

Чиллеры

Коммерческие и технические характеристики

Чиллеры

Коммерческие и технические характеристики

FCDRII10-427A

EWAD-BZ 330~515 kW

СОДЕРЖАНИЕ

EWAD-BZ

1	Характеристики и преимущества2
2	Общие характеристики4
3	Обозначения9
4	Технические характеристики10
5	Уровни шума14
6	Эксплуатационные ограничения17
7	Стандартные номинальные значения
8	Падение давления на испарителе31
9	Дополнительные функции32
10	Размеры39
11	Замечания по установке40
12	Спецификации43

1 Характеристики и преимущества

Высокая эффективность работы режима частичной нагрузки

Arperat EWAD~BZ это результат точного проектирования, созданный с целью оптимизации энергоэффективности чиллеров для снижения экспуатационных затрат и упрощения процесса монтажа, улучшения эффективности и общего руководства.

По коэффициенту сезонной энергоэффективности (ESEER), чиллеры работают в полном проектном режиме только 3% времени. В результате этого, при подаче воды в режиме частичной нагрузки чиллер работает с большей эффективностью. EWAD~BZ максимально увеличивает эффективность чиллера путем оптимизации работы одновинтового компрессора, тем самым снижая потребление электроэнергии при падении скорости работы двигателя.

Периодическая бесшумная работа

При частичной нагрузке низкий уровень шума достигается за счет изменения скорости вентилятора, а также благодаря изменению частоты работы компрессора, которое обеспечивает минимальный уровень шума на протяжении всего времени работы.

Быстрое достижение комфортных условий

Возможность изменения генерируемой мощности в зависимости от потребностей системы дает возможность достичь комфортных климатических условий намного быстрее непосредственно после запуска.

Низкий пусковой ток

Никакого выброса тока при запуске. Пусковой ток всегда ниже тока, потребляемого при максимальных рабочих условиях (FLA).

Коэффициент нагрузки всегда > 0.95

EWAD~BZ всегда работает при коэффициенте нагрузки > 0.95, что позволяет владельцам зданий избежать штрафов, а также снижает электрические потери в кабеле и трансформаторах.

Альтернативность

Модель EWAD~BZ имеет два независимых контура хладагента всех размеров для обеспечения максимальной безопасности при плановом или внеплановом техобслуживании.

Неограниченное регулирование производительности

Хладопроизводительность регулируется при помощи инвертора, который изменяет скорость вращения винта компрессора, которая контролируется системой микропроцессора. На каждом агрегате можно регулировать производительность от 100% до 13,5%. Данная регулировка позволяет производительности компрессора точно соответствовать тепловой нагрузке любых колебаний температуры воды на выходе из испарителя. Этих колебаний температуры охлажденной воды можно избежать только при плавной регулировке.

При пошаговой регулировке нагрузки компрессора, производительность компрессора будет слишком высокой или слишком низкой по сравнению с тепловой нагрузкой здания. В результате, увеличиваются энергозатраты чиллера, особенно в режиме частичной нагрузки, в котором чиллер работает большую часть времени.

Агрегаты с плавной регулировкой имеют больше преимуществ, чем агрегаты со ступенчатой регулировкой. Способность соответствовать энегропотребностям системы в любое время и возможность обеспечить стабильные температурные показатели воды на выходе без каких-либо отклонений, являются двумя ключевыми моментами, которые позволят вам понять как можно достичь оптимальных рабочих условий системы только при помощи плавной регулировки.

FTA 1a-2a Rev.01 1

1 Характеристики и преимущества

Требования - Безопасность и соблюдение законов/директив

Все агрегаты EWAD~BZ спроектированы и изготовлены в соответствии со следующими характеристиками:

Характеристики чиллеров	EN 12055
Стандарт изготовления корпусов под высоким давлением	97/23/EC (PED)
Директива по механическому оборудованию	98/37/ЕС с изменениями
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические правила и правила безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI - EN ISO 9001:2000

Сертифицирование

Все агрегаты имеют маркировку соответствия европейским стандартам качества СЕ, касательно производственного процесса и безопасности. По заказу, агрегаты могут быть также изготовлены в соответствии со стандартами других стран (ASME, ГОСТ и проч.) и для других сфер применения, таких как военно-морские (RINA, и т.п.)

Варианты исполнения

EWAD~BZ доступен в следующих вариантах:

S: Стандартная эффективность

7 размеров для обеспечения различной производительности от 329 до 515 кВт с коэффициентом ESEER до 4.70

X: Высокий кпд

7 размеров для обеспечения различной производительности от 329 до 515 кВт с коэффициентом ESEER до 5.01

EER (коэффициент энергоэффективности) это отношение хладопроизводительности к потребляемой мощности агрегата. Потребляемая мощность включает: потребляемую мощность компрессора, всех регулирующих устройств и предохранителей, а также вентиляторов.

ESEER (коэффициент сезонной энергоэффективности) это взвешенная формула, которая учитывает изменение коэффицента EER в соответствии с нагрузкой, а также изменение температуры воздуха на входе в конденсатор.

$$\mathsf{ESEER} = \mathsf{A}\,\mathsf{x}\,\,\mathsf{EER}_{_{100\%}} + \mathsf{B}\,\mathsf{x}\,\,\mathsf{EER}_{_{75\%}} + \mathsf{C}\,\mathsf{x}\,\,\mathsf{EER}_{_{50\%}} + \mathsf{D}\,\mathsf{x}\,\,\mathsf{EER}_{_{25\%}}$$

	А	В	С	Г
Коэффициент	0,03 (3%)	0,33 (33%)	0,41 (41%)	0,23 (23%)
Температура воздуха на входе в конденсатор	35°C	30°C	25°C	20°C

Аккустические характеристики

EWAD~BZ имеет две или три конфигурации уровня шума:

S: Стандартный уровень шума

Вентилятор конденсатора вращается на скорости 700 об./мин, с резиновыми антивибрационными опорами для компрессора

L: Низкий уровень шума

Вентилятор конденсатора вращается на скорости 700 об./мин, с резиновыми антивибрационными опорами для компрессора, звукоизолирующий корпус для каждого компрессора

R:Сниженный уровень шума

Вентилятор конденсатора вращается на скорости 700 об./мин, с резиновыми антивибрационными опорами для компрессора, одним звукоизолирующим корпусом для компрессора и испарителя, звукопоглощающим устройством

FTA_1a-2a_Rev.01_2

Корпус и конструктивные особенности

Корпус выполнен из оцинкованной стали с антикоррозийным покрытием. Цвет слоновой кости (код Munsell 5Y7.5/1) (±RAL7044). На несущей раме предусмотрены транспортировочные проушины под стропы для облегчения подъема. Вес агрегата равномерно распределен вдоль несущей конструкции, что облегчает его установку.

Винтовой компрессор со встроенным маслоотделителем

Одновинтовые полугерметичные компрессоры оснащены затворным ротором (изготовленного из специального углеродного композитного материала) Каждый компрессор имеет один инвертор, управляемый микропроцессором для достижения необходимой производительности. Встроенный высокоэффективный маслоотделитель максимально увеличивает отделение смазочного масла.

Запуск инверторного типа.

Экологичный хладагент R-134a

Компрессоры предназначены для работы с хладагентом R-134a, экологически безопасным хладагентом с нулевым потенциалом разрушения озонового слоя (ODP) и очень низким потенциалом глобального потепления (GWP), что означает незначительное влияние на глобальное потепление климата.

Испаритель

Агрегаты комплектуются кожухотрубным испарителем с непосредственым охлаждением с медными трубками навитыми на стальные трубные доски. Испарители являются одноходовыми как со стороны хладагента, так и воды, для противоточного теплообмена и незначительного перепада давлений хладагента. Оба фактора влияют как на эффективность теплообменника, так и на общую эффективность работы агрегата.

Внешний кожух покрыт 10мм изоляционным материалом. У каждого испарителя есть 2 контура. Каждый компрессор изготавливается в соответствии с директивой ЕС о напорном оборудовании (PED). Водоотводные патрубки испарителя поставляются с комплектом быстросъемных соединений Victaulic (стандарт)

Змеевики конденсатора

Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Встроенный контур переохлаждения исключает испарение и способствует увеличению хладопроизводительности без увеличения потребляемой мощности.

Вентиляторы конденсатора (варианты исполнения EWAD-BZSS / SL и EWAD-BZXS / XL)

Благодаря крылообразному профилю рабочих лопаток осевой вентилятор конденсатора обладает улучшенными эксплуатационными качествами. Лопатки изготовлены из стеклопластика и каждый вентилятор защищен кожухом. Двигатели вентилятора встроены в электрическую панель при помощи размыкателя. Электродвигатели имеют класс защиты IP54 и подходят для использования с ШИМ-инверторами.

Вентиляторы конденсатора (вариант исполнения EWAD-BZXR)

Вентиляторы конденсатора бесщеточные пропеллерного типа и находятся рядом с синхронными электродвигателями с постоянными магнитами и с фазным током, который контроллируется ШИМ-инвертором встроенным в корпус двигателя вентилятора, который позволяет работать на разных скоростях. С этой технологией вентиляторы работают с высокой отдачей при чрезвычайно низком уровне шума в широком диапазоне скоростей.

Электронный расширительный клапан

Агрегат оснащен самыми совершенными расширительными клапанами для точного регулирования потока хладагента. Необходимость обеспечения высокой энергоэффективности, более точного регулирования температуры, более широкого диапазона функционирования, а также соединения с системами дистанционного мониторинга и диагностики, делают использование электронного расширительного клапана обязательным. Электронный расширительный клапан имеет следующие характерные особенности, который делают его уникальным: малая инерционность реагирования, высокочувствительность, функция принудительного отключения для предотвращения использования дополнительного электромагнитного клапана, плавная регулировка массового расхода без перегрузки контура хладагента, а также корпус из нержавеющей стали.

Электронные расширительные клапаны обычно работают с более незначительными перепадами давления ΔP , чем термостатический расширительный клапан. Электронный расширительный клапан позволяет системе работать при низком давлении конденсатора (зимнее время) без проблем прохождения хладагента и с идеальным контролем температуры охлажденной воды.

Контур хладагента

У каждого агрегата есть 2 или 3 независимых контура хладагента, каждый из которого включает:

- •Компрессор с встроенным маслоотделителем
- •Конденсатор воздушного охлаждения
- •Электронный расширительный клапан
- •Испаритель
- •Запорный клапан напорной линии
- •Запорный клапан жидкостного трубопровода
- •Запорный клапан всасывающей линии
- Уровнемер
- •Фильтр-осушитель
- •Впускные клапаны
- •Переключатель высокого давления
- •Датчики высокого и низкого давления

Электрическая панель управления

Панели электропитания и управления расположены в двух секциях на главной панели для защиты от погодных условий. Электрическая панель имеет класс защиты IP54 и (при открывании дверей) защищена изнутри защитной панелью Plexiglas от случайного контакта с электрическими деталями. Главная панель оснащена главной сблокированной дверцей.

Силовая секция

В силовую секцию входят рубильники, предохранители компрессоров, магнитотепловые реле вентиляторов, инвертор и трансформатор цепи управления.

Контроллер MicroTech II

Контроллер MicroTech II C Plus устанавливается как обычный контроллер; используется для изменения уставок агрегата и проверки параметров управления. Встроенный дисплей отображает рабочий статус агрегата, параметры программирования, уставки, такие как температура и давление воды, хладагента и воздуха. Регулировка устройства максимально увеличивает энергоэффективность и надежность чиллера. Современное программное обеспечение с прогнозирующей логической схемой выбирает наиболее энегроэффективное сочетание работы компрессоров, электронного расширительного клапана и вентилятора конденсатора для поддержания стабильных рабочих условий и максимальной энергоэффективности. Для обеспечения одинакового рабочего времени компрессоры запускаются автоматически. МicroTech II C Plus защищает критические компоненты при получении сигналов тревоги от внешних датчиков измеряя: температуру электродвигателей, давление газа хладагента и смазочного масла, правильную последовательность фаз и данные испарителя.

Система управления- основные характеристики

- Управление производительностью компрессора, инвертора, регулировка работы затворов и вентиляторов.
- Чиллеры имеют возможность функционировать при частично неисправном состоянии.
- Работа на полную мощность при условии:
 - высокой температуры наружного воздуха,
 - высокой тепловой нагрузке
 - высокой температуры воды на входе в испаритель (при запуске).
- Вывод на дисплей значений температуры воды на входе/выходе из испарителя.
- Вывод на дисплей значений температуры и давления конденсации-испарения, а также перегрева по каждому контуру.
- Регулировка температуры воды на выходе из испарителя. Интервал допустимых температур = 0,1°С.
- Счетчик рабочего времени компрессоров и насосов испарителя.
- Вывод на дисплей статуса предохранителей.
- Регистрация пусков и обеспечение равного времени работы всех компрессоров.
- Оптимизированная регулировка нагрузки компрессоров.
- Регулировка скорости вращения вентилятора в соответствии с давлением конденсации.
- Автоматический повторный запуск в случае сбоя подачи электропитания (регулируется).
- Плавная нагрузка
- Запуск при высокой температуре воды в испарителе.
- Возврат в исходной положение
- Сброс АОТ (на выбор)
- Сброс уставки (на выбор)

Устройства защиты для каждого контура хладагента

- Высокое давление (реле давления).
- Низкое давление (датчик).
- Магнитотепловое реле вентилятора конденсатора.
- Высокая температура нагнетания компрессора.
- Фазоиндикатор.
- Коэффициент низкого давления.
- Перепад давления масла.
- Низкое давление масла.

Безопасность системы

- Фазоиндикатор
- Защита от обмерзания.

Тип управления

Пропорционально+интегрально+дифференциальное управление по сигналу входного датчика испарителя

Давление конденсации

Процесс конденсации регулируется с соответствии с температурой, давлением или перепадами давления. Вентиляторы регулируются модулирующим сигналом 0/10 В.

Микропроцессорный режим запуска компрессора

Программное обеспечение системы управления включает в себя микропроцессорный режим запуска компрессора который на 75% разгружает первый компрессор во время запуска второго компрессора для снижения пускового тока.

Терминал пользователя MicroTech II C Plus

Встроенный терминал пользователя MicroTech II C Plus обладает следующими характеристиками:

- 4-х строчный, 20-символьный жидкокристаллический дисплей с подсветкой.
- Клавиатура из 6 клавиш.
- Память для защиты информации.
- Реле сигнализации о неисправностях.
- Парольный доступ для изменения настроек.
- Сервисный отчет, показывающий все рабочие часы и общее состояние системы.
- Сохранение в памяти всех сигнальных предупреждений для удобного анализа неисправностей.

Системы контроля (по запросу)

Дистанционное управление MicroTech II C Plus

MicroTech II C Plus может взаимодействовать с системой диспетчирезации инженерного оборудования здания (BMS) при помощи самых распространенных протоколов:

- CARELNative
- ModbusRTU
- LonWorks, теперь также на базе международного 8040 Standard Chiller Profile и технологии LonMark.
- BacNet BTP сертифицированный для IP и MS/TP (класс 4)
- Ethernet TCP/IP и SNM.

Стандартные аксессуары (стандартная комплектация агрегата)

Двойная уставка-Две уставки температуры воды на выходе

Реле тепловой перегрузки вентилятора-Предохранитель от перегрузки мотора и короткого замыкания дополнительно к стандартной защите предусмотренной электрообмоткой.

Фазоиндикатор-Фазоиндикатор контроллирует правильный порядок чередования фаз, а также их регулирует их обрыв.

Пускатель инверторного компрессора - Для низкого пускового тока и пониженного пускового момента.

Комплект быстросъемных соединений Victaulic для арматуры трубопровода- Гидравлические соединения укомплектованные прокладками и предназначенные для быстрого и легкого подключения трубопровода.

Бесшумный режим вентилятора-Таймер микропроцессора переключает вентилятор на более низкую скорость в соответствии с настройками клиента (например, режим "ночь и день"), при условии, что наружная температура/ давление конденсации позволяют это сделать.

Регулировка скорости вентилятора- Позволяет управлять скоростью вращения вентилятора для плавной работы агрегата. Данная опция улучшает звуковой уровень агрегата при работе с низкой наружной температурой.

Теплоизоляция испарителя толщиной 10мм

Электронагреватель испарителя- Управляемый термостатом электронагреватель для защиты испарителя от обмерзания при наружной температуре до -28°C, при включенном питании.

Электронный расширительный клапан

Запорный клапан напорной линии- Устанавливается на напорное отверстие компрессора для облегчения проведения техобслуживания.

Запорный клапан всасывающей линии- Устанавливается на всасывающее отверстие компрессора для облегчения проведения техобслуживания.

Манометры стороны всасывания

Счетчик отработанного времени компрессора

Реле сигнализации о неисправностях

Главный выключатель блокировки дверцы

Опции (на заказ)

Полная рекуперация тепла-Производится при помощи кожухотрубны теплообменников для нагревания воды до +55°C. Теплообменник монтируется на оба контура хладагента (2 контура хладагента) параллельно змеевикам конденсатора для отвода конденсационной теплоты.

Полная рекуперация тепла 1 контур-Производится при помощи кожухотрубны теплообменников для нагревания воды до +55°C. Теплообменник монтируется на контур хладагента параллельно змеевикам конденсатора для отвода конденсационной теплоты.

Частичная рекуперация тепла- Происходит за счет пластинчатых теплообменников, которые монтируются между стороной нагнетания компрессора и змеевиком конденсатора, нагревая воду.

Морской вариант-Позволяет агрегату работать при температуре жидкости на выходе до -8°С (необходим антифриз).

Реле минимального и максимального напряжения- Это устройство регулирует величину напряжения подвода мощности и останавливает чиллер, если показатель превышает допускаемые эксплуатационные ограничения.

Электросчетчик-Это устройство измеряет количество энергии, потребляемое чиллером. Оно устанавливается внутри блока управления на ДИН-рейке и показывает на дисплее: Линейное напряжение, фазный и средний ток, активную и реактивную мощность, эффективную энергия, частоту.

Ограничитель тока- Для ограничения максимального потребляемого тока агрегатом при необходимости.

Теплоизоляция испарителя толщиной 20мм

Защитные кожухи змеевика конденсатора

Медное оребрение конденсатора- Для обеспечения лучшей коррозийной устойчивости в агрессивной среде.

Оловянное покрытие меднооребренного конденсатора- Для обеспечения лучшей коррозийной устойчивости в агрессивной среде и соленом воздухе.

Эпоксидное покрытие Alucoat змеевиков конденсатора- Ребра защищены специальной антикоррозийной акриловой краской.

Реле потока испарителя- Поставляется отдельно, для подключения к трубопроводу испарителя (заказчиком).

Манометры стороны нагнетания

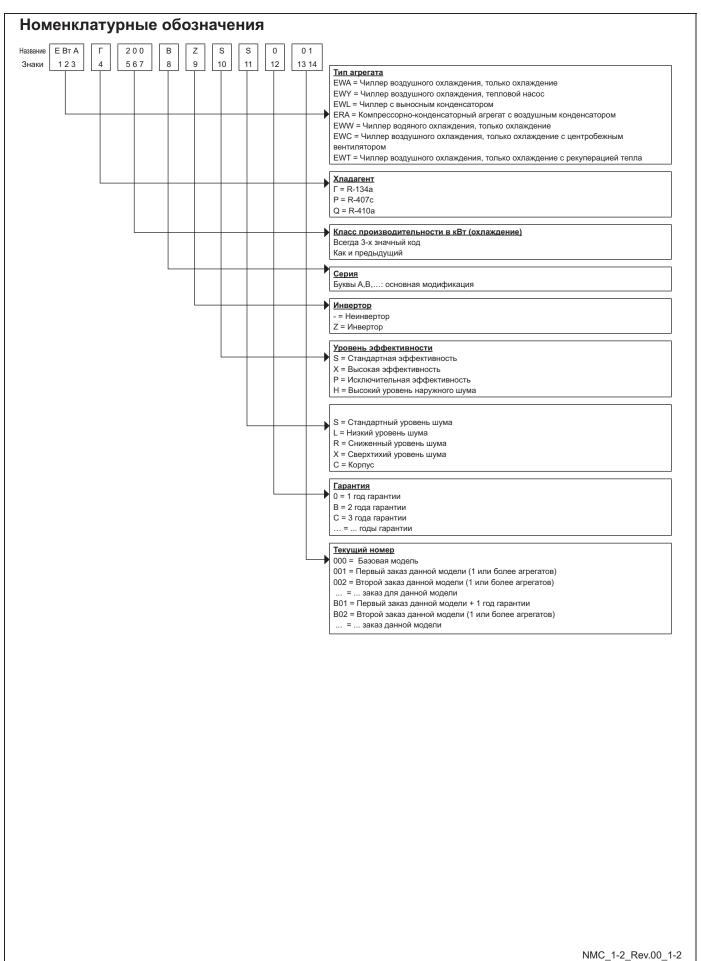
Контейнер для инструментов

Резиновые антивибрационные опоры- Поставляются отдельно, предназначены для помещения под основание агрегата при установке. Идеально подходят для уменьшения вибраций при напольном монтаже агрегата.

Пружинные антивибрационные опоры- Поставляются отдельно, предназначены для помещения под основание агрегата при установке. Идеально подходят для подавления вибраций при монтаже на крышах и металлических конструкциях.

Водяной циркуляционный насос (низкого и высокого давления)Комплект для гидросистемы состоит из: одинарного центробежного насоса с прямой передачей, водоналивной системы с манометром, клапана сброса давления, дренажного клапана. Насосный агрегат защищен предохранителем, расположенным на панели управления. Комплект подсоединяется к панели управления. Трубы и насос защищены от замерзания при помощи дополнительного электронагревателя.

Два водяных циркуляционных насоса (низкого и высокого давления) Комплект для гидросистемы состоит из: двойного центробежного насоса с прямой передачей, водоналивной системы с манометром, клапана сброса давления, дренажного клапана. Насосный агрегат защищен предохранителем, расположенным на панели управления. Комплект подсоединяется к панели управления. Трубы и насос защищены от обмерзания при помощи дополнительного электронагревателя.


Резервуар с корпусом (500 л и 1000 л)-Система трубопроводов не включена в поставку и питание электронагревателя должно производиться внешним устройством.

Испытания в присутствии заказчика Перед отгрузкой каждый агрегат тестируется на испытательном стенде. По заказу, может быть проведен второй тест в присутствии заказчика в соответствии со стандартными правилами проведения испытаний. (Эта опция не доступна для агрегатов работающих на смеси гликоля).

Сброс уставок, ограничение электропотребления и обработка сигналов от внешнего устройства-Уставка температуры воды на выходе может быть перезаписана со следующими опциями: 4-20мА от внешнего источника (пользователем); наружная температура, колебание температур в испарителе Δt . температура воды в испарителе Δt . Более того, устройство позволяет пользователю ограничить нагрузку агрегата сигналом 4-20мА или при помощи сетевой системы. Микропроцессор может получать аварийные сигналы с внешнего устройства (насос, и т.п...- пользователь определяет должен ли этот сигнал остановить работу агрегата или нет).

Двойной разгрузочный клапан с отводным устройством.

3 Обозначения

4-1 Техническ	ие характеристики	EWAD		330	360	400	420	460	490	520		
Производительность (1)	Охлаждение		кВт	329	358	395	423	459	488	515		
Регулирование	Тип						Бесступенч.					
производительности	Минимальная производ	ительность	%				13,5					
Потребл. мощность блока (1)	Охлаждение		кВт	120,0	136	147	159	168	181	193		
EER (1)	•			2,74	2,63	2,69	2,66	2,73	2,70	2,67		
ESEER				4,59	4,60	4,55	4,59	4,57	4,70	4,60		
IPLV				5,53	5,62	5,49	5,63	5,49	5,60	5,54		
Корпус	Цвет			Слоновая кость								
	Материал				Гальв	ванизированн	ый и окрашен	ный стально	й лист			
Размеры	Блок	Высота	MM				2.355					
		Ширина мм 2.234										
							6.181					
Bec EWAD~BZSS	Блок	дина	КГ		190	<u> </u>	590		4.990			
BCC LWAD B200	Рабочий вес		КГ		140		340		5.140			
Bec EWAD~BZSL	Блок		КГ		340		740		5.140			
Dec EWAD~BZSL			_			<u> </u>						
Топпосбъести	Рабочий вес		КГ	4.5	590	<u> </u>	990	TDV6	5.390			
Теплообменник воды	Тип			074	004	1	довой кожухо		0.40	040		
- 2M2.	Объем воды		Л	271	264	264	256	256	248	248		
	Номинальный расход воды	Охлаждение	л/сек	15,72	17,10	18,87	20,21	21,93	23,32	24,61		
	Номинальное значение падения давления воды	Охлаждение	кПа	60	61	72	67	78	69	76		
	Изоляционный материа	Л				;	Закрытая пор	а				
Воздушный теплообменник	Тип		Высокоэффективное оребрение и трубный теплообменник со встроенным переохладителем									
Вентилятор	Тип					Осевой венти	лятор с прям	юй передаче	Й			
	Привод					Управл	ение от приво	ода VFD				
	Диаметр		ММ				800					
	Номинальный расход воздуха			32.	667	40	833		49.000			
	Модель Количество		Nº		8	-	10		12			
		Скорость	об/ мин	700								
		Потребляемая мощность двигателя	Вт				1.133					
Компрессор	Тип	дынателя		Food	CORL LIMKORI IĞ	OFFICERALITORS	й компрессор	CHURONTON	II IM VEDODE	OLUAOM.		
Rowinpeccop	Заправка масла		л	Decc	Сальниковый	одновинтовс	26	о инверторі	пыш управл	ением -		
	•		Nº				20					
V	Количество	0	_	40	0.0	1 40		I	400.0			
Уровень шума EWAD~BZSS	Звуковая мощность	Охлаждение	дБ(А)		2,8		3,2		103,6			
	Звуковое давление (2)	Охлаждение	дБ(А)		3,0	.	3,0		83,5			
Уровень шума EWAD~BZSL	Звуковая мощность	Охлаждение	дБ(А)	96	5,9		7,3		98,2			
	Звуковое давление (2)	Охлаждение	дБ(А)		/	7,0			77,5			
Контур	Тип хладагента						R-134a			1		
хладагента	Заправка хладагента		КГ	7	'3	99	105	114	118	121		
	К-во контуров		Nº				2					
Подсоединение труб	Вход/выход воды испар	ителя	ММ				168,3					
Защитные	Высокое давление нагн	етания (реле дав	пения)									
устройства	Высокое давление нагн	етания (датчик да	авления)								
	Низкое давление всасывания (датчик давления) Защита от перегрузки компрессора (Kriwan)											
	Высокая температура н	агнетания										
	Низкое давление масла											
	Соотношение для низко	го давления										
	Сильное падение давле		ьтре									
	Фазоиндикатор	т.										
Примечания (1)	Холодопроизводительно темп. нар. возд. 35°C, ра				іри охлажден	нии и EER осн	ованы на сле	дующих усло	виях: испар	итель 12/7°C;		
Примечания (2)	Значения соответствую				компонентам	и: испаритель	12/7°С; темп	. нар. возд. 3	5°С, работа	при полной		
	нагрузке.											

4-2 Электриче	ские характеристики	EWAD EWAD	~BZSS ~BZSL	330	360	400	420	460	490	520		
Электропитание	Фаза			3								
	Частота			50								
	Напряжение		В	400								
	Допуск напряжения	Мин.	%	-10%								
		%				+10%						
Блок	Максимальный стартов	ый ток	Α	232	250	251	278	297	311	316		
	Номинальный рабочий	ток, охлаждение	Α	194	220	239	258	273	292	312		
	Максимальный рабочий	ТОК	Α	3	22	328	358		394			
	Максимальный ток блон проводов	Максимальный ток блока для размеров			55	361	394		433			
	Мин. коэффициент реактивной мощнос номинальном режиме			0,98								
Вентиляторы	Номинальный рабочий охлаждении	ток при	А	2:	2,4	28 33,6						
Компрессор	Фаза		Nº	3								
	Напряжение		В	400								
	Допуск напряжения	Мин.	%	-10%								
		Макс.	%		+10%							
	Максимальный рабочий	ток	Α		150·	+150			180+180			
	Способ запуска						VFD					
Тримечания	Допуск напряжения ± 10)%. Разбаланс на	пряжени	ій между фа	зами должен	быть в преде	елах ± 3%.					
	Максимальный стартов вентиляторов для цепи		ок наиб	ольшего ком	прессора + т	ок компрессо	ра при 75% к	иаксимальной	й нагрузки + т	ОК		
	Номинальный ток в реж 12°C/7°C; темп-ра нар.					кА, который б	базируется на	а следующих	условиях: исг	паритель		
	Максимальный рабочий	ток основан на м	акс. пот	ребляемом	токе компрес	сора в своей	области и ма	кс. потребля	емом токе вен	нтилятора		
	Максимальный ток блог	а для размеров п	роводов	з: (ток полно	й нагрузки ког	мпрессоров +	- ток вентиля	торов) х 1.1.				

4-3 Техническ	ие характеристики		~BZXS ~BZXL/)~BZXR	330	360	400	420	460	490	520		
Производительность (1)	Охлаждение		кВт	329	358	395	423	459	488	515		
Регулирование	Тип					•	Бесступенч.	•				
производительности	Минимальная производ	ительность	%				13,5					
Потребл. мощность блока (1)	Охлаждение		кВт	118,0	135	145	157	165	178	190		
EER (1)	•			2,79	2,65	2,72	2,69	2,78	2,74	2,71		
ESEER				4,79	4,82	4,78	4,84	4,81	5,01	4,84		
IPLV				5,76 5,86 5,73 5,87 5,73 5,84								
Корпус	Цвет			Слоновая кость								
	Материал				Гальва	анизированн	ый и окрашен	ный стально	й лист			
Размеры	Блок	Высота	мм				2.355					
•		Ширина	мм				2.234					
		Длина	мм	4.381 5.281 6.18								
Bec EWAD~BZXS	Блок		КГ		190		590		4.990			
	Рабочий вес		КГ		140		340		5.240			
Bec EWAD~BZXL	Блок		КГ		340		40		5.140			
	Рабочий вес		КГ		590		190		5.390			
Bec EWAD~BZXR	Блок		КГ		390		90		5.190			
DEAN DEAN	Рабочий вес		КГ						5.440			
Теплообменник	Тип						J.77U					
геплоооменник воды	Объем воды			271	264	Одноход 264	цовои кожухо 256	труоныи 256	248	248		
•	- ' '	Охпаждонно	л л/сек	15,72	17,10	18,87	20,21	21,93	23,32	24,61		
	Номинальный расход воды	Охлаждение		,	,	,		,	·			
	Номинальное значение падения давления воды	Охлаждение	кПа	60	61	72	67	78	69	76		
	Изоляционный материа	П		Закрытая пора								
Зоздушный геплообменник	Тип			Высокоэффективное оребрение и трубный теплообменник со встроенным переохладителем								
Зентилятор	Тип				(Осевой венти	лятор с прям	ой передаче	й			
	Привод					Управле	ение от приво	ода VFD				
Д	Диаметр	мм				800						
	Номинальный расход вс	эздуха	л/сек	32.667 40.833 49.000								
	Модель Количество		No.	8 10					12			
		Скорость		700								
		Потребляемая мощность двигателя	Вт	900 1.133					1.133			
Компрессор	Тип	дынатоли		Бессальниковый одновинтовой компрессор С инверторным управлением						INEM		
Компрессор			-							INCIN		
	Заправка масла Количество		л №				26 2					
Уровень шума	Звуковая мощность	Охлаждение	дБ(А)	10	2,8	10	3,2		103,6			
	овуковая мощноств		дБ(А)	10		l	J,Z		83,5			
	DZVC		до(А)	83								
EWAD~BZXS	Звуковое давление (2)			0.0	3.0	07			98,2			
EWAD~BZXS Уровень шума	Звуковая мощность	Охлаждение	дБ(А)	96	5,9 77	97	,3					
EWAD~BZXS Уровень шума EWAD~BZXL	Звуковая мощность Звуковое давление (2)	Охлаждение Охлаждение	дБ(A) дБ(A)		77	7,0			77,5			
EWAD~BZXS Уровень шума EWAD~BZXL Уровень шума	Звуковая мощность Звуковое давление (2) Звуковая мощность	Охлаждение Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A)		77	7,0 93	,3		77,5 94,2			
EWAD~BZXS Уровень шума EWAD~BZXL Уровень шума EWAD~BZXR	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2)	Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A) дБ(A)		77	7,0	3,3		77,5			
EWAD~BZXS Уровень шума EWAD~BZXL Уровень шума EWAD~BZXR Контур	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента	Охлаждение Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A) дБ(A)	92	77 2,9 73	7,0 93	8,3 R-134a	414	77,5 94,2 73,5	424		
EWAD~BZXS Уровень шума EWAD~BZXL Уровень шума EWAD~BZXR Контур	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента	Охлаждение Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A) дБ(A) кг	92	77	7,0 93	R-134a 105	114	77,5 94,2	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума EWAD~BZXR Контур кладагента	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров	Охлаждение Охлаждение Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A) дБ(A) кг №	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента	Охлаждение Охлаждение Охлаждение Охлаждение	дБ(A) дБ(A) дБ(A) дБ(A) кг	92	77 2,9 73	7,0 93	R-134a 105	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Онтур кладагента Подсоединение груб	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар	Охлаждение Охлаждение Охлаждение Охлаждение	ДБ(A) ДБ(A) ДБ(A) ДБ(A) ————————————————————————————————————	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Ващитные	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар	Охлаждение Охлаждение Охлаждение Охлаждение охлаждение ителя	дБ(A) дБ(A) дБ(A) дБ(A) дБ(A) кг № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Ващитные	Звуковая мощность Звуковое давление (2) Звуковая мощность Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагни	Охлаждение Охлаждение Охлаждение Охлаждение охлаждение ителя отания (реле дав.	дБ(A) дБ(A) дБ(A) дБ(A) дБ(A) кг № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Ващитные	Звуковая мощность Звуковое давление (2) Звуковоя мощность Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы	Охлаждение Охлаждение Охлаждение Охлаждение охлаждение ителя етания (реле дав. етания (датчик давания (да	ДБ(А) ДБ(А) ДБ(А) ДБ(А) КГ № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Защитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ко	Охлаждение Охлаждение Охлаждение Охлаждение охлаждение ителя етания (реле дав. етания (датчик давания (датчик давампрессора (Kriwa	ДБ(А) ДБ(А) ДБ(А) ДБ(А) КГ № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Защитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ко	Охлаждение Охлаждение Охлаждение Охлаждение охлаждение ителя етания (реле дав. етания (датчик давания (датчик давампрессора (Kriwa	ДБ(А) ДБ(А) ДБ(А) ДБ(А) КГ № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Защитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ке Высокая температура на	Охлаждение Охлаждение Охлаждение Охлаждение ителя етания (реле даватания (датчик давания (д	ДБ(А) ДБ(А) ДБ(А) ДБ(А) КГ № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Защитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ко	Охлаждение Охлаждение Охлаждение Охлаждение ителя етания (реле даватания (датчик давания (д	ДБ(А) ДБ(А) ДБ(А) ДБ(А) КГ № мм	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение труб Защитные устройства	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ке Высокая температура на	Охлаждение Охлаждение Охлаждение Охлаждение ителя етания (реле давдетания (датчик давдения (датчик датчик давдения (датчик датчик д	дБ(A) дБ(A) дБ(A) дБ(A) кг № мм ления) зления) зления)	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур хладагента Подсоединение труб Защитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки ке Высокая температура на Низкое давление масла Соотношение для низко	Охлаждение Охлаждение Охлаждение Охлаждение ителя етания (реле давдетания (датчик давдения (датчик датчик давдения (датчик датчик д	дБ(A) дБ(A) дБ(A) дБ(A) кг № мм ления) зления) зления)	92	77 2,9 73	7,0 93	R-134a 105 2	114	77,5 94,2 73,5	121		
ЕWAD~BZXS Уровень шума ЕWAD~BZXL Уровень шума ЕWAD~BZXR Контур кладагента Подсоединение груб Ващитные	Звуковая мощность Звуковое давление (2) Звуковое давление (2) Звуковое давление (2) Тип хладагента Заправка хладагента К-во контуров Вход/выход воды испар Высокое давление нагне Низкое давление всасы Защита от перегрузки кс Высокая температура на Низкое давление масла Соотношение для низко Сильное падение давление	Охлаждение Охлаждение Охлаждение Охлаждение Охлаждение ителя етания (реле давления (датчик даврания (датчик датчик датч	дБ(A) дБ(A) дБ(A) дБ(A) дБ(A) кг № мм мм пения) зления) ал)	92	7772,9 73	7,0 93 3,0 99	R-134a 105 2 168,3		77,5 94,2 73,5			

4-4 Электриче	еские характеристики		~BZXS)~BZXL/)~BZXR	330	360	400	420	460	490	520		
Электропитание	Фаза			3								
	Частота		Гц	50								
	Напряжение		В				400					
	Допуск напряжения	Мин.	%	-10%								
		Макс.	%	+10%								
- Блок	Максимальный стартов	ый ток	Α	232	244	251	278	297	302	316		
	Номинальный рабочий	ток, охлаждение	Α	183	209	225	244	256	275	295		
	Максимальный рабочий	і ток	Α	3	11	314	344		377			
	Максимальный ток блог проводов	ка для размеров	А	3	42	345	378		414			
	Мин. коэффициент реакти номинальном режиме		0,98									
Вентиляторы	Номинальный рабочий охлаждении	ток при	А	1	11,2 14 16,8							
Компрессор	Фаза		Nº	3								
	Напряжение		В	400								
	Допуск напряжения	Мин.	%	-10%								
		Макс.	%				+10%					
	Максимальный рабочий	ток	Α		150-	+150			180+180			
	Способ запуска						VFD	•				
Тримечания	Допуск напряжения ± 10)%. Разбаланс наг	пряжени	ій между фа	зами должен	быть в преде	лах ± 3%.					
	Максимальный стартов вентиляторов для цепи		ок наиб	ольшего ком	прессора + т	ок компрессо	ра при 75% м	аксимальной	и́ нагрузки + т	ОК		
	Номинальный ток в реж 12°C/7°C; темп-ра нар.					кА, который б	азируется на	а следующих	условиях: исг	паритель		
	Максимальный рабочий	ток основан на м	акс. пот	ребляемом	токе компресс	сора в своей	области и ма	кс. потребля	емом токе ве	нтилятора		
	Максимальный ток блог	а для размеров п	роводов	в: (ток полно	й нагрузки ког	мпрессоров +	ток вентиля	торов) х 1.1.				

5 Уровни шума

EWAD~BZSS / EWAD~BZXS

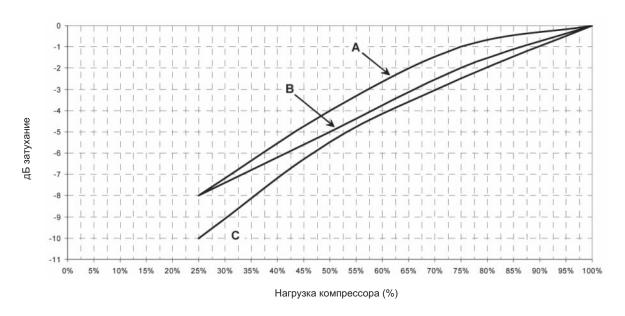
Размер		Уровень звукового давления в свободном пространстве на расстоянии 1 м от arperaтa (rif. 2 x 10 ⋅ Па)									
агрегата	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)	
330	79,1	77,8	79,0	77,6	80,0	76,1	65,6	56,6	83,0	102,8	
360	79,1	77,8	79,0	77,6	80,0	76,1	65,6	56,6	83,0	102,8	
400	79,1	77,8	79,0	77,6	80,0	76,1	65,6	56,6	83,0	103,2	
420	79,1	77,8	79,0	77,6	80,0	76,1	65,6	56,6	83,0	103,2	
460	79,6	78,3	79,5	78,1	80,6	76,6	65,6	56,6	83,5	103,6	
490	79,6	78,3	79,5	78,1	80,6	76,6	65,6	56,6	83,5	103,6	
520	79,6	78,3	79,5	78,1	80,6	76,6	65,6	56,6	83,5	103,6	

EWAD~BZSL / EWAD~BZXL

Размер		Уровень	звукового давле	ния в свободном	пространстве на	расстоянии 1 м с	от агрегата (rif. 2)	c 10 ⁻⁵ Πa)		Мощность
агрегата	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)
330	78,4	73,5	73,5	71,8	73,9	69,9	59,6	50,7	77,0	96,9
360	78,4	73,5	73,5	71,8	73,9	69,9	59,6	50,7	77,0	96,9
400	78,4	73,5	73,5	71,8	73,9	69,9	59,6	50,7	77,0	97,3
420	78,4	73,5	73,5	71,8	73,9	69,9	59,6	50,7	77,0	97,3
460	78,4	74,0	74,0	72,3	74,4	70,3	60,1	50,7	77,5	98,2
490	78,4	74,0	74,0	72,3	74,4	70,3	60,1	50,7	77,5	98,2
520	78,4	74,0	74,0	72,3	74,4	70,3	60,1	50,7	77,5	98,2

EWAD~BZXR


Размер		Уровень звукового давления в свободном пространстве на расстоянии 1 м от агрегата (rif. 2 x 10 ° Па)									
агрегата	63 Гц	125 Гц	250 Гц	500 Гц	1000 Гц	2000 Гц	4000 Гц	8000 Гц	дБ(А)	дБ(А)	
330	77,0	70,8	70,0	68,0	69,8	65,6	55,6	46,7	73,0	92,9	
360	77,0	70,8	70,0	68,0	69,8	65,6	55,6	46,7	73,0	92,9	
400	77,0	70,8	70,0	68,0	69,8	65,6	55,6	46,7	73,0	93,3	
420	77,0	70,8	70,0	68,0	69,8	65,6	55,6	46,7	73,0	93,3	
460	77,3	71,3	70,5	68,7	70,3	66,1	56,0	46,8	73,5	94,2	
490	77,3	71,3	70,5	68,7	70,3	66,1	56,0	46,8	73,5	94,2	
520	77,3	71,3	70,5	68,7	70,3	66,1	56,0	46,8	73,5	94,2	


ПРИМЕЧАНИЯ

Примечание: Показатели указаны в соответствии со стандартом ISO 3744 и относятся к: испаритель 12/7°C, наружная температура 35° C, работа при полной нагрузке

NSL_1-2-3_Rev.00_1

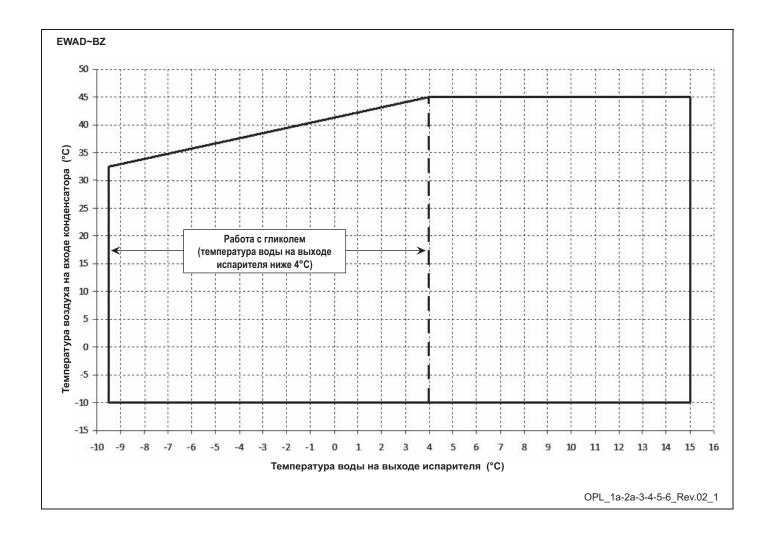
5 Уровни шума

ПРИМЕЧАНИЯ

Звуковое давление в свободном пространстве на отражающей поверности (коэффициент направленности Q=2)

Α	EWAD~BZSS / EWAD~BZXS
В	EWAD~BZSL/EWAD~BZXL
С	EWAD~BZXL

NSL_1-2-3_Rev.00_2


5 Уровни шума

Поправочные коэффициенты уровня звукового давления для разных расстояний

EWAD~BZ

Decuser company	Расстояние										
Размер агрегата	1м	5м	10м	15м	20 м	25м					
330	0,0	-7,7	-12,4	-15,5	-17,7	-19,5					
360	0,0	-7,7	-12,4	-15,5	-17,7	-19,5					
400	0,0	-7,4	-12,1	-15,1	-17,4	-19,2					
420	0,0	-7,4	-12,1	-15,1	-17,4	-19,2					
460	0,0	-7,2	-11,8	-14,8	-17,1	-18,8					
490	0,0	-7,2	-11,8	-14,8	-17,1	-18,8					
520	0,0	-7,2	-11,8	-14,8	-17,1	-18,8					

NSL_1-2-3_Rev.00_3

EWAD-BZ-

Таблица 1 - Теплообменник для воды - Максимальное и минимальное значения Δt воды

Максимальное значение Δt воды для испарителя	°C	8
Минимальное значение Δt воды для испарителя	°C	4

Таблица 2 - Теплообменник для воды - Степени загрязнения

Степени загрязнения м2°С / кВт	Охлаждающая способность поправочный коэффициент	Потребляемая мощность поправочный коэффициент	EER поправочный коэффициент
0,0176	1,000	1,000	1,000
0,0440	0,978	0,986	0,992
0,0880	0,957	0,974	0,983
0,1320	0,938	0,962	0,975

Таблица 3 - Воздушный теплообменник - Поправочный коэффициент на высоту

Высота над уровнем моря (м)	0	300	600	900	1200	1500	1800
Барометрическое давление (мбар)	1013	977	942	908	875	843	812
Поправочный коэффициент мощности охлаждения	1,000	0,993	0,986	0,979	0,973	0,967	0,960
Поправочный коэффициент на входную мощность	1,000	1,005	1,009	1,015	1,021	1,026	1,031

Примечание (1): Максимальная эксплуатационная высота над уровнем моря - 2000 м

Примечание (2): Обратитесь к изготовителю в случае установки оборудования в месте с высотой над уровнем моря от 1000 до 2000 м

Таблица 4.1 - Минимальное процентное содержание гликоля при низкой температуре воды

Температура воды на выходе испарителя (°C)	2	0	-2	-4	-6	-8
Этиленгликоль (%)	10	20	20	20	30	30
Пропиленгликоль (%)	10	20	20	30	30	30

Примечание: Минимальный процент содержания гликоля, необходимый для предотвращения замерзания воды в контуре в случае, если температура воды на выходе испарителя ниже 4°C.

Таблица 4.2 - Минимальное процентное содержание гликоля при низкой температуре воздуха

Температура окружающего воздуха (°С) (2)	-3	-8	-15	-23
Этиленгликоль (%) (1)	10%	20%	30%	40%
Температура окружающего воздуха (°C) (2)	-3	-7	-12	-20
Пропиленгликоль (%) (1)	10%	20%	30%	40%

Примечание (1): Минимальное процентное содержание гликоля для предотвращения замерзания воды в контуре при указанной температуре окружающего воздуха.

Примечание (2): Температура окружающего воздуха превышает рабочие пределы блока, поскольку может потребоваться защита водного контура зимой в условиях, отличных от эксплуатационных.

Таблица 5 - Поправочные коэффициенты при низкой температуре воды на выходе испарителя

Температура воды на выходе испарителя (°C)	2	0	-2	-4	-6	-8
Охлаждающая способность	0,842	0,785	0,725	0,670	0,613	0,562
Потребляемая мощность компрессора	0,950	0,940	0,920	0,890	0,870	0,840

Примечание: Поправочные коэффициенты для эксплуатационных условий: температура воды на выходе испарителя 7°C.

Таблица 6 - Поправочные коэффициенты для смеси воды и гликоля

	Этиленгликоль (%)	10%	20%	30%	40%	50%
	Охлаждающая способность	0,991	0,982	0,972	0,961	0,946
Этиленгликоль	Потребляемая мощность компрессора	0,996	0,992	0,986	0,976	0,966
Этилентликоль	Скорость потока (Δt)	1,013	1,04	1,074	1,121	1,178
	Падение давления в испарителе	1,070	1,129	1,181	1,263	1,308
	Охлаждающая способность	0,985	0,964	0,932	0,889	0,846
Пропилонение	Потребляемая мощность компрессора	0,993	0,983	0,969	0,948	0,929
Пропиленгликоль	Скорость потока (Δt)	1,017	1,032	1,056	1,092	1,139
	Падение давления в испарителе	1,120	1,272	1,496	1,792	2,128

OPL_1a-2a-3-4-5-6_Rev.02_2

Как использовать поправочные коэффициенты, указанные в предыдущих таблицах

А) Смесь воды и гликоля - Температура воды на выходе из испарителя> 4°C

- зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.2 и 6)
- -необходимо умножить хладопроизводительность и потребляемую мощность компрессора на поправочный коэффициент из Таблицы 6.
- -исходя из нового значения хладопроизводительности, рассчитайте расход воды (л/с) и перепад давлений в испарителе (кПА)
- -теперь необходимо умножить полученный расход воды и значение перепада давлений в испарителе на поправочные коэффициенты из Таблицы 6.

Пример:

Размер агрегата: EWAD330BZSS

Смесь: Вода

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура воздуха на

входе в конденсатор 35°C

- Хладопроизводительность 329 кВт (номинальные условия) - Потребляемая мощность: 120 кВ (номинальные условия)

Расход воды (Δt 5°C): 15,72 л/с Перепад давлений в испарителе: 60 кПа

Смесь: Вода+30%этиленгликоль (для зимней температуры воздуха до -15°C)

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°C- Температура воздуха на

входе в конденсатор 35°C

-Хладопроизводительность: 329 x 0,972 = 320 кВт - Потребляемая мощность: 120 x 0,986 = 118 кВт

Расход воды (Δ t 5°C): 15.30 (относится к 320 кВт) х 1.074 =16.43 л/с Перепад давлений в испарителе: 65 (относится к 16.43 л/с) х 1.181 = 77 кПа

В) Смесь воды и гликоля- Температура воды на выходе из испарителя< 4°С

- -зависит от типа и процентного содержания (%) гликоля в системе (см. Табл. 4.1, 4.2 и Табл.6)
- -зависит от температуры воды на выходе из испарителя (см. таблица 5)
- -необходимо умножить хладопроизводительность, потребляемую мощность компрессора на поправочные коэффициенты из Таблицы 5 и Таблицы 6.
- -исходя из нового значения хладопроизводительности, рассчитайте расход воды (л/с) и перепад давлений в испарителе (кПА)
- -теперь необходимо умножить полученный расход воды и новое значение перепада давлений в испарителе на поправочные коэффициенты из Таблицы 6.

Пример:

Размер агрегата: EWAD330BZSS

Смесь: Вода

Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) 12/7°С- Температура воздуха на

входе в конденсатор 30°С

- Хладопроизводительность: 346 кВ (номинальные условия) - Потребляемая мощность: 109 кВ (номинальные условия)

Расход воды (Δt 5°C): 16,53 л/с Перепад давлений в испарителе: 66 кПа

Смесь: Вода+30%этиленгликоль (для низкой температуры на выходе из испарителя до -1/-6°C) Эксплуатационные условия: Температура воды на выходе из испарителя (ELWT) -1/-6°C- Температура воздуха на

входе в конденсатор 30°С

- Хладопроизводительность: $346 \times 0,613 \times 0,972 = 206 \text{ кВт}$ - Потребляемая мощность: $109 \times 0,870 \times 0,986 = 93,5 \text{ кВт}$

Расход воды (Δt 5°C): 9.84 л/с (относится к 206 кВт) х 1.074 = 10.57 л/с Перепад давлений в испарителе: 29 кПа (относится к 10.57 л/с) х 1.181 = 34 кПа

OPL_1-2-3-4-5-6_Rev.02_3

EWAD-BZ

			0:	клаждающая вод	ца				Нагрета	я вода ⁽²⁾		
	Элементы (1)	(5)	Циркуляцион	ная система	Однократный поток	Охлажден	іная вода	Низкая тег	ипература	Высокая те	емпература	Свойства, если не подходит по
	OJIEMEHIBI		Циркулирующая вода	Поступающая вода ⁽⁴⁾	Расход воды	Циркулирующая вода [Ниже 20°C]	Поступающая вода ⁽⁴⁾	Циркулирующая вода [20°C ~ 60°C]	Поступающая вода ⁽⁴⁾	Циркулирующая вода [60°C~80°C]	Поступающая вода ⁽⁴⁾	критериям
.: ::	pH	при 25°C	6,5 ~ 8,2	6,0 ~ 8,0	6,0 ~ 8,0	6,0 ~ 8,0	6,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	7,0 ~ 8,0	Коррозия+образование корки
регулировать:	^	[мС/м] при 25°С	Ниже 80	Ниже 30	Ниже 40	Ниже 40	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Коррозия+образование корки
	Электропроводность	(µС/см) при 25°С	(Ниже 800)	(Ниже 300)	(Ниже 400)	(Ниже 400)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	(Ниже 300)	Коррозия+образование корки
необходимо	Хлорид-Ион	[mgCl ² /л]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
Удон	Сульфат-ион	[mgSO ²⁻ /л]	Ниже 200	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 30	Ниже 30	Коррозия
которые н	М-щелочность (рН4.8)	[mgCaCO ₃ /л]	Ниже 100	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Масштаб
, кото	Общая жесткость	[mgCaCO ₃ /л]	Ниже 200	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Ниже 70	Масштаб
Элементы,	Кальциевая жесткость	[mgCaCO ₃ /л]	Ниже 150	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Ниже 50	Масштаб
3ne	Энстатит	[mgSiO ₂ /л]	Ниже 50	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Ниже 30	Масштаб
-	Железо	[mgFe/л]	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Ниже 1.0	Ниже 0.3	Коррозия+образование корки
l He	Медь	[mgCu/л]	Ниже 0.3	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 0.1	Коррозия
элементы	Сульфит-ион	[mgS ₂ -/л]	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Не обнаружен	Коррозия
99	Аммоний ион	[mgNH+ ₄ /л]	Ниже 1.0	Ниже 0.1	Ниже 1.0	Ниже 1.0	Ниже 0.1	Ниже 0.3	Ниже 0.1	Ниже 0.1	Ниже 0.1	Коррозия
¥	Остаточный хлорид	[mgCL/л]	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.3	Ниже 0.25	Ниже 0.3	Ниже 0.1	Ниже 0.3	Коррозия
Упомяну	Свободный карбид	[mgCO ₂ /л]	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 4.0	Ниже 0.4	Ниже 4.0	Ниже 0.4	Ниже 4.0	Коррозия
\ F	Показатель устойчи	вости	6,0 ~ 7,0				-					Коррозия+образование корки

- 1 Названия, определения и агрегаты соответствуют стандарту JIS К 0101. Агрегаты и рисунки взятые в скобки это устаревшие модели, показанные для справки.
- 2 В случае использования нагретой воды (более 40°C), возможно возникновение коррозии. В случае, когда металлические детали контактируют с водой без защитных щитков, необходимо принимать меры для предотвращения коррозии. Например, обрабатывать химикатами
- 3 При охлаждении воды при помощи герметического охлаждающего стояка, ближний водяной контур соответствует стандартам нагретой воды, а дальний- стандартам охлаждающей воды.
- 4 Поступающей водой считается питьевая вода, техническая вода и грунтовавя вода, кроме фильтрованной воды, нейтральной воды и умягченной воды.
- 5 Описанные выше элементы показательны для случаев коррозии и образования корки.

OPL_1-2-3-4-5-6_Rev.02_4

EWAD-BZ

Контуры распределения охлажденной воды должны содержать минимальное количество воды для предотвращения незапланированных запусков и остановок компрессора.

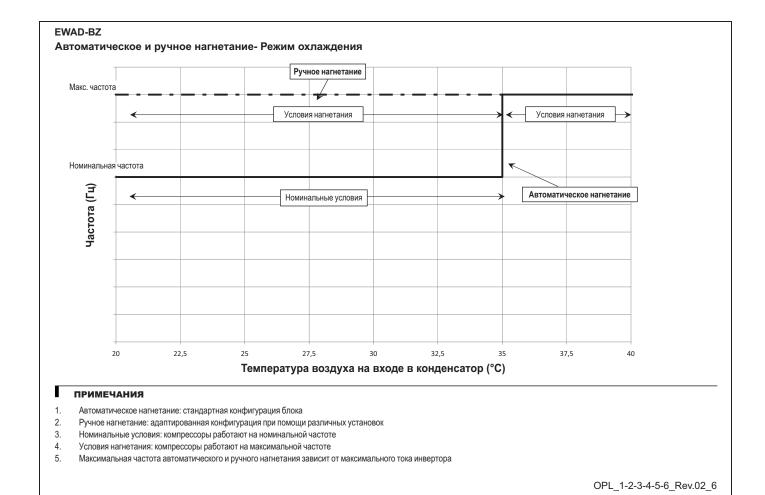
Фактически, каждый раз при запуске компрессора выделяется избыточное количество масла и одновременно повышается температура в статоре электродвигателя компрессора из-за бросков пускового тока при запуске.

Для предотвращения повреждения компрессоров, предусмотрено использование устройства для ограничения частых остановок и запусков.

В течение одного часа предусматривается не более 6 запусков компрессора. Заводская сборка предусматривает, что общее количество воды позволяет более непрерывную работу агрегата и соответственно большую комфортность окружающей среды. Минимальное количество воды для одного агрегата можно расчитать при помощи этой формулы:

<u>Для агрегата с 2-мя компрессорами</u> М (литры) = ($0.1595 \times \Delta T(^{\circ}C) + 3.0825$) x P(кВт)

где:


- М минимальное количество воды в одном агрегате, выраженное в литрах
- Р Хладопроизводительность агрегата в кВт
- ΔТ разность температур воды на входе/выходе из испарителя в °C

Данная формула подходит для:

-стандартных параметров микропроцессора

Для более точного определения количества воды, рекомендуется связаться с производителем.

OPL_1-2-3-4-5-6_Rev.02_5

7 - 1 Таблицы холодопроизводительности

EWAD-BZSS / EWAD-BZSL

	Томпоратира воли						Ter	ипература	воды на в	входе в ис	паритель	(°C)					
	Температура воды на выходе из			.0				25				80				-	
Размер	- испарителя (°C)	Номин	альная РІ (кВт)	Нагне СС (кВт)	тание РІ (кВт)	Номин	альная РІ (кВт)	СС (кВт)	тание РІ (кВт)	Номин	альная РІ (кВт)	СС (кВт)	етание РІ (кВт)	Номин	альная РГ (кВт)		
Тазілор	4	344	86,3	401	110	330	95,7	384	123	315	105	366	136	299	116		152
	5	355	87,2	413	112	341	96,8	396	124	326	107	378	138	309	117		153
	6	366	88,1	425	113	351	97,8	408	125	336	108	389	139	319	119		155
	7	377	89,0	438	114	362	98.8	420	127	346	109	401	141	329	120		157
	8	388	89,9	451	115	373	99,9	433	128	357	110	413	142	339	121		158
	9	400	90,9	464	117	384	101	445	130	368	111	424	144	349	123		160
330	10	412	91,8	477	118	396	102	458	131	379	113	436	146	359	124		162
	11	424	92,7	491	120	407	103	471	133	390	114	448	147	370	125		164
	12	436	93,7	505	121	419	103	484	134	401	115	461	149	380	127		166
	13	448	94,6	519	123	431	105	497	136	412	116	473	151	391	128		168
	14	461	95.6	534	124	443	106	511	138	424	118	486	153	402	130		167
	15	474	96,6	549	126	445	108	526	140	435	119	499	155	413	131		166
	4	378	97,9	439	126	362	108	420	140	345	119	396	153	326	132		160
	5	390	99.0	459	128	374	110	433	140	356	121	406	153	337	133		160
	6	402	100	466	130	385	111	446	144	368	122	416	153	347	135		162
	7	414	100	480	131	397	112	459	144	379	124	428	155	358	136		163
	8	414	103	493	133	409	114	472	148	390	125	420	156	369	138		163
	9	439	103	507	135	421	115	486	150	402	127	449	156	380	140		165
360	10	459	104	522	136	434	116	497	150	414	128	459	157	391	142		166
	11	465	105	537	138	446	118	508	150	425	130	472	159	402	143		166
	12	478	107	551	140	459	119	519	151	425	131	483	159	413	145		168
	13	491	107	567	140	472	121	533	153	450	133	493	160	425	147		167
	14	505	1109	582	144	485	122	545	153	462	135	504	160	436	147		168
	15	519	111	597	146	498	123	557	154	474	136	517	162	446	149	35 Harher CC (кВт) 346 357 367 367 378 389 401 412 423 435 446 454 462 362 371 382 392 402 413 423 433 445 453 463 471 396 404 416 425 434 446 455 464 476 485 494 507 424 435 446 455 467 476 487 499 508 520 531 541	167
	4	414	106	482	136	398	118	462	151	380	129	440	168	360	149		171
	5	414	107	496	138	410	119	476	153	392	131	453	169	371	143		169
	6	440	107	511	139	423	120	490	155	404	132	467	171	383	144		171
											-	_	-				
	7 8	454 467	110 111	526 541	141 143	436 449	122 123	505 519	156 158	417 429	134 135	476 485	170 169	395 407	147 149		170 169
	9	481	112	557	143	449	123	534	160	442	137	499	171	419	151		171
400																	
	10	495 510	113	574 590	146	476 490	126	549	162	455	138	508 518	171	431	153 154		170
	11 12	510 524	115 116	607	148 150	490 504	127 128	565 581	164 166	468	140 142	518	170 169	444 456	154		169 171
										481		_					
	13	539	117	624	152	518	130	597	168	495	143	541	171	469	158		170
	14 15	554 570	118 120	642 659	154 156	532 547	131 133	614 624	171 170	509 522	145 147	551 561	170 169	482 495	160 162		169 171
	4	445	115	518	147	427	127	496	164	408	147	472	182	386	154		185
				518	147					408			182	386			
	5	459 473	116 117	533	149	441 455	128 130	511 526	166 168	421	141 143	486 499	184	411	156 158		185 184
	7	-	117	549					170	434	143	499 511					184
	8	488	119		153	468 483	131 133	542	170	447	-	511	185 186	423	159 161		
	9	503 517	120	582 599	155 157	483	133	558 573	172	461	146 148	523	185	436 449	163		185 184
420		-				_											
	10	533	123	616	159	511	136	589	176	488	150	543	184	462	165		184
	11	548	124	633	161	526	137	606	178	502	152	558	186	475	167		185
	12	563	125	651	163	541	139	623	181	517	153	568	185	489	169		184
	13	579	127	669	165	556	141	640	183	531	155	578	184	502	171		184
	14	595	128	688	167	572	142	654	184	546	157	590	185	516	173		185
	15	612	130	706	170	587	144	668	185	560	159	604	186	530	175	541	184

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZSS / EWAD-BZSL

	Температура воды		3	6	161	поратура		входе в исі 10	аритель		45				
	на выходе из	Номина	альная	Нагне	тание	Номин	альная	Нагне	тание	Номин	альная	Нагне	тание		
Размер	— испарителя (°C)	СС (кВт)		СС (кВт)		СС (кВт)		СС (кВт)		СС (кВт)		СС (кВт)			
	4	340	155	340	155	319	167	319	167	267	155	267	155		
	5	351	156	351	156	329	169	329	169	271	151	271	151		
	6	361	157	361	157	336	168	336	168	275	147	275	147		
	7	371	159	371	159	343	166	343	166	279	142	279	142		
	8	382	160	382	160	353	168	353	168	283	138	283	138		
220	9	392	162	392	162	360	167	360	167	286	134	286	134		
330	10	403	163	403	163	370	169	370	169	290	131	290	131		
	11	414	165	414	165	377	167	377	167	293	127	293	127		
	12	425	166	425	166	385	166	385	166	296	123	296	123		
	13	436	168	436	168	395	168	395	168	299	119	299	119		
	14	443	167	443	167	402	167	402	167	305	118	305	118		
	15	450	165	450	165	406	163	406	163	307	115	307	115		
	4	354	162	354	162	325	167	325	167	270	150	270	150		
	5	364	162	364	162	334	168	334	168	274	146	274	146		
	6	374	163	374	163	343	168	343	168	278	141	278	141		
	7	384	163	384	163	350	167	350	167	283	138	283	138		
	8	393	164	393	164	361	169	361	169	286	134	286	134		
360	9	404	166	404	166	368	167	368	167	290	130	290	130		
300	10	414	166	414	166	377	168	377	168	293	126	293	126		
	11	424	166	424	166	386	168	386	168	297	123	297	123		
	12	434	168	434	168	393	167	393	167	301	121	301	121		
	13	442	167	442	167	401	166	401	166	303	117	303	117		
	14	452	167	452	167	407	163	407	163	307	114	307	114		
	15	459	165	459	165	411	158	411	158	308	110	308	110		
	4	386	171	386	171	349	170	349	170	296	159	296	159		
	5	395	169	395	169	357	169	357	169	306	161	306	161		
	6	407	171	407	171	368	171	368	171	313	160	313	160		
	7	415	170	415	170	376	170	376	170	323	161	323	161		
	8	424	170	424	170	387	171	387	171	330	160	330	160		
400	9	436	171	436	171	396	170	396	170	334	155	334	155		
100	10	445	170	445	170	404	169	404	169	338	151	338	151		
	11	454	169	454	169	415	171	415	171	342	146	342	146		
	12	466	171	466	171	423	170	423	170	345	142	345	142		
	13	475	170	475	170	431	168	431	168	348	137	348	137		
	14	484	169	484	169	443	170	443	170	355	136	355	136		
	15	496	171	496	171	452	169	452	169	357	132	357	132		
	4	414	185	414	185	373	184	373	184	318	174	318	174		
	5	425	185	425	185	384	185	384	185	324	170	324	170		
	6	434	184	434	184	394	185	394	185	331	169	331	169		
	7	445	185	445	185	404	185	404	185	337	165	337	165		
	8	456	185	456	185	413	184	413	184	345	164	345	164		
420	9	466	184	466	184	425	186	425	186	349	159	349	159		
	10	477	184	477	184	434	185	434	185	353	154	353	154		
	11	488	185	488	185	442	183	442	183	356	149	356	149		
	12	498	184	498	184	455	186	455	186	361	146	361	146		
	13	508	184	508	184	464	184	464	184	366	143	366	143		
	14	520	185	520	185	474	185	474	185	369	138	369	138		
	15	530	184	530	184	485	185	485	185	371	134	371	134		

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Pi (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZSS / EWAD-BZSL

	т						Ter	ипература	воды на в	зходе в ис	паритель	(°C)					
	Температура воды на выходе из		2	20			2	25			3	30			3	35	
	испарителя (°C)	Номин	альная	Нагне	тание	Номин	альная	Нагне	тание	Номин	альная	Нагне	тание	Номин	альная	Нагне	тание
Размер	испарителя (О)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)
	4	480	121	560	154	461	134	537	172	441	148	512	190	418	162	469	201
	5	496	122	577	156	476	136	553	174	455	149	528	192	431	164	484	203
	6	511	124	594	158	491	137	570	175	469	151	544	195	445	166	494	202
	7	527	125	611	160	506	139	587	177	484	153	560	197	459	168	504	200
	8	542	126	629	162	521	140	604	180	499	154	576	199	473	170	519	203
460	9	559	127	647	164	537	141	622	182	514	156	592	201	487	172	529	201
460	10	575	129	666	165	553	143	639	184	529	158	609	204	502	174	544	204
	11	592	130	686	168	569	145	657	186	544	159	620	203	516	176	555	202
	12	609	131	705	170	585	146	676	188	560	161	631	202	531	178	565	201
	13	626	133	726	172	602	148	695	191	576	163	642	200	546	180	581	203
	14	644	134	746	174	619	149	714	193	592	165	660	203	561	182	591	202
	15	661	135	767	176	636	151	734	196	608	167	671	202	576	184	602	201
	4	512	130	596	166	491	144	571	185	469	159	531	196	445	175	480	201
	5	528	131	614	168	507	146	589	187	485	160	547	198	459	177	495	203
	6	544	133	632	170	523	147	606	189	500	162	561	199	474	179	505	202
	7	561	134	651	172	539	149	621	190	515	164	575	199	488	181	516	200
	8	578	136	670	174	555	150	636	190	531	166	591	202	503	183	531	203
490	9	595	137	689	177	572	152	654	193	547	168	606	202	518	185	542	201
490	10	612	139	709	179	589	154	669	193	563	170	617	201	533	187	555	202
	11	630	140	730	181	606	156	685	194	579	171	634	203	549	189	568	202
	12	648	142	751	183	623	157	704	196	595	173	646	202	562	189	579	201
	13	667	143	772	186	640	159	720	197	612	175	657	201	577	192	592	202
	14	686	145	793	188	658	161	737	198	629	177	672	202	590	192	606	202
	15	705	146	811	189	677	163	754	198	646	179	687	203	604	192	616	201
	4	541	139	628	178	519	154	603	198	496	169	547	201	470	187	488	201
	5	558	140	647	180	536	155	621	200	512	171	563	204	485	189	503	203
	6	575	142	667	182	552	157	639	203	528	173	575	203	500	191	514	202
	7	592	143	686	185	569	159	652	202	544	175	587	201	515	193	525	200
	8	610	145	706	187	586	161	664	201	560	177	604	204	531	195	541	203
520	9	628	147	728	189	604	163	683	203	577	179	616	203	547	198	551	201
520	10	646	148	749	192	621	164	696	202	594	181	627	201	562	200	567	204
	11	665	150	771	194	639	166	709	201	611	183	645	204	578	202	578	202
	12	684	151	793	197	657	168	729	204	628	185	657	203	590	201	590	201
	13	703	153	815	199	676	170	743	203	645	188	669	201	606	203	606	203
	14	724	155	837	202	694	172	756	202	663	190	681	200	617	202	617	202
	15	745	157	852	201	714	174	770	201	681	192	699	203	628	200	628	200

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZSS / EWAD-BZSL

	Температура воды				Тел	пература			паритель	(°C)			
	на выходе из		3	6			4	.0			4	15	
	испарителя (°C)	Номина	альная	Нагне		Номина		Нагне		Номина		Нагне	тание
Размер	. , , ,	СС (кВт)	/	СС (кВт)	РІ (кВт)	СС (кВт)		СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	/
	4	458	201	458	201	414	201	414	201	354	193	354	193
	5	473	203	473	203	427	203	427	203	362	191	362	191
	6	482	202	482	202	437	201	437	201	374	193	374	193
	7	493	201	493	201	450	204	450	204	383	191	383	191
	8	507	202	507	202	459	202	459	202	395	193	395	193
460	9	517	201	517	201	469	201	469	201	400	188	400	188
400	10	532	203	532	203	483	203	483	203	405	182	405	182
	11	542	202	542	202	492	201	492	201	409	177	409	177
	12	553	202	553	202	506	204	506	204	414	172	414	172
	13	568	203	568	203	516	202	516	202	418	167	418	167
	14	578	202	578	202	526	201	526	201	421	162	421	162
	15	589	201	589	201	540	203	540	203	429	160	429	160
	4	469	201	469	201	425	202	425	202	364	192	364	192
	5	483	203	483	203	437	202	437	202	372	191	372	191
	6	494	202	494	202	449	203	449	203	384	193	384	193
	7	504	201	504	201	459	201	459	201	393	191	393	191
	8	519	202	519	202	470	201	470	201	404	191	404	191
400	9	530	201	530	201	482	202	482	202	411	187	411	187
490	10	543	202	543	202	494	202	494	202	421	188	421	188
	11	556	202	556	202	506	203	506	203	426	182	426	182
	12	566	201	566	201	516	201	516	201	433	179	433	179
	13	579	202	579	202	528	201	528	201	437	173	437	173
	14	593	202	593	202	541	202	541	202	440	168	440	168
	15	604	201	604	201	553	202	553	202	444	162	444	162
-	4	477	201	477	201	435	203	435	203	372	192	372	192
	5	492	203	492	203	445	201	445	201	381	190	381	190
	6	503	202	503	202	459	204	459	204	393	192	393	192
	7	514	201	514	201	469	202	469	202	402	190	402	190
	8	528	202	528	202	479	200	479	200	415	193	415	193
500	9	540	201	540	201	494	203	494	203	424	191	424	191
520	10	555	203	555	203	504	201	504	201	437	193	437	193
	11	566	202	566	202	518	203	518	203	441	187	441	187
	12	577	201	577	201	528	202	528	202	450	185	450	185
	13	592	203	592	203	539	200	539	200	454	179	454	179
	14	604	202	604	202	554	202	554	202	458	174	458	174
	15	615	200	615	200	564	201	564	201	461	168	461	168

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Pi (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/ κ Вт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZXS / EWAD-BZXL / EWAD-BZXR

	-	Температура воды на входе в испаритель (°C)															
	Температура воды на выходе из		2	20			2	:5			. 3	30		35			
	испарителя (°C)		альная		тание		альная		тание		альная		тание		альная		етание
Размер		СС (кВт)		СС (кВт)		СС (кВт)	РІ (кВт)	СС (кВт)		СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)		СС (кВт)	
	4	344	84,4	401	108	330	94	384	121	315	104	366	134	299	114	346	150
	5	355	85,3	413	110	341	95	396	122	326	105	378	136	309	116	357	151
	6	366	86,2	425	111	351	96	408	124	336	106	389	137	319	117	367	153
	7	377	87,1	438	112	362	97	420	125	346	107	401	139	329	118	378	155
	8	388	88,0	451	114	373	98	433	126	357	108	413	140	339	119	389	157
330	9	400	89,0	464	115	384	99	445	128	368	109	424	142	349	121	397	156
330	10	412	89,9	477	116	396	100	458	130	379	111	436	144	359	122	404	155
	11	424	90,8	491	118	407	101	471	131	390	112	448	146	370	124	416	157
	12	436	91,8	505	119	419	102	484	133	401	113	461	147	380	125	423	156
	13	448	92,7	519	121	431	104	497	134	412	115	473	149	391	127	431	155
	14	461	93,7	534	122	443	105	511	136	424	116	486	151	402	128	442	156
	15	474	94,7	549	124	455	106	526	138	435	117	499	153	413	130	450	156
	4	378	96,0	439	124	362	106	420	138	345	117	396	151	326	130	362	158
	5	390	97,1	452	126	374	108	433	140	356	119	406	151	337	131	371	159
	6	402	98,3	466	128	385	109	446	142	368	120	416	152	347	133	382	161
	7	414	99.4	480	129	397	110	459	144	379	122	428	153	358	135	392	161
	8	426	101	493	131	409	112	472	146	390	123	438	154	369	136	402	161
	9	439	102	507	133	421	113	486	148	402	125	449	154	380	138	413	163
360	10	452	103	522	135	434	114	497	148	414	126	459	155	391	140	423	164
	11	465	103	537	136	446	116	508	148	425	128	472	157	402	141	433	164
	12	478	106	551	138	459	117	519	149	437	130	483	157	413	143	445	166
	13	491	107	567	140	472	119	533	151	450	131	493	158	425	145	453	165
	14	505	107	582	142	485	120	545	151	462	133	504	158	436	147	463	166
	15	519	109	597	144	498	122	557	152	474	135	517	160	446	147	471	165
	4	414	109	482	133	398	115	462	148	380	127	440	165	360	140	396	168
	5	427	104	496	135	410	116	476	150	392	128	453	167	371	140	404	167
			105					490						_			
	6 7	440		511	137	423	118		152	404	130	467	169	383	143	416	169
		454	107	526	138	436	119	505	154	417	131	476	168	395	145	425	168
	8	467	108	541	140	449	120	519	156	429	133	485	167	407	147	434	167
400	9	481	110	557	142	462	122	534	158	442	134	499	169	419	148	446	169
	10	495	111	574	144	476	123	549	160	455	136	508	168	431	150	455	168
	11	510	112	590	146	490	125	565	162	468	138	518	167	444	152	464	166
	12	524	113	607	147	504	126	581	164	481	139	527	166	456	154	476	168
	13	539	114	624	149	518	127	597	166	495	141	541	168	469	156	485	167
	14	554	116	642	151	532	129	614	168	509	142	551	167	482	157	494	166
	15	570	117	659	153	547	130	624	167	522	144	561	167	495	159	507	168
	4	445	112	518	145	427	124	496	161	408	137	472	179	386	151	424	182
	5	459	113	533	147	441	126	511	163	421	139	486	181	398	153	435	183
	6	473	115	549	148	455	127	526	165	434	140	499	182	411	155	444	182
	7	488	116	565	150	468	129	542	167	447	142	511	182	423	157	455	182
	8	503	117	582	152	483	130	558	169	461	144	523	183	436	159	467	183
420	9	517	119	599	154	497	132	573	171	475	145	533	182	449	161	476	182
420	10	533	120	616	156	511	133	589	174	488	147	543	181	462	163	487	182
	11	548	121	633	158	526	135	606	176	502	149	558	184	475	165	499	183
	12	563	123	651	160	541	137	623	178	517	151	568	183	489	167	508	181
	13	579	124	669	163	556	138	640	181	531	153	578	182	502	169	520	182
	14	595	126	688	165	572	140	654	182	546	155	590	182	516	171	531	183
-	15	612	127	706	167	587	141	668	182	560	156	604	183	530	173	541	182

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/κВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZXS / EWAD-BZXL / EWAD-BZXR

	4 5 6 7 8 9 10 11 12 13 14 15 4 5 6	Номин: СС (кВт) 340 351 361 371 382 389 397 408 415 424 434 441 354	альная РI (кВт) 153 155 156 157 159 157 157 158 157 158	6 Нагне СС (кВт) 340 351 361 371 382 389 397 408 415 424	Тание PI (кВт) 153 155 156 157 159 157 157 158 157	Номина СС (кВт) 319 329 336 343 353 360 370 377	альная PI (кВт) 165 167 166 164 166 165	0 Нагне СС (кВт) 319 329 336 343 353 360	тание PI (кВт) 165 167 166 164 166	Номин СС (кВт) 267 271 275 279 283	альная	5	РІ (кВт 154 149 145 141
Размер	испарителя (°C) - 4 5 6 7 8 9 10 11 12 13 14 15 4 5 6	CC (KBT) 340 351 361 371 382 389 397 408 415 424 434	PI (kBT) 153 155 156 157 159 157 157 158 157 158	СС (кВт) 340 351 361 371 382 389 397 408 415 424	PI (кВт) 153 155 156 157 159 157 157 158	СС (кВт) 319 329 336 343 353 360 370	PI (κΒτ) 165 167 166 164 166 165	319 329 336 343 353	PI (κΒτ) 165 167 166 164	СС (кВт) 267 271 275 279	PI (κΒτ) 154 149 145 141	267 271 275 279	РІ (кВт 154 149 145 141
	4 5 6 7 8 9 10 11 12 13 14 15 4 5 6	340 351 361 371 382 389 397 408 415 424 434 441	153 155 156 157 159 157 157 158 157 157 158	340 351 361 371 382 389 397 408 415 424	153 155 156 157 159 157 157 158	319 329 336 343 353 360 370	165 167 166 164 166 165	319 329 336 343 353	165 167 166 164	267 271 275 279	154 149 145 141	267 271 275 279	154 149 145 141
330	5 6 7 8 9 10 11 12 13 14 15 4 5 6	351 361 371 382 389 397 408 415 424 434 441	155 156 157 159 157 157 158 157 157 158	351 361 371 382 389 397 408 415 424	155 156 157 159 157 157 158	329 336 343 353 360 370	167 166 164 166 165	329 336 343 353	167 166 164	271 275 279	149 145 141	271 275 279	149 145 141
330	6 7 8 9 10 11 12 13 14 15 4 5 6	361 371 382 389 397 408 415 424 434 441	156 157 159 157 157 158 157 157 158	361 371 382 389 397 408 415 424	156 157 159 157 157 158	336 343 353 360 370	166 164 166 165	336 343 353	166 164	275 279	145 141	275 279	145 141
330	7 8 9 10 11 12 13 14 15 4 5	371 382 389 397 408 415 424 434 441	157 159 157 157 158 157 157 158	371 382 389 397 408 415 424	157 159 157 157 158	343 353 360 370	164 166 165	343 353	164	279	141	279	141
330	8 9 10 11 12 13 14 15 4 5 6	382 389 397 408 415 424 434 441	159 157 157 158 157 157 157	382 389 397 408 415 424	159 157 157 158	353 360 370	166 165	353					
330	9 10 11 12 13 14 15 4 5 6	389 397 408 415 424 434 441	157 157 158 157 157 158	389 397 408 415 424	157 157 158	360 370	165		100	283	1 137	1 /8.3	
330	10 11 12 13 14 15 4 5	397 408 415 424 434 441	157 158 157 157 158	397 408 415 424	157 158	370		1 300	405				137
	11 12 13 14 15 4 5	408 415 424 434 441	158 157 157 158	408 415 424	158				165	286	133	286	133
	12 13 14 15 4 5	415 424 434 441	157 157 158	415 424		1 .3//	167	370	167	290	129	290	129
	13 14 15 4 5 6	424 434 441	157 158	424	15/		166	377	166	293	125	293	125
	14 15 4 5 6	434 441	158			385	164	385	164	296	121	296	121
	15 4 5 6	441			157	395	166	395	166	299	118	299	118
	4 5 6			434	158	402	165	402	165	305	116	305	116
	5 6	354	157	441	157	406	161	406	161	307	113	307	113
	6		160	354	160	325	165	325	165	270	148	270	148
		364	160	364	160	334	166	334	166	274	144	274	144
H		374	162	374	162	343	166	343	166	278	139	278	139
	7	384	162	384	162	350	165	350	165	283	137	283	137
-	8	393	162	393	162	361	167	361	167	286	132	286	132
360	9	404	164	404	164	368	165	368	165	290	128	290	128
	10	414	164	414	164	377	166	377	166	293	124	293	124
	11	424	165	424	165	386	166	386	166	297	122	297	122
	12	434	166	434	166	393	165	393	165	301	119	301	119
	13	442	165	442	165	401	164	401	164	303	115	303	115
	14	452	165	452	165	407	161	407	161	307	112	307	112
	15	459	163	459	163	411	157	411	157	308	108	308	108
	4	386	168	386	168	349	168	349	168	296	157	296	157
	5	395	167	395	167	357	166	357	166	306	159	306	159
	6	407	169	407	169	368	168	368	168	313	157	313	157
	7	415	168	415	168	376	167	376	167	323	159	323	159
	8	424	167	424	167	387	169	387	169	330	157	330	157
400	9	436	168	436	168	396	168	396	168	334	153	334	153
-	10 11	445 454	167 167	445 454	167	404 415	166 168	404 415	166	338 342	148	338 342	148 144
				-	167			_	168	_	144	_	
-	12	466	168	466	168	423	167	423	167	345	139	345	139
-	13	475	167	475	167	431	166	431	166	348	135	348	135
-	14 15	484 496	167 168	484 496	167 168	443 452	168 167	443 452	168 167	355 357	133 129	355 357	133 129
+	4	496	182	496	182	373	182	373	182	318	172	318	172
-	5	414		414		384	182	384		324		324	
-	6	425	183 182	425	183 182	384	182	384	182 182	324	168 166	324	168
-	7	434	182	434	182	404	183	404	183		163	337	163
-						404		_		337			
-	8 9	456 466	182 182	456 466	182 182	413	182 184	413 425	182 184	345 349	161 156	345 349	161 156
420													
-	10	477	182	477	182	434	182	434	182	353	151	353	151
-	11	488	182	488	182	442	181	442	181	356	147	356	147
-	12	498	182	498	182	455	183	455	183	361	143	361	143
-	13	508	182	508	182	464	182	464	182	366	140	366	140
-	14 15	520 530	183 182	520 530	183 182	474 485	182 183	474 485	182 183	369 371	136 131	369 371	136 131

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Pi (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZXS / EWAD-BZXL / EWAD-BZXR

	Taumanam ma na m						Ter	ипература	воды на в	зходе в исі	паритель	(°C)					
	Температура воды на выходе из		2	20			2	25			3	0			3	5	
	испарителя (°C)	Номин	альная	Нагне	тание	Номин	альная	Нагне	тание	Номина	альная	Нагне	тание	Номин	альная	Нагне	тание
Размер	испарителя (С)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)
	4	480	118	560	152	461	131	537	169	441	145	512	187	418	160	469	198
	5	496	119	577	153	476	133	553	171	455	146	528	189	431	161	484	200
	6	511	121	594	155	491	134	570	173	469	148	544	192	445	163	494	199
	7	527	122	611	157	506	136	587	175	484	150	560	194	459	165	504	197
	8	542	123	629	159	521	137	604	177	499	151	576	196	473	167	519	200
460	9	559	125	647	161	537	139	622	179	514	153	592	198	487	169	529	198
400	10	575	126	666	163	553	140	639	181	529	155	609	201	502	171	544	201
	11	592	127	686	165	569	142	657	183	544	156	620	200	516	173	555	199
	12	609	129	705	167	585	143	676	185	560	158	631	199	531	175	565	198
	13	626	130	726	169	602	145	695	188	576	160	642	198	546	177	581	201
	14	644	131	746	171	619	146	714	190	592	162	660	200	561	179	591	199
	15	661	133	767	173	636	148	734	193	608	164	671	199	576	181	602	198
	4	512	127	596	164	491	141	571	182	469	156	531	193	445	172	480	198
	5	528	128	614	165	507	143	589	184	485	157	547	195	459	174	495	200
	6	544	130	632	167	523	144	606	186	500	159	561	196	474	176	505	199
	7	561	131	651	169	539	146	621	187	515	161	575	196	488	178	516	198
	8	578	133	670	172	555	148	636	187	531	163	591	199	503	180	531	200
490	9	595	134	689	174	572	149	654	190	547	165	606	199	518	182	542	199
430	10	612	136	709	176	589	151	669	190	563	167	617	198	533	184	555	199
	11	630	137	730	178	606	153	685	191	579	169	634	201	549	186	568	200
	12	648	139	751	180	623	154	704	193	595	171	646	199	562	186	579	198
	13	667	140	772	183	640	156	720	194	612	173	657	198	577	189	592	199
	14	686	142	793	185	658	158	737	195	629	175	672	199	590	189	606	199
	15	705	143	811	186	677	160	754	195	646	177	687	200	604	189	616	198
	4	541	136	628	175	519	151	603	195	496	166	547	199	470	184	488	198
	5	558	137	647	177	536	153	621	197	512	168	563	201	485	186	503	200
	6	575	139	667	179	552	154	639	200	528	170	575	200	500	188	514	199
	7	592	140	686	182	569	156	652	199	544	172	587	198	515	190	525	197
	8	610	142	706	184	586	158	664	198	560	174	604	201	531	192	541	200
520	9	628	144	728	186	604	160	683	200	577	176	616	200	547	195	551	198
020	10	646	145	749	189	621	161	696	199	594	178	627	199	562	197	567	201
	11	665	147	771	191	639	163	709	198	611	180	645	201	578	199	578	199
	12	684	149	793	194	657	165	729	201	628	183	657	200	590	198	590	198
	13	703	150	815	196	676	167	743	200	645	185	669	199	606	200	606	200
	14	724	152	837	199	694	169	756	199	663	187	681	197	617	199	617	199
	15	745	154	852	198	714	171	770	198	681	189	699	200	628	198	628	198

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °С/кВт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте Форсированные условия для компрессоров работающих на максимальной частоте.

7 - 1 Таблицы холодопроизводительности

EWAD-BZXS / EWAD-BZXL / EWAD-BZXR

	Температура воды				Тем	пература			паритель	(°C)				
	на выходе из		3	6			4	0		45				
	испарителя (°C)	Номина	альная	Нагне		Номина	альная	Нагне	тание	Номин	альная	Нагне	тание	
Размер	иопарители (о)	СС (кВт)		СС (кВт)	РІ (кВт)	СС (кВт)		СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	СС (кВт)	РІ (кВт)	
	4	458	198	458	198	414	198	414	198	354	190	354	190	
	5	473	200	473	200	427	200	427	200	362	188	362	188	
	6	482	199	482	199	437	199	437	199	374	190	374	190	
	7	493	198	493	198	450	201	450	201	383	188	383	188	
	8	507	200	507	200	459	199	459	199	395	190	395	190	
460	9	517	198	517	198	469	198	469	198	400	185	400	185	
400	10	532	201	532	201	483	200	483	200	405	179	405	179	
	11	542	199	542	199	492	199	492	199	409	174	409	174	
	12	553	199	553	199	506	201	506	201	414	169	414	169	
	13	568	200	568	200	516	199	516	199	418	164	418	164	
	14	578	199	578	199	526	198	526	198	421	159	421	159	
	15	589	198	589	198	540	200	540	200	429	157	429	157	
	4	469	198	469	198	425	199	425	199	364	192	364	192	
	5	483	200	483	200	437	199	437	199	372	191	372	191	
	6	494	199	494	199	449	200	449	200	384	193	384	193	
	7	504	198	504	198	459	198	459	198	393	191	393	191	
	8	519	200	519	200	470	198	470	198	404	191	404	191	
490	9	530	199	530	199	482	199	482	199	411	187	411	187	
490	10	543	199	543	199	494	199	494	199	421	188	421	188	
	11	556	200	556	200	506	200	506	200	426	182	426	182	
	12	566	198	566	198	516	198	516	198	433	179	433	179	
	13	579	199	579	199	528	199	528	199	437	173	437	173	
	14	593	199	593	199	541	199	541	199	440	168	440	168	
	15	604	198	604	198	553	199	553	199	444	162	444	162	
	4	477	198	477	198	435	200	435	200	372	189	372	189	
	5	492	200	492	200	445	198	445	198	381	187	381	187	
	6	503	199	503	199	459	201	459	201	393	189	393	189	
	7	514	198	514	198	469	199	469	199	402	188	402	188	
	8	528	199	528	199	479	197	479	197	415	190	415	190	
520	9	540	198	540	198	494	200	494	200	424	188	424	188	
320	10	555	200	555	200	504	198	504	198	437	190	437	190	
	11	566	199	566	199	518	200	518	200	441	184	441	184	
	12	577	198	577	198	528	199	528	199	450	182	450	182	
	13	592	200	592	200	539	197	539	197	454	177	454	177	
	14	604	199	604	199	554	200	554	200	458	171	458	171	
	15	615	198	615	198	564	198	564	198	461	165	461	165	

ПРИМЕЧАНИЯ

Сс (теплопроизводительность)- Pi (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кBт по термическому сопротивлению тепелопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

Форсированные условия для компрессоров работающих на максимальной частоте.

8 Падение давления на испарителе

EWAD~BZ

	330	360	400	420	460	490	520
Мощность охлаждения (кВт)	329	358	395	423	459	488	515
Расход воды (л/с)	15,72	17,10	18,87	20,21	21,93	23,32	24,61
Перепад давлений (кПа)	60	61	72	67	78	69	76

Расход воды и перепад давления в номинальных условиях: вода в испарителе на входе/выходе: 12/7°C -подвод воздуха конденсатора: 35°C

EPD 1-2 Rev.00 1

EWAD~BZ

Чтобы определить перепад давления в различных условиях, пожалуйста используйте данную формулу:

$$PD_{2}(\kappa \Pi a) = PD_{1}(\kappa \Pi a) \times \left(\frac{Q_{2}(\pi/c)}{Q_{1}(\pi/c)} \right)^{1/c}$$

где:

 PD_2 Перепад давления, который необходимо определить (кПа)

PD, Перепад давления в номинальных условиях (кПа)

расход воды в новых рабочих условиях (л/с) Q_2

расход воды при номинальных условиях (л/с) Q,

Как пользоваться формулой: Пример

Для работы aгрегата EWAD330BZSS были выбраны следующие условия:

-вода в испарителе на входе/выходе: 11/6°C

-температура воздуа на входе в конденсатор: 30°C

Хладопроизводительность в заданных условиях: 336 кВт (номинальные условия)

Расход воды в заданных условиях: 16.05 л/с (номинальные условия)

Arperat EWAD330BZSS при номинальных рабочих условиях имеет следующие характеристики:

-температура воды на входе/выходе из испарителя: 12/7°C

-температура воздуха на входе в конденсатор: 35°C

Хладопроизводительность в заданных условиях: 329 кВт

Расход воды в заданных условиях: 15,72 л/с

Перепад давления в заданных условиях: 60 кПа

Перепад давлений в выбранных рабочих условиях будет:

PD₂ (κΠα) = 60 (κΠα) x
$$\left(\frac{16,05 \text{ (п/c)}}{15,72 \text{ (п/c)}}\right)^{1,8}$$

PD₂ (κΠα) = 62 (κΠα)

ПРИМЕЧАНИЕ- Важно

Если рассчитанный перепад давлений в испарителе ниже 10кПа или выше 100кПа, свяжитесь с производителе относительно данного испарителя.

EPD_1-2_Rev.00_2

9 Дополнительные функции

EWAD~BZ

	_						Темпера	атура водь	і на входе	в испари	тель (°С)					
	Температура воды на		30/35			35/40			40/45			45/50		50/55		
	выходе из испарителя	Но	минальн	ая	Н	оминальн	ая	He	оминальн	ая	Н	оминальн	ая	He	оминальн	ая
Размер	(°C)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	HC (ĸ
	4	321	84,5	405	305	93,9	399	287	105	392	266	118	383	178	82,7	26
	5	331	85,3	417	315	94,8	410	297	106	402	275	119	394	179	80,2	26
	6	342	86,1	428	326	95,7	421	307	107	413	284	120	404	180	77,8	25
	7	353	86,9	440	336	96,6	433	317	108	424	294	121	414	184	77,0	26
	8	365	87,7	452	347	97,5	445	327	109	436	303	122	425	184	74,6	25
330	9	376	88,5	464	358	98,4	456	337	110	447	313	123	436	187	73,9	26
550	10	388	89,3	477	369	99,3	468	348	111	459	323	124	447	186	71,5	25
	11	399	90,1	489	380	100	481	359	112	470	333	125	459	189	70,7	25
	12	411	90,9	502	392	101	493	370	113	482	344	126	470	191	69,9	26
	13	423	91,7	515	403	102	506	381	114	494	351	125	476	189	67,4	25
	14	436	92,5	528	415	103	518	392	115	507	354	122	476	191	66,6	25
	15	448	93,3	542	427	104	531	403	116	519	358	119	477	193	65,7	25
	4	356	94,2	450	338	105	442	317	117	434	293	131	425	187	85,9	27
	5	367	95,1	462	349	106	455	328	118	446	304	132	436	191	85,1	27
	6	379 392	96,0	475 489	361 372	107 108	467 480	339 350	119 120	458 470	314	134	447 459	191 193	82,4	27
	8	404	97,0 97.9	502	384	100	493	362	121	483	324 335	135 136	471	193	80,7 79.9	27
	9	417	98.8	515	396	1109	506	373	123	496	346	137	483	196	77,3	27
360	10	429	99.7	529	409	111	520	385	123	508	355	137	492	199	76.4	27
	11	443	101	543	421	112	533	397	125	521	362	136	498	201	75.5	27
	12	456	102	557	434	113	547	409	126	535	370	135	504	199	72.8	27
	13	469	103	572	447	114	561	421	127	548	374	131	505	201	71.9	27
	14	483	104	586	460	115	575	433	129	562	378	128	505	202	70.9	27
	15	497	104	601	473	116	589	446	130	575	381	125	506	204	70.0	27
	4	386	104	489	367	115	482	344	129	473	318	145	463	197	90.7	28
	5	399	105	503	379	116	495	356	130	486	329	146	475	201	89.7	29
	6	411	106	517	391	117	509	368	131	499	340	147	487	201	86,9	28
	7	425	107	531	404	119	522	380	132	512	351	148	500	205	85,9	29
	8	438	108	546	416	120	536	392	134	525	363	150	513	208	85,0	29
400	9	451	109	560	429	121	550	404	135	539	374	151	526	207	82,1	28
400	10	465	110	575	443	122	565	417	136	553	383	150	532	210	81,2	29
	11	479	111	590	456	123	579	429	138	567	387	146	533	212	80,2	29
	12	493	112	605	470	125	594	442	139	581	391	142	533	209	77,3	28
	13	508	113	621	483	126	609	455	140	595	395	139	534	211	76,2	28
	14	523	114	637	497	127	624	468	142	610	399	135	534	213	75,2	28
	15	538	115	653	511	128	640	482	143	625	403	132	535	214	74,1	28
	4	415	112	527	394	125	519	370	139	509	341	156	497	207	95,5	30
	5	429	113	542	407	126	533	382	141	523	353	158	510	209	93,4	30
	6	443	115	557	420	127	548	395	142	537	365	159	524	211	91,4	30
	/	457 471	116 117	572 588	434 448	129 130	562 577	408	143 145	551 565	377 387	161	537 548	212 213	89,3 87.3	30
	8 9	486	117	604	448	130		421			395	161 159	548			
420	10	501	118	620	462	131	593 608	434 447	146 148	580 595	402	159	558	216 219	86,3 85.3	30
	11	516	120	636	490	134	624	461	149	610	402	152	559	219	83.3	30
	12	531	122	652	505	135	640	475	151	625	411	148	559	218	81.1	29
	13	546	123	669	519	137	656	489	152	641	413	143	557	219	80.0	29
	14	562	123	686	534	138	672	503	154	656	417	143	557	219	78.8	30
	15	578	125	703	550	139	689	517	155	672	421	136	557	222	77.6	29

ПРИМЕЧАНИЯ

Сс (хладопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δ t 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению теплопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

OPT_1-2-3-4-5-6-7_Rev.00_1

9 Дополнительные функции

EWAD~BZ

	Температура						Темпера	тура водь	і на входе	в испари	тель (°C)					
	воды на выходе		30/35			35/40			40/45			45/50			50/55	
	из испарителя	Н	оминальн	ая	He	оминальн	ая	Н	оминальн	ая	Н	оминальн	ая	Н	оминальн	ая
Размер	(°C)	СС (кВт)	PI (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)	СС (кВт)	РІ (кВт)	НС (кВт)
	4	443	121	563	420	134	554	394	150	543	363	168	531	217	100	317
	5	457	122	579	434	136	569	407	151	558	375	170	545	217	96,9	314
	6	472	123	595	448	137	585	420	153	573	388	171	559	221	95,9	316
	7	487	124	611	462	138	601	434	154	588	400	173	573	219	92,6	312
	8	502	126	628	477	140	617	448	156	603	410	171	581	222	91,5	314
460	9	518	127	645	492	141	633	462	157	619	415	167	581	225	90,4	316
400	10	534	128	662	507	143	649	476	159	635	420	162	582	228	89,3	317
	11	550	130	679	522	144	666	490	161	651	425	158	583	224	86,0	310
	12	566	131	697	537	146	683	505	162	667	429	154	583	226	84,8	311
	13	582	132	714	553	147	700	520	164	684	433	150	584	227	83,6	311
	14	599	134	732	569	149	718	535	166	700	437	147	584	229	82,4	311
	15	616	135	751	585	150	735	550	167	717	441	143	584	229	81,1	310
	4	472	130	602	448	145	592	420	161	581	382	178	560	227	105	332
	5	488	131	619	463	146	609	434	163	597	395	179	575	226	102	328
	6	503	133	636	478	148	625	448	165	612	407	179	586	230	101	331
	7	519	134	653	493	149	642	462	166	629	420	181	601	231	98,2	329
	8	536	136	671	508	151	659	477	168	645	430	179	609	235	97,1	332
490	9	552	137	689	524	152	676	492	170	661	435	175	610	234	94,6	329
490	10	569	138	707	540	154	694	507	171	678	438	169	607	237	93,4	330
	11	586	140	726	556	155	712	522	173	695	443	164	607	236	91,1	327
	12	603	141	744	573	157	730	538	175	713	448	160	608	238	89,9	328
	13	621	143	763	589	159	748	553	177	730	452	156	608	239	88,6	328
	14	638	144	782	606	160	766	567	177	743	456	152	608	240	87,3	327
	15	656	146	802	623	162	785	583	179	761	459	148	608	241	85,9	327
	4	500	139	639	474	155	629	444	173	617	401	187	588	236	110	346
	5	516	141	657	490	156	646	459	174	633	415	189	603	235	106	342
	6	533	142	675	505	158	663	474	176	650	424	187	611	239	105	344
	7	549	144	693	521	160	681	489	178	667	438	189	627	243	104	347
	8	566	145	711	538	161	699	504	180	684	448	187	635	246	103	349
520	9	584	147	730	554	163	717	520	182	702	454	182	636	243	98,8	342
320	10	601	148	749	571	165	736	536	183	719	459	177	636	245	97,5	343
	11	619	150	769	588	166	754	552	185	737	464	173	637	247	96,2	344
	12	637	151	788	605	168	773	568	187	755	469	169	637	249	94,9	344
	13	656	153	808	623	170	792	584	189	774	473	164	637	250	93,5	344
	14	674	154	829	640	172	812	596	188	783	477	160	637	251	92,1	343
	15	693	156	849	658	173	832	612	190	802	480	156	637	252	90,6	342

ПРИМЕЧАНИЯ

Сс (хладопроизводительность)- Рі (потребляемая мощность агрегата) - ELWT (температура воды на выходе из испарителя- Δt 5°C) Данные приводятся при коэффициенте 0,0176 м2 °C/кВт по термическому сопротивлению теплопередающей поверхности испарителя Номинальные условия для компрессоров работающих на номинальной частоте

OPT_1-2-3-4-5-6-7_Rev.00_2

9 Дополнительные функции

EWAD-BZ

Характеристики частичной рекуперации тепла

Размер	330	360	400	420	460	490	520
Теплопроизводительность (кВт)	424	470	512	551	588	629	667
Расход воды (л/с)	20,47	22,47	24,45	26,32	28,09	30,03	31,86
Перепады давлений рекуперации тепла (кПа)	55	65	55	62	60	65	65

Расход воды и перепад давлений при номинальных условиях: -температура воды на входе/выходе из испарителя: 12/7°С – водная рекуперация тепла на входе/выходе 40/45°С

OPT_1-2-3-4-5-6-7_Rev.00_3

EWAD-BZ Перепад давлений в режиме частичной рекуперации тепла

			Температура воды на в	ыходе в режиме частичной	рекуперации тепла(°С)
EWAD~BZSS/SL			45 (Δt=5°C)	50 (Δt=5°C)	55 (Δt=5°C)
EWAD~BZXS/XL/XR			НС (кВт)	НС (кВт)	НС (кВт)
330	윤정	E C	86	69	52
360	выходе	ура воздуха н конденсатор 35°C	95	76	57
400		28 38 X	104	83	62
420		70 Pa	112	90	67
460	Pa ge	(BB)	120	96	72
490	Гемпература на из испарителя 5° С	Гемпература воздуха на входе в конденсатор 35° С	128	102	77
520	교육	Pe a	136	109	82

Температура воды на выходе 45°C в режиме частичной рекуперации								
Расход воды	Перепады давления							
л/с	кПа							
4,11	40							
4,54	50							
4,97	39							
5,35	45							
5,73	52							
6,12	60							
C F0	40							

OPT_1-2-3-4-5-6-7_Rev.00_4

EWAD-BZ

Чтобы определить перепад давления в различных условиях, пожалуйста используйте данную формулу:

$$\mathbf{PD}_{2}\left(\mathsf{K}\mathsf{\Pi}\mathsf{a}\right) = \mathbf{PD}_{1}\left(\mathsf{K}\mathsf{\Pi}\mathsf{a}\right) \mathbf{x} \left[\begin{array}{c} \mathbf{Q}_{2}\left(\mathsf{\Pi}/\mathsf{c}\right) \\ \hline \mathbf{Q}_{4}\left(\mathsf{\Pi}/\mathsf{c}\right) \end{array} \right]^{1,80}$$

где:

РО, Перепад давления, который необходимо определить (кПа)

PD₁ Перепад давления в номинальных условиях (кПа)

Q расход воды в новых рабочих условиях (л/с)

Q, расход воды при номинальных условиях (л/с)

Как пользоваться формулой: Пример

Aгрегат EWAD330BZSS работает при следующих условиях:

-Температура на выходе в режиме частичной рекуперации тепла 50/55°C

Теплопроизводительность при заданных условиях: 52 кВт

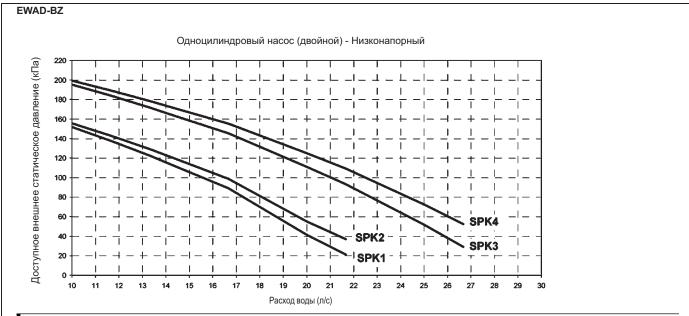
Расход воды в заданных условиях: 2,48 л/с

Arperat EWAD330BZSS при номинальных рабочих условиях имеет следующие характеристики:

-Температура на выходе в режиме частичной рекуперации тепла 40/45°C

-температура воздуха на входе в конденсатор: 35°C

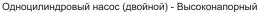
Теплопроизводительность при таких условиях: 86 кВт

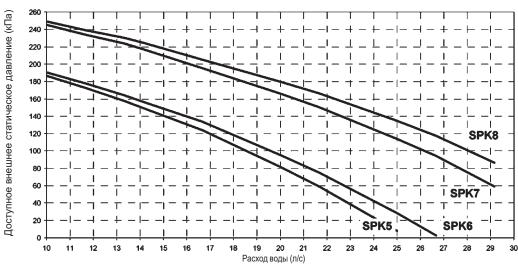

Расход воды в заданных условиях: 4,11 л/с

Перепад давлений в заданных условиях: 40 кПа

Перепад давлений в выбранных рабочих условиях будет:

PD₂ (κΠα) = 40 (κΠα)
$$\mathbf{x} \left(\frac{2,48 \, (\Pi/C)}{4,11 \, (\Pi/C)} \right)^{1,80}$$
PD₂ (κΠα) = 16 (κΠα)

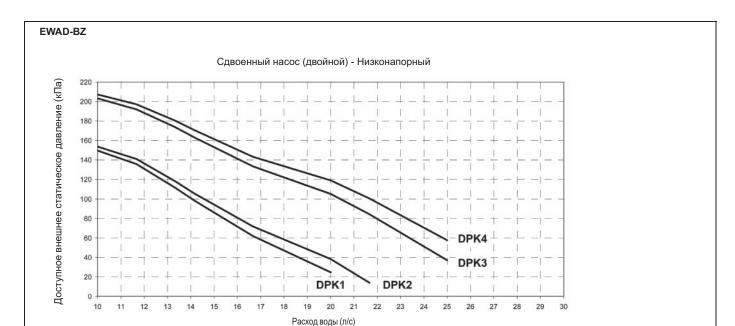

OPT_1-2-3-4-5-6-7_Rev.00_5



ПРИМЕЧАНИЕ

При использовании смеси воды и гликоля, пожалуйста, свяжитесь с производителем, т.к. вышеуказанные характеристики могут измениться

Комплект насоса SPK1		SPK2		SPK3		SPK4	
Pasмep EWAD~BZSS/SL и размер EWAD~BZXS/XL/XR	330	360	400	420	460	490	520

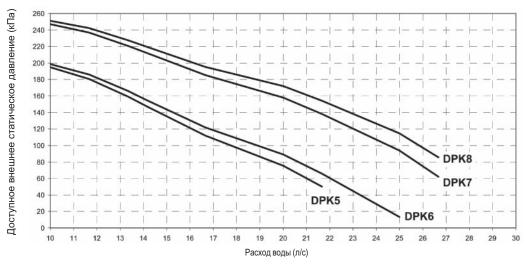


ПРИМЕЧАНИЕ

При использовании смеси воды и гликоля, пожалуйста, свяжитесь с производителем, т.к. вышеуказанные характеристики могут измениться

Комплект насоса	SPK5			SPK7		SPK8	
Pasмep EWAD~BZSS/SL и размер EWAD~BZXS/XL/XR	330	360	400	420	460	490	520

OPT_1-2-3-4-5-6-7_Rev.00_6a



ПРИМЕЧАНИЕ

при использовании смеси воды и гликоля, пожалуйста, свяжитесь с производителем, т.к. вышеуказанные характеристики могут измениться

Комплект насоса DPK5		DPK6		DPK7		DPK8	
Paзмер EWAD~BZSS/SL и размер EWAD~BZXS/XL/XR	330	360	400	420	460	490	520

ПРИМЕЧАНИЕ

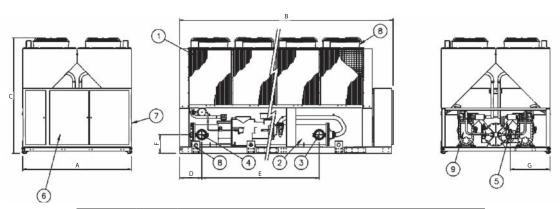
при использовании смеси воды и гликоля, пожалуйста, свяжитесь с производителем, т.к. вышеуказанные характеристики могут измениться

Комплект насоса	DPK5 DPK6		DPK7		DPK8		
Pasмep EWAD~BZSS/SL и размер EWAD~BZXS/XL/XR	330	360	400	420	460	490	520

OPT_1-2-3-4-5-6-7_Rev.00_6b

EWAD-BZ

		Мощность двигателя насоса (кВт)	Ток двигателя насоса (A)	Электропитание (В-ф-Гц)	PN	Двигатель Защита	Изоляция (Класс)	Рабочая температура (°C)
	SPK 1	4,0	8,0	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
Одноцилиндровый насос	SPK 2	4,0	8,0	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
, Z	SPK 3	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
Вов	SPK 4	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
A A	SPK 5	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
Į Ž	SPK 6	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
H 64	SPK 7	7,5	13,7	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
	SPK 8	7,5	13,7	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
	DPK 1	4,0	8,0	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
	DPK 2	4,0	8,0	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
acoc	DPK 3	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
N H	DPK 4	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
GEHE	DPK 5	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
Сдвоенный насос	DPK 6	5,5	10,1	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
	DPK 7	7,5	13,7	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130
	DPK 8	7,5	13,7	400В-3 ф-50 Гц	10	IP54	Класс F	-10 ÷ 130


ПРИМЕЧАНИЕ

при использовании смеси воды и гликоля, пожалуйста, свяжитесь с производителем, т.к. вышеуказанные характеристики могут измениться

OPT_1-2-3-4-5-6-7_Rev.00_7

10 Размеры

EWAD~BZ

EWAD~BZ		Габаритные размеры						
Размер	Α	В	С	D	Е	F	G	Вентиляторы
330	2224	4381	2355	455	2412	379	810	№ 8
360	2224	4381	2355	455	2412	379	810	№ 8
400	2224	5281	2355	463	2412	379	810	Nº 10
420	2224	5281	2355	463	2412	379	810	Nº 10
460	2224	6181	2355	463	2412	379	810	№ 12
490	2224	6181	2355	463	2412	379	810	№ 12
520	2224	6181	2355	463	2412	379	810	Nº 12

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

- 1 Змеевик конденсатора

- Змеевик конденсатора
 Теплообменник для воды (испаритель)
 Патрубок подвода воды в испаритель
 Патрубок слива воды из испарителя
 Соединение Victaulic
 Панель управления
 Разъем для подсоединения к сети и панели управления
 Вентилятор
 Компрессор
- 9 Компрессор

DMN_1b_Rev.02

11 Замечания по установке

Предупреждение

Установка и обслуживание данного агрегата должны производиться только квалифицированным персоналом. ознакомленным с местными нормами и стандартами, а также с опытом работы с данным типом оборудования. Необходимо избегать установки агрегата на местах, где проведение технического обслуживания может быть опасным.

Обращение

Необходимо соблюдать осторожность, чтобы избежать небрежного обращения или шока, если агрегат упадет. Агрегат можно перемещать только за опорную раму. Агрегат не должен падать при отгрузке или перемещении, т.к. это может привести к серьезным повреждениям. Для подъема агрегата используйте проушины на опорной раме. Широкозахватная траверса и кабели должны быть упорядочены для предтвращения повреждения змеевика конденсатора или корпуса агрегата.

Место установки

Агрегаты изготовлены для внешней установки на крышах, этажных площадках или на площадках ниже уровня земли, где обеспечивается беспрепятственный доступ воздуха к конденсатору. Агрегат необходимо устанавливать на твердую, идеально ровную поверхность; в случае установки на крышах или этажных площадках, рекомендуется использовать специальные подставки для правильного распределения нагрузки. При непосредственной установке на землю должен быть заложен бетонный фундамент, выступающий за основание агрегата минимум на 250 мм. К тому же, этот фундамент должен выдержать вес агрегата, указанный в таблице технических характеристик.

Требования по размещению

Агрегаты имеют воздушные конденсаты, поэтому важно учесть минимальные расстояния, которые обеспечат наилучшую вентиляцию теплообменника конденсатора. Ограничения в пространстве, уменьшающие поток воздуха, могут вызвать значительное снижение хладопроизводительности и повышение потребления электроэнергии.

Монтажная позиция агрегата должна обеспечивать достаточный поток воздуха через теплопередающую поверхность. Для наилучшего функционирования агрегата необходимо избегать: рециркуляции теплого воздуха и ограничения воздушного потока через теплообменник.

Оба этих явления приводят к увеличению давления конденсации, в результате чего снижаются эффективность и производительность агрегата.

Более того, уникальный микропроцессор способен определять условия эксплуатации чиллера с воздушным охлаждением и оптимальную нагрузку в случае нестандартных условий.

Агрегат должен быть доступен со всех сторон после установки для периодического техобслуживания. Рис. 1 показывает минимальные рекомендуемые требования по свободному пространству:

Выход воздуха конденсора по вертикали должен быть беспрепятственным, в противном случае, мощность и эффективность блока значительно снизятся.

Если агрегаты расположены на площадках, которые окружены стенами или препятствиями такой же высоты, расстояние до них должно составлять не менее 2500 мм (рис.3) В случае, если препятствия выше агрегата, это расстояние должно быть не менее 3000 мм (рис.2) Агрегаты, установленные ближе указанного минимального расстояния до стены или другого вертикального препятствия, могут испытывать рециркуляцию теплого воздуха, что приводит к снижению производительности и эффективности работы агрегата. Микропроцессорная система управления обеспечивает максимальную производительность в данных условиях. В случае ограничения доступа воздушного потока к агрегату, микропроцессор будет поддерживать работу компрессора(ов) (на более низкой мощности) и не позволит отключится при высоком давлении нагнетания.

Когда два или более агрегата расположены рядом друг с другом, рекомендуется, чтобы расстояние между теплообменниками конденсатора составляло не менее 3600 мм (рис.4); сильный ветер может вызвать рециркуляцию теплого воздуха.

Для получения информации о других решениях касательно установки, просьба обращаться к нашим техническим специалистам.

INN_1-2-3_Rev.00_1

11 Замечания по установке

Рекомендуемая выше информация показательна для общей установки. В зависимости от ситуации, подрядчик должен провести специальную оценку.

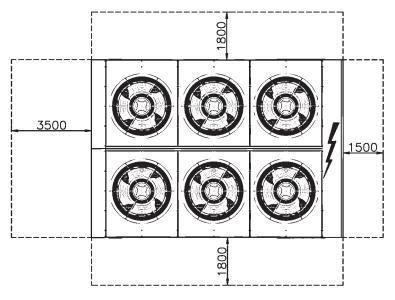
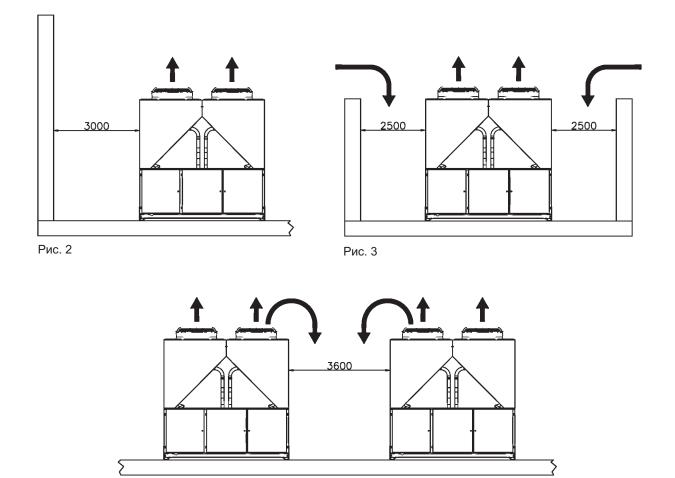



Рис. 1- Минимальные рекомендуемые требования по установочным габаритам

Минимальные установочные габариты для проведения техобслуживания машины

INN_1-2-3_Rev.00_2

11 Замечания по установке

Акустическая защита

Если уровень шума должен удовлетворять специальным требованиям, необходимо обратить особое внимание на изоляцию блока от его основания путем применения соответствующих вибропоглотителей на самом устройстве, трубах подачи воды и электрических соединениях.

Хранение

Условия окружающей среды должны соответствовать следующим требованиям:

Минимальная наружная температура: -20°C Максимальная наружная температура: +57°C

Максимальная относительная влажность.: 95% без конденсации

INN_1-2-3_Rev.00_3

Технические характеристики винтового чиллера воздушного охлаждения

ОБЩИЕ

Тепловой насос с подачей тепла от воздуха к воде изготавливается в соответствии со следующими Европейскими директивами:

Характеристики чиллера в соответствии со стандартом	EN 12055
Стандарт изготовления корпусов под высоким давлением	97/23/EC (PED)
Директива по механическому оборудованию	98/37/ЕС с изменениями
Низкое напряжение	2006/95/EC
Электромагнитная совместимость	2004/108/EC
Электротехнические правила и правила безопасности	EN 60204-1 / EN 60335-2-40
Стандарты качества производства	UNI – EN ISO 9001:2000
Характеристики чиллера в соответствии со стандартом	EN 12055

Агрегат будет протестирован на заводе при полной нагрузке в номинальных рабочих условиях и температуре воды. Для предотвращения наличия изъянов, перед отправкой агрегат будет полностью испытан.

Тепловой насос доставляется на место эксплуатации полностью в сборе с необходимым количеством хладагента и масла.

При монтаже и погрузочно-разгрузочных работах следуйте инструкциям производителя.

Агрегат можно запускать и эксплуатировать в стандартном режиме при полной нагрузке при наружной температуре воздуха от... °C до °C с температурой жидкости на выходе из испарителя между ... °C и 15 °C

Все заявленные характеристики агрегата должны быть сертифицированы компанией Eurovent.

ХЛАДАГЕНТ

Допускается только хладагент HFC R-134a.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

- √ Количество винтовых чиллеров воздушного охлаждения:
- √ Хладопроизводительность одного винтового чиллера воздушного охлаждения: кВт
- √ Потребляемая мощность одного винтового чиллера воздушного охлаждения в режиме охлаждения: кВт
- √ Температура воды на входе в кожухотрубный теплообменник в режиме охлаждения:°С
- √ Температура воды на выходе из кожухотрубного теплообменника в режиме охлаждения:°С
- √ Расход воды кожухотрубного теплообменника: л/с
- √ Номинальная температура наружного воздуха в режиме охлаждения:°С
- ✓ Агрегат должен работать в диапазоне 400 В ±10%, 3 ф, частоте 50 Гц без нейтрального положения и иметь только одну точку соединения с источником питания. Напряжение контура управления должно быть максимум 24 В; обеспечивается установленным на заводе трансформатором.

ОПИСАНИЕ АГРЕГАТА

Стандартная комплектация агрегата включает в себя: два независимых контура хладагента, полугерметичные ротационные одно-винтовые компрессоры, частотно-регулируемый электропривод воздушного охлаждения для каждого компрессора (VFD), электронное расширительное устройство (EEXV), кожухотрубный теплообменник с непосредственным испарением хладагента, секцию конденсатора воздушного охлаждения, хладагент R134a, систему смазки, компоненты запуска электродвигателя, запорный клапан линии всасывания, запорный клапан нагнетательной линии, систему управления и все компоненты, необходимые для безопасной и стабильной работы агрегата. Агрегат собирается на заводе на крепкой несущей раме из оцинкованной стали, покрытой эпоксидной краской.

УРОВЕНЬ ШУМА И ВИБРАЦИЙ

Уровень звукового давления в свободном пространстве на расстоянии 1 м от агрегата, полусферические условия, не должен превышать......дБ(A). Уровни звукового давления должны быть измерены в соответствии со стандартом ISO 3744.

Другие величины основных параметров недопустимы. Уровень вибраций не должен превышать 2 мм/с

ГАБАРИТНЫЕ РАЗМЕРЫ

Габаритные размеры не должны превышать следующие замеры:

- √ длина агрегата.... мм,
- √ ширина агрегата..... мм,
- ✓ высота агрегата.... мм.

КОМПОНЕНТЫ ТЕПЛОВОГО НАСОСА

Компрессоры

- ✓ Полугерметичные, одновинтового типа с основым винтовым ротором, который входит в зацепление с затворным ротором. Затворный ротор изготовлен из специального углеродного композитного материала. Опоры затворного ротора изготавливаются из литой стали
- ✓ Впрыск масла используется для обеспечения высокого коэффициента энергетической эффективности (EER) при высоком давлении конденсации, а также низкого уровня шума в любом режиме.
- ✓ Дифференциальное давление системы хладагента обеспечивает движение масла по системе, 0,5 микрона, полнопоточное, фильтр тонкой очистки патронного типа расположен внутри компрессора.
- ✓ Дифференциальное давление системы хладагента обеспечивает впрыск масла на все подвижные детали компрессора для правильной смазки. Система смазки с электрическим масляным насосом недопустима.
- ✓ При необходимости, охлаждение масла может производится путем впрыска жидкого хладагента. Использование дополнительного теплообменника и трубопровода для перемещения масла от компрессора к теплообменнику и наоборот недопустимо.
- ✓ Компрессор оснащен встроенным высокоэффективным маслоотделителем вихревого типа с встроенным масляным фильтром патронного типа.
- ✓ Компрессор должен быть с прямым электроприводом без зубчатого привода между винтом и электроприводом.
- Кожух компрессора оборудован отверстиями для экономических циклов хладагента.
- ✓ Двойная теплозащита термистора для защиты от высоких температур: один температурный датчик для защиты электропривода и другой датчик для защиты агрегата и смазочного масла от высоких температур нагнетаемого газа.
- Компрессор должен быть оборудован масляным электронагревателем картера.
- ✓ Компрессор должен быть доступен для проведения техобслуживания на месте. Компрессор, который для проведения техобслуживания должен быть демонтирован и отправлен на завод, недопустим.

Система управления хладопроизводительностью

- √ Каждый агрегат должен быть оборудован микропроцессором для регулировки положения инвертора и моментального значения частоты вращения двигателя.
- √ Управление производительностью должно регулироваться от 100% до 27% для каждого компрессора (от 100% до 13% от полной загрузке агрегатов с 2-мя компрессорами).
- √ Постепенная разгрузка недопустима из-за колебаний температуры воды на выходе из испарителя и низкой эффективности работы агрегата при частичной загрузке.
- ✓ Система запускает агрегат постепенно в соответствии с температурой воды на выходе из испарителя, которая должна контролироваться контуром ПИД (пропорционально-интегрально-дифференциальная регулировка).
- ✓ Логические схемы управления агрегатом обеспечивают соответствие частотного уровня электродвигателя компрессора с нагрузкой оборудования для поддержания постоянной уставки для температур охлажденной или нагретой воды. В таких эксплуатационных условиях логические схемы управления агрегатом должны изменять уровень частоты электрического тока выше или ниже номинального значения электросети, которое равно 50 Гц.

- ✓ Блок микропроцессора определяет условия, при которых показатели приближаются к защитным ограничениям и принимает меры перед срабатыванием сигнализации. Система автоматически снижает производительность чиллера, когда следующие параметры выходят за пределы нормального диапазона рабочих режимов:
 - о Высокое давление конденсации
 - о Низкая температура испарения хладагента
 - о Высокий ток электродвигателя

Частотный преобразователь, монтируемый на агрегат (VFD) и требования электросети

- ✓ Соединительная проводка между частотным преобразователем и чиллером должна быть установлена на заводе. Электрические соединения для питания электродвигателя ограничены сетевыми силовыми выводами и подключением питания на электрической панели.
- √ Частотный преобразователь должен быть с воздушным охлаждением. Водяное охлаждение и охлаждение хладагентом неприемлимо.
- √ КПД при полной нагрузке частотного преобразователя должно быть равно или превышать 97% при 100% номинальной производительности.
- ✓ Исходная частота работы двигателя должна позволять двигателю работать при указанном на табличке напряжением. Регулируемый частотный диапазон, контроллируемый микропроцессором, должен обеспечивать стабильную регулировку производительности агрегата до 13,5% без выпуска горячего пара.
- Пусковой ток компрессора не должен превышать номинальный ток нагрузки компрессора.
- ✓ Коэффициент удельной мощности не должен быть ниже 0.95 по всему диапазону производительности, от 100% до 13,5 %

Испаритель

- ✓ Агрегаты поставляются с кожухотрубным противоточным одноходовым теплообменником. Хладагент находится внутри труб, а вода в межтрубном пространстве. Трубные доски испарителя изготовлены из углеродистой стали с высокоэффективными прямыми медными трубками с внутренней спиральной навивкой.
- ✓ Внешний кожух соединен с электронагревателем, который управляется посредством термостата и покрыт теплоизоляционным материалом с закрытыми ячейками (толщиной 10 мм) для предотвращения обмерзания при наружной температуре до -28°C.
- √ Каждый испаритель имеет 2 контура хладагента, по одному на каждый компрессор.
- ✓ Арматура трубопровода имеет в комплекте соединения типа VICTAULIC (быстросъемные соединения) для обеспечения быстрого отсоединения агрегата и водяной системы.
- ✓ Испаритель изготовлен в соответствии с директивой ЕС о напорном оборудовании (РЕD).

Змеевики конденсатора

- ✓ Конденсатор поставляется с увеличенной изнутри поверхностью бесшовных медных трубок, пучки которых расположены в шахматном порядке и механически развальцованы в рифленые алюминиевые ребра на полную глубину. Расстояние между ребрами увеличивает поверхность соприкосновения с трубами, защищая их от наружной коррозии.
- ✓ Встроенный контурпереохлаждения исключает испарение и способствует увеличению хладопроизводительности на 5-7% без увеличения подвода мощности.
- ✓ Змеевики конденсатора необходимо проверять на герметичность, а также проверять под давлением сухого воздуха.

Вентиляторы конденсатора

- ✓ Вентиляторы, которые используются вместе со змеевиками конденсатора должны иметь крылообразный профиль рабочих лопаток для максимизации качества работы и снижения уровня шумов. Лопатки изготовлены из стеклопластика и каждый вентилятор защищен кожухом.
- ✓ Нагнетание воздуха происходит вертикально и каждый вентилятор должен быть оснащен электродвигателем. Двигатель вентилятора защищен изнутри тепловым двигателем, а также размыкателем, встроенным в электрическую панель. Электродвигатели имеют класс защиты IP54.

Контур хладагента

- ✓ У агрегата должны быть абсолютно независимые контуры хладагента с одним компрессором и одним частотнорегулируемым электроприводом на каждый контур.
- ✓ Каждый контур должен содержать: электронное расширительное устройство, управляемое микропроцессором, запорный клапан выходного патрубка конденсатора, запорный клапан всасывающей линии, четырехходовой клапан для обратного движения хладагента, запорный клапан жидкостного трубопровода с патрубком для зарядки системы, фильтр-осушитель со сменным элементом, датчик-индикатор и изолированную всасывающую линию.

Управление конденсацией

- ✓ Агрегаты оборудованы устройством автоматического контроля давления конденсации, которое обеспечивает работу при низких наружных температурах до -10 °C, благодаря двухпозиционности вентиляторов конденсатора для поддержания давления конденсации.
- √ При исключительно высоком давлении конденсации, в компрессоре начинает автоматически падать нагрузка для предотвращения останова контура хладагента (останова агрегата) из-за ошибки высокого давления.

Опция низкого уровня шума агрегата (на заказ)

- ✓ Компрессоры агрегата необходимо монтировать к металлической опорной раме при помощи резиновых антивибрационных опор для предотвращения передачи вибраций на все металлические элементы агрегата, таким образом контролируя уровень шума.
- ✓ Всасывающая линии оборудована глушителями для предотвращения возникновения вибраций и снижения уровня шума.
- ✓ Чиллер поставляется с акустически герметичным компрессором. Эта герметичность достигается путем использования антикоррозийной аллюминиевой структуры и металлического корпуса. Звукоизоляция компрессора гарантируется использованием внутренних гибких многослойных материалов высокой плотности. Средний слой имеет толщину 3 мм и состоит из гибкого многослойного материала высокой плотности. Звукоизоляция должна быть точно установлена для избежания снижения звукоизоляционной силы.
- ✓ Чиллер имеет низкоскоростные вентиляторы конденсатора с улучшенным отсеком для конденсатора.

Панель управления

- ✓ Соединение с источником питания, терминалы блокировки управления и система управления агрегатом расположены на электрической панели управления (с классом защиты IP 54). Регулятор подвода питания и пуска расположены отдельно на панели от органов управления и предохранителей.
- ✓ Запуск осуществляется по схеме звезда-треугольник.
- ✓ Регуляторы подвода питания и пуска имеют предохранители и замыкатели для электродвигателей намотки и вентиляторов каждого компрессора. Органы управления регулируют энергосбережение; выключатель аварийного останова; защиту от перегрузки электродвигателя компрессора; выключатели высокого и низкого давления (для каждого контура хладагента); термореле; выключатели для каждого компрессора.
- ✓ Вся информация касательно работы агрегата отображается на дисплее. Встроенные календарь и часы могут отключать и запускать агрегат в любое время.
- ✓ Имеются следующие характеристики и функции:
 - <u>повторная установка температуры охлажденной воды</u> посредством регулировки температуры возвратной воды или дистанционного сигнала постоянного тока 4-20 мА или контроля наружной температуры.
 - функция плавного пуска для защиты от перегрузки во время понижения температуры охлажденной жидкости;
 - защита критических параметров системы паролем;
 - <u>таймеры запуска и остановки д</u>ля обеспечения минимального времени простоя компрессора с максимальной защитой двигателя;
 - возможность сообщения с ПК или дистанционным контролем;
 - регулировка давления нагнетания периодичности работы вентиляторов конденсатора микропроцессором;
 - выбор опережения или задержки вручную или автоматически в зависимости от рабочих часов контура;
 - <u>двойная уставка</u> для морской версии агрегата;
 - <u>программирование</u> годового <u>расписания</u> пусков и остановов при помощи внутреннего датчика времени, включая выходные и праздники.

Опционный интерфейс связи в соответствии с протоколом высокого уровня

Конроллер должен как минимум предоставлять указанную выше информацию и документировать под названием, используя следующие опции:

 Опция А
 Плата последовательного доступа RS485

 Опция В
 Плата последовательного доступа RS232

Опция С Интерфейс LonWorks к приемопередатчику FTT10A

<u>Опция D</u> Совместимость с сетью Bacnet

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компрессоров и хладагентов. Это стало причиной ее активного участия в решении экологических проблем. В течение нескольких лет деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени оказывает воздействие на окружающую среду. Эта задача требует, чтобы разработка и проектирование широкого спектра продуктов и систем управления выполнялись с учетом экологических требований и были направлены на сохранение энергии и снижение объема отходов.

Настоящий каталог составлен только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Его содержание составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели содержания каталога, а также продуктов и услуг, представленных в нем. Технические характеристики могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Daikin Europe N.V.

Продукция компании Daikin распространяется компанией:

Компания Daikin Europe NV принимает участие в Программе сертификации EUROVENT для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FC); данные о сертифицированных моделях включены в Перечень сертифицированных изделий EUROVENT.

ER QUAL	1
6	12
IK.	E E
	3
1500001	>

