

Chillers

Commercial and Technical Data

- » Wide capacity range (160kW – 520kW)
- » Indoor installations
- » Independent refrigerant circuits with single screw compressor
- » Water supply down to -8°C (optional)
- » New Microtech III controller

FCDFN10-425

Daikin Europe N.V.

About Daikin

Daikin has a worldwide reputation based on over 85 years' experience in the successful manufacture of high quality air conditioning equipment for industrial, commercial and residential use. Daikin's much envied quality quite simply stems from the close attention paid to design, production and testing, as well as aftersales support. To this end, every component is carefully selected and rigorously tested to verify its contribution to product quality and reliability.

New Daikin EWLD-G- range with upgraded controller

In order to upgrade the chiller portfolio with a superior control logic, Daikin enhances today the EWLD-G- remote condenser series incorporating the new Microtech III controller.

Microtech III ensures maximum efficiency and reliability, stable operating conditions and protection of critical components.

The EWLD-G- range is composed of 10 sizes and available in standard efficiency version. Each unit is equipped with one or two R-134a refrigerant circuits, featuring shell & tube evaporators and single screw compressors with stepless capacity control, allowing the unit to modulate its capacity from 100% to 12.5%.

Moreover, the range features an extensive option list, including the heat recovery and the low water leaving temperature version.

Table of Contents

СН	ILLER FEATURES	2
TEC	CHNICAL DATA	5
1.	Features and advantages	Ē
2.	General characteristics	7
3.	Nomenclature	11
4.	Technical & electrical specifications	12
5.	Capacity tables	14
6.	Dimensional drawings	16
7.	Sound data.	20
8.	Installation	22
9.	Operation range	23
10.	Hydraulic performance	28
11.	Specification text	31

Unit features

Application flexibility

The EWLD-G- series is available in a wide range of capacities (160 - 520kW), making the units suitable for comfort and process cooling applications.

The most commonly serviced parts are easily accessible, simplifying maintenance and service. Moreover, the new chillers allow flexible integration into a wide range of control and building management systems.

Large operation range

With the 'brine' option the new range is able to provide water down to -8°C, making the units suitable also for some typical industrial applications.

Superior control logic

The new Microtech III controller provides an easy to use control environmental. The control logic is designed to provide maximum efficiency, to continue operation in unusual operating conditions and to provide a history of unit operation. One of the greatest benefits is the easy interface with Lonwork, BACnet, Ethernet TCP/IP or Modbus communications.

Extensive option list

The base model includes several standard factory mounted options such as: electronic expansion valve, suction line shut off valve, wye – delta starter, etc. Moreover, the new range features an extensive option list, including heat recovery, evaporator flow switch, soft starter, energy meter, etc.

Notes

1 Features and advantages

Features and advantages

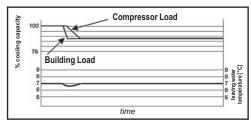
The water cooled screw chillers EWLD~G- are equipped with single screw compressors.

They are manufactured to satisfy the requirements of the consultants and the end user. Units are designed to minimise energy costs while maximising the refrigeration capacities.

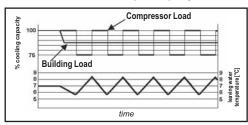
Daikin's chiller design experience combined with outstanding features makes the EWLD~G- chiller unmatched in the industry.

Seasonal quietness

The compressor design with a single screw and twin rotors allows a constant gas flow. This compression process completely eliminates gas pulsations. The oil injection also results in significant mechanical noise reduction.


The twin gas compressor discharge chambers are designed to act as attenuators, based on the harmonic wave principle with destructive interference, thus always resulting equal to zero. The extremely low noise compressor performance affords the use of EWLD~G- chiller for all applications.

The reduced number of vibrations produced from the EWLD~G- chiller offers a surprisingly quiet operation eliminating the noise transmission through the structure and the chilled water piping system.


Infinitely capacity control

Cooling capacity control is infinitely variable by means of a screw compressor controlled by microprocessor system. Each unit has infinitely variable capacity control from 100% down to 25% (one compressor unit), down to 12,5% (two compressors units). This modulation allows the compressor capacity to exactly match the building cooling load without any leaving evaporator water temperature fluctuation. This chilled water temperature fluctuation is avoided only with a stepless control.

With a compressor load step control in fact, the compressor capacity, at partial loads, will be too high or too low compared to the building cooling load. The result is an increase in chiller energy costs, particularly at the partload conditions at which the chiller operates most of the time.

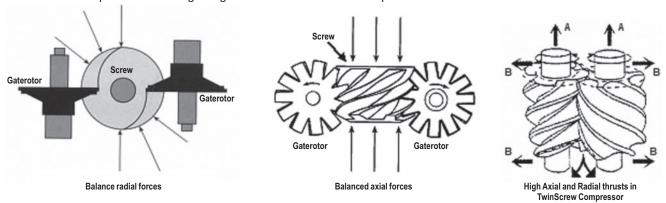
ELWT fluctuation with stepless capacity control

ELWT fluctuation with steps capacity control (4 steps)

Units with stepless regulation offer benefits that the units with step regulation are unable to match. The ability to follow the system energy demand at any time and the possibility to provide steady outlet water temperature without deviations from the set-point, are the two points that allow you to understand how the optimum operating conditions of a system can be met only through the use of a unit with step-less regulation.

Unmatched serviceability

Field serviceability has not been sacrificed. Inspection covers allows visual inspection of the main screw and gaterotors.


FTA_1-2_Rev.00_1

1 Features and advantages

Outstanding reliability features

Unsurpassed Efficiency

- Zero clearance fit between the two gaterotors and main screw rotor virtually eliminates leakage between the high and low-pressure sides during compression. Special gaterotor material made from an advanced composite, temperature stable material makes a zero clearance design possible.
- The chiller is equipped with the most advanced means of refrigerant flow control available. An electronic expansion valve coupled with the MicroTech II C Plus controller's control logic provides excellent operating efficiencies both at full and part load operation.
- · Infinite unloading matches compressor capacity to load.
- Full factory testing of the unit with water hookups helps provides a trouble-free start-up. Extensive quality control checks during testing means that each equipment protection and operating control is properly adjusted and operates correctly before it leaves the factory. Factory-installed options minimize field expenses and startup labor.
- The rugged design of the single-screw compressor allows it to be tolerant of liquid slugging.
- Very low loading enhances the bearing and compressor reliability. Due to symmetrical compression taking place on both sides of the main screw rotor, balanced forces result in the elimination of the large radial force loads inherent in twin-screw compressors.
- Integral to the basic design of the single-screw compressor, the main screw rotor shaft and the gaterotor shafts cross at right angles in the compressor. The result is ample space to locate heavy duty bearings and increase compressor reliability since no limitations are placed on bearing design as found in twin-screw compressors.

Code requirements - Safety and observant of laws/directives

All water cooled units are designed and manufactured in accordance with applicable selections of the following:

	1
Construction of pressure vessel	97/23/EC (PED)
Machinery Directive	2006/42/EC
Low Voltage	2006/95/EC
Electromagnetic Compatibility	2004/108/EC
Electrical & Safety codes	EN 60204-1 / EN 60335-2-40
Manufacturing Quality Stds	UNI - EN ISO 9001:2004

Certifications

All units manufactured are CE marked, complying with European directives in force, concerning manufacturing and safety. On request units can be produced complying with laws in force in non European countries (ASME, GOST, etc.), and with other applications, such as naval (RINA, etc.).

Versions

EWLD~G- is available in one Efficiency Version:

- S: Standard Efficiency
- 10 sizes to cover a range from 161 up to 526 kW with an EER up to 3.70

The EER (Energy Efficiency Ratio) is the ratio of the Cooling Capacity to the Power Input of the unit. The Power Input includes: the power input for operation of the compressor, the power input of all control and safety devices.

Sound Configuration

EWLD~G- is available in Standard sound level configuration:

S: Standard Noise

FTA_1-2_Rev.00_2

General characteristics

Cabinet and structure

The cabinet is made of galvanized steel sheet and painted to provide a high resistance to corrosion. Colour Ivory White (Munsell code 5Y7.5/1) (±RAL7044). The base frame has eye-hook for lifting the unit with ropes for an easy installation. The weight is uniformly distributed along the profiles of the base and this facilitates the arrangement of the unit.

Screw compressors

The single-screw compressor has a well balanced compression mechanism which cancels the screw rotor load in both the radial and axial directions. Inherent to the basic single-screw compressor design is the virtually load-free operation that gives main bearing design life of 3-4 times greater than twin-screws, and eliminates expensive and complicated thrust balancing schemes. The two exactly opposed gate rotors create two exactly opposed compression cycles. Compression is made at the lower and upper parts of the screw rotor at the same time, thus cancelling the radial loads. Also, both ends of the screw rotor are subjected to suction pressure only, which cancels the axial loads and eliminates the huge thrust loads inherent in twin-screw compressors.

Oil injection is used for these compressors in order to get EER at high condensing pressure. The units are provided with a high efficiency oil separator to maximise oil extraction.

Compressors have an infinitely variable capacity control down to 25% of its total capacity. This control is made by means of capacity slides controlled by microprocessors.

Standard start is star-delta type; soft start type is available as option.

Ecological R-134a refrigerant

The compressors have been designed to operate with R-134a, ecological refrigerant with zero ODP (Ozone Depletion Potential) and very low GWP (Global Warming Potential) that means low TEWI (Total Equivalent Warming Impact).

Evaporator

The units are equipped with a Direct Expansion shell&tube evaporator with copper tubes rolled into steel tubesheets. The evaporators are single-pass on both the refrigerant and water sides for pure counter-flow heat exchange and low refrigerant pressure drops. Both attributes contribute to the heat exchanger effectiveness and total unit's outstanding efficiency.

The external shell is covered with a 10mm closed cell insulation material. Each evaporator has 1 circuit for each compressor and is manufactured in accordance to PED approval. The evaporator water outlet connections are provided with Victaulic Kit (as standard).

Electronic expansion valve

The unit is equipped with the most advanced electronic expansion valves to achieve precise control of refrigerant mass flow. As today's system requires improved energy efficiency, tighter temperature control, wider range of operating conditions and incorporate features like remote monitoring and diagnostics, the application of electronic expansion valves becomes mandatory. Electronic expansion valve proposes features that make it unique: short opening and closing time, high resolution, positive shut-off function to eliminate use of additional solenoid valve, highly linear flow capacity, continuous modulation of mass flow without stress in the refrigerant circuit and corrosion resistance stainless steel body.

EEXV strength point is the capacity to work with lower ΔP between high and low pressure side, than a thermostatic expansion valve. The electronic expansion valve allows the system to work with low condenser pressure (winter time) without any refrigerant flow problems and with a perfect chilled water leaving temperature control.

Refrigerant Circuit

Each unit has independent refrigerant circuits and each one includes:

- · Single screw compressor with external cyclonic oil separator
- (Common) Evaporator
- Oil pressure transducer
- High pressure switches
- · High pressure transducer
- Low pressure transducer
- · Moisture liquid indicator

GNC 1-2-3-4 Rev.00 1

- High efficiency oil separator
- · Replaceable core filter-drier
- · Electronic expansion valve

Electrical control panel

Power and control are located in the main panel that is manufactured to ensure protection against all weather conditions. The electrical panel is IP54 and (when opening the doors) internally protected with Plexiglas panel against possible accidental contact with electrical components (IP20). The main panel is fitted with a main switch interlocked door.

Power Section

The power section includes compressors fuses and control circuit transformer.

MicroTech III controller

MicroTech III controller is installed as standard; it can be used to modify unit set-points and check control parameters. A built-in display shows chiller operating status plus temperatures and pressures of water, refrigerant, programmable values, set-points. A sophisticated software with predictive logic, selects the most energy efficient combination of compressors and EEXV to keep stable operating conditions to maximise chiller energy efficiency and reliability.

MicroTech III is able to protect critical components based on external signs from its system (such as motor temperatures, refrigerant gas and oil pressures, correct phase sequence, pressure switches and evaporator). The input coming from the high pressure switch cuts all digital output from the controller in less than 50ms, this is an additional security for the equipment.

Fast program cycle (200ms) for a precise monitoring of the system. Floating point calculations supported for increased accuracy in P/T conversions.

Control section - main features

- · Management of the compressor stepless capacity.
- Chiller enabled to work in partial failure condition.
- · Full routine operation at condition of:
 - high ambient temperature value
 - high thermal load
 - high evaporator entering water temperature (start-up)
- Display of evaporator entering/leaving water temperatures.
- Display of condensing-evaporating temperatures and pressures, suction and discharge superheat for each circuit.
- Leaving water evaporator temperature regulation. Temperature tolerance = 0.1°C.
- · Compressor and evaporator pumps hour counters.
- · Display of Status Safety Devices.
- · Number of starts and compressor working hours.
- · Optimized management of compressor load.
- Re-start in case of power failure (automatic / manual).
- · Soft Load (optimized management of the compressor load during the start-up).
- · Start at high evaporator water temperature.
- · Return Reset (Set Point Reset based on return water temperature).
- Set point Reset.
- Application and system upgrade with commercial SD cards.
- Ethernet port for remote or local servicing using standard web browsers.
- Two different sets of default parameters could be stored for easy restore.

GNC_1-2-3-4_Rev.00_2

Safety device / logic for each refrigerant circuit

- · High pressure (pressure switch).
- High pressure (transducer).
- Low pressure (transducer).
- High compressor discharge temperature.
- · High motor winding temperature.
- Phase Monitor.
- Low pressure ratio.
- · High oil pressure drop
- · Low oil pressure.
- No pressure change at start.

System security

- · Phase monitor.
- · Low Ambient temperature lock-out.
- · Freeze protection.

Regulation type

Proportional + integral + derivative regulation on the evaporator leaving water output probe.

MicroTech III

MicroTech III built-in terminal has the following features.

- 164x44 dots liquid crystal display with white back lighting. Supports Unicode fonts for multi-lingual.
- Key-pad consisting of 3 keys.
- · Push'n'Roll control for an increased usability.
- Memory to protect the data.
- · General faults alarm relays.
- Password access to modify the setting.
- Application security to prevent application tampering or hardware usability with third party applications.
- Service report displaying all running hours and general conditions.
- Alarm history memory to allow an easy fault analysis.

Supervising systems (on request)

MicroTech III remote control

MicroTech III is able to communicate to BMS (Building Management System) based on the most common protocols as:

- ModbusRTU
- · LonWorks, now also based on the international 8040 Standard Chiller Profile and LonMark Technology
- BacNet BTP certifief over IP and MS/TP (class 4) (Native)

Chiller Sequencing

MicroTech III controller allows an easy plug-in sequencing technology based on digital or serial panel

Digital Sequencing Panel

This panel is basically a step inserter that switches ON/OFF up to 11 units (chillers or heat pumps operating in the same cooling/heating mode) depending on the selected set point; the units are connected with the panel through standard cables and no serial card is requested.

Serial Sequencing Panel

Basically this panel sequences a chiller plant by switching on/off the units (up to 7 chillers) taking into account their running hours and the requested plant load, in order to optimise the number of working units for each condition; serial cards and shielded cables are requested to connect the panel with the units and, if installed, a BMS.

GNC_1-2-3-4_Rev.00_3

Standard accessories (supplied on basic unit)

Evaporator Victaulic Kit - Hydraulic joint with gasket for an easy and quick water connection.

Evaporator Water side design pressure 10 bar

Electronic Expansion Device

Suction line shut off valve - Suction shut-off valve installed on the suction of the compressor to facilitate maintenance operation.

Y-D starter - Star Delta starter is the standard type

Double set-point - Dual leaving water temperature set-points.

Phase monitor - The phase monitor controls that phases sequence is correct and controls phase loss.

High Pressure Side Manometers

Hour Run meter - Digital compressors hour run meter

General fault contactor - Contactor for alarm warning.

Set-point reset, demand limit and alarm from external device - The leaving water temperature set-point can be overwritten with the following options: 4-20mA from external source (by user); outside ambient temperature; evaporator water temperature Δt . Moreover the device allow the user to limit the load of the unit by 4-20mA signal or by network system and the microprocessor is able to receive an alarm signal from an external device (pump etc... - user can decide if this alarm signal will stop the unit or not).

Options (on request)

Partial heat recovery - Produced with plate to plate heat exchangers installed on discharge side of compressor hot gas. These allow hot water to be produced up to a maximum temperature of +50°C.

Brine version - Allows the unit to operate down to -8°C leaving liquid temperature (antifreeze required).

20mm Evaporator Insulation

Sound proof system - Made of sheet metal and internally insulated, the cabinet is "integral kind" (around the whole chiller, not only around the compressors) to reach the best performance in noise reduction.

Dual pressure relief valve on evaporator

Soft start - Electronic starting device to reduce the mechanical stress during compressor start-up

Compressor thermal overload relays - Safety devices against compressor motor overloading in addition to the normal protection envisaged by the electrical windings.

Under/Over Voltage - This device control the voltage value of power supply and stop the chiller if the value exceeds the allowed operating limits.

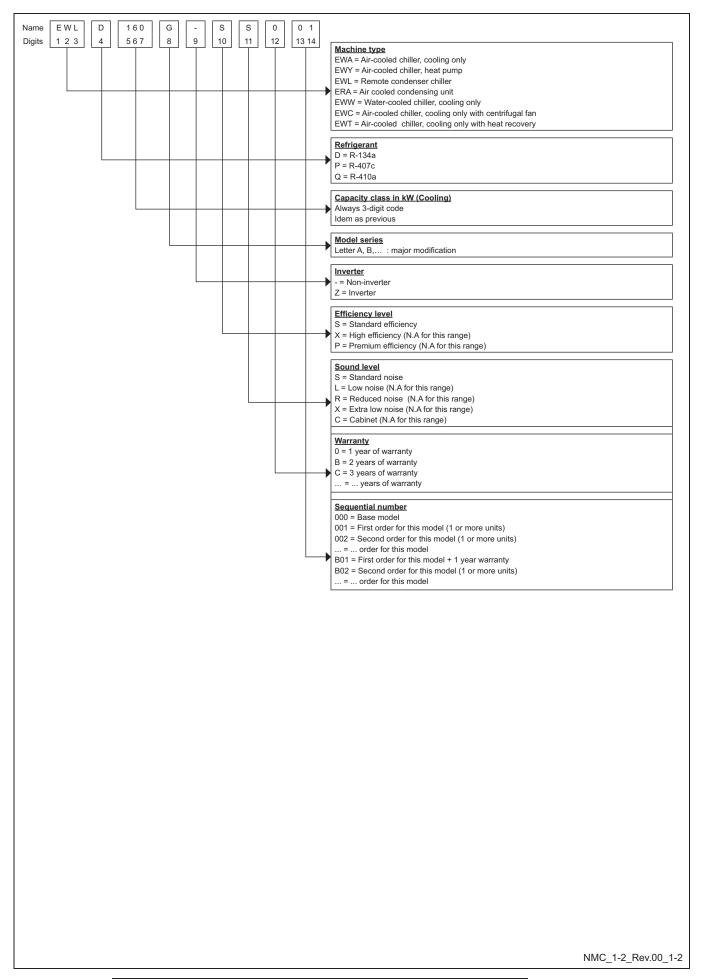
Energy Meter - This device allows to measure the energy absorbed by the chiller during its life. It is installed inside the control box mounted on a DIN rail and show on a digital display: Line-to-Line Voltage, Phase and Average Current, Active and Reactive Power, Active Energy, Frequency.

Capacitors Cosfi 0.9 - Installed on the electrical control panel to ensure it conforms to the plant rules (advise: maximum 0,9). **Current Limit -** To limit maximum absorbed current of the unit whenever is required.

Evaporator flow switch for the water piping

Rubber type antivibration mounts - Supplied separately, these are positioned under the base of the unit during installation. Ideal to reduce the vibrations when the unit is floor mounted.

Forklift kit


Witness test - Every unit is always tested at the test bench prior to the shipment. On request, a second test can be carried out, at customer's presence, in accordance with the procedures indicated on the test form. (Not available for units with glycol mixtures).

Acoustic test

GNC_1-2-3-4_Rev.00_4

3 Nomenclature

3 - 1 Nomenclature

4 Technical & Electrical specifications

4 - 1 Technical specifications

4-1 Technical sp	pecifications				160	190									
Cooling capacity	Nom.			kW	161 (1)	189 (1)	244 (1)	270.0 (1)	316 (1)	352 (1)	381 (1)	428 (1)	476 (1)	526 (1)	
Capacity control	Method								Step	oless					
	Minimum capacity			%		2	5				12	2.5			
Power input	Cooling	Nom.		kW	45.4 (1)	54.3 (1)	65.9 (1)	74.6 (1)	90.6 (1)	99.7 (1)	108.6 (1)	120 (1)	131.5 (1)	148 (1)	
EER					3.54 (1)	3.48 (1)	3.70 (1)	3.62 (1)	3.48 (1)	3.53 (1)	3.51 (1)	3.57 (1)	3.62 (1)	3.55 (1)	
Casing	Colour							•	lvory	white	•	•	•		
	Material							Galvan	ized and p	ainted ste	el sheet				
Dimensions	Unit	Height		mm			1,860					1,942			
		Width		mm		1,0	000				1,1	100			
		Depth		mm		3,7	700				4,4	400			
Weight	Unit			kg	1,280 1,398 2,442				2,4	146	2,501	2,5	606		
	Operation weight			kg	1,3	337	1,5	516		2,560			2,670		
Water heat exchanger	Water volume			I	60	56	1:	23	118	1	13	173	16	88	
- evaporator	Water flow rate	Nom.		l/min	462	540	702	774	906						
	Nominal water pressure drop	Cooling	Heat exchanger	kPa	44	60	41	49	49 57 55.9 64.4 49.9 50.6						
	Insulation material			ı	Closed cell								ı		
	Туре				Single pass shell and tube										
Sound power level	Cooling Nom. dBA 87.7						7.7								
Sound pressure level	Cooling	Nom.		dBA		69	9.7			71.7					
Compressor	Туре	•		•				Semi-her	metic singl	le screw co	mpressor				
	Quantity						1					2			
	Oil	Charge	ed volume	1	16					3	32				
Operation range	Evaporator	Cooling	Min.	°CDB					-	8					
			Max.	°CDB					1	5					
	Condenser	Cooling	Min.	°CDB					2	25					
			Max.	°CDB						0					
Refrigerant	Туре								R-1	34a					
	Circuits	Quanti	ty				1					2			
Piping connections	Liquid line connection			mm						12					
	Evaporator water in	_			88	3.9			114.3				139.7mm		
Safety devices	Item	01						High disch							
		02						gh dischar							
		03					L	_ow suction	•			r)			
		04								notor prote					
	05 06 07									e tempera					
								- 1		t in oil sum	р				
								pressure							
						11:-		sure ratio							
		09			-			HIÇ		pressure d	гор				
		10								monitor					
		12			Flowswitch Emergency stop										
		13			-			Motor			ntroller				
		13				Water freeze protection controller									

4 Technical & Electrical specifications

4 - 2 Electrical specifications

4-2 Electrical	Specifications			160	190	240	280	320	360	380	420	480	550
Compressor	Phase							3	~				
	Voltage		V					40	00				
	Voltage range	Min.	%						10				
		Max.	%					1	0				
	Maximum running	current	Α	112	134	161	182	1	12	1:	34	161	182
	Starting method				Wye-delta							•	
Compressor 2	Maximum running	current	А		- 112 134 161 182								
Power supply Phase									3		•	•	
	Frequency	Frequency Hz						5	i0				
	Voltage		V	400									
	Voltage range	Min.	%						10				
		Max.	%					1	0				
Unit	Maximum starting of	current	А		2	88		378	39	95	417	4:	34
	Nominal running Cooling current (RLA)		А	79	90	107	120	157	169	181	197	214	239
	Maximum running current				134	161	182	224	246	268	295	343	364
	Max unit current for	r wires sizing	Α	123	147	177	200	246	271	295	325	377	400

Notes

- (1) Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; saturated discharge temp. at the compressor 45°C.
- (2) Sound level data are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; saturated discharge temp. 45°C; full load operation; standard: ISO3744
- (3) Units are shipped with holding nitrogen charge at 2 bar
- (4) Allowed voltage tolerance \pm 10%. Voltage unbalance between phases must be within \pm 3%.
- (5) Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load
- (6) Maximum running current is based on max compressor absorbed current in its envelope
- (7) Maximum unit current for wires sizing is based on minimum allowed voltage.
- (8) Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1

5 Capacity tables

5 - 1 Cooling capacity tables

EWLD160-320G-SS

								Saturated Dis	scharge Tem	perature (°C						
	ELWT (°C)		40			45			50			55			60	
Size		Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)
	4	152	40.1	192	145	45.1	190	138	50.5	189	131	56.4	187	123	62.8	186
	5	157	40.1	197	150	45.2	196	143	50.6	194	136	56.5	192	128	62.9	191
	6	163	40.2	203	155	45.3	201	148	50.7	199	140	56.6	197	132	63.0	195
	7	168	40.3	208	161	45.4	206	153	50.8	204	145	56.7	202	137	63.1	200
	8	173	40.4	214	166	45.5	211	158	50.9	209	150	56.8	207	142	63.2	205
160	9	179	40.4	219	171	45.6	217	163	51.1	215	155	57.0	212	147	63.3	210
	10	184	40.5	225	177	45.7	223	169	51.2	220	161	57.1	218	152	63.5	216
	11	190	40.6	231	182	45.8	228	174	51.3	226	166	57.2	223	157	63.6	221
	12	196	40.6	237	188	45.8	234	180	51.4	231	171	57.4	229	163	63.7	226
	13	202	40.7	243	194	45.9	240	186	51.5	237	177	57.5	234	168	63.9	232
	14	208	40.7	249	200	46.0	246	191	51.6	243	183	57.6	240	173	64.0	237
	15	214	40.7	255	206	46.1	252	197	51.7	249	188	57.7	246	179	64.2	243
	4	179	47.9	227	172	53.9	225	163	60.4	224	155	67.5	222	145	75.1	220
	5	185	48.0	233	177	54.0	231	169	60.5	229	160	67.6	228	150	75.2	226
	6	191	48.1	239	183	54.1	237	175	60.7	235	165	67.7	233	156	75.3	231
	7	197	48.2	246	189	54.3	243	180	60.8	241	171	67.8	239	161	75.4	237
	8	204	48.3	252	195	54.4	249	186	60.9	247	177	68.0	245	167	75.5	242
190	9	210	48.4	258	201	54.5	256	192	61.1	253	183	68.1	251	173	75.7	248
	10	216	48.4	265	208	54.6	262	198	61.2	260	189	68.3	257	178	75.8	254
	11	223	48.5	271	214	54.7	269	205	61.3	266	195	68.4	263	184	76.0	260
	12	229	48.6	278	220	54.8	275	211	61.4	272	201	68.5	269	190	76.1	266
	13	236	48.7	285	227	54.9	282	217	61.6	279	207	68.7	276	196	76.3	273
	14	243	48.7	292	234	55.0	289	224	61.7	286	214	68.8	282	203	76.5	279
_	15	250	48.8	299	241	55.1	296	231	61.8	292	220	69.0	289	209	76.6	286
	5	231	58.1	289	221 228	65.4	286	210	73.3	283	199 206	81.8	281 288	187 194	91.0	278 285
	6	239 247	58.3	297		65.6	294 302	217 225	73.5 73.6	291	213	82.0	295	201	91.2 91.3	292
	7	255	58.4 58.5	305	236 244	65.7	310		73.8	306		82.2	303		91.5	292
240	8	263	58.6	313 322	252	65.9 66.0	318	233 240	74.0	314	221 228	82.3 82.5	311	208 215	91.5	307
	9	272	58.7	330	260	66.1	326	248	74.0	323	236	82.7	319	223	91.7	314
240	10	280	58.8	339	269		335	257	74.1	331	244		327	230	92.0	322
	11	289	58.9	348	277	66.3 66.4	344	265	74.3	339	252	82.8 83.0	335	238	92.0	330
	12	298	58.9	357	286	66.5	353	273	74.4	348	260	83.2	343	246	92.4	338
	13	307	59.0	366	295	66.6	361	282	74.7	357	269	83.4	352	254	92.6	347
	14	316	59.0	375	304	66.7	371	291	74.7	366	277	83.6	361	262	92.8	355
	15	326	59.1	385	313	66.8	380	300	75.0	375	286	83.7	370	271	93.0	364
	4	257	66.5	323	245	72.6	318	233	79.5	313	221	87.3	308	208	96.0	304
	5	265	67.2	332	253	73.3	327	241	80.1	321	228	87.8	316	215	96.4	311
	6	274	67.9	342	262	73.9	336	249	80.7	330	236	88.4	325	223	96.9	320
	7	283	68.7	351	270	74.6	345	258	81.3	339	245	88.9	333	231	97.4	328
	8	292	69.4	361	279	75.3	355	266	82.0	348	253	89.5	342	239	98.0	337
	9	301	70.2	371	288	76.1	364	275	82.7	358	261	90.2	352	247	98.5	345
280	10	310	71.1	381	297	76.8	374	284	83.4	367	270	90.8	361	255	99.1	354
	11	320	71.9	391	307	77.6	384	293	84.1	377	279	91.5	370	264	100	364
	12	329	72.8	402	316	78.5	394	302	84.9	387	288	92.2	380	273	100	373
	13	339	73.7	413	326	79.3	405	312	85.7	397	297	93.0	390	281	101	383
	14	349	74.7	424	335	80.2	416	321	86.5	408	306	93.7	400	290	102	392
	15	359	75.6	435	345	81.1	426	331	87.4	418	316	94.5	410	300	103	402
	4	299	80.0	379	286	90.0	376	272	101	373	258	113	370	243	126	368
	5	309	80.2	389	296	90.2	386	282	101	383	267	113	380	252	126	377
	6	319	80.3	400	305	90.4	396	291	101	392	276	113	389	261	126	387
	7	330	80.5	410	316	90.6	406	301	102	402	286	113	399	270	126	396
	8	340	80.7	421	326	90.8	417	311	102	413	295	114	409	279	126	406
	9	351	80.8	432	336	91.0	427	321	102	423	305	114	419	289	127	416
320	10	362	80.9	443	347	91.2	438	331	102	434	315	114	430	299	127	426
	11	373	81.1	454	358	91.4	449	342	102	444	326	114	440	309	127	436
	12	384	81.2	465	369	91.6	460	353	103	456	336	115	451	319	127	446
	13	396	81.3	477	380	91.7	472	364	103	467	347	115	462	330	128	457
	14	408	81.3	489	392	91.9	484	375	103	478	358	115	473	340	128	468
	15	420	81.4	501	403	92.0	495	387	103	490	369	115	484	351	128	479

NOTES

Cc (cooling capacity) - Pi (unit power input) – Hc (heating capacity) - ELWT (evaporator leaving water temperature – Δt 5°C) Data are referred to 0.0176 m² °C/kW evaporator fouling factor

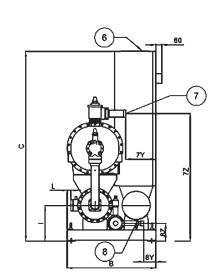
SRC_1-2_Rev.00_1

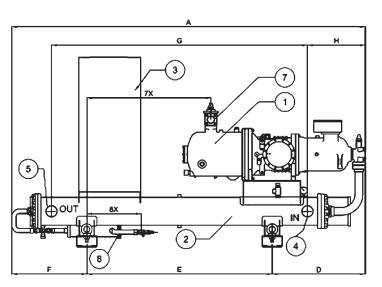
5 Capacity tables

5 - 1 Cooling capacity tables

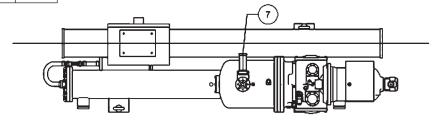
EWLD360-550G-SS

							Sat	turated Disch	arge Water 1	emperature (°C)					
	ELWT (°C)		40			45			50			55			60	
Size		Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)	Cc (kW)	Pi (kW)	Hc (kW)
	4	334	88.0	422	319	99.0	418	304	111	415	287	124	411	270	138	408
	5	345	88.2	433	330	99.2	429	314	111	425	298	124	422	280	138	418
	6	356	88.4	445	341	99.5	440	325	111	436	308	124	432	290	138	428
	7	368	88.5	457	352	99.7	452	336	112	448	319	125	443	301	139	439
	8	380	88.7	469	364	99.9	464	347	112	459	330	125	454	311	139	450
360	9	392	88.8	481	375	100	476	358	112	471	341	125	466	322	139	461
300	10	404	89.0	493	387	100	488	370	112	483	352	125	477	333	139	472
	11	417	89.1	506	400	101	500	382	113	495	364	126	489	344	140	484
	12	429	89.2	519	412	101	513	394	113	507	375	126	501	356	140	496
	13	442	89.4	532	425	101	526	406	113	520	387	126	514	367	140	508
	14	455	89.4	545	438	101	539	419	113	532	399	127	526	379	141	520
	15	469	89.5	558	451	101	552	432	114	545	412	127	539	391	141	532
	4	361	95.8	457	346	108	454	329	121	450	311	135	446	292	150	442
	5	373	96.0	469	357	108	465	340	121	461	322	135	457	303	150	453
	6	386	96.2	482	369	108	477	352	121	473	333	136	469	314	151	464
	7	398	96.4	494	381	109	490	364	122	485	345	136	481	325	151	476
	8	410	96.6	507	393	109	502	375	122	497	357	136	493	336	151	488
380	9	423	96.8	520	406	109	515	388	122	510	368	136	505	348	151	499
***	10	436	96.9	533	419	109	528	400	122	523	381	137	517	360	152	511
	11	450	97.1	547	432	110	541	413	123	535	393	137	530	372	152	524
	12	463	97.2	560	445	110	555	426	123	549	405	137	543	384	152	536
	13	477	97.4	574	458	110	568	439	123	562	418	138	556	396	153	549
	14	491	97.5	588	472	110	582	452	124	576	431	138	569	409	153	562
	15	505	97.6	603	486	110	596	466	124	589	444	138	582	422	153	575
	4	406	106	512	388	119	508	370	134	503	350	149	499	329	166	495
1	5	420	106	526	401	120	521	382	134	516	362	150	512	341	166	507
	6	433	106	540	415	120	535	395	134	530	375	150	525	353	167	520
	7	447	107	554	428	120	548	409	135	543	388	150	538	366	167	532
	8	461	107	568	442	120	563	422	135	557	401	150	551	378	167	545
420	9	476	107	583	456	121	577	436	135	571	414	151	565	391	167	559
	10	491	107	598	471	121	592	450	135	585	428	151	579	404	168	572
	11	506	107	613	485	121	606	464	136	600	442	151	593	418	168	586
	12	521	108	628	500	121	622	479	136	615	456	152	608	432	168	600
	13	537	108	644	515	122	637	494	136	630	470	152	622	446	169	614
	14	552	108	660	531	122	653	509	137	645	485	152	637	460	169	629
\vdash	15	568	108	676	547	122	669	524	137	661	500	153	652	474	170	644
	<u>4</u> 5	451	116	567	431	131	562	411	146	557	389	164	552	365	182	547
	6	466	116	582	446	131	577	425	147	571	402	164	566 581	379	182	561
	7	481 497	117 117	598 613	461 476	131	592 607	439 454	147 147	586 601	416 431	164 164	595	392 406	183 183	575
	8	512	117	629	476	132 132	623	469	147	617	445	165	610	420	183	589 603
	9	529	117	646	507	132	639	484	148	632	460	165	625	435	183	618
480	10	545	117	662	523	132	655	500	148	648	475	165	641	449	184	633
1	11	562	118	679	539	133	672	516	149	664	491	166	657	464	184	649
	12	579	118	697	556	133	689	532	149	681	507	166	673	480	185	664
	13	596	118	714	573	133	706	548	149	698	523	167	689	495	185	680
	14	614	118	732	590	133	723	565	150	715	539	167	706	511	185	696
	15	632	118	750	608	134	741	582	150	732	556	167	723	527	186	713
	4	499	132	631	477	144	622	455	158	613	431	174	604	405	191	597
	5	516	133	649	493	146	639	470	159	629	446	175	620	420	192	612
	6	532	135	667	509	147	656	486	161	646	461	176	637	435	193	628
	7	549	136	685	526	148	674	502	162	663	476	177	653	450	193	644
	8	566	138	704	543	149	692	518	163	681	492	178	670	465	195	660
	9	584	139	723	560	151	711	535	164	699	508	179	688	481	196	677
550	10	601	141	742	577	152	729	552	166	717	525	181	705	497	197	694
	11	619	141	762	595	154	748	569	167	736	542	182	703	513	197	712
	12	638	144	782	613	155	768	586	168	755	559	183	742	530	200	730
	13	657	146	802	631	157	788	604	170	774	576	185	761	547	201	748
	14	676	147	823	650	159	808	622	171	794	594	186	780	564	202	766
	15	695	149	844	668	160	829	641	173	814	612	187	799	582	204	785
$\overline{}$	13	030	<u> </u> 1+3	U-14	1 000	100	023	U+1	110	1 014	UIZ	101	נט ו	1 002	204	100


NOTES

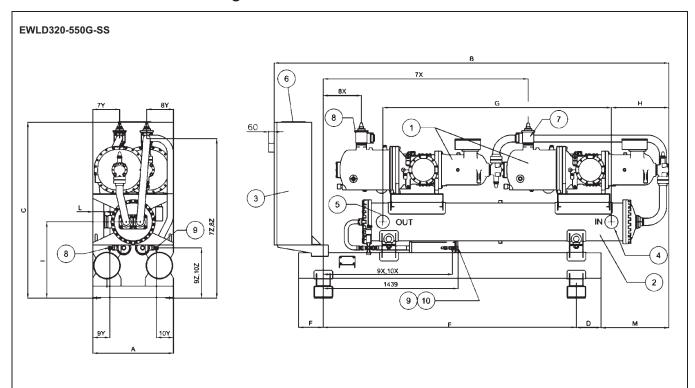

Cc (cooling capacity) - Pi (unit power input) – Hc (heating capacity) - ELWT (evaporator leaving water temperature – Δt 5°C) Data are referred to 0.0176 m² °C/kW evaporator fouling factor

SRC_1-2_Rev.00_2


Dimensional drawings 6 - 1

EWLD160-280G-SS

7x	7Y	7Z	8X	8Y	8Z
1205	292	1243	824	130	125



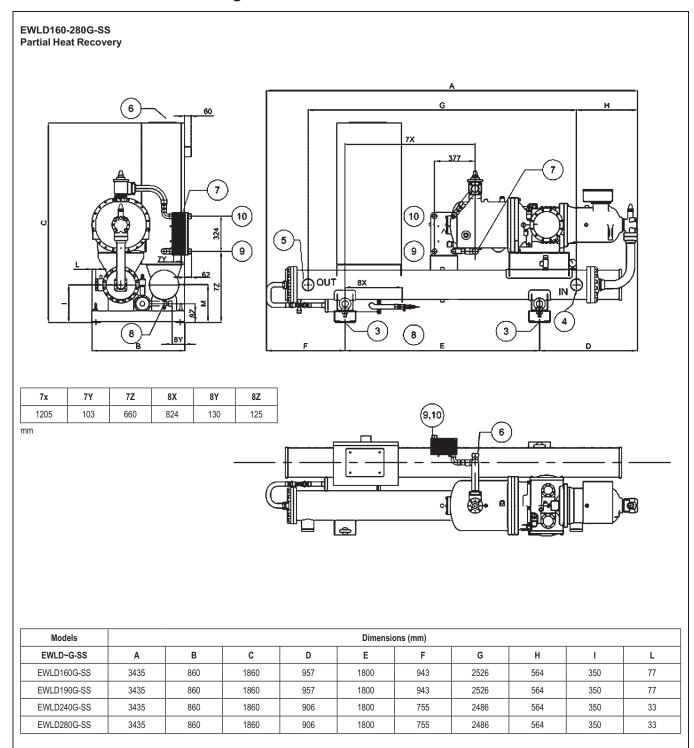
Models					Dimension	ons (mm)				
EWLD~G-SS	Α	В	С	D	Е	F	G	Н	I	L
EWLD160G-SS	3435	860	1860	957	1800	943	2526	564	350	77
EWLD190G-SS	3435	860	1860	957	1800	943	2526	564	350	77
EWLD240G-SS	3435	860	1860	906	1800	755	2486	564	350	33
EWLD280G-SS	3435	860	1860	906	1800	755	2486	564	350	33

LEGEND

- 1 Compressor
- 2 Water heat exchanger evaporator
- 3 Electrical panel
- 4 Evaporator water inlet
- 5 Evaporator water outlet
- 6 Power connections slot
- 7 Discharge line connection8 Pipe liquid connection

6 - 1 Dimensional drawings

7x	7Y	7Z	8X	8Y	8Z	9X	9Y	9Z	10X	10Y	10Z
2186	285	1706	406	285	1706	1440	181	539	1440	181	539


mm

Models					D	imensions (mr	n)				
EWLD~G-SS	Α	В	С	D	Е	F	G	Н	I	L	М
EWLD320G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD360G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD380G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD420G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723
EWLD480G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723
EWLD550G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723

LEGEND

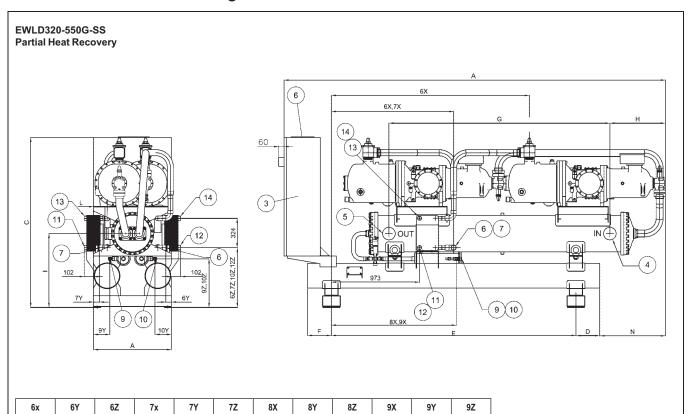
- 1 Compressor
- 2 Water heat exchanger evaporator
- 3 Electrical panel
- 4 Evaporator water inlet
- 5 Evaporator water outlet
- 6 Power connections slot
- 7 Discharge line connection8 Pipe liquid connection

6 - 1 Dimensional drawings

LEGEND

- 1 Compressor
- 2 Water heat exchanger evaporator
- 3 Electrical panel
- 4 Evaporator water inlet
- 5 Evaporator water outlet
- 6 Power connections slot
- 7 Discharge line connection8 Pipe liquid connection
- 9 Desupheater water inlet
- 10 Desupheater water outlet

1350


661

661

1379

181

6 - 1 **Dimensional drawings**

1379

539

539

	n	

1350

Models					D	imensions (mi	m)				
EWLD~G-SS	Α	В	С	D	E	F	G	Н	I	L	М
EWLD320G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD360G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD380G-SS	4245	860	1880	264	2700	264	2486	564	815	127	723
EWLD420G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723
EWLD480G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723
EWLD550G-SS	4245	860	1880	264	2700	264	2450	582	815	122	723

LEGEND

- 1 Compressor
- 2 Water heat exchanger evaporator
- 3 Electrical panel
- 4 Evaporator water inlet
- 5 Evaporator water outlet
- 6 Power connections slot
- 7 Discharge line connection circ. 1
- $\bf 8$ Discharge line connection circ. $\bf 2$
- 9 Pipe liquid connection 1
- 10 Pipe liquid connection 2
- 11 Desupheater water inlet circ. 1
- 12 Desupheater water inlet circ. 2
- 13 Desupheater water outlet circ. 1
- 14 Desupheater water outlet circ. 2

7 Sound data

7 - 1 Sound level data

Noise Level

EWLD~G-SS

EWLD~G-SS			Sound pressur	e level at 1 m fror	n the unit in semi	ispheric free field	I (rif. 2 x 10 ⁻⁵ Pa)			Power
EWED*G*33	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
160	58.0	58.0	63.5	68.5	63.0	64.0	53.0	49.5	69.7	87.7
190	58.0	58.0	63.5	68.5	63.0	64.0	53.0	49.5	69.7	87.7
240	58.0	58.0	63.5	68.5	63.0	64.0	53.0	49.5	69.7	87.7
280	58.0	58.0	63.5	68.5	63.0	64.0	53.0	49.5	69.7	87.7
320	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2
360	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2
380	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2
420	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2
480	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2
550	60.0	60.0	65.5	70.5	65.0	66.0	55.0	51.5	71.7	90.2

NOTES

The values are according to ISO 3744 and are referred to: evaporator $12/7^{\circ}$ C, 45° C saturated discharge temperature, full load operation

EWLD~G-SS + OPLN

EWLD~G-SS			Sound pressur	e level at 1 m fror	n the unit in sem	ispheric free field	l (rif. 2 x 10 ⁻⁵ Pa)			Power
EWLD~G-33	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
160	55.9	55.2	59.6	63.9	57.7	58.5	47.7	44.2	64.7	82.7
190	55.9	55.2	59.6	63.9	57.7	58.5	47.7	44.2	64.7	82.7
240	55.9	55.2	59.6	63.9	57.7	58.5	47.7	44.2	64.7	82.7
280	55.9	55.2	59.6	63.9	57.7	58.5	47.7	44.2	64.7	82.7
320	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2
360	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2
380	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2
420	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2
480	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2
550	57.9	57.2	61.6	65.9	59.7	60.5	49.7	46.2	66.7	85.2

NOTES

The values are according to ISO 3744 and are referred to: evaporator 12/7° C, 45° C saturated discharge temperature, full load operation

NSL_1-2_Rev.00_1

7 Sound data

7 - 1 Sound level data

Sound pressure reduction values for different distances

EWLD~G-SS			Dist	ance		
EWLD~G-33	1m	5m	10m	15m	20m	25m
160	0.0	-8.7	-13.7	-16.9	-19.2	-21.1
190	0.0	-8.7	-13.7	-16.9	-19.2	-21.1
240	0.0	-8.7	-13.7	-16.9	-19.2	-21.1
280	0.0	-8.7	-13.7	-16.9	-19.2	-21.1
320	0.0	-8.7	-13.7	-16.9	-19.2	-21.1
360	0.0	-8.4	-13.4	-16.5	-18.8	-20.6
380	0.0	-8.3	-13.3	-16.4	-18.7	-20.5
420	0.0	-8.3	-13.3	-16.4	-18.7	-20.5
480	0.0	-8.3	-13.3	-16.4	-18.7	-20.5
550	0.0	-8.3	-13.3	-16.4	-18.7	-20.5

NOTES

The values are dB(A) (pressure level).

NSL_1-2_Rev.00_2

8 Installation

8 - 1 Installation method

Installation notes

Warning

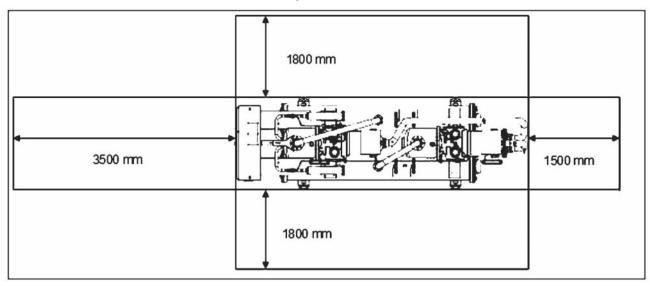
Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations, and who are experienced with this type of equipment. Must be avoided the unit installation in places that could be considered dangerous for all the maintenance operations.

Handling

The chiller is mounted on heavy wooden skids to protect the unit from accidental damage and to permit easy handling and moving. It is recommended that all moving and handling be performed with the skids under the unit when possible and that the skids not be removed until the unit is in the final location.

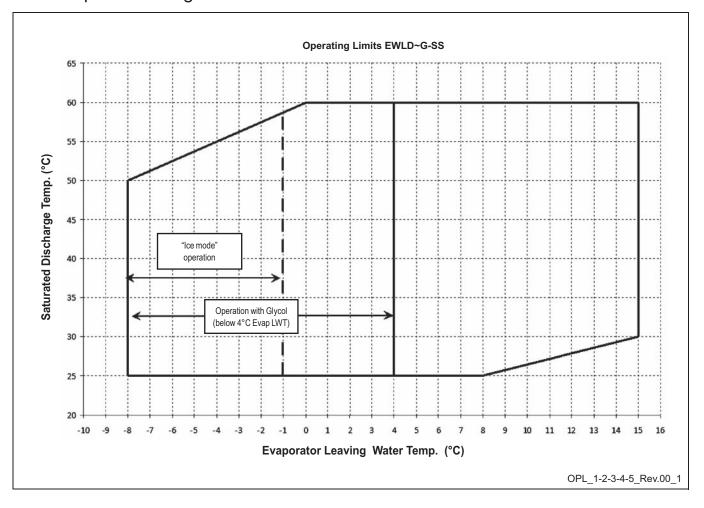
If the unit must be hoisted, it is necessary to lift the unit by attaching cables or chains at the lifting holes in the evaporator tube sheets. Spreader bars must be used to protect the control cabinet and the other areas of the chiller.

Location


A leveled and sufficiently strong floor is required. If necessary, additional structural members should be provided to transfer the weight of the unit to the nearest beams.

Rubber-in-shear isolators can be furnished and field placed under each corner of the package. A rubber anti–skid pad should be used under isolators if hold-down bolts are not used. Vibration isolator in all water piping connected to the chiller is recommended to avoid straining the piping and transmitting vibration and noise.

Minimum space requirements


Every side of the machine must be accessible for all post-installation maintenance activities. The minimum space required is shown on the following drawing.

Minimum clearance requirements for machine maintenance

INN 1 Rev.00 1

9 - 1 Operation range

9 - 1 Operation range

Table 1 - Evaporator minimum and maximum water $\Delta t\,$

Max evaporator water ∆t	°C	8
Min evaporator water Δt	°C	4

Table 2 - Evaporator fouling factors

Fouling factors m ² °C / kW	Cooling capacity correction factor	Power input correction factor	EER correction factor		
0.0176	1.000	1.000	1.000		
0.0440	0.978	0.986	0.992		
0.0880	0.957	0.974	0.983		
0.1320	0.938	0.962	0.975		

Table 3.1 - Minimum glycol percentage for low water temperature

Evaporator Leaving Water Temperature (°C)	2	0	-2	-4	-6	-8
Ethylene glycol (%)	10	20	20	20	30	30
Propylene glycol (%)	10	20	20	30	30	30

Minimum glycol percentage to be used with evaporator leaving water temperature below 4°C to prevent freezing of water circuit.

Table 3.2 - Minimum glycol percentage for low air temperature

Air Ambient Temperature (°C) (2)	-3	-8	-15	-23	-35
Ethylene glycol (%) (1)	10%	20%	30%	40%	50%
Air Ambient Temperature (°C) (2)	-3	-7	-12	-20	-32
Propylene glycol (%) (1)	10%	20%	30%	40%	50%

⁽¹⁾ Minimum glycol percentage to prevent freezing of water circuit at indicated air ambient temperature

Table 4 - Correction factors for low evaporator leaving water temperature

Evaporator Leaving Water Temperature (°C)	2	0	-2	-4	-6	-8
Cooling Capacity	0.842	0.785	0.725	0.670	0.613	0.562
Compressor Power Input	0.950	0.940	0.920	0.890	0.870	0.840

Correction factors have to be applied at working conditions: evaporator leaving water temperature 7°C

Table 5 - Correction factors for water and glycol mixture

	Ethylene Glycol (%)	10%	20%	30%	40%	50%
	Cooling Capacity	0.991	0.982	0.972	0.961	0.946
Ethylana Chroal	Compressor Power Input	0.996	0.992	0.986	0.976	0.966
Ethylene Glycol	Flow Rate (Δt)	1.013	1.04	1.074	1.121	1.178
	Evaporator Pressure Drop	1.070	1.129	1.181	1.263	1.308
	Cooling Capacity	0.985	0.964	0.932	0.889	0.846
Branslana Chraal	Compressor Power Input	0.993	0.983	0.969	0.948	0.929
Propylene Glycol	Flow Rate (Δt)	1.017	1.032	1.056	1.092	1.139
	Evaporator Pressure Drop	1.120	1.272	1.496	1.792	2.128

OPL_1-2-3-4-5_Rev.00_2

^{(2):} Air ambient temperature do exceed the operating limits of the unit, as protection of water circuit may be needed in winter season at non-working conditions.

9 - 1 Operation range

How to use the Correction factors proposed in the previous tables

A) Mixture Water and Glycol --- Evaporator leaving water temperature > 4°C

- depending from the type and percentage (%) of glycol filled in the circuit (see table 3.2 and 5)
- multiply the Cooling Capacity, the Compressor Power Input by the Correction factor of Table 5
- starting from this new value of Cooling Capacity, calculate the Flow Rate (I/s) and the Evaporatore Pressure Drop (kPa)
- now multiply the new Flow Rate and the new Evaporator Pressure Drop by the Correction Factors of Table 5

Example

Unit Size: EWLD160G-SS

Mixture: Water

Working condition: ELWT 12/7°C – Saturated DischargeTemperature 45°C

Cooling capacity: 161kW
Power input: 45.4kW
Flow rate (Δt 5°C): 7.69 l/s
Evaporator pressure drop: 44kPa

Mixture: Water + Ethylene Glycol 30% (for a winter air temperature up to -15°C)

Working condition: ELWT 12/7°C – Saturated DischargeTemperature 45°C

- Cooling capacity: 161 x 0.972 = 156 kW - Power input: 45.4 x 0.986 = 44.8 kW

- Flow rate (Δ t 5°C): 7.45 (referred to 156 kW) x 1.074 = 8.00 l/s - Evaporator pressure drop: 47 (referred to 8 l/s) x 1.181 = 56kPa

B) Mixture Water and Glycol --- Evaporator leaving water temperature < 4°C

- depending from the type and percentage (%) of glycol filled in the circuit (see table 3.1 and 3.2 and table 4)
- depending from the evaporator leaving water temperature (see table 4)
- multiply the Cooling Capacity, the Compressor Power Input by the Correction factor of Table 4 and Table 5
- starting from this new value of Cooling Capacity, calculate the Flow Rate (I/s) and the Evaporatore Pressure Drop (kPa)
- now multiply the new Flow Rate and the new Evaporator Pressure Drop by the Correction Factors of Table 5

Example

Unit Size: EWLD160G-SS

Mixture: Water

Standard working condition ELWT 12/7°C – Saturated DischargeTemperature 40°C

Cooling capacity: 168 kW
Power input: 40.3 kW
Flow rate (Δt 5°C): 8.02 l/s
Evaporator pressure drop: 47kPa

Mixture: Water + Glycol 30% (for a low evaporator leaving temperature of -1/-6°C)

Working condition: ELWT -1/-6°C - Saturated DischargeTemperature 40°C

- Cooling capacity: 168 x 0.613 x 0.972 = 100 kW - Power input: 40.3 x 0.870 x 0.986 = 34.6 kW

- Flow rate (Δ t 5°C): 4.78 l/s (referred to 100 kW) x 1.074 = 5.13 l/s - Evaporator pressure drop: 21 kPa (referred to 5.13 l/s) x 1.181 = 25 kPa

OPL 1-2-3-4-5 Rev.00 3

9 - 1 Operation range

Water charge, flow and quality

				Cooling Water		Caalaa	I Water		Heated	water (2)		
Item	S (1) (5)		Circulatin	g System	Once Flow	Cooled	i vvater	Low tem	perature	High tem	perature	Tendency if out of criteria
	(1)(0)		Circulating water	Supply water ₍₄₎	Flowing water	Circulating water [Below 20°C]	Supply water ₍₄₎	Circulating water [20°C ~ 60°C]	Supply water ₍₄₎	Circulating water [60°C ~ 80°C]	Supply water (4)	out of criteria
	pН	at 25°C	6.5 ~ 8.2	6.0 ~ 8.0	6.0 ~ 8.0	6.0 ~ 8.0	6.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	7.0 ~ 8.0	Corrosion + Scale
 	Electrical	[mS/m] at 25°C	Below 80	Below 30	Below 40	Below 40	Below 30	Below 30	Below 30	Below 30	Below 30	Corrosion + Scale
e	conductivity	(µS/cm) at 25°C	(Below 800)	(Below 300)	(Below 400)	(Below 400)	(Below 300)	(Below 300)	(Below 300)	(Below 300)	(Below 300)	Corrosion + Scale
controlled:	Chloride ion	[mgCl ²⁻ /l]	Below 200	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 30	Below 30	Corrosion
pe co	Sulfate ion	[mgSO ²⁻ ₄ /l]	Below 200	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 30	Below 30	Corrosion
\$	M-alkalinity (pH4.8)	[mgCaCO ₃ /I]	Below 100	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Scale
tems	Total hardness	[mgCaCO ₃ /l]	Below 200	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Below 70	Scale
할	Calcium harness	[mgCaCO ₃ /l]	Below 150	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Below 50	Scale
	Silca ion	[mgSiO ² /I]	Below 50	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Below 30	Scale
9	Iron	[mgFe/l]	Below 1.0	Below 0.3	Below 1.0	Below 1.0	Below 0.3	Below 1.0	Below 0.3	Below 1.0	Below 0.3	Corrosion + Scale
ed 1	Copper	[mgCu/l]	Below 0.3	Below 0.1	Below 1.0	Below 1.0	Below 1.0	Below 1.0	Below 0.1	Below 1.0	Below 0.1	Corrosion
referred	Sulfite ion	[mgS ² /l]	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Not detectable	Corrosion
be re	Ammonium ion	[mgNH+ ₄ /l]	Below 1.0	Below 0.1	Below 1.0	Below 1.0	Below 0.1	Below 0.3	Below 0.1	Below 0.1	Below 0.1	Corrosion
\$	Remaining chloride	[mgCL/l]	Below 0.3	Below 0.3	Below 0.3	Below 0.3	Below 0.3	Below 0.25	Below 0.3	Below 0.1	Below 0.3	Corrosion
Items	Free carbide	[mgCO ₂ /l]	Below 4.0	Below 4.0	Below 4.0	Below 4.0	Below 4.0	Below 0.4	Below 4.0	Below 0.4	Below 4.0	Corrosion
발	Stability index		6.0 ~ 7.0									Corrosion + Scale

NOTES

- 1. Names, definitions and units are according to JIS K 0101. Units and figures between brackets are old units published as reference only.
- 2. In case of using heated water (more than 40°C), corrosion is generally noticeable.
 - Especially when the iron materials is in direct contact with water without any protection shields, it is desireable to give the valid measure for corrosion. E.g. chemical measure.
- 3. In the cooling water using hermetic cooling tower, close circuit water is according to heated water standard, and scattered water is according to cooling water standard.
- 4. Supply water is considered drink water, industrial water and ground water except for genuine water, neutral water and soft water.
- 5. The above mentioned items are representable items in corrosion and scale cases.

OPL_1-2-3-4-5_Rev.00_4

9 - 1 Operation range

Water content in cooling circuits

The cooled water distribution circuits should have minimum water content to avoid excessive compressors start and stop. In fact, each time the compressor starts up, an excessive quantity of oil goes from the compressor sump and simultaneously there is a rise in the temperature of the compressor motor's stator due to the inrush current during the start-up.

To prevent damage to the compressors, it has been envisaged the application of a device to limit frequent stops and restarts.

During the span of one hour there will be no more than 6 starts of the compressor. The plant side should therefore ensure that the overall water content allows a more constant functioning of the unit and consequently greater environmental comfort. The minimum water content per unit should be calculated using this simplified formula:

For 1 compressor unit

M (liters) = $(0.94 \times \Delta T(^{\circ}C) + 5.87) \times P(kW)$

For 2 compressors unit

M (liters) = $(0.1595 \times \Delta T(^{\circ}C) + 3.0825) \times P(kW)$

where:

M minimum water content per unit expressed in litres
P Cooling Capacity of the unit expressed in kW

ΔT evaporator entering / leaving water temperature difference expressed in °C

This formula is valid for:

- standard microprocessor parameters

For more accurate determination of quantity of water, it is advisable to contact the designer of the plant.

OPL_1-2-3-4-5_Rev.00_5

10 Hydraulic performance

10 - 1 Evaporating pressure drop

Evaporating Pressure Drops

EWLD~G-SS

Size	160	190	240	280	320	360	380	420	480	550
Cooling Capacity (kW)	161	189	244	270	316	352	381	428	476	526
Water Flow (I/s)	7.69	9.03	11.7	12.9	15.1	16.8	18.2	20.4	22.7	25.1
Evaporator Pressure Drops (kPa)	44	60	41	49	57	56	64	50	51	61

Water flow and pressure drop referred to nominal condition: evaporator water in/out: 12/7°C - 45 °C saturated discharge temperature at the compressor.

EPD_1-2_Rev.00_1

Evaporating Pressure Drops

To determinate the pressure drop for different versions or at different working condition, please refer to the following formula:

$$PD_{2} (kPa) = PD_{1} (kPa) \times \left(\frac{Q_{2} (l/s)}{Q_{1} (l/s)} \right)^{1.8}$$

where

PD₂ Pressure drop to be determinated (kPa)

PD Pressure drop at nominal condition (kPa)

water flow at new working condition (I/s)

Q water flow at nominal condition (I/s)

How to use the formula: Example

The unit EWLD160G-SS has been selected for working at the following conditions:

- evaporator water in/out: 11/6°C

- saturated discharge temperature: 50°C

The cooling capacity at these working conditions is: 148 kW

The water flow at these working conditions is: 7.07 l/s

The unit EWLD160G-SS at nominal working conditions has the following data:

- evaporator water in/out: 12/7°C

- saturated discharge temperature: 45°C

The cooling capacity at these working conditions is: 161 kW

The water flow at these working conditions is: 7.69 l/s

The pressure drop at these working conditions is: 44 kPa

The evaporator pressure drop at the selected working condition will be:

$$PD_{2} (kPa) = 44 (kPa) \times \left(\frac{7.07 (l/s)}{7.69 (l/s)} \right)^{1.8}$$

 $PD_{2} (kPa) = 38 (kPa)$

NOTE - Importan

If the calculated evaporator water pressure drop is below 10 kPa or above 100 kPa please contact the factory for dedicated evaporator.

EPD_1-2_Rev.00_2

10 Hydraulic performance

10 - 2 Partial heat recovery ratings

Partial Heat Recovery Ratings EWLD~G-SS

	Leaving		Saturated d	ischarge temp	erature (°C)	
	desuper-heater	40	45	50	55	60
EWLD~G-SS	water temp.°C	Hc (kW)	Hc (kW)	Hc (kW)	Hc (kW)	Hc (kW)
	45	21.0	22.0	23.0	24.0	25.0
160	50	10.0	18.0	22.0	23.0	24.0
	55	6.00	11.0	17.0	20.0	21.0
	45	22.0	29.0	30.0	31.0	32.0
190	50	17.0	23.0	28.0	29.0	30.0
	55	10.0	16.0	24.0	26.0	27.0
	45	35.0	36.0	37.0	38.0	39.0
240	50	28.0	34.0	35.0	36.0	37.0
	55	19.0	30.0	31.0	32.0	33.0
	45	42.0	43.0	44.0	45.0	46.0
280	50	39.0	45.0	42.0	43.0	44.0
	55	28.0	44.0	38.0	38.0	39.0
	45	42.0	44.0	46.0	48.0	50.0
320	50	20.0	36.0	44.0	46.0	48.0
	55	12.0	22.0	34.0	40.0	42.0
	45	43.0	51.0	53.0	55.0	57.0
360	50	27.0	41.0	50.0	52.0	54.0
	55	16.0	27.0	41.0	46.0	48.0
	45	44.0	58.0	60.0	62.0	64.0
380	50	34.0	46.0	56.0	58.0	60.0
	55	20.0	32.0	48.0	52.0	54.0
	45	57.0	65.0	67.0	69.0	71.0
420	50	45.0	57.0	63.0	65.0	67.0
	55	29.0	46.0	55.0	58.0	60.0
	45	70.0	72.0	74.0	76.0	78.0
480	50	56.0	68.0	70.0	72.0	74.0
	55	38.0	60.0	62.0	64.0	66.0
	45	96.0	86.0	88.0	90.0	92.0
550	50	78.0	90.0	84.0	86.0	88.0
	55	56.0	88.0	76.0	76.0	78.0

NOTES

Leaving Evaporator Water Temperature 7°C, Δ T 5°C; Hc (heating heat recovery capacity)

OPT_1-2-3_Rev.00_1

10 Hydraulic performance

10 - 3 Partial heat recovery pressure drop

Partial Heat Recovery pressure drops

EWLD~G-SS

Size EWLD~G-SS	160	190	240	280	320	360	380	420	480	550
Heating Capacity (kW)	22	29	36	43	44	51	58	65	72	86
Water Flow (I/s)	1.05	1.39	1.7	2.1	2.1	2.4	2.8	3.1	3.4	4.1
Heat Recovery Pressure Drops (kPa)	2	2	2	3	2	1	1	1	2	3

NOTES

Water flow and pressure drop referred to nominal codition: evaporator water in/out: 12/7°C - saturated discharge temperature 45°C - water heat recovery in/out 40/45°C

OPT_1-2-3_Rev.00_2

Partial Heat Recovery Pressure Drops

To determinate the pressure drop for different versions or at different working condition, please refer to the following formula:

$$PD_{2} (kPa) = PD_{1} (kPa) x \left[\frac{Q_{2} (l/s)}{Q_{1} (l/s)} \right]^{1.80}$$

where:

PD, Pressure drop to be determinate (kPa)

PD. Pressure drop at nominal condition (kPa)

Q water flow at new working condition (I/s)

water flow at nominal condition (I/s)

How to use the formula: Example

The unit EWLD160G-SS has been selected for working at the following conditions:

- evaporator water in/out: 12/7°C
- saturated discharge temperature: 40°C
- Partial heat recovery leaving water temperature 45/50°C

The heating capacity at these working conditions is: 10 kW

The water flow at these working conditions is: 0.48 l/s

The unit EWLD160G-SS at nominal working conditions has the following data:

- evaporator water in/out: 12/7°C
- saturated discharge temperature: 45°C
- Partial heat recovery leaving water temperature 40/45°C

The heating capacity at these working conditions is: 22 kW

The water flow at these working conditions is: 1.05 l/s

The pressure drop at these working conditions is: 2 kPa

The pressure drop at the selected working condition will be:

$$PD_{2}(kPa) = 2(kPa) x$$
 $\left(\frac{0.48(l/s)}{1.0(l/s)}\right)^{1.80}$
 $PD_{2}(kPa) = 1(kPa)$

OPT_1-2-3_Rev.00_3

11 Specification text

11 - 1 Specification text

Technical Specification for Water Cooled Screw Chiller

GENERAL

The water cooled screw chiller will be designed and manufactured in accordance with following European directives:

Construction of pressure vessel	97/23/EC (PED)			
Machinery Directive	2006/42/EC			
Low Voltage	2006/95/EC			
Electromagnetic Compatibility	2004/108/EC			
Electrical & Safety codes	EN 60204-1 / EN 60335-2-40			
Manufacturing Quality Stds	UNI – EN ISO 9001:2004			

The unit will be tested at full load in the factory at the nominal working conditions and water temperatures. Before shipment a full test will be held to avoid any losses.

Chiller will be delivered to the job site completely assembled and charged with right refrigerant and oil quantity. Comply with the manufacturer instructions for rigging and handling equipment.

The unit will be able to start up and operate as standard at full load and condenser entering fluid temperature from °C to °C with an evaporator leaving fluid temperature between °C and °C.

All units published performances have to be certified by Eurovent.

REFRIGERANT

Only R-134a will be accepted.

PERFORMANCE

- ✓ Number of water cooled screw chiller:
- ✓ Cooling capacity for single water cooled screw chiller: kW
- ✓ Power input for single water cooled screw chiller in cooling mode: kW
- ✓ Shell & tube evaporator entering water temperature in cooling mode:°C
- ✓ Shell & tube evaporator leaving water temperature in cooling mode:°C
- ✓ Saturated Discharge Temperature: °C
- ✓ The unit should work with electricity in range 400V ±10%, 3ph, 50Hz without neutral and shall only have one power connection point.

UNIT DESCRIPTION

Chiller shall include as standard: 1, 2 independent refrigerant circuits, semi-hermetic rotary single screw compressors, electronic expansion device (EEXV), refrigerant direct expansion shell & tube heat exchangers, R134a refrigerant, lubrication system, motor starting components, control system and all components necessary for safe and stable unit operation. Chiller will be factory assembled on a robust base-frame made of zinc coated steel, protected by an epoxy paint.

NOISE LEVEL AND VIBRATIONS

Sound pressure level at 1 meter distance in free field, semispheric conditions, shall not exceeddB(A). The sound pressure levels must be rated in accordance to ISO 3744.

Other types of rating unacceptable. Vibration level should not exceed 2 mm/s.

DIMENSIONS

Unit dimensions shall not exceed following indications:

- √ unit length mm,
- ✓ unit width mm,
- √ unit height mm.

SPC 1-2-3 Rev.00 1

11 Specification text

11 - 1 Specification text

CHILLER COMPONENTS

Compressors

- ✓ Semi-hermetic, single-screw type with one main helical rotor meshing with gaterotor. The gaterotor will be constructed of a carbon impregnated engineered composite material. The gaterotor supports will be constructed of cast iron.
- ✓ The oil injection shall be used in order to get high EER (Energy Efficiency Ratio) also at high condensing pressure and low sound pressure levels in each load condition.
- Refrigerant system differential pressure shall provide oil flow throught service replaceble, 0.5 micron, full flow, cartridge type oil filter internal to compressor.
- Refrigerant system differential pressure shall provide oil injection on all moving compressor parts to correctly lubricate them. Electrical oil pump lubricating system is not acceptable.
- √ The compressor's oil cooling must be realized, when necessary, by refrigerant liquid injection. External dedicated
 heat exchanger and additional piping to carry the oil from the compressor to heat exchanger and viceversa will be not
 accepted.
- ✓ The compressor shall be provided with an external, high efficiency, cyclonic type oil separator and with built-in oil filter, cartridge type.
- ✓ The compressor shall be direct electrical driven, without gear transmission between the screw and the electrical motor.
- Shall be present two thermal protection realized by a thermistor for high temperature protection: one temperature sensor to protect electrical motor and another sensor to protect unit and lubricating oil from high discharge gas temperature.
- ✓ Compressor shall be fully field serviceable. Compressor that must be removed and returned to the factory for service shall be unacceptable.

Cooling capacity control system

- ✓ Each unit will have a microprocessor for the control of compressor slide valve's position and the instantaneous RPM value of the motor.
- ✓ The unit capacity control shall be infinitely modulating, from 100% down to 25% for each circuit (from 100% down to 12,5% of full load for unit with 2 compressors). The chiller shall be capable of stable operation to a minimum of 12,5% of full load without hot gas bypass.
- ✓ Step unloading unacceptable because of evaporator leaving water temperature fluctuation and low unit efficiency at partial load.
- ✓ The system shall stage the unit based on the leaving evaporator water temperature that shall be controlled by a PID (Proportional Integral Derivative) loop.
- ✓ Unit control logic shall to manage frequency level of the compressor electric motor to exactly match plant load request in order to keep constant the set point for delivered chilled water temperature. In this operating condition unit control logic shall modulate electrical frequency level in a range lower and upper the nominal electrical network value fixed at 50 Hz.
- ✓ The microprocessor unit control shall detect conditions that approach protective limits and take self-corrective action prior to an alarm occurring. The system shall automatically reduce chiller capacity when any of the following parameters are outside their normal operating range:
 - o High condenser pressure
 - o Low evaporation refrigerant temperature
 - o High compressor motor amps

Evaporator

- The units shall be supplied with shell and tubes counter-flow heat exchanger with single refrigerant pass. It will be refrigerant direct expansion type with refrigerant inside the tubes and water outside (shell side). It will include carbon steel tube sheets, with straight copper tubes internally wound for higher efficiencies, expanded on the tube plates.
- The evaporator will have 2 circuits, one for each compressor and shall be single refrigerant pass.
- The water connections shall be VICTAULIC type connections as standard to ensure quick mechanical disconnection between the unit and the hydronic network.
- ✓ Evaporator is manufactured in accordance to PED approval.

SPC_1-2-3_Rev.00_2

11 Specification text

11 - 1 Specification text

Refrigerant circuit

Each circuit shall include as standard: electronic expansion device piloted by unit's microprocessor control, suction line shut-off valve, replaceable core filter-drier, sight glass with moisture indicator and insulated suction line.

Control panel

- Field power connection, control interlock terminals, and unit control system should be centrally located in an electric panel (IP 54). Power and starting controls should be separate from safety and operating controls in different compartments of the same panel.
- ✓ Starting shall be Wye-Delta type as standard.
- ✓ Operating and safety controls should include energy saving control; emergency stop switch; overload protection for compressor motor; high and low pressure cut-out switch (for each refrigerant circuit); anti-freeze thermostat; cut-out switch for each compressor.
- ✓ All of the information regarding the unit will be reported on a display and with the internal built-in calendar and clock that will switch the unit ON/OFF during day time all year long.
- √ The following features and functions shall be included:
 - <u>resetting chilled water temperature</u> by controlling the return water temperature or by a remote 4-20 mA DC signal or by controlling the external ambient temperature;
 - soft load function to prevent the system from operating at full load during the chilled fluid pulldown period;
 - password protection of critical parameters of control;
 - start-to-start and stop-to-start timers to provide minimum compressor off-time with maximum motor protection;
 - communication capability with a PC or remote monitoring;
 - discharge pressure control through intelligent cycling of condenser fans;
 - <u>lead-lag selection</u> by manual or automatically by circuit run hours;
 - double set point for brine unit version;
 - <u>scheduling</u> via internal time clock to allow programming of a yearly start-stop schedule accommodating weekends and holidays.

Optional High Level Communications Interface

The controller as a minimum shall be capable of providing the data shown in the above list, using the following options:

- RS485 Serial card
- RS232 Serial card
- LonWorks interface to FTT10A Transceiver.
- Bacnet Compatible
- Use of Compass Points (manufactured by North Communications) to allow communications with such as Honeywell, Satchwell, Johnson Controls, Trend etc.

SPC_1-2-3_Rev.00_3

In all of us, a green heart

Daikin Europe N.V. participates in the Eurovent Certification Programme for Air Conditioners (AC), Liquid Chilling Packages (ILCP) and Fan Coil Units (FC); the certified data of certified models are listed in the Eurovent Directory. Multi units are Eurovent certified for combinations up to 2 indoor units.

Daikin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Daikin has had the intention to become a leader in the provision of products that have limited impact on the environment. This challenge demands the eco design and development of a wide range of products and an energy management system, resulting in energy conservation and a reduction of waste.

The present leaflet is drawn up by way of information only and does not constitute an offer binding upon Dalkin Europe N.V. Dalkin Europe N.V. has compiled the content of this leaflet to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Dalkin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this leaflet. All content is copyrighted by Dalkin Europe N.V.

Daikin	products	are	distributed	bv: