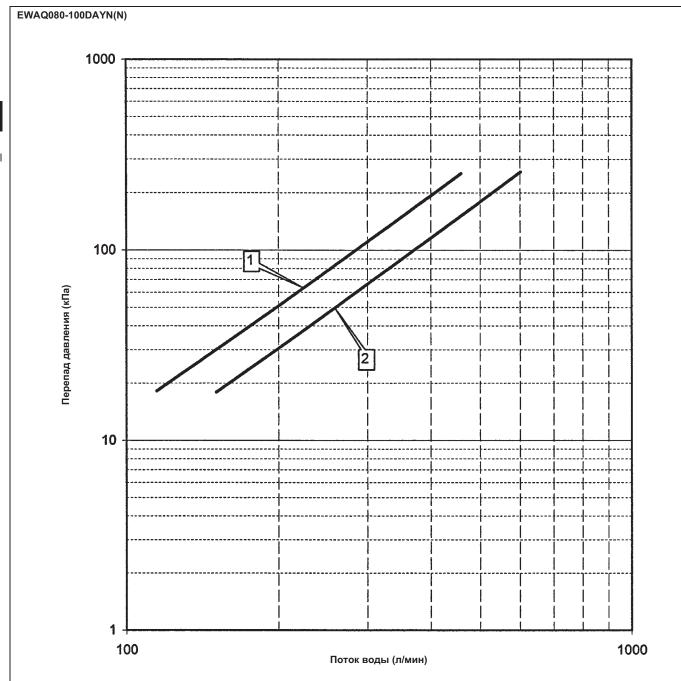
ПРЕДУПРЕЖДЕНИЕ

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

11 Характеристика гидравлической системы

11 - 2 Блок падения статического давления

- 1. EWAQ080DAYN* + OPSP/OPTP
- 2. EWAQ100DAYN* + OPSP/OPTP

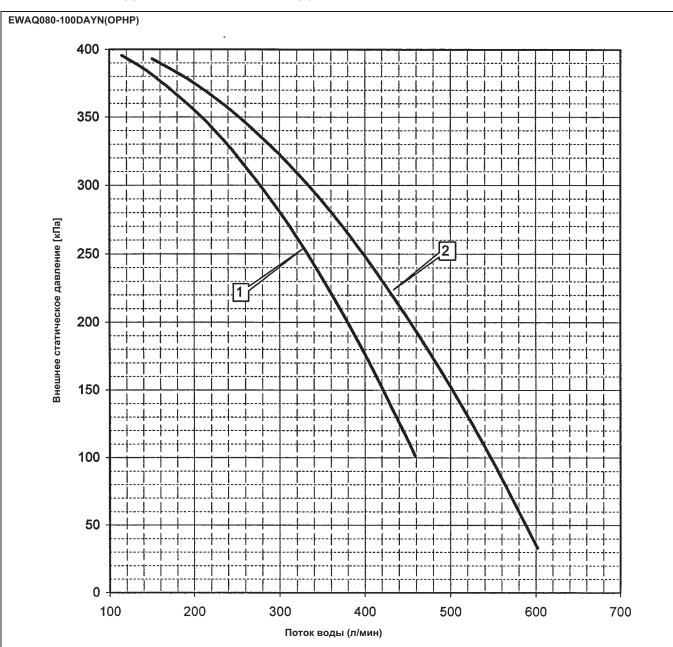

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57579-4A

11 - 2 Блок падения статического давления

- 1. EWAQ080DAYN* Стандартная модель
- 2. EWAQ100DAYN* Стандартная модель


Предупреждение:

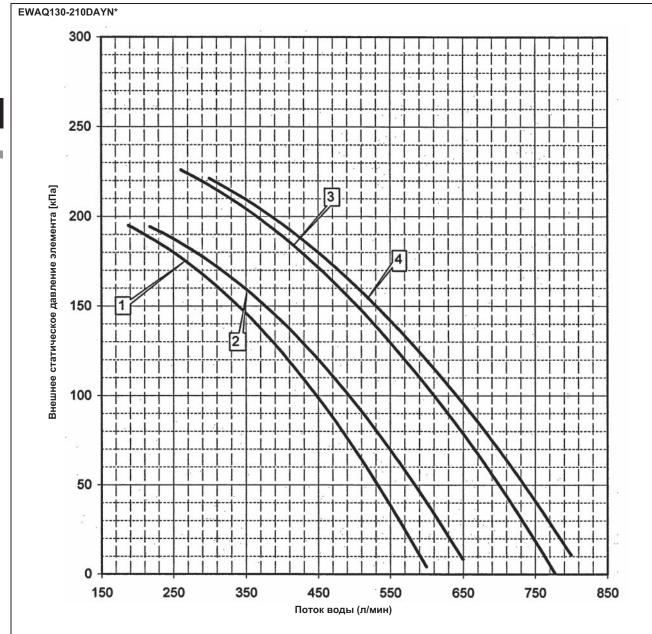
Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57579-7.

11 Характеристика гидравлической системы

11 - 2 Блок падения статического давления

- 1. EWAQ080DAYN* + OPHP
- 2. EWAQ100DAYN* + OPHP

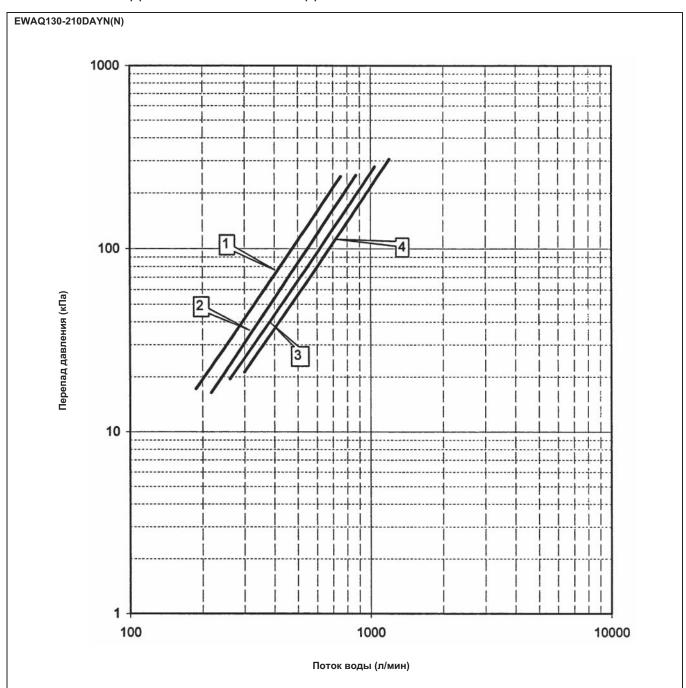

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57579-9.

11 - 2 Блок падения статического давления

- 1. EWAQ130DAYN* + OPSP/OPTP
- 2. EWAQ150DAYN* + OPSP/OPTP
- 3. EWAQ180DAYN* + OPSP/OPTP
- 4. EWAQ210DAYN* + OPSP/OPTP


Предупреждение:

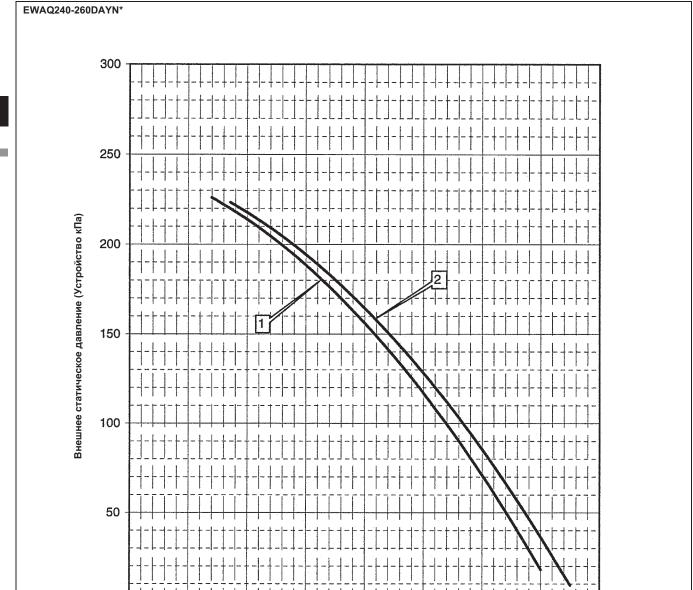
Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57599-4A

11 Характеристика гидравлической системы

11 - 2 Блок падения статического давления

- 1. EWAQ130DAYN* Стандартная модель
- 2. EWAQ150DAYN* Стандартная модель
- 3. EWAQ180DAYN* Стандартная модель
- 4. EWAQ210DAYN* Стандартная модель


Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57599-7

11 - 2 Блок падения статического давления

1. EWAQ240DAYN* + OPSP/OPTP

200

300

400

500

600

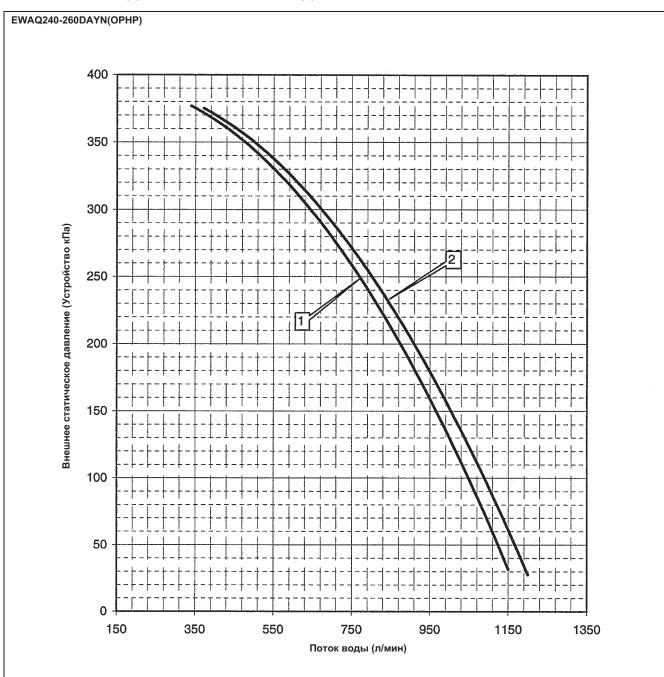
Поток воды (л/мин)

700

800

900

1000

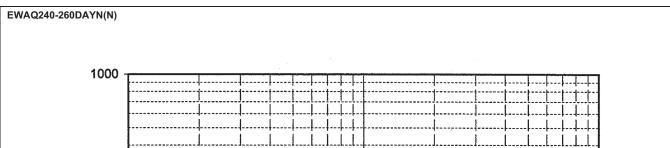

2. EWAQ260DAYN* + OPSP/OPTP

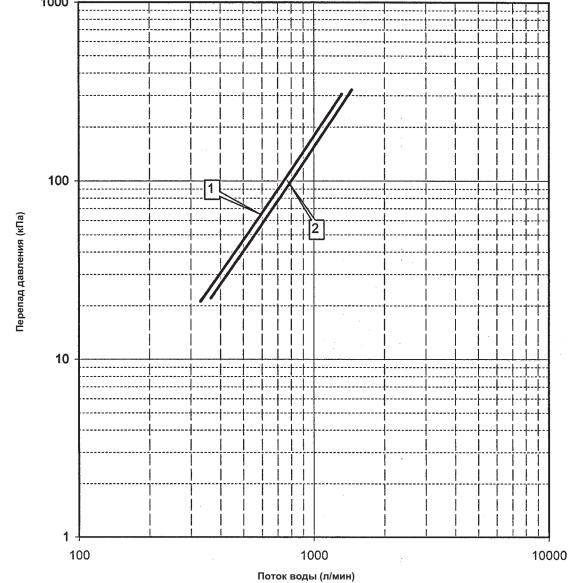
Выбор потока за пределами кривых может привести к неисправности оборудования. См. также значения минимального и максимального допустимого потока воды в технических характеристиках

4TW57639-4B

11 Характеристика гидравлической системы

11 - 2 Блок падения статического давления


- 1. EWAQ240DAYN* + OPHP
- 2. EWAQ260DAYN* + OPHP


Выбор потока за пределами кривых может привести к неисправности оборудования. См. также значения минимального и максимального допустимого потока воды в технических характеристиках.

4TW57639-9A

11 Характеристика гидравлической системы

11 - 2 Блок падения статического давления

- 1. EWAQ240DAYN* Стандартная модель
- 2. EWAQ260DAYN* Стандартная модель

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57639-7

СОДЕРЖАНИЕ

EWYQ-DAYN

1	Характеристики	.44
2	Технические характеристики Технические параметры Электрические параметры	. 45
3	Опции Опции	
4	Таблицы производительности Таблицы холодопроизводительности Таблицы теплопроизводительностей Поправочный коэффициент для производительности	. 54 . 56
5	Размерные чертежи	
6	Схемы трубопроводов	
7	Схемы внешних соединений	
8	Данные об уровне шума. Спектр звуковой мощности	
9	Установка Крепление и фундаменты блоков Заправка, расход и количество воды	. 68
10	Рабочий диапазон Рабочий диапазон	
11	Характеристика гидравлической системы Кривая падения давления воды Испаритель	. 74

1 Характеристики

- Широкий диапазон мощностей: от 80 до 250 кВт с 8 моделями с тепловым насосом
- Оптимизирован для работы с хладагентом R-410A
- Несколько контуров охлаждения и несколько компрессоров на контур
- Надежная и эффективная спираль с высокими значениями EER
- Алюминиевые теплообменники с антикоррозионной обработкой
- Низкий уровень шума при работе
- Легкая установка 'подключи и работай'
- Размеры блока позволяют его легко транспортировать
- Вентиляторы имеют защиту при сбое (4 8 вентиляторов, в зависимости от размера блока)
- Предохранительные клапаны в каждом контуре

- Электронные автоматические выключатели
- Электронный расширительный клапан
- Надежный паяный теплообменник с двойными пластинами
- Смотровое стекло
- Легкий доступ ко всем компонентам с 3 сторон (окружающий шкаф отсутствует)
- Отдельная распределительная коробка для легкого доступа
- Доступ к компрессорам и элементам управления со стороны блока
- Повышенная надежность благодаря 2 независимым контурам охлаждения
- Негерметичный фильтр/осушитель
- Пульт управления Daikin (Pcaso) с дружественным и мощным ЖК-интерфейсом

2 Технические характеристики

2-1 Технич	еские пара	метры			EWYQ080DAYN	EWYQ100DAYN	EWYQ130DAYN	EWYQ150DAYN	EWYQ180DAYN	EWYQ210DAYN	EWYQ230DAYN	EWYQ250DAYN
Холодопроизв	Ном.			кВт	77 (1)	100 (1)	136 (1)	145 (1)	183 (1)	211 (1)	231 (1)	252 (1)
одительность	i iowi.			KDI	'' (')	100 (1)	130 (1)	143 (1)	100 (1)	211(1)	231 (1)	202 (1)
Теплопроизво	Ном.			кВт	87,7 (4)	114 (4)	149 (4)	165 (4)	199 (4)	225,00 (4)	258 (4)	281 (4)
дительность					, , , ,	()		,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	. ()
Ступени мощно	СТИ			%	0-50	-100	0-25-50)-75-100	21/29-43/ 50/57-71/ 79-100	0-25-50- 75-100	22/28-44/ 50/56-72/ 78-100	0-25-50- 75-100
Входная	Охлаждение	Ном.		кВт	26,5 (2)	36,2 (2)	47,6 (2)	55,7 (2)	63,8 (2)	75,3 (2)	82,2 (2)	93,5 (2)
мощность	Нагрев	Ном.		кВт	30,0 (5)	38,1 (5)	49,6 (5)	58,8 (5)	68,0 (5)	77,0 (5)	84,2 (5)	96,6 (5)
EER					2,91	2,76	2,86	2,60	2,87	2,80	2,81	2,70
ESEER					4,00	3,81	4,31	4,07	4,33	4,23	4,20	4,00
COP					2,92	2,99	3,00	2,81	2,93	2,92	3,06	2,91
Корпус	Цвет						Слонов	ая кость (код	ц Манселла:	5Y7.5/1)		
	Материал					поли	эфирной по	краской Оци	нкованная ст	гальная плас	стина	
Размеры	Блок	Высота		MM				2.3	311			
		Ширина		MM					000			
		Глубина		MM		666		631		081		350
Bec	Блок			КГ	1.400	1.450	1.550	1.600	1.850	1.900	3.200	3.300
	Эксплуатацис			КГ	1.415	1.465	1.567	1.619	1.875	1.927	3.239	3.342
_	Упакованный	блок		КГ	1.450	1.500	1.600	1.650	1.900	1.950	3.250	3.350
Вод. теплообменник	Тип	-						ый пластинча				
Теплоооменник	Фильтр	Тип		1			Оци	інкованный с	етчатыи фи	льтр		
	M	Диаметр отвер		MM	202 (2)	F44 (2)	224 (2)	270 (2)	1 440 (0)	F04 (2)	F70 (2)	000 (0)
		й объем воды в « Гм	системе	Л	393 (3)	511 (3)	334 (3)	370 (3)	446 (3)	504 (3)	578 (3)	629 (3)
	Расход воды	Мин. Макс.		л/мин	110 503	143 654	195 854	208 946	262 1.141	302 1.290	331 1.479	361 1.611
	Номинальн	Охлаждение		л/мин л/мин	221	287	390	416	525	605	662	722
	ый расход	Нагрев		л/мин	251	327	427	473	570	645	740	806
	воды	Пагрев) I/ IVIVIH	231	321	421	473	370	043	740	000
	Спад	Охлаждение	Итого	кПа	3	6	43	38	41	44	39	38
	номинально го давления воды	Нагрев	Итого	кПа	47	46	51	49	48	50	48	46
	Изоляционны	і й материал		ı			т Синтетическ	ий эластоме	Iр, покрытый	пенопластог	И	l .
	Модель	Тип			PT	120		7HP			58HP	
		Количество					1		1			
Воздушный	Тип	l			Попер	ечные соеді	инения ребе	р / трубки Ні-	Х и полиэти.	леновое ваф	ельное ореб	брение
теплообменник	Группы	Количество			:	2			;	3		
	Ступени	Количество			5	6	48		56		4	18
	Шаг ребер			MM				1	,8			
	Лицевая стор	она		M ²	2,	46	2,11	2,46	3,	02	2,	11
	Катушки	Количество						4				8
Компоненты	Объем воды (1		Л		5	17	19	25	27	39	42
гидравлической системы	Номинальн	Охлаждение		кПа	42	43	55	51	61		70	73
CHCTCIVIDI	ый перепад давлений воды	Нагрев		кПа	53	56	65	66	72	79	86	91
Вентилятор	Количество	•					4	•	(6		8
	Расход воздуха	Ном.		м ³ / мин	78	30	800	860	1.2	290	1.6	600
	Направление	подачи						Верти	кальн.			
	Скорость			об/	88	30	900		970		9	00
Пационани	D. was			МИН	5	20	600		700		6	00
Двигатель вентилятора	Выход			VV	51	00	600		700	6		00 8
pa	Количество						7	Прамос	передача	U		U
Уровень звуковой мощности	Привод Охлаждение	Ном.		дБ(А)	8	6	88	89		90	S	91

2 Технические характеристики

2-1 Технич	еские пара	метры			EWYQ080DAYN	EWYQ100DAYN	EWYQ130DAYN	EWYQ150DAYN	EWYQ180DAYN	EWYQ210DAYN	EWYQ230DAYN	EWYQ250DAYN
Компрессор	Тип					•	•	Спиральный	компрессор)		
	Количество					2		4	2	4	2	4
	Модель				SJ180	SJ240	SJ161	SJ	180	SJ:	240	SJ300
	Скорость			об/ мин				2.9	000	•		
	Масло	Объем заправ	КИ	Л	6	,7	3,3			6,7		
Компрессор 2	Количество						-	l	2	-	2	-
	Модель						-		SJ240	-	SJ300	-
	Скорость			об/ мин			-		2.900	-	2.900	-
	Масло	Объем заправ	(N	Л			-		6,7	-	6,7	_
Рабочий	Сторона	Охлаждение	Мин.	°CDB					0		-,-	
диапазон	воды	Ожимдонио	Макс.	°CDB					5			
		Нагрев	Мин.	°CDB					5			
		Пагрев	Макс.	°CDB					0			
	0	0		°CDB								
	Сторона воздуха	Охлаждение	Мин.						5			
	воздуха		Макс.	°CDB					3			
		Нагрев	Мин.	°CDB					0			
			Макс.	°CDB					1			
Хладагент	Тип							R-4				
	Регулировани						Электр	онный расш	-			
	Контуры	Количество				1				2		
Контур охлаждения	Заправка			КГ	33	37	2	22	3	32	3	9
Контур хладагента 2	Заправка			КГ		-	2	22	3	32	3	9
Масло хладагента	Тип			ı				FVC	68D		•	
Подсоединени	Вход / выход	водяного тепло	обменника				3" H	АР,Д,			3)"
я труб		то теплообменни							2"G		l	
Защитные	Оборудование				Реле г	протока	Реле макс	имального		Реле высоко	ого давления	
устройства								оессоров и пяторов				
		02			контр последова	артный оллер ательности наз		ысокого пения		Клапан сбро	са давления	l
		03			Реле в	ысокого		сброса пения		от низкого пения		низкого
		04				і сброса іения		низкого	3	Ващита от за	мораживани	Я
		05				низкого пения		ита от живания		Реле г	іротока	
		06			Защі	ита от живания	<u> </u>	іротока	Устройство	о температур	оной защиты	на выходе
		07			Электронн	ные модули эмпрессора	темпер	ойство атурной	Стандартн		ер последов аз	ательности
		08			для компр	симального рессоров и пяторов	Станда контр последова	на выходе артный оллер ательности наз	защиты ко (только д	ые модули мпрессора ля SJ180, 240)		ые модули мпрессора
		09			темпер	ойство атурной на выходе	Электронн защиты ко (только д	ые модули мпрессора ля SJ180, 240)		ксимального	о для компре іяторов	ссоров и

2 Технические характеристики

2-2 Электр	ические па	раметры		EWYQ080DAYN	EWYQ100DAYN	EWYQ130DAYN	EWYQ150DAYN	EWYQ180DAYN	EWYQ210DAYN	EWYQ230DAYN	EWYQ250DAYN
Компрессор	Пусковой ток		Α	195	215	158	19	95	2	15	260
	Номинальный	і рабочий ток	Α	25	31	19	2	5	3	1	40
	Максимальнь	й рабочий ток	Α	39	51	35	3	9	1	65	
	Способ запус	ка					Пря	мой			
	Картерный на	греватель	W	7	5	65			75		
Компрессор 2	Пусковой ток		Α			-		215	-	260	-
	Номинальный	і рабочий ток	Α			-		31	-	40	-
	Максимальнь	й рабочий ток	Α			-		51	-	65	-
	Способ запус	ка				-		Прямой	-	Прямой	-
	Картерный на	греватель	W			-		75	-	75	-
Электропитание	Фаза						3	~			
	Частота		Гц				5	0			
	Напряжение		V				40	00			
	Диапазон	Мин.	%				-1	0			
	напряжений	Макс.	%				1	0			
Блок	Пусковой ток		Α	201	221	161	199	22	21	26	66
	Максимальнь	й стартовый ток	Α	240	272	269	320	357	368	440	468
	Ток	Z макс.	Списо к				Требован	ния отс-т			
	Номинальн ый рабочий ток	Охлаждение	A	60	72	88	113	131	144	162,0	181
	Максимальнь	й рабочий ток	Α	96	120	160	177	209	233	262	290
		ые плавкие предохранители в со стандартом IEC 269-2		3 x 125gL	3 x 160gL	3 x 2	00gL	3 x 2	50gL	3 x 300gL	3 x 355gL
Вентиляторы	Способ запус	ка					Пря	мой			
	Максимальнь	й рабочий ток	Α	1,	5	1,4		2,1		1	,6
Цепь	Фаза					•	1				
управления	Частота		Гц				5	0			
	Напряжение		٧				230	(6)			
	Обогреватель	картера (Е1/2НС)	W	2x	75	4x65			4x75		

Примечания

- (1) Охлаждение: температура воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; стандарт: Eurovent
- (2) Охлаждение: температура воды испарителя на входе 12°C; темп. воды испарителя на выходе 7°C; темп. наружного воздуха 35°C; стандарт: Eurovent; Входная мощность компрессоры + вентиляторы + цепь управления
- (3) Минимально необходимый объем воды для стандартных установок термостата при номинальных условиях.
- (4) Нагрев: темп. воды на входе конденсатора 40°C; темп. воды на выходе конденсатора 45°C; темп. наружного воздуха 7°CDB, 6°CWB; стандарт: Eurovent
- (5) Нагрев: темп. воды на входе конденсатора 40°С; темп. воды на выходе конденсатора 45°С; темп. наружного воздуха 7°СDB, 6°СWB (= входная мощность компрессоров + вентиляторов + электрической цепи); стандарт Eurovent
- (6) Поставляются с трансформаторами, устанавливаемыми на месте
- (7) Начальный пусковой ток = максимальный рабочий ток 4 вентилятора (1 контур) + пусковой ток 1 компрессор
- (8) Максимальный пусковой ток = максимальный рабочий ток 4 вентилятора + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор
- (9) Рабочий диапазон см. в отдельных чертежах
- (10) Напряжение цепи управления пер.т. (поставляются с трансформаторами, устанавливаемыми на заводе)
- (11) Начальный пусковой ток = максимальный рабочий ток 3 вентилятора (1 контур) + пусковой ток 1 компрессор
- (12) Максимальный пусковой ток = максимальный рабочий ток 6 вентиляторов + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор
- (13) Напряжение цепи управления 24 В пер.т. (поставляются с трансформаторами, устанавливаемыми на заводе)
- (14) Максимальный пусковой ток = максимальный рабочий ток 8 вентиляторов + максимальный рабочий ток 3 компрессора + пусковой ток 1 компрессор

3 - 1 Опции

EWYQ080-100DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИ	Х ХДРДКТЕРИСТИК				
OPSP			DAI MATTE TEXTO IEOTO	CAN ACTE FORM	OPSP + OPBT			
Блоки			EWYQ080DAYN	EWYQ100DAYN	EWYQ080DAYN	EWYQ100DAYN		
Macca	Дополнительная масса оборудования	КГ	25			300		
	Дополнительная эксплуатационная масса	КГ	26	8	1	508		
	Дополнительная масса-брутто	КГ	250		1	300		
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	Одноступенчаты	е многорядные насосы		
	Количество		1			1		
	Производитель		Grun	dfos	G	rundfos		
	Модель		TP50-	240/2	TP	50-240/2		
	Эффективность		85,	9%		85,9%		
	Уровень эффективности		IE	3		IE3		
	Номинальная скорость	об/мин	2890-	2910	28	90-2910		
	Блок номинальной постоянной высоты для охлаждения	кПа	173	154	173	154		
Части	Буферный резервуар	Л			1	190		
гидравлической	Объем воды для дополнительного блока	Л	1	8		208		
системы	Расширительный бак	Л	3	5		35		
	Давление предварительной зарядки расш. бака	бар	1,	5		1,5		
	Предохранительный клапан	бар	3	}		3		
OPHP					OPTP			
Блоки			EWYQ080DAYN	EWYQ100DAYN	EWYQ080DAYN	EWYQ100DAYN		
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	Одноступенчаты	е многорядные насосы		
	Количество		1			1		
	Производитель		Grun			rundfos		
	Модель		TP50-	430/2	TPI	050-240/2		
	Эффективность		89.	2%		85,9%		
	Уровень эффективности		IE	3		IE3		
	Номинальная скорость	об/мин	2920-	2940	28	90-2910		
	Блок номинальной постоянной высоты для охлаждения	кПа	365	348	Cr	и. OPSP		

3TW57651-1C

EWYQ080-100DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИ	(ХАРАКТЕРИСТИК				
OPSP / OPTP							
Блоки			EWYQ080DAYN	EWYQ100DAYN			
Стандартный насос	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	2,3	2			
	Максимальный рабочий ток	Α	4,4	5			
	Пусковой ток	Α	42	2			
OPHP							
Блоки			EWYQ080DAYN	EWYQ100DAYN			
Hacoc высокого ESP	Способ запуска		Прямой пуск от сети				
	Номинальная мощность сети	кВт	5,	5			
	Максимальный рабочий ток	Α	11,	2			
	Пусковой ток	Α	131				
OP10							
Блоки			EWYQ080DAYN	EWYQ100DAYN			
Ленточный	Напряжение питания	В	230+/-	10%			
нагреватель	Рекомендуемые плавкие предохранители	Α	2x1	0			
	Мощность стандартной модели	Вт	1x3	00			
	Мощность модели с насосом	Вт	2x3	00			
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 +	1x150			

3TW57651-1C

3 - 1 Опции

EWYQ130-150DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИ	Х ХАРАКТЕРИСТИК				
OPSP					OPSP + C	OPBT		
Блоки			EWYQ130DAYN	EWYQ150DAYN	E	WYQ130DAYN	EWYQ150DAYN	
Macca	Дополнительная масса оборудования	КГ	2	50	1	30	00	
	Дополнительная эксплуатационная масса	ΚΓ	2	286 526			26	
	Дополнительная масса-брутто	КГ	2	50	1	30	00	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	1	Одноступенчатые м	іногорядные насосы	
	Количество			1			1	
	Производитель		Grui	ndfos	1	Grur	ndfos	
	Модель		TP65	-230/2	1	TP65	-230/2	
	Эффективность		87	1%	1	87,	1%	
	Уровень эффективности		IE	3	1	IE	3	
	Номинальная скорость	об/мин	2900	-2920	2900-2920			
	Блок номинальной постоянной высоты для охлаждения	кПа	1-	11	1	141		
Части	Буферный резервуар	Л		-	190			
гидравлической	Объем воды для дополнительного блока	Л	3	6	1	26		
системы	Расширительный бак	Л	3	5		3	5	
	Давление предварительной зарядки расш. бака	бар	1	,5		1	,5	
	Предохранительный клапан	бар		3		;	3	
OPHP					OPTP			
Блоки			EWYQ130DAYN	EWYQ150DAYN	E	WYQ130DAYN	EWYQ150DAYN	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы		Одноступенчатые м	ногорядные насосы	
	Количество			1			1	
	Производитель		Grui	ndfos		Grur	ndfos	
	Модель		TP65	-340/2		TPD65	5-230/2	
	Эффективность			2%			1%	
	Уровень эффективности		IE	3		IE	3	
		об/мин		-2940		2900-2920		
	Блок номинальной постоянной высоты для охлаждения	кПа	2	31		Cm. OPSP		

3TW57671-1D

EWYQ130-150DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК	
OPSP / OPTP				
Блоки			EWYQ130DAYN	EWYQ150DAYN
Стандартный насос	Способ запуска		Прямой пус	к от сети
	Номинальная мощность сети	кВт	3	
	Максимальный рабочий ток	A	6,3	
	Пусковой ток	A	58	
OPHP				
Блоки			EWYQ130DAYN	EWYQ150DAYN
Hacoc высокого ESP	Способ запуска		Прямой пус	к от сети
	Номинальная мощность сети	кВт	5,5	
	Максимальный рабочий ток	Α	11,2)
	Пусковой ток	Α	131	
OP10				
Блоки			EWYQ130DAYN	EWYQ150DAYN
Ленточный	Напряжение питания	В	230+/-	10%
нагреватель	Рекомендуемые плавкие предохранители	A	2x10	0
	Мощность стандартной модели	Вт	1x30	0
	Мощность модели с насосом	Вт	2x30	0
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 +	1x150

3TW57671-1D

3 - 1 Опции

EWYQ180-210DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИ	Х ХАРАКТЕРИСТИК				
OPSP					OPS	P + OPBT		
Блоки			EWYQ180DAYN	EWYQ210DAYN	7 —	EWYQ180DAYN	EWYQ210DAYN	
Macca	Дополнительная масса оборудования	КГ	25	50	7	300		
	Дополнительная эксплуатационная масса	КГ	28	86	7	526		
	Дополнительная масса-брутто	КГ	25	50	7	3	00	
Насос Тип			Одноступенчатые м	ногорядные насосы		Одноступенчатые м	ногорядные насосы	
	Количество			1] [1	
	Производитель		Grur	ndfos		Grur	ndfos	
	Модель		TP65-	-260/2		TP65	-260/2	
	Эффективность			1%		88,		
	Уровень эффективности		IE	3		IE	3	
		об/мин		-2940			-2940	
	Блок номинальной постоянной высоты для охлаждения	кПа	152	128		152	128	
Части	Буферный резервуар	Л		-		1!		
гидравлической	Объем воды для дополнительного блока	Л	3	6		2:	26	
системы	Расширительный бак	Л	3	5		3	5	
	Давление предварительной зарядки расш. бака	бар	1	,5		1	,5	
	Предохранительный клапан	бар		3		,	3	
OPHP					OPT	P		
Блоки			EWYQ180DAYN	EWYQ210DAYN	_	EWYQ180DAYN	EWYQ210DAYN	
Hacoc	Тип		Одноступенчатые м	ногорядные насосы	J	Одноступенчатые м	ногорядные насосы	
	Количество			1	╛┕		1	
	Производитель		Grur		╛┕	Grur		
	Модель			-410/2	╛┕		5-260/2	
	Эффективность			4%	╛┕	88,		
	Уровень эффективности			3	╛┕	IE		
		об/мин	2910-				-2940	
	Блок номинальной постоянной высоты для охлаждения	кПа	306	286		См. (PSP	

3TW57691-1D

EWYQ180-210DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	1ЧЕСКИ	(ХАРАКТЕРИСТИК	
OPSP / OPTP				
Блоки			EWYQ180DAYN	EWYQ210DAYN
Стандартный насос	Способ запуска		Прямой пу	ск от сети
	Номинальная мощность сети	кВт	4	
	Максимальный рабочий ток	Α	8	
	Пусковой ток	Α	98	3
OPHP				
Блоки			EWYQ180DAYN	EWYQ210DAYN
Hacoc высокого ESP	Способ запуска		Прямой пу	ск от сети
	Номинальная мощность сети	кВт	7,	5
	Максимальный рабочий ток	Α	15	2
	Пусковой ток	Α	16	9
OP10				
Блоки			EWYQ180DAYN	EWYQ210DAYN
Ленточный	Напряжение питания	В	230+/-	10%
нагреватель	Рекомендуемые плавкие предохранители	Α	2x*	0
	Мощность стандартной модели	Вт	1x3	00
	Мощность модели с насосом	Вт	2x3	00
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 +	1x150

3TW57691-1D

3 - 1 Опции

EWYQ230-250DAYN

			ВАРИАНТЫ ТЕХНИЧЕСКИХ	(ХАРАКТЕРИСТИК				
OPSP					OPSP + OPBT			
Блоки			EWYQ230DAYN	EWYQ250DAYN	EWYQ230	DAYN	EWYQ250DAYN	
Macca	Дополнительная масса оборудования	КГ	25		300			
	Дополнительная эксплуатационная масса	КГ	27		511			
	Дополнительная масса-брутто	КГ	25	0		300		
lacoc	Тип		Одноступенчатые м	ногорядные насосы	Одно	ступенчатые мн	огорядные насосы	
	Количество		1			1		
	Производитель		Grun	dfos		Grund	fos	
	Модель		TP65-	260/2		TP65-2	60/2	
	Эффективность		88,			88,19	%	
	Уровень эффективности		IE		IE3			
	Номинальная скорость	об/мин	2920-	2940		2920-2	940	
	Блок номинальной постоянной высоты для охлаждения	кПа	143	127	143		127	
Насти	Буферный резервуар	Л	-			190		
идравлической	Объем воды для дополнительного блока	Л	21 211					
системы	Расширительный бак	Л	50			50		
	Давление предварительной зарядки расш. бака		1,			1,5		
	Предохранительный клапан	бар	3			3		
OPHP					OPTP			
локи			EWYQ230DAYN	EWYQ250DAYN	EWYQ230	DAYN	EWYQ250DAYN	
lacoc	Тип		Одноступенчатые м	ногорядные насосы	Одно	ступенчатые мн	огорядные насосы	
	Количество		1			11_		
	Производитель		Grun		┦	Grund		
	Модель		TP65-			TPD65-2		
	Эффективность		90,4			88,19	%	
	Уровень эффективности		IE			IE3		
	Номинальная скорость	об/мин	2910-			2920-2		
	Блок номинальной постоянной высоты для охлаждения	кПа	303	290		См. ОР	PSP	

3TW57711-1D

EWYQ230-250DAYN

	ВАРИАНТЫ ЭЛЕКТРИ	ЧЕСКИХ	ХАРАКТЕРИСТИК	
OPSP / OPTP				
Блоки			EWYQ230DAYN	EWYQ250DAYN
Стандартный насос	Способ запуска		Прямой пуск	от сети
	Номинальная мощность сети	кВт	4	
	Максимальный рабочий ток	A	8	
	Пусковой ток	A	98	
OPHP				
Блоки			EWYQ230DAYN	EWYQ250DAYN
Hacoc высокого ESP	Способ запуска		Прямой пуск	от сети
	Номинальная мощность сети	кВт	7,5	
	Максимальный рабочий ток	Α	15,2	
	Пусковой ток	A	169	
OP10				
Блоки			EWYQ230DAYN	EWYQ250DAYN
Ленточный	Напряжение питания	В	230+/-1	0%
нагреватель	Рекомендуемые плавкие предохранители	A	2x10	
	Мощность стандартной модели	Вт	1x300)
	Мощность модели с насосом	Вт	2x300)
	Мощность модели с насосом и буферным резервуаром	Вт	2x300 + 1	x150

3TW57711-1D

3 - 1 Опции

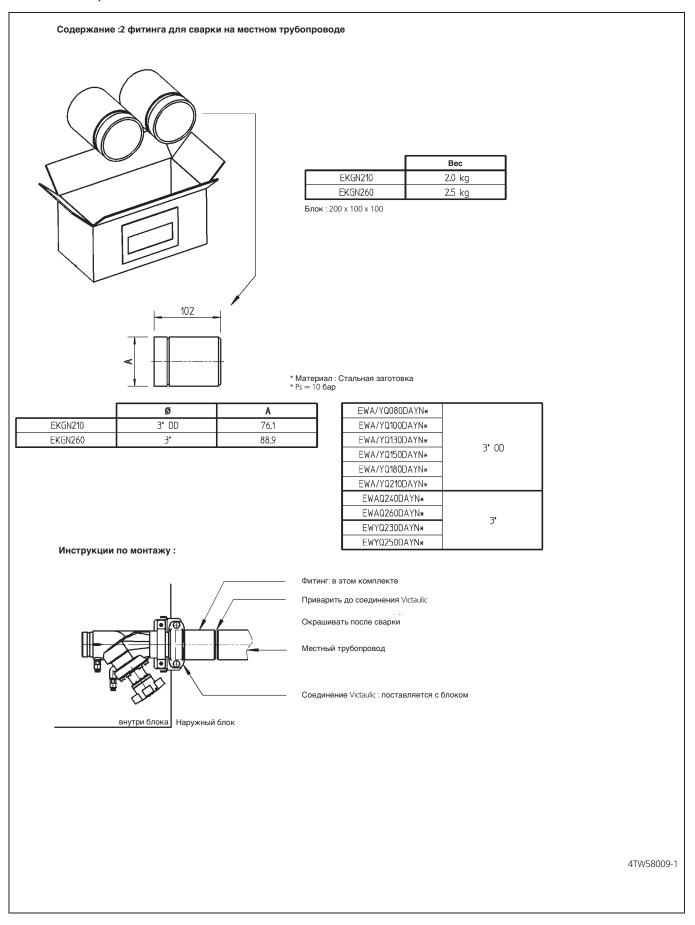
Дополнительное оборудование для EWYQ-DAYN

Мощность: 080-250 kW

EWYQ080DAYNN EWYQ100DAYNN EWYQ130DAYNN EWYQ150DAYNN EWYQ180DAYNN EWYQ210DAYNN EWYQ230DAYNN EWYQ250DAYNN

Номер	O-manus				Типор	азмер				
дополнительной функции	Описание дополнительных функций	080	100	130	150	180	210	230	250	Наличие
	Стандартный блок	0	0	0	0	0	0	0	0	
OPSC	Контактор для одного насоса	0	0	0	0	0	0	0	0	Заводской монтаж
OPTC	Контактор для двух насосов	0	0	0	0	0	0	0	0	Заводской монтаж
OPSP	Один насос	0	0	0	0	0	0	0	0	Заводской монтаж
OPTP	Два насоса (1 корпус насосов, два двигателя)	0	0	0	0	0	0	0	0	Заводской монтаж
OPHP	высоконапорный насос (только один насос)	0	0	0	0	0	0	0	0	Заводской монтаж
OPBT	Накопительный бак	0	0	0	0	0	0	0	0	Заводской монтаж
OPIF	Инверторные вентиляторы для низких температур наружного воздуха (-15 °C)	0	0	0	0	0	0	0	0	Заводской монтаж
OPZL	Гликоль 0°C/-10°C	0	0	0	0	0	0	0	0	Заводской монтаж
OP03	Двойной перепускной клапан	0	0	0	0	0	0	0	0	Заводской монтаж
OP10	ленточный нагреватель испарителя	0	0	0	0	0	0	0	0	Заводской монтаж
OP12	дополнительные клапаны (на стороне нагнетания, на линии для жидкости и запорный клапан на всасывании)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	o (S)	Заводской монтаж
OP57	Амперметр, вольтметр	0	0	0	0	0	0	0	0	Заводской монтаж
OPLN	Низкий уровень шума = 0PIF + корпус компрессора	0	0	0	0	0	0	0	0	Заводской монтаж
OPCG	Защитные решетки конденсатора	0	0	0	0	0	0	0	0	Заводской монтаж
	Поставляемые комплекты									
EKLONPG	Межсетевой интерфейс для L0N*	0	0	0	0	0	0	0	0	Комплект
EKBNPG	Межсетевой интерфейс для BACNET*	0	0	0	0	0	0	0	0	Комплект
EKACPG	Адресная карта, включая	0	0	0	0	0	0	0	0	Комплект
	Система конфигурации чиллеров Daikin (DICN)									
	Последовательный канал связи (Modbus)									
EKRUPG	дистанционный интерфейс пользователя	0	0	0	0	0	0	0	0	Комплект
EKGN210	Комплект водопровода	0	0	0	0	0	0	-	-	Комплект
EKGN260	Комплект водопровода	-	-	-	-	-	-	0	0	Комплект

Примечания Имеется


Для установки EKLONPG м EKBNPG \Longrightarrow на блок требуется установить EKACPG. За руководством по проектированию EKLONPG и EKBNPG обратитесь к своему дилеру.

(S)

Не имеется в наличии дополнительное оборудование, требуемое в соответствии с национальным законодательством Швеции SNFS1992:16

3TW57659-8B

3 - 1 Опции

4 - 1 Таблицы холодопроизводительности

EWYQ-DAYN

						ДЖАПХО	ДЕНИЕ								
T	Tamb (°C) 20 25 30 35 40 43														
LWE	Размер	CC	D PI	CC	อ Pl	CC	PI	CC	o Pl	CC 4	U PI	CC 4	PI		
LVVL	080	83,1	20,4	79,5	22,1	75,7	24,1	71,7	26,2	64,8	28,7	59,5	30,3		
i	100	109	26,8	104	29,4	99.2	32,4	93,6	35,8	84,0	39,5	76,9	42.0		
	130	148	35,6	142	39,0	135	42,7	127	46,8	117	51,5	109	54,6		
	150	161	42.0	154	45,9	146	50,2	137	55,2	125	60,7	117	64,4		
5	180	199	48,3	190	52,7	181	57,6	171	63,1	159	70,0	151	74,9		
ı	210	234	56,6	223	61,8	211	67,7	198	74,3	183	82,5	173	88,3		
i	230	252	63,0	241	68,4	230	74,5	217	81,3	195	89,0	179	94,0		
	250	277	71,6	265	77,8	252	84,7	237	92,5	213	101	194	107		
	080	89,1	20,5	85,2	22,3	81,2	24,3	77,0	26,5	69,5	28,9	63,9	30,5		
i	100	117	27,2	112	29,9	106	32,9	100	36,2	89,8	40,0	82,3	42,5		
	130	159	36,3	152	39,8	144	43,5	136	47,6	124	52,3	116	55,4		
I _	150	170	42,5	162	46,4	154	50,8	145	55,7	132	61,3	124	65,0		
7	180	213	49,0	203	53,4	194	58,3	183	63,8	170	70,7	161	75,6		
	210	248	57,6	236	62,8	224	68,7	211	75,3	195	83,5	184	89,4		
	230	268	63,9	256	69,3	244	75,4	231	82,2	208	89,9	190	94,9		
	250	294	72,5	281	78,8	267	85,8	252	93,5	226	102	207	108		
	080	98,6	20,9	94,5	22,6	90,1	24,6	85,4	26,8	77,1	29,3	70,9	30,9		
	100	129	28.0	123	30,6	117	33,6	110	37,0	99,0	40,8	90,7	43,2		
	130	175	37,5	167	40,9	159	44,7	150	48,9	137	53,5	128	56,7		
10	150	185	43,3	177	47,3	168	51,8	158	56,8	144	62,4	135	66,1		
10	180	235	50,2	224	54,5	214	59,5	202	65,0	188	71,9	178	76,8		
	210	271	59,2	258	64,4	245	70,3	231	76,9	213	85,2	201	91,1		
	230	292	65,3	280	70,7	267	76,8	252	83,7	227	91,3	208	96,4		
	250	321	74,0	307	80,4	292	87,4	275	95,3	247	104	226	110		
	080	109	21,2	104	23,0	100	25,0	94,4	27,2	85,2	29,7	78,4	31,3		
	100	142	28,8	135	31,4	128	34,4	121	37,8	109	41,6	100	44,1		
	130	192	38,7	184	42,2	174	46,0	164	50,2	150	54,9	140	58,0		
13	150	203	44,4	193	48,5	184	53,0	173	58,1	158	63,7	147	67,4		
13	180	258	51,4	247	55,8	235	60,8	222	66,3	206	73,3	195	78,2		
	210	296	61,0	282	66,2	267	72,1	251	78,7	232	87,0	219	92,9		
	230	319	66,8	305	72,3	291	78,4	275	85,3	248	92,9	227	97,9		
	250	350	75,6	334	82,1	318	89,2	300	97,1	269	106	246	112		
	080	120	21,5	115	23,4	110	25,4	104	27,7	93,8	30,2	86,3	31,8		
	100	155	29,7	148	32,3	141	35,3	133	38,7	119	42,5	109	45,0		
	130	210	40,0	201	43,5	191	47,4	179	51,6	164	56,3	153	59,4		
16	150	222	45,7	212	49,8	201	54,4	189	59,6	173	65,2	88	32.0		
I	180	283	52,9	270	57,3	257	62,2	243	67,8	226	74,8	214	79,7		
	210	321	63,0	306	68,2	290	74,0	273	80,6	252	89,0	238	94,9		
	230	346	68,5	332	74,0	316	80,1	299	87,0	269	94,6	247	100		
	250	380	77,4	363	83,9	345	91,1	326	99,1	292	108	267	114		
	080	136	22,1	130	24,0	124	26,0	118	28,3	106	30,9	53,4	15,1		
	100 130	174 236	31,1 41,8	166 225	33,7	158 213	36,7 49,3	149 201	40,0	133 183	43,8	66,8 93,6	21,5		
	150	252	47,6	240	45,4 51,9	213		213	53,6	183	58,4 67,7	-	28,5		
20	150	317		304		289	56,7		61,9 70.0	194 253		99,2 131	33,2		
	180 210	317	55,0	304	59,4	323	64,4	273 304		253	77,0	131	38,1		
1	230	385	66,0 71,1	369	71,1 76,5	352	77,0 82,6	304	83,6 89,5	300	91,9 97,1	151	45,4 47,4		
	250	423	71,1	404	86,5	352	93,8	362	102	300	111	163	54,1		
	230	423	13,3	404	00,0	304	33,0	302	102	323	1111	103	J4, I		

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (кВт) PI : Входная мощность (кВт)

LWE : Температура вытекающей воды из испарителя (°C)

Tamb : Температура окружающей среды (°C)

ПРИМЕЧАНИЯ

1. Мощность охлаждения (САР)

Показатель согласно стандарту Eurovent 6/C/003-2006, действителен для охлажденной воды в диапазоне Dt = 3 - 8°C

2. Входная мощность (кВт)

Входная мощность является полной мощностью согласно стандарту Eurovent 6/C/003-2006: Компрессор + вентиляторы + схема управления

3. Для блоков с интегрированным тепловым насосом Значения СС умножаются на 0,99, чтобы компенсировать входное тепло насоса

3TW57652-1B

4 - 1 Таблицы холодопроизводительности

EWYQ-DAYN

	ОХЛАЖДЕНИЕ - OPZL													
Tout	b (°C)	1 2	20	1 2	25	1 2	30	3	F	I 4	10	Ι 4	3	
LWE	Размер	CC	PI	CC	.J Pl	CC	Pl	CC	PI	CC	PI	CC	PI	
LVVL	080	50,1	19,4	47,1	21,2	44,2	23,2	41,4	25,4	37,0	27,9	00	- ''	
	100	65	24,5	61	27,1	58,1	29,9	54,6	33,1	48,9	36,7			
	130	91	31,3	87	34,7	82	38,3	77	42,4	71	47,2			
	150	110	39,3	103	43,1	96	47,4	90	52,2	81	57,8			
-10	180	118	44,7	112	49,0	105	53,9	99	59,3	91	66,0			
	210	145	51,3	137	56,4	129	62,1	121	68,4	111	76,2			
	230	155	57,9	148	63,2	140	69,1	132	75,7	118	83,0			
	250	171	65,9	163	71,7	154	78,2	145	85,5	129	94	1		
	080	55,1	19,5	52,1	21,3	49,1	23,3	46,2	25,5	41,5	28.0	1		
	100	72	24,8	68	27,5	65	30,3	61	33,6	54,7	37,2			
	130	100	32.0	96	35,4	91	39,0	85	43,1	78	47,8	1		
	150	119	39,7	112	43,5	105	47,8	98	52,7	89	58,2			
-7	180	131	45,2	124	49,6	118	54,4	111	59,8	102	66,6	1		
	210	160	52,1	152	57,3	143	63,0	134	69,4	124	77,3			
	230	172	58,8	164	64,1	155	70,1	146	76,7	131	84,1	1		
	250	189	66,9	180	72,8	171	79,4	161	86,8	144	95	1		
	080	58,9	19,6	55,8	21,4	52,8	23,4	49,7	25,5	44,7	28.0	41,0	29,7	
	100	77	25,1	73	27,7	70	30,6	66	33,9	58,9	37,5	53,9	39,9	
	130	107	32,5	102	35,9	97	39,5	91	43,6	84	48,3	78	51,5	
	150	125	40,0	119	43,9	112	48,1	104	53,0	95	58,5	88	62,2	
-5	180	140	45,6	134	50,0	127	54,8	119	60,3	111	67,1	105	71,9	
	210	171	52,7	162	57,9	153	63,7	144	70,1	132	78,1	125	83,8	
	230	184	59,4	175	64,7	166	70,7	157	77,4	141	84,9	129	89,8	
	250	202	67,5	193	73,5	183	80,2	172	87,6	154	96	141	101	
	080	65	19,8	62	21,6	59	23,5	55,6	25,7	50,1	28,2	46,0	29,8	
	100	86	25,5	82	28,2	78	31,1	73	34,4	66	38,1	60	40,5	
	130	118	33,4	113	36,7	107	40,4	101	44,5	92	49,2	86	52,3	
	150	135	40,5	128	44,4	121	48,7	114	53,5	103	59,0	96	62,7	
-2	180	156	46,3	149	50,7	141	55,5	133	61,0	124	67,8	117	72,7	
	210	188	53,7	179	58,9	169	64,7	159	71,2	146	79,3	138	85,1	
	230	202	60,3	193	65,7	184	71,8	174	78,5	156	86,0	143	91,0	
l	250	202	68,7	213	74,7	202	81,5	190	89,0	170	97	156	103	
	080	75	20,1	71	21,9	68	23,8	64	26,0	58,1	28,4	53,4	30.0	
	100	99	26,2	94	28,8	89	31,8	84	35,1	76	38,9	69	41,3	
l	130	134	34,6	129	38.0	122	41,6	115	45.7	106	50,4	99	53,6	
	150	149	41,3	142	45,2	135	49,5	126	54,4	115	59,9	108	63,6	
2	180	179	47,4	171	51,8	163	56,6	154	62,1	143	69,0	136	73,8	
l	210	213	55,3	203	60,5	192	66,3	181	72,9	167	81,1	157	86,9	
	230	230	61,8	220	67,2	209	73,3	198	80,1	178	87,7	163	93	
	250	252	70,3	241	76,4	229	83,3	216	90,9	194	99	177	105	
	230	232	10,3	241	10,4		00,0	210	30,3	134	33	177	100	

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (кВт) РІ : Входная мощность (кВт)

LWE : Температура вытекающей воды из испарителя (°C)

Тать : Температура окружающей среды (°C)

ПРИМЕЧАНИЯ

1. Мощность охлаждения (кВт)

Показатель согласно стандарту Eurovent 6/C/003-2006, действителен для охлажденной воды в диапазоне Dt = 3 - 8°C

2. Входная мощность (кВт)

Входная мощность является полной мощностью согласно стандарту Eurovent 6/C/003-2006: Компрессор + вентиляторы + схема управления

3. Для блоков с интегрированным тепловым насосом

Значения СС умножаются на 0,99, чтобы компенсировать входное тепло насоса

4. Использование глюколя и других антифризов

Коэффициенты корректировки для СС и РІ применяются согласно типа и концентрации используемого антифриза

3TW57652-1B

4 - 2 Таблицы теплопроизводительностей

EWYQ-DAYN

								H	АГРЕВ										
Touch) (°C)	1 4	10		7		4)		4		7	1	0	1 1	15		21
LWC	Размер	HC	PI	HC -	PI	HC	Pl												
LVVC	080	58,4	19,8	64,5	20,0	70,5	20,1	78,0	20,3	86,0	20,6	92,4	20,9	99,0	21,1	110	21,6	125	22,2
	100	74,1	23,9	82,3	24,2	90,3	24,4	100	24,8	111	25,2	119	25,5	127	25,9	142	26,5	159	27,3
	130	97	31,7	108	32,2	118	32,7	131	33,4	145	34,1	156	34,7	167	35,3	186	36,3	210	37,4
	150	107	40,0	118	40,0	129	40,1	143	40,2	157	40,5	168	40,7	179	40,9	199	41,4	223	41,9
25	180	129	44,1	144	44,5	158	44,9	176	45,5	194	46,2	208	46,7	222	47,3	246	48,3	273	49,5
	210	141	50,7	158	51,0	174	51,3	193	51,6	214	52,0	229	52,3	244	52,6	270	53,3	299	54,1
ı	230	160	54,3	179	54,9	198	55,5	222	56,2	248	57,1	269	57,7	292	58,4	332	59,7	385	61,5
	250	175	62,1	195	62,9	216	63,8	242	64,9	270	66,1	293	67,0	317	67,9	360	69,6	416	71,8
	080	57,4	21,8	63,3	21,9	69,8	22,0	77,2	22,2	85,0	22,5	91,2	22,8	97,6	23,0	109	23,5	123	24,2
	100	73,2	26,4	81,2	26,7	89,8	27.0	99,5	27,4	110	27,8	118	28,2	126	28,5	140	29,1	157	30.0
1	130	96	34,8	106	35,3	117	35,8	130	36,5	144	37,2	154	37,8	165	38,4	184	39,4	207	40,6
١ 🦡	150	106	44,1	117	44,0	129	44,0	142	44,1	156	44,3	167	44,5	178	44,7	197	45,1	221	45,7
30	180	127	48,5	142	48,9	157	49,3	174	49,9	192	50,6	206	51,2	220	51,7	243	52,8	269	54,0
1	210	140	55,8	157	56,2	174	56,5	193	56,8	213	57,2	228	57,5	243	57,8	268	58,3	296	59,1
	230	158	59,5	177	60,2	197	60,8	221	61,7	246	62,5	267	63,2	288	64,0	327	65,3	379	67,2
	250	173	67,8	193	68,7	215	69,7	241	70,9	268	72,2	290	73,2	313	74,2	355	76,0	409	78,4
	080	56,6	24,0	62,4	24,1	68,7	24,2	76,5	24,4	84,1	24,7	90,0	24,9	96,3	25,2	107	25,7	121	26,4
	100	72,5	29,1	80,4	29,5	88,7	29,8	99,0	30,3	109	30,7	116	31,1	124	31,5	138	32,1	155	33,0
	130	95	38,4	105	38,8	116	39,3	129	39,9	142	40,7	153	41,2	163	41,8	181	42,9	204	44,1
35	150	105	48,6	116	48,5	127	48,4	142	48,4	155	48,5	166	48,7	177	48,9	196	49,3	219	49,8
	180	126	53,3	140	53,7	155	54,2	173	54,9	190	55,6	204	56,1	217	56,7	239	57,8	265	59,1
	210	140	61,5	156 175	61,9	173	62,2	193	62,6	212	63,0	227	63,2	241	63,5	266	64,0	294	64,7
	230 250	157 172	65,4 74,2	192	66,1 75,3	195 213	66,8 76,3	219 240	67,8 77,7	244 266	68,7 79,0	264 287	69,4 80,1	285 310	70,2 81,2	322 350	71,6 83,1	372 402	73,5 85,6
	080	56,2	26,5	61,7	26,5	67,7	26,6	75,9	26,8	83,2	27,1	88,9	27,3	94,9	27,6	105	28,1	118	28,8
	100	72,1	32,2	79,7	32,6	87,7	33,0	98,5	33,5	108	34.0	115	34,4	123	34,8	136	35,5	152	36,3
	130	94	42,5	104	42,8	115	43,2	129	43,9	141	44,6	151	45,1	161	45,7	178	46,8	200	48,1
	150	105	53,7	116	53,5	127	53,3	142	53,3	155	53,3	165	53,4	176	53,6	194	54,0	217	54,5
40	180	125	58,8	139	59,2	153	59,7	172	60,4	189	61,1	201	61,7	214	62,3	236	63,4	261	64,8
İ	210	140	67,7	156	68,2	172	68,6	193	69,1	212	69,5	226	69,7	240	70,0	264	70,5	291	71,1
	230	156	71,9	174	72,7	193	73,5	218	74,6	242	75,6	261	76,4	281	77,2	317	78,6	364	80,6
	250	171	81,5	190	82,7	211	83,8	239	85,2	264	86,7	284	87,9	306	89,0	344	91,1	393	93,7
	080	İ				66,9	29,4	74,7	29,5	82,3	29,8	87,7	30.0	93,4	30,3	103	30,6	116	30,8
İ	100					86,8	36,6	97,1	37,2	107	37,7	114	38,1	121	38,5	134	39,3	149	40,2
	130					113	47,9	127	48,4	140	49,1	149	49,6	159	50,2	175	51,2	196	52,6
45	150					127	58,9	141	58,7	155	58,7	165	58,8	175	58,9	193	59,3	215	59,8
45	180					151	65,9	169	66,6	187	67,4	199	68,0	211	68,6	232	69,8	256	71,2
	210					171	75,8	192	76,3	212	76,8	225	77,0	239	77,3	262	77,8	289	78,3
	230					191	81,1	215	82,3	240	83,4	258	84,2	277	85,0	311	86,5	355	88,5
	250					209	92,2	235	93,8	262	95,4	281	96,6	301	97,8	337	100	384	103
	080							73,4	32,6	81,4	32,9	86,4	33,1	91,7	33,4	101	33,9	113	34,7
	100	<u> </u>						95,7	41,3	106	41,9	113	42,3	120	42,7	132	43,5	146	44,4
	130							125	53,7	138	54,3	147	54,8	156	55,3	172	56,3	191	57,7
50	150	<u> </u>						140	64,9	155	64,8	165	64,9	175	65,0	192	65,3	213	65,8
1	180							167	73,7	185	74,4	196	75,1	208	75,7	228	76,9	251	78,3
	210							191	84,5	212	85,0	225	85,3	238	85,6	260	86,0	286	86,5
	230	<u> </u>						212	90,9	237	92,1	254	93,0	272	93,8	304	95,4	346	97
	250					<u> </u>		232	103	259	105	277	106	295	108	329	110	373	113

ПРИМЕЧАНИЯ

1. Мощность нагрева (САР)

Показатель согласно стандарту Eurovent 6/C/003-2006, действителен для нагретой воды в диапазоне Dt = 3 - 8°C

2. Входная мощность (кВт)

Входная мощность является полной мощностью согласно стандарту Eurovent 6/C/003-2006: Компрессор + вентиляторы + схема управления

 Протабулированные НС не включают падение мощности во время замораживания и размораживания.
 Интегрированная мощность нагрева учитывает падение мощности в течение времени размораживания и в процессе размораживания.

 $(HC_{_{\text{интегрированная}}} = (HC) * (Интегрированный коэффициент корректировки во время размораживания)$

Интегрированная мощность нагрева означает мощность нагрева в течение одного цикла (между периодами размораживания), которую интегрируют и представляют в виде мощности нагрева в час.

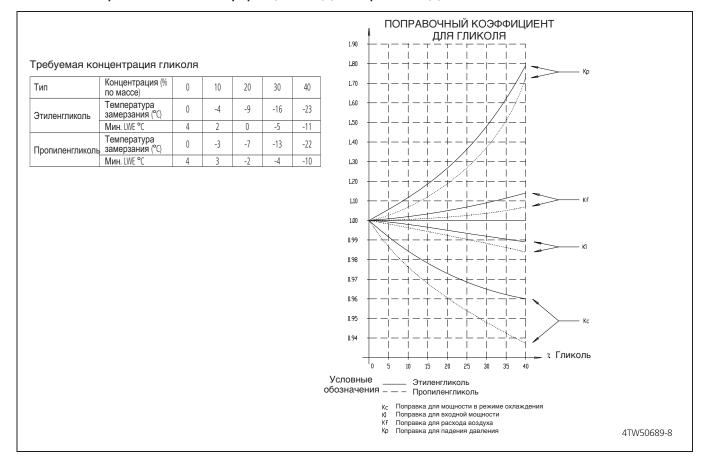
Интегрированный коэффициент коррекции

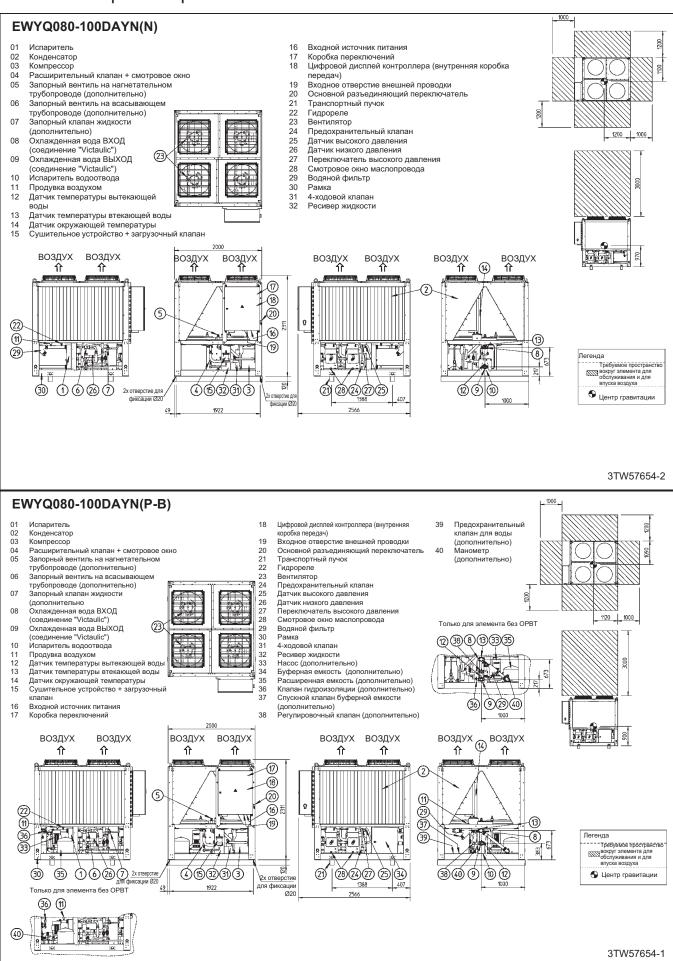
				,		
Tamb (°C) отн.вл. 85%	-10	-7	-4	0	4	7
Поправочный коэффициент	0,96	0,95	0,92	0,87	0,90	1,00

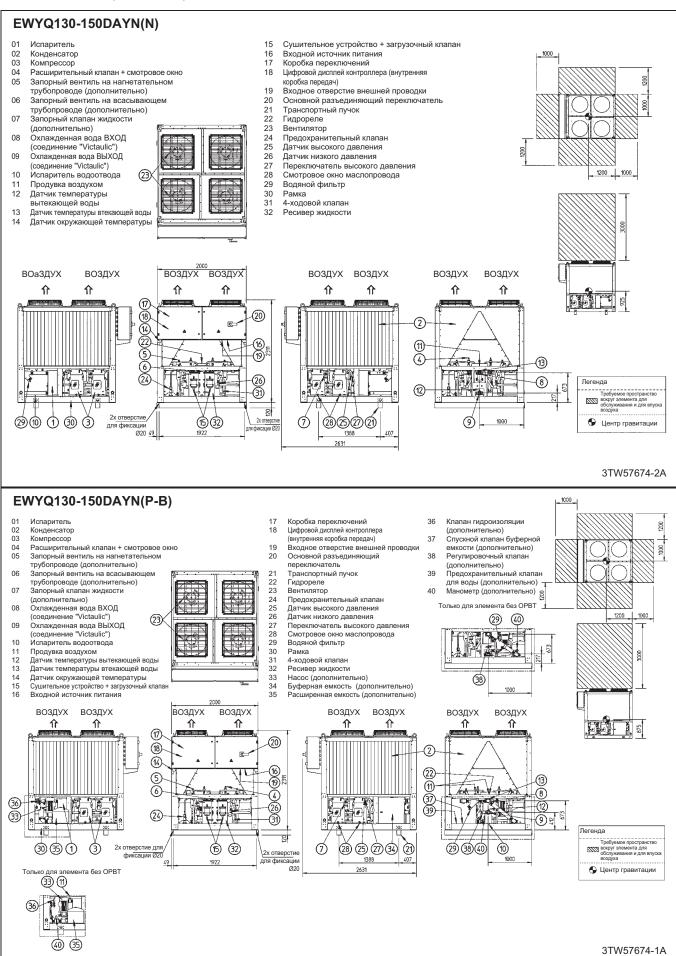
4. В случае, когда поверхность теплообменника покрыта снегом, мощность нагрева временно уменьшается в зависимости от внешней температуры (°CDB), относительной влажности (RH) и объема замерзания.

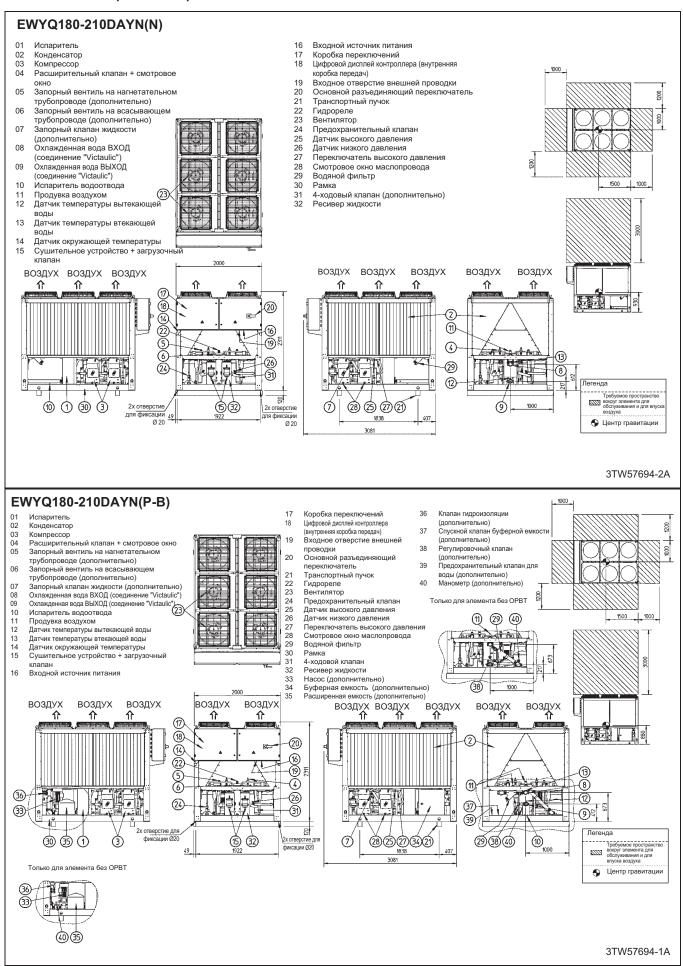
ОБОЗНАЧЕНИЯ

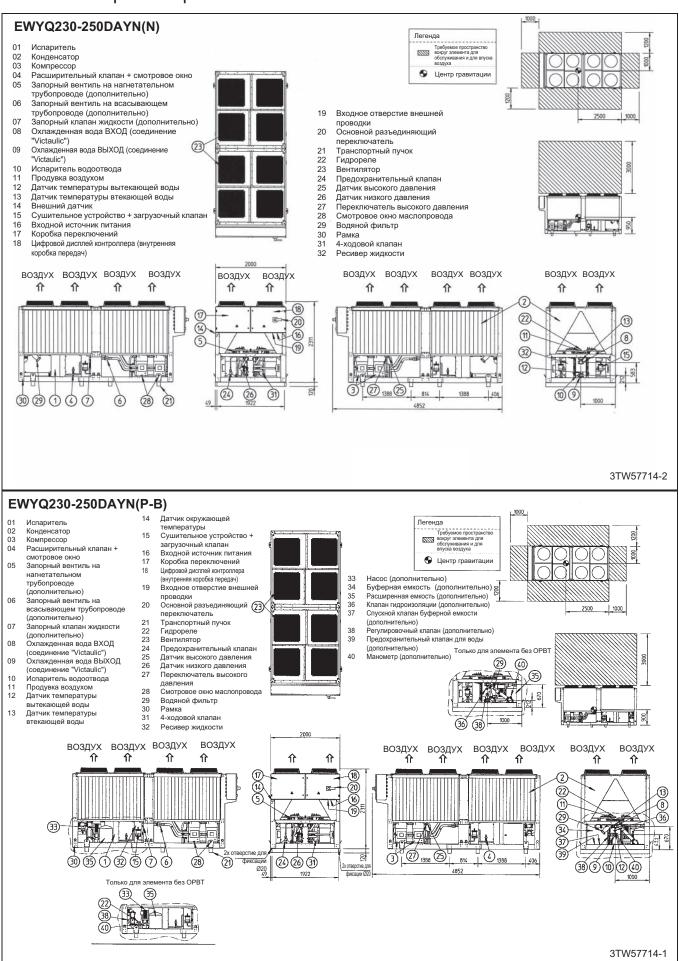
НС : Мощность подогрева (кВт) PI : Входная мощность (кВт)

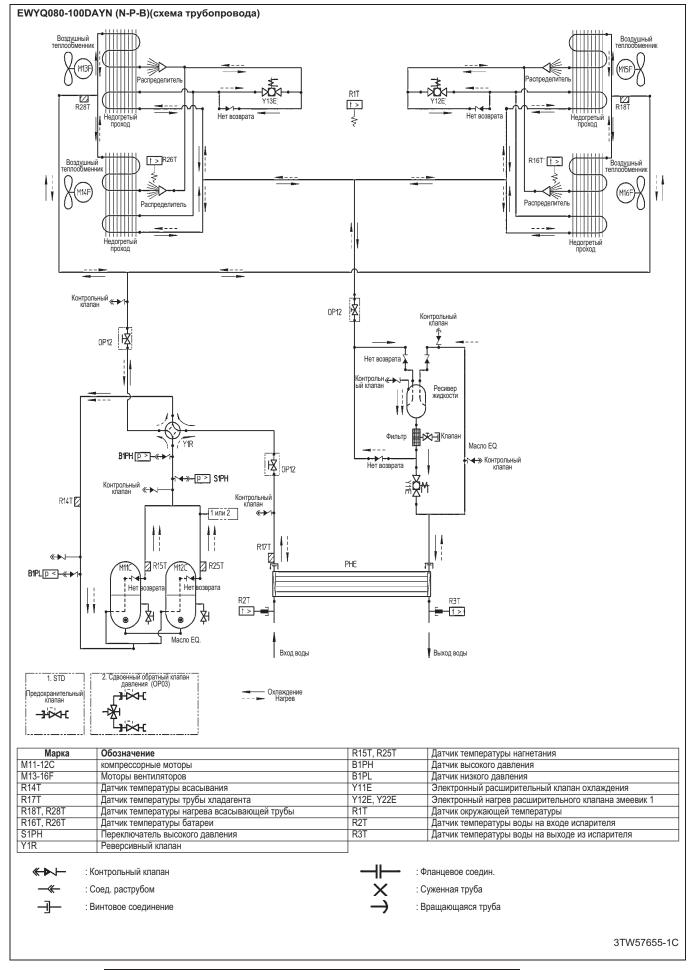

LWC : Температура воды на выходе конденсатора (°C) Татв : Температура окружающей среды (°C)

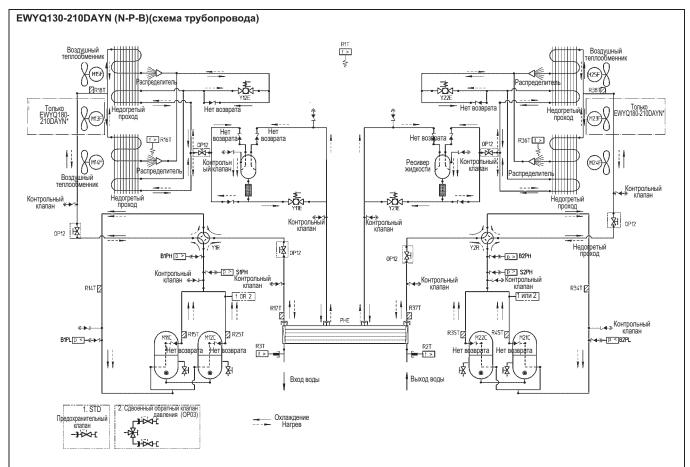

График интегрированной мощности нагрева:




3TW57652-1B

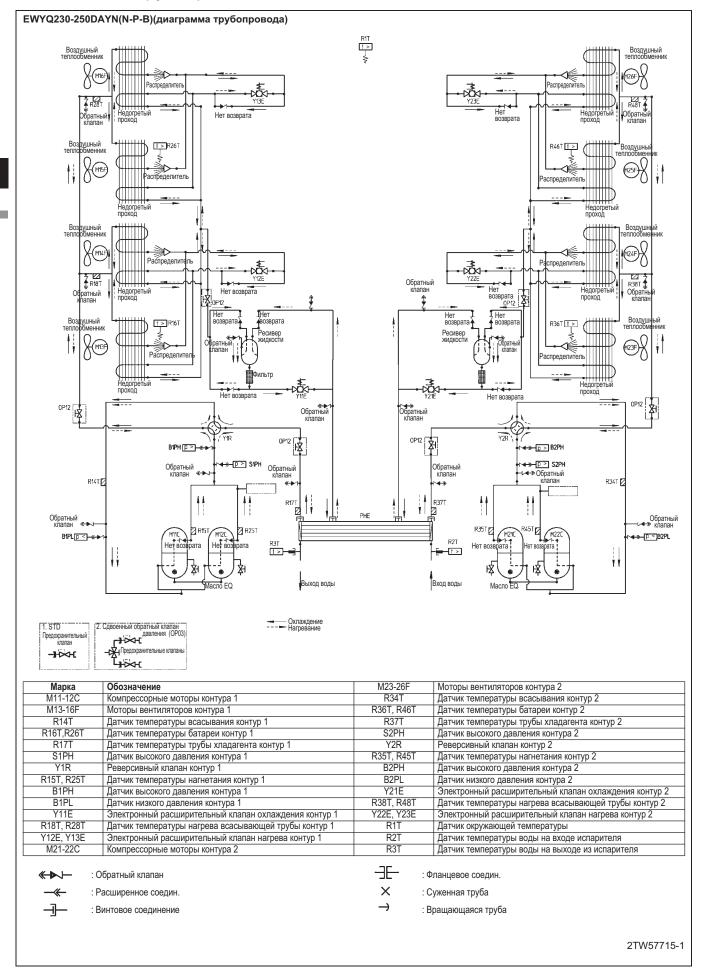

4 - 3 Поправочный коэффициент для производительности



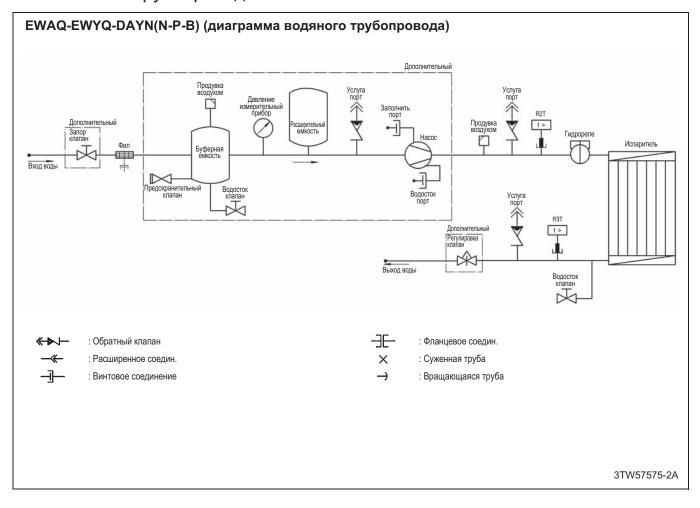


6 - 1 Схемы трубопроводов

6 - 1 Схемы трубопроводов

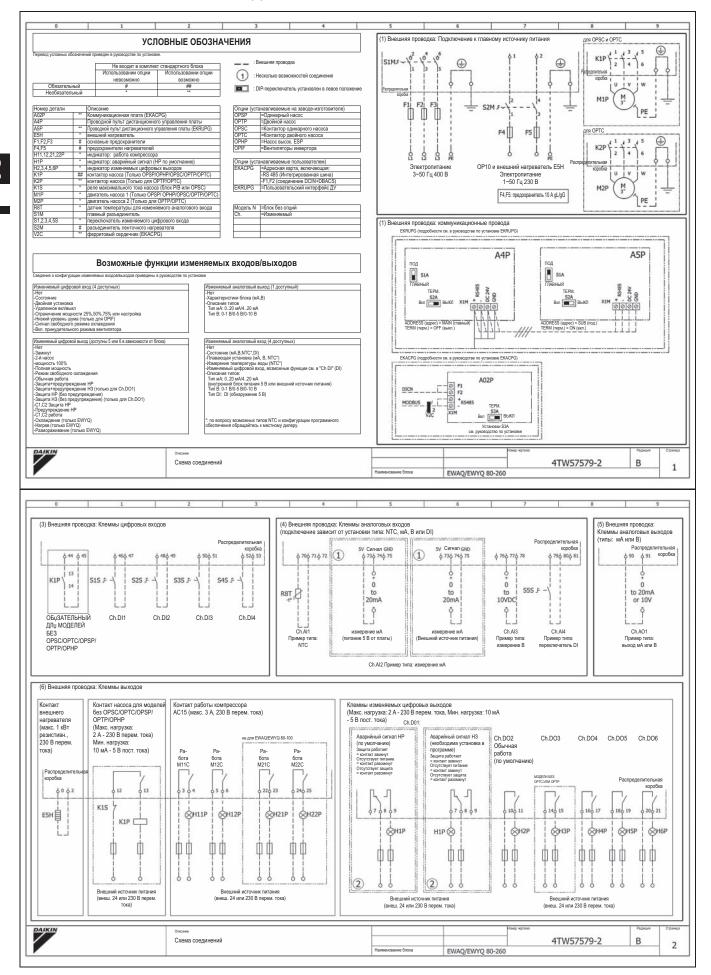


Марка	Обозначение	R36T	Датчик температуры батареи контур 2
M11-12C	Компрессорные моторы контура 1	R37T	Датчик температуры трубы хладагента контур 2
M13-15F	Моторы вентиляторов контура 1	R38T	Датчик температуры нагрева всасывающей трубы контур 2
R14T	Датчик температуры всасывания контур 1	S2PH	Датчик высокого давления контура 2
R16T	Датчик температуры батареи контур 1	Y2R	Реверсивный клапан контур 2
R17T	Датчик температуры трубы хладагента контур 1	R35T, R45T	Датчик температуры нагнетания контур 2
R18T	Датчик температуры нагрева всасывающей трубы контур 1	B2PH	Датчик высокого давления контура 2
S1PH	Датчик высокого давления контура 1	B2PL	Датчик низкого давления контура 2
B1PL	Датчик низкого давления контура 1	Y21E	Электронный расширительный клапан охлаждения контур 2
Y11E	Электронный расширительный клапан охлаждения контур 1	Y22E	Электронный расширительный клапан нагрева контур 2
Y12E	Электронный расширительный клапан нагрева контур 1	R1T	Датчик окружающей температуры
M21-22C	Компрессорные моторы контура 2	R2T	Датчик температуры воды на входе испарителя
M23-25F	Моторы вентиляторов контура 2	R3T	Датчик температуры воды на выходе из испарителя
R34T	Датчик температуры всасывания контур 2		


Контрольный клапан
 Соед. раструбом
 Винтовое соединение
 ∴ Суженная труба
 ∴ Вращающаяся труба

2TW57675-1A

6 - 1 Схемы трубопроводов



6 - 1 Схемы трубопроводов

7 Схемы внешних соединений

7 - 1 Схемы внешних соединений

8 Данные об уровне шума

8 - 1 Спектр звуковой мощности

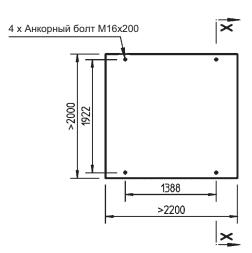
EWAQ-EWYQ-DAYN(N-P-B)

STD - 2 блока			Мощнос	ть звука L	.w на окта	ву (dBA)			Bcero (dBA)
LWE= 7°C / Tamb = 35°C	63	125	250	500	1000	2000	4000	8000	LwA
EW(A/Y)Q080DAYN*	64	69	72	82	81	77	71	62	86
EW(A/Y)Q100DAYN*	62	66	71	79	82	80	74	64	86
EW(A/Y)Q130DAYN*	64	70	73	81	85	80	72	61	88
EW(A/Y)Q150DAYN*	65	74	75	85	84	80	74	65	89
EW(A/Y)Q180DAYN*	70	75	79	85	86	82	75	64	90
EW(A/Y)Q210DAYN*	67	74	79	85	86	83	76	64	90
EW(A/Y)Q(230/240)DAYN*	71	72	77	87	86	83	77	67	91
EW(A/Y)Q(250/260)DAYN*	71	72	77	87	86	83	77	67	91

OPLN - 2 блока			Мощнос	ть звука L	.w на окта	ву (dBA)			Всего (dBA)
LWE= 7°C / Tamb = 35°C	63	125	250	500	1000	2000	4000	8000	LwA
EW(A/Y)Q080DAYN*	62	67	70	80	79	75	69	60	84
EW(A/Y)Q100DAYN*	60	64	69	77	80	78	72	62	84
EW(A/Y)Q130DAYN*	61	67	70	78	82	77	69	58	85
EW(A/Y)Q150DAYN*	62	71	72	82	81	77	71	62	86
EW(A/Y)Q180DAYN*	68	73	77	83	84	80	73	62	88
EW(A/Y)Q210DAYN*	65	72	77	83	84	81	74	62	88
EW(A/Y)Q(230/240)DAYN*	68	69	74	84	83	80	74	64	88
EW(A/Y)Q(250/260)DAYN*	68	69	74	84	83	80	74	64	88

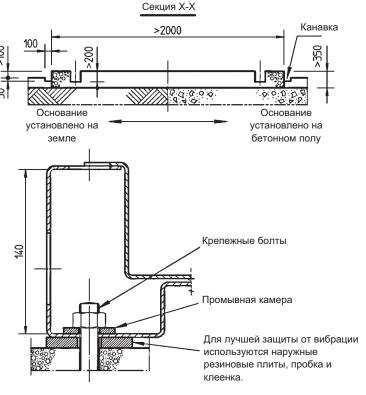
OPLN - 2 блока			Мощнос	ть звука L	.w на окта	ву (dBA)			Bcero (dBA)
LWE= 7°C / Tamb = 25°C	63	125	250	500	1000	2000	4000	8000	LwA
EW(A/Y)Q080DAYN*	61	66	69	79	78	74	68	59	83
EW(A/Y)Q100DAYN*	59	63	68	76	79	77	71	61	83
EW(A/Y)Q130DAYN*	60	66	69	77	81	76	68	57	84
EW(A/Y)Q150DAYN*	60	69	70	80	79	75	69	60	84
EW(A/Y)Q180DAYN*	66	71	75	81	82	79	72	60	86
EW(A/Y)Q210DAYN*	63	70	75	81	82	79	72	60	86
EW(A/Y)Q(230/240)DAYN*	67	68	73	83	82	79	73	63	87
EW(A/Y)Q(250/260)DAYN*	67	68	73	83	82	79	73	63	87

примечания


- 1 Значения Уровень мощности соответствуют ISO9614-2
- 2 LWE= Температурв вытекающей воды из испарителя (°C) Таmb= Температура окружающей среды

4TW57577-1C

9 Установка


9 - 1 Крепление и фундаменты блоков

EWAQ-EWYQ080-150DAYN(N-P-B)

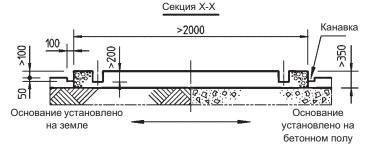
Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ.

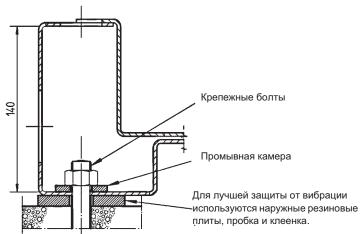
В дальнейшем, прочность пола должна быть достаточной, для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.

Примечания

- 1 Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 3 Коэффициент добавки в бетон цемента: 1, песок: 2, гравий: 3, которые стандартны и включают железные решетки у 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

4TW57599-1

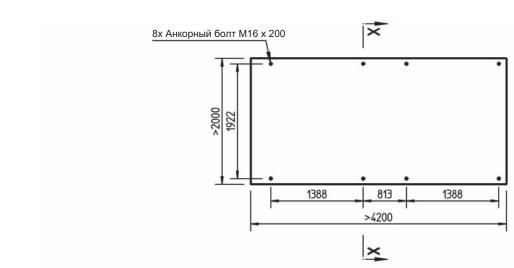

9 Установка


EWAQ-EWYQ180-210DAYN(N-P-B)

9 - 1 Крепление и фундаменты блоков

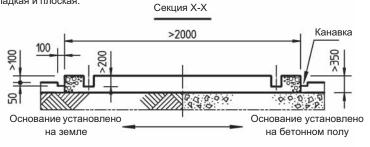
Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ. В дальнейшем, прочность пола должна быть достаточной, для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.

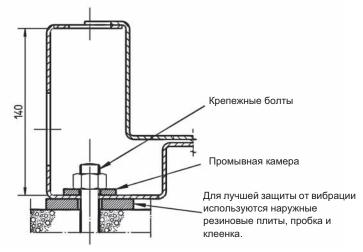
Примечания


- Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 3 Коэффициент добавки в бетон цемента: 1, песок: 2, гравий: 3, которые стандартны и включают железные решетки ф 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

4TW57619-1

9 Установка


9 - 1 Крепление и фундаменты блоков


EWAQ240-260DAYN(N-P-B)_EWYQ230-250DAYN(N-P-B)

Зафиксировать анкорные болты в бетонное основание. Бетонное основание должно быть выше над полом приблизительно на 100 мм для легкого проведения дренажа и манитарно-технических работ. В дальнейшем, прочность пола должна быть достаточной,

В дальнейшем, прочность пола должна быть достаточной, для выдерживания веса бетонного основания и агрегата. Убедитесь, что поверхность основания гладкая и плоская.

Примечания

- 1 Протабулированные измерения основаны на том факте, что основание установлено на земле или на бетонном полу. В случае, когда основание установлено на прочном бетонном полу, можно включить толщину бетонного поля в толщину основания.
- 2 В случае, когда основание стоит на бетонном полу, убедитесь, что имеется канавка, как указано. Важно, чтобы дренаж был предусмотрен вне зависимости установлено ли основание на земле или на бетонном полу. (Канава → сточных вод).
- 8 Коэффициент добавки в бетон цемента: 1,песок: 2, гравий:3, которые стандартны и включают железные решетки у 10 на каждом интервале в 300 мм. Край бетонного основания должен быть плоским.

4TW57639-1

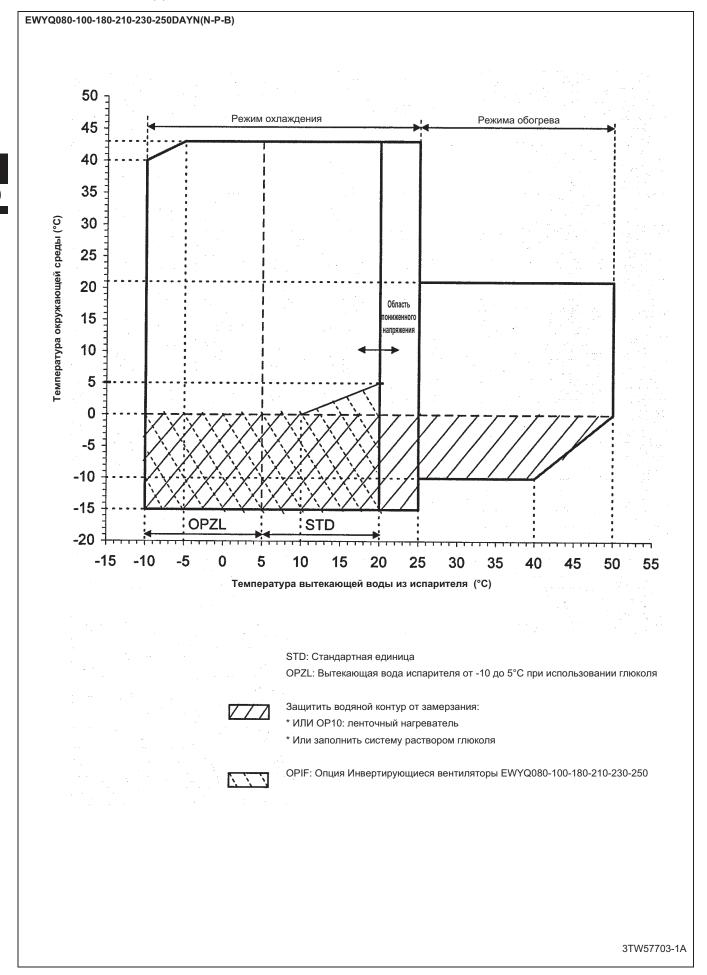
9 Установка

9 - 2 Заправка, расход и количество воды

Human	8	KOMIOHEHTЫ (1) (5)		Охла	Охлаждающая вода (3)	ода (з)	Охлажденная вода	ная вода		Нагретая вода (2)	Вода (2)		Тенденция при
раздание на вода на во				Циркуля сист	ционная гема	Поток			Низкая тег	ипература	Выс	окая ратура	невыполнении критериев
рн стронеостая (mSn) at 23°C 65–80 68–80 68–80 68–80 70–80 70–80 70–80 70–80 Эпистринеская (mSn) at 23°C Ниже 30				Циркуляционная вода	Подаваемая вода ₍₄₎	Проточная вода	Циркуляционная вода [Ниже №С]				Циркуляционная вода [60°С ~ 80°С]		
ΘΠΗΣΠΗΣΙΑΤΕΙ ΠΗΧΜΕ 300 (НИЖЕ 300) (НИЖЕ		Hd	at 25°C	6.5~8.2	0.8~0.9	6.8~8.0	6.8~8.0	6.8~8.0	7.0~8.0	7.0~8.0	7.0~8.0	7.0~8.0	Коррозия + окалина
проводимость (ниже 300) (ни	:19		[mS/m] at 25°C	Ниже 80	Ниже 30	Ниже 40	Ниже 40	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Коррозия + окалина
Ион клора (пид 00)	ІТНЭН		(µS/cm) at 25°C (1)	(Ниже 800)	(Ниже 300)	(Ниже 400)	(Ниже 400)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	Коррозия + окалина
Ион сульфата (mgSd-3-4) Ниже 100 Ниже 50 Ниже 60	ОПМО		[hgCl7/]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
М-щепочность (рН8) (тюбасо ₃ /п) Ниже 100 Ниже 50 Ниже 60 Ниже	PIG K		[mgSO ²⁻ ₄ /l]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
Общая жесткость [ттд3003/1] Ниже 100 Ниже 50 Ниже 70 Ниже 50 Ниже 60 Ниже 60<	M9RT		[mgCaCO ₃ /l]	Ниже 100	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина
Жесткость кальция [mgGaO ₃ /I] Ниже 150 Ниже 30 Ниже 60 Ниже 6	aedr		[mgCaCO ₃ /l]	Ниже 200	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Окалина
Мон кремне зема [mg50_//I] Ниже 10 Ниже 30 Ниже 6.3 <	lγ		[mgCaCO ₃ /l]	Ниже 150	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Окалина
Железо [mgCu] Ниже 1.0 Ниже 0.1 Ниже 0.1 <t< td=""><th></th><td>Ион кремнезема</td><td>[l/²0iSgm]</td><td>Ниже 50</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Ниже 30</td><td>Окалина</td></t<>		Ион кремнезема	[l/ ² 0iSgm]	Ниже 50	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Окалина
Медь [mgCul] Ниже 0.3 Ниже 0.1 Ниже 1.0 Ниже 0.1 Ниже 0.1 <t< td=""><th>:</th><td></td><td>[mgFe/l]</td><td>Ниже 1.0</td><td>Ниже 0.3</td><td>Ниже 1.0</td><td>Ниже 1.0</td><td>Ниже 0.3</td><td>Ниже 1.0</td><td>Ниже 0.3</td><td>Ниже 1.0</td><td>Ниже 0.3</td><td>Коррозия + окалина</td></t<>	:		[mgFe/l]	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Коррозия + окалина
Ион сульфита [mg/s²-//] Не определяется Не определяется </td <th>ЭНТЫ</th> <td></td> <td>[mgCu/]</td> <td>Ниже 0.3</td> <td>Ниже 0.1</td> <td>Ниже 1.0</td> <td>Ниже 1.0</td> <td>Ниже 0.1</td> <td>Ниже 1.0</td> <td>Ниже 0.1</td> <td>Ниже 1.0</td> <td>Ниже 0.1</td> <td>Коррозия</td>	ЭНТЫ		[mgCu/]	Ниже 0.3	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Коррозия
Ион аммония [mg/NH+4/l] Ниже 1.0 Ниже 1.0 Ниже 0.1	НОП		[hgS ²⁻ /]]	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Не определяется	Коррозия
Остаточный хлорид [mgCL/l] Ниже 4.0 Ниже 6.0 Ниже 6.0 Ниже 6.0 Ниже 6.0 <th>6 кои</th> <td></td> <td>[mgNH⁺₄/l]</td> <td>Ниже 1.0</td> <td>Ниже 0.1</td> <td>Ниже 1.0</td> <td>Ниже 1.0</td> <td>Ниже 0.1</td> <td>Ниже 0.3</td> <td>Ниже 0.1</td> <td>Ниже 0.1</td> <td>Ниже 0.1</td> <td>Коррозия</td>	6 кои		[mgNH ⁺ ₄ /l]	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 0.3	Ниже 0.1	Ниже 0.1	Ниже 0.1	Коррозия
Свободный карбид [mgCO ₂ /l] Ниже 4.0 ниже 4.0<	ОННРІ		[mgCL/l]	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.25	Ниже 0.3	Ниже 0.1	Ниже 0.3	Коррозия
Индекс устойчивости 60∼70	сРІП([mgCO ₂ /l]	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 0.4	Ниже 4.0	Ниже 0.4	Ниже 4.0	Коррозия
	0			6.0~7.0	ı	I	ı	I	ı	l	ı	ı	Коррозия + окалина

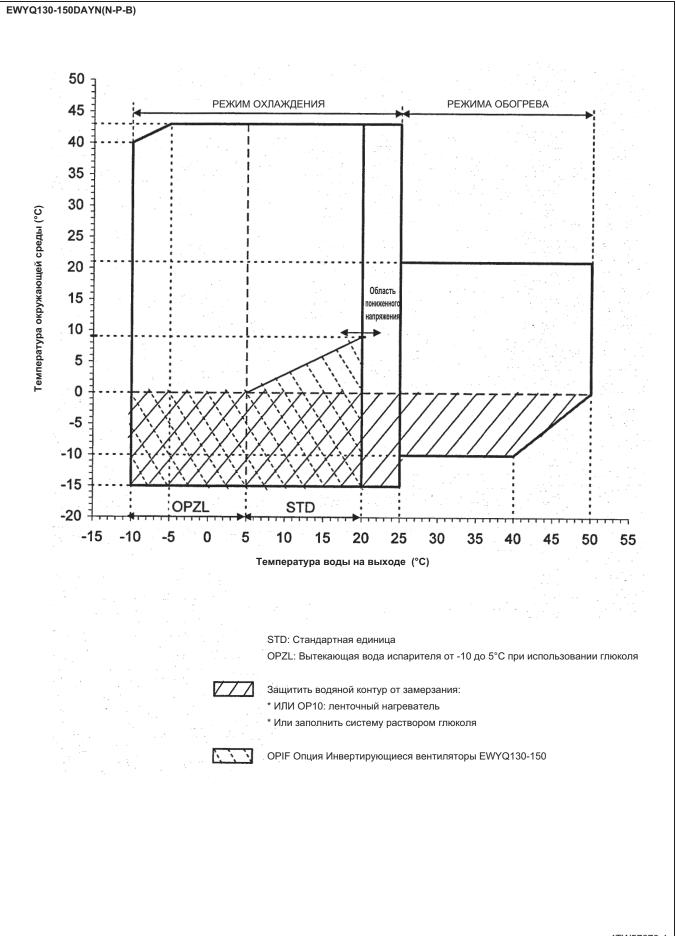
Названия, определения и единицы соответствуют требованиям JIS К 0101. Единицы и значения в скобках являются старыми единицами, приведенными

Особенно если металл непосредственно контактирует с водой без защитных экранов; желательно выполнять измерения уровня коррозии, например, При использовании нагретой воды (более 40°С) обычно повышается уровень коррозии.


Если воды охлаждается в градирне закрытого типа, вода закрытого контуры соответствует стандарту для нагретой воды, и вода открытого контура стандарту охлаждающей воды.

Подаваемая вода считается питьевой, промышленной или грунтовой водой; подаваемая вода не считается чистой, нейтральной или мягкой водой. Вышеуказанные компоненты относятся к случаям, связанным с появлением коррозии и ржавчины.

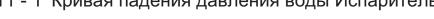
ГРАІКІМ • Системы гидроники • Одноблочная система


10 Рабочий диапазон

10 - 1 Рабочий диапазон

10 Рабочий диапазон

10 - 1 Рабочий диапазон

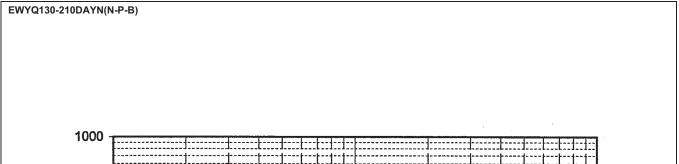


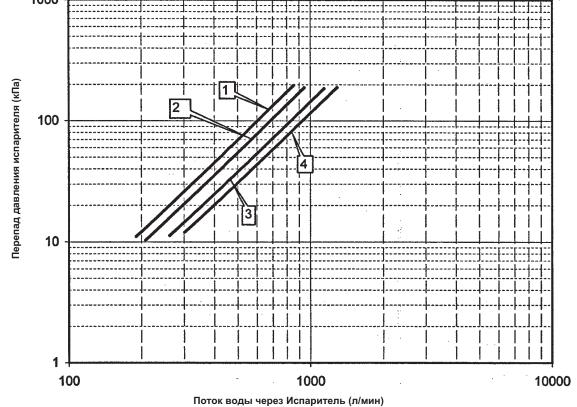
4TW57673-1


EWYQ80-100DAYN(P-B)

11 Характеристика гидравлической системы

11 - 1 Кривая падения давления воды Испаритель

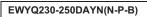

- 1. EWYQ80DAYN*
- 2. EWYQ100DAYN*

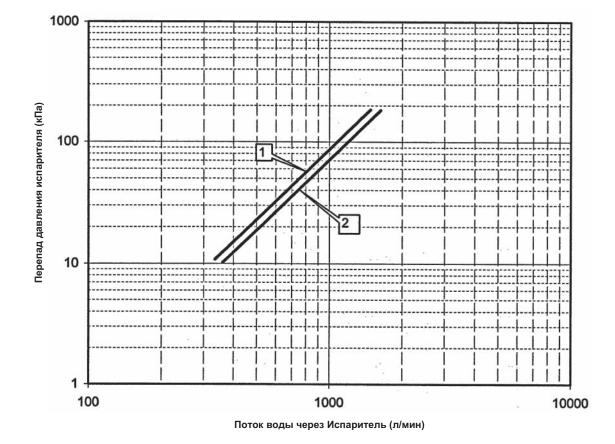

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного

4TW57659-5

11 - 1 Кривая падения давления воды Испаритель

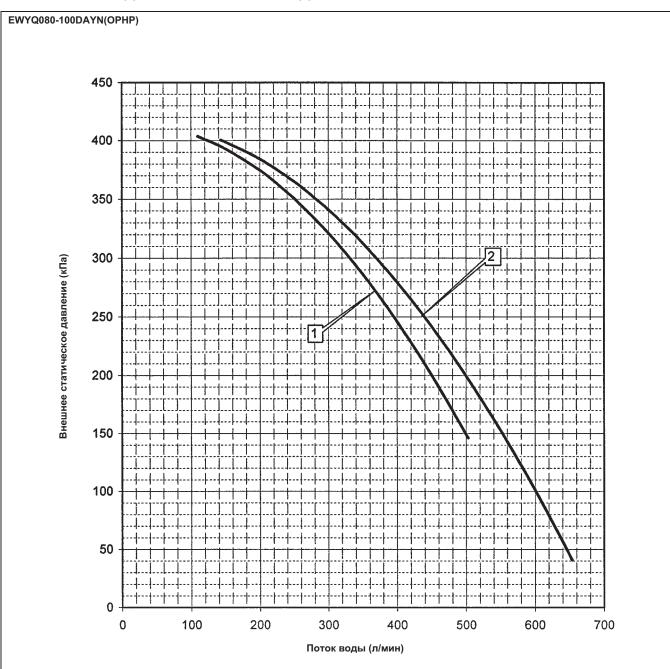

- 1. EWYQ130DAYN*
- 2. EWYQ150DAYN*
- 3. EWYQ180DAYN*
- 4. EWYQ210DAYN*


Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57679-5

11 - 1 Кривая падения давления воды Испаритель

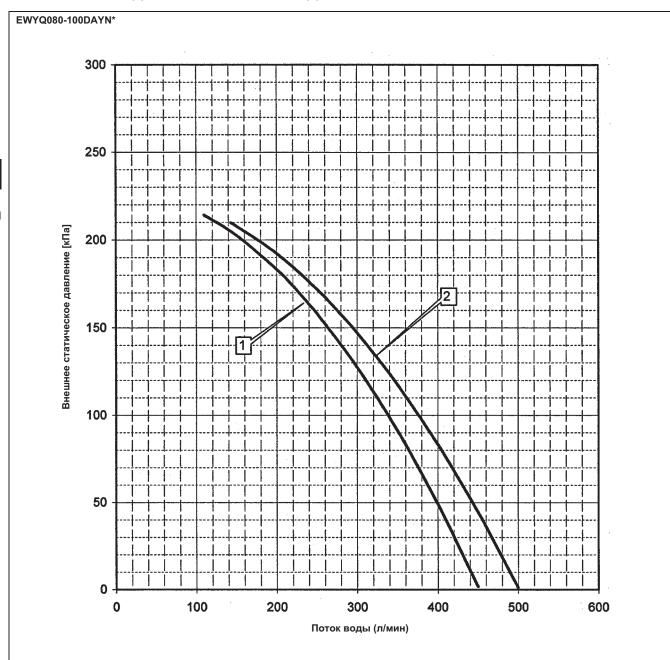

- 1. EWYQ230DAYN*
- 2. EWYQ250DAYN*

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57719-5

11 - 2 Блок падения статического давления

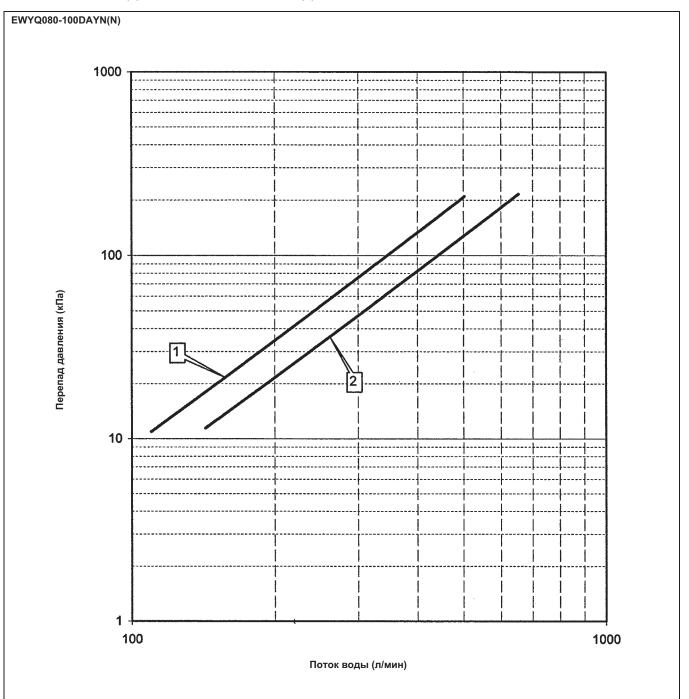

- 1. EWYQ080DAYN* + OPHP
- 2. EWYQ100DAYN* + OPHP

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57659-9

11 - 2 Блок падения статического давления


- 1. EWYQ080DAYN* + OPSP/OPTP
- 2. EWYQ100DAYN* + OPSP/OPTP

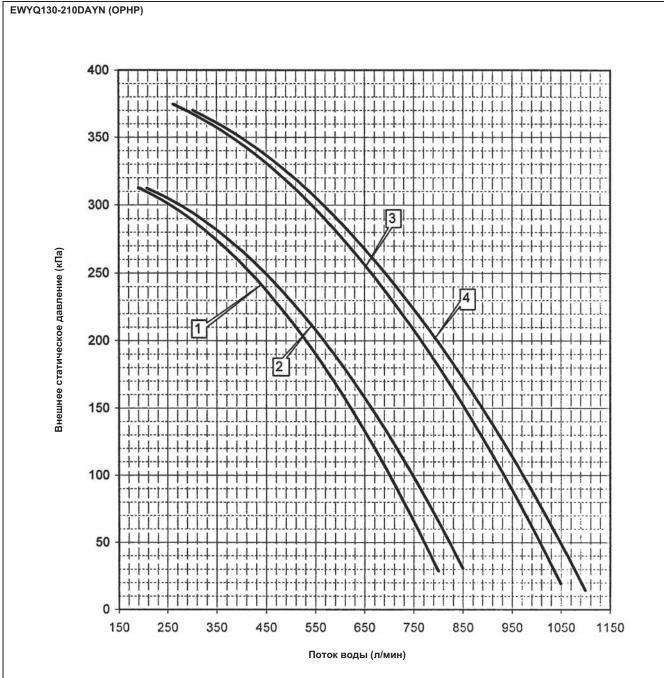
Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57659-4A

11 - 2 Блок падения статического давления

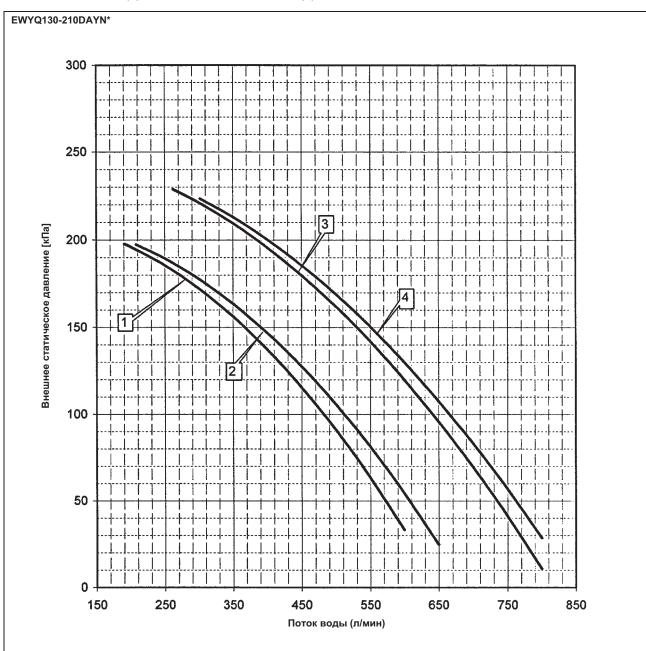
- 1. EWYQ080DAYN* Стандартная модель
- 2. EWYQ100DAYN* Стандартная модель


Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57659-7

11 - 2 Блок падения статического давления

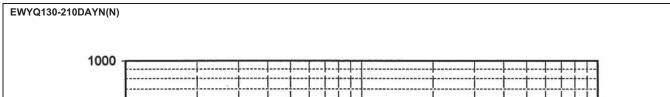

- 1. EWYQ130DAYN* + OPHP
- 2. EWYQ150DAYN* + OPHP
- 3. EWYQ180DAYN* + OPHP
- 4. EWYQ210DAYN* + OPHP

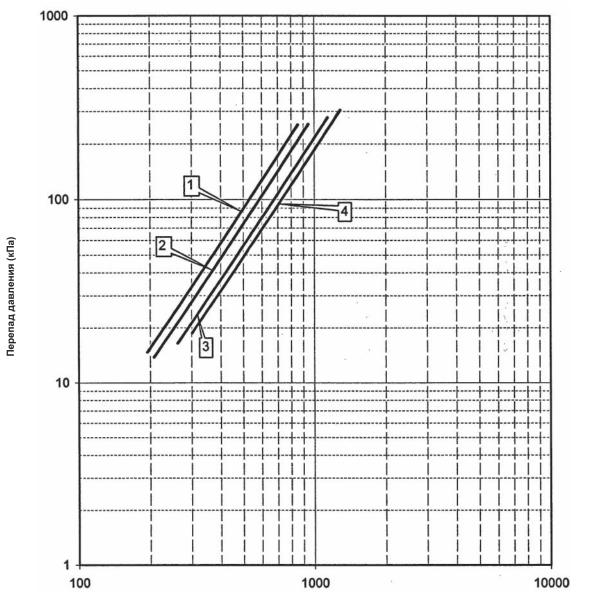
Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57679-9

11 - 2 Блок падения статического давления


- 1. EWYQ130DAYN* + OPSP/OPTP
- 2. EWYQ150DAYN* + OPSP/OPTP
- 3. EWYQ180DAYN* + OPSP/OPTP
- 4. EWYQ210DAYN* + OPSP/OPTP

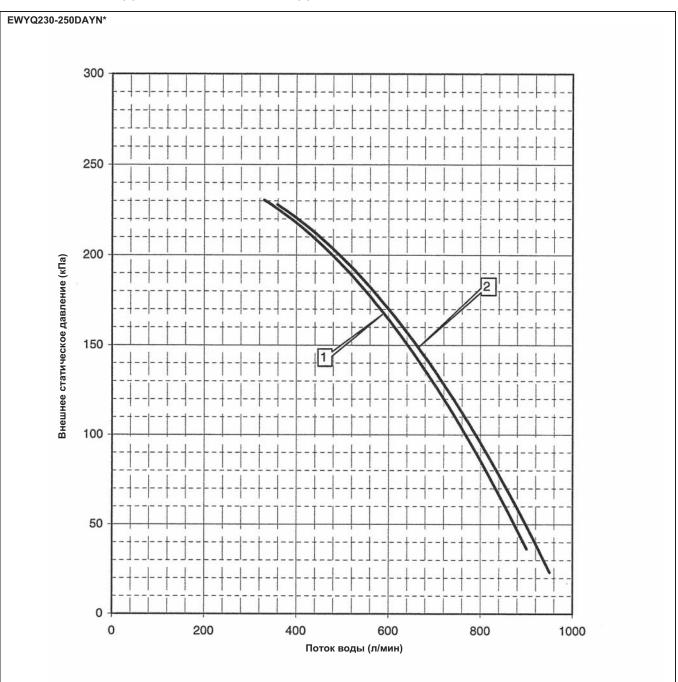

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57679-4A

11 - 2 Блок падения статического давления

Поток воды (л/мин)

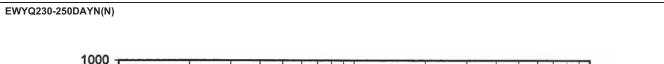

- 1. EWYQ130DAYN* Стандартная модель
- 2. EWYQ150DAYN* Стандартная модель
- 3. EWYQ180DAYN* Стандартная модель
- 4. EWYQ210DAYN* Стандартная модель

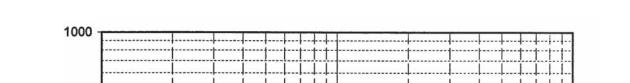
Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

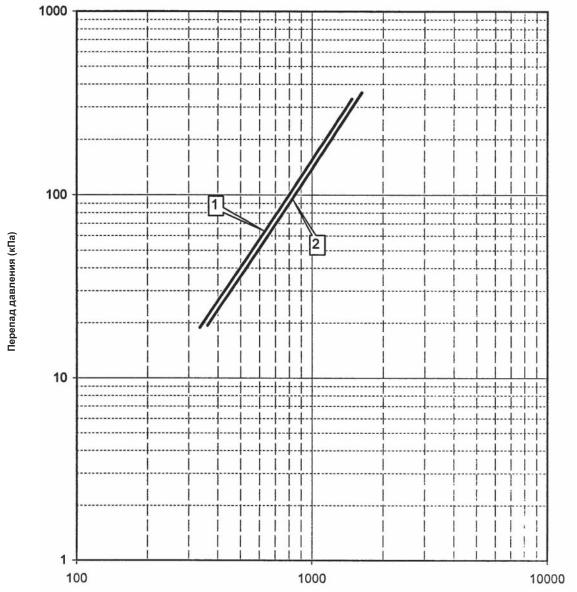
4TW57679-7

11 - 2 Блок падения статического давления



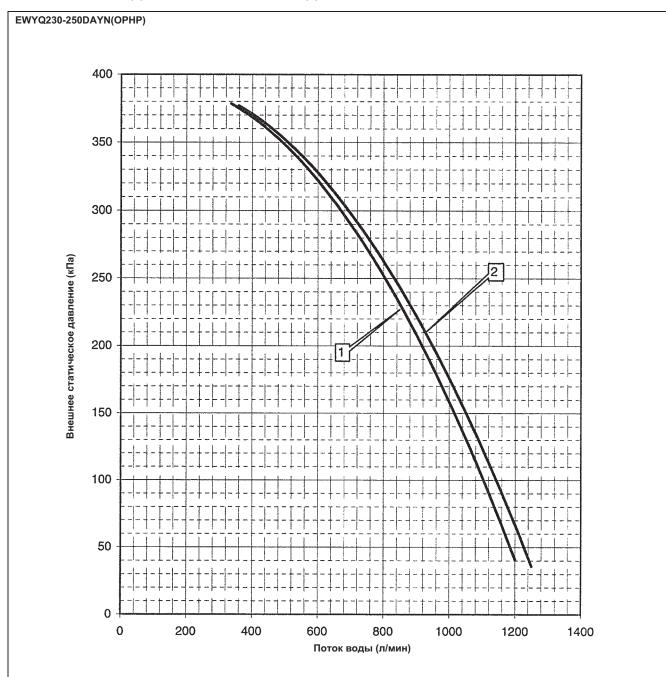

- 1. EWAQ230DAYN* + OPSP/OPTP
- 2. EWAQ250DAYN* + OPSP/OPTP

Выбор потока за пределами кривых может привести к неисправности оборудования. См. также значения минимального и максимального допустимого потока воды в технических характеристиках.


4TW57719-4B

11 - 2 Блок падения статического давления

Поток воды (л/мин)


- 1. EWYQ230DAYN* Стандартная модель
- 2. EWYQ250DAYN* Стандартная модель

Предупреждение:

Выбор потока за пределами кривых может привести к неисправности оборудования. Смотрите в технических характеристиках минимальный и максимальный диапазон разрешенного водного потока.

4TW57719-7

11 - 2 Блок падения статического давления

- 1. EWYQ230DAYN* + OPHP
- 2. EWYQ250DAYN* + OPHP

Выбор потока за пределами кривых может привести к неисправности оборудования. См. также значения минимального и максимального допустимого потока воды в технических характеристиках.

4TW57719-9A

Настоящий каталог составлен только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или связанную гарантию относительно полноты, точности, надежности или связанную гарантию относительно полноты, точности, надежности или связанную гарантию относительно полноты, точности, надежности и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.

Компания Daikin Europe N.V. принимает участие в Программе сертификации Eurovent для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FCU). Проверьте текущий срок действия сертификата онлайн: www.eurovent-certification.com или перейдите к www.certiflash.com*

Продукция компании Daikin распространяется компанией:

ECDRU11-405 - CD - 06/11 - Copyright Daikin Настоящая публикация заменяет издание ECDRU10-405 Распечатьно Велыгии компанией Lamoo (мумиа)mroopintbe), которая заботится об окружающей среде согласно Регламенту ЕТ остствем элополического мнедъжмента и эдуита ВИАS и системам ISO 14001. Ответственный издатель: Daikin Europe NV, Zandvoordestraat 300, В-8400 Oostende (Остенд)