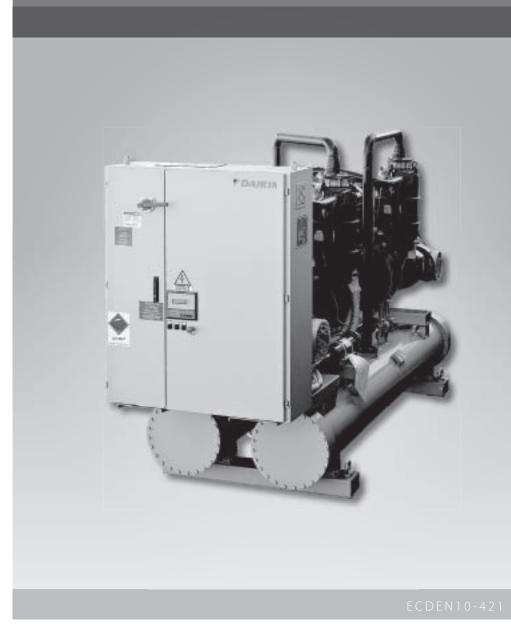


Chillers Technical Data

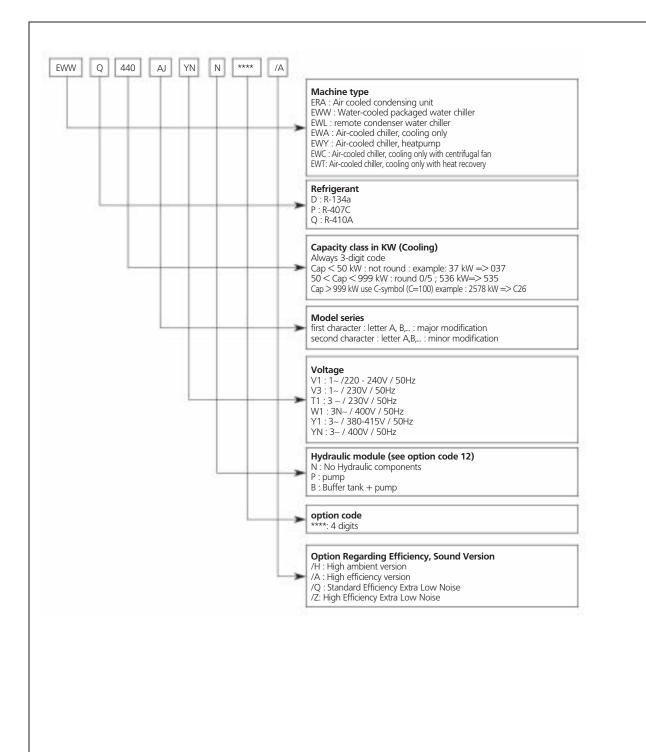
Water Cooled Chiller


EWWQ-AJYNN EWWQ-AJYNN/A

Chillers Technical Data

Water Cooled Chiller

EWWQ-AJYNN EWWQ-AJYNN/A


TABLE OF CONTENTS EWWQ-AJYNN - EWWQ-AJYNN/A

I	EWWQ-AJYNN	3	1
II	EWWQ-AJYNN/A	51	2

TABLE OF CONTENTS EWWQ-AJYNN

1	Nomenclature	. 5
2	Specifications text	. 6
3	Specifications Technical Specifications Electrical Specifications	13
4	Options	18
5	Capacity tables Cooling capacity tables Capacity correction factor Partial heat recovery ratings	20 24
6	Dimensional drawing	
7	Sound data	39
8	Installation Installation method Water charge, flow and quality	41
9	Operation range	43
10	Hydraulic performance Water pressure drop curve evaporator Water pressure drop curve condenser Partial heat recovery ratings Heat recovery pressure drop	44 46 48

1 Nomenclature

GENERAL CHARACTERISTICS

Structure

The chiller is equipped with brackets directly installed on heat exchangers. The evaporator and the suction piping are appropriately insulated to prevent condensation. Unit is provided with lifting holes.

Screw compressors

The StargateTM single-screw compressor has a well balanced compression mechanism which gives main bearing design life of 3-4 times greater than twin-screws and eliminates expensive and complicated thrust balancing schemes.

Oil injection is used for these compressors in order to get high EER at high condensing pressure. The oil supplied to the compressor performs three basic functions: oil for capacity control actuation, oil for bearing lubrication, oil for sealing. The oil is injected via fixed ports in the casing around the rotor.

Compressors have an infinitely variable capacity control down to 25% of its total capacity. This control is made by means of capacity slides controlled by microprocessors. The unit is furnished with an external (for Frame 4) or integrated (for Frame 3200) high efficiency oil separator to maximise oil extraction. The compressor is provided with a liquid injection circuit to reach oil cooling. Standard start is star-delta type.

Evaporator

The units are supplied with optimised shell and tubes evaporator pass that allows a perfect oil circulation and so a perfect oil return to the compressor. It is direct expansion with refrigerant inside the tubes and water outside (shell side) with carbon steel tube sheets, with straight copper tubes that are spirally wound internally for higher efficiencies, expanded on the tube plates. The external shell is covered with a closed cell insulation material.

Each evaporator has 1 or 2 circuits, one for each compressor and is manufactured in accordance to PED approval. The evaporator water outlet connections are provided with Victaulic Kit.

Condensers

Condensers are shell and tubes cleanable, through-tube type. The unit has independent condensers, one per circuit. Each condenser has a carbon steel and seamless, integrally finned high efficiency copper tubes, roll expanded into heavy carbon steel tube sheets. Water heads are removable and include vent and drain plugs. Condensers come complete with liquid shut-off valve, spring loaded relief valve.

Electronic expansion valve (EEV)

EWWQAJYNN-AJYNN/A water cooled chiller is equipped with the most advanced electronic expansion valve to achieve precise control of refrigerant mass flow. As today's system requires improved energy efficiency, tighter temperature control, wider range of operating conditions and incorporate features like remote monitoring and diagnostics, the application of electronic expansion valves becomes mandatory.

EEV strength point is the capacity to work with lower DP between high and low pressure side, than a thermostatic expansion valve. The electronic expansion valve allows the system to work with low condenser pressure (winter time) without any refrigerant flow problems and with a perfect chilled water leaving temperature control. This feature becomes more important in EWWQAJYNN-AJYNN/A that works with R-410A: the research indicates a favourable energy consumption when this refrigerant is used with low condensing temperatures.

Refrigerant circuit

Each unit has 1 or 2 independent refrigerant circuits with one compressor per circuit, including:

- High and low pressure switches
- Moisture liquid indicator
- High efficiency oil separator
- Replaceable core filter-drier
- Electronic expansion valve

Electrical control panel

Power and control are located into two sections of the main panel that is manufactured to insure protection for all weather conditions. The power panel is fitted with an interlocked door main isolator to prevent access while power supply is on. Electrical panel is IP54.

Power section includes

The power section includes contactors, all compressors fuses and control circuit transformer. Additional space is provided for an easy installation of the various optional accessories provided to enhance the EWWQ-AJYNN & AJYNN/A units capabilities.

MicroTech II C Plus controller

MicroTech II C Plus controller is installed as standard on all the units; it can be used to modify unit set points and check control parameters. A display illustrates the machine's operating status, programmable values and setpoints e.g. temperatures, and pressures of fluids (water, refrigerant). Device controls maximise the Daikin chillers energy efficiency and reliability characteristics. It uses sophisticated software with predictive logic to select the most energy efficient combination of compressor, expansion device and condenser fan to keep stable operating conditions and maximise energy efficiency. The compressors are automatically rotated to ensure equal operating hours. MicroTech II C Plus protects critical components in response to external signals from its system sensors measuring: motor temperatures, refrigerant gas and oil pressures, correct phases sequence and phase loss.

Control section - main features:

- Chillers enabled to work in partial failure condition thanks to the distributed multiprocessor logic system
- Management of the compressor capacity slide and the EEV valve according to the distributed multiprocessor logic system
- Full routine operation at condition of:
 - High pressure value
 - High thermal load
 - High evaporator entering water temperature (start-up)
- Display of evaporator entering/leaving water temperature
- Display of condensing-evaporating temperature and pressure, suction and discharge superheating temperature for each circuit
- Leaving water cooled temperature regulation. Temperature tolerance \pm 0,1°C
- Compressors and evaporator/condenser pumps hours counter
- Display of Status Safety Devices
- Start up numbers and compressors working hours equalization
- Excellent management of compressors load
- Cooling tower's fans management according to condensing pressure
- Automatic re-start in case of power supply interruption (adjustable)
- Soft Load
- Return Reset
- AOT Reset (optional)
- Setpoint Reset (optional)
- Demand limit or Current limit (optional)

Safety for each refrigerant circuit

- High pressure (pressure switch)
- Compressor overload (optional)
- High discharge temperature on the compressor
- Phase monitor
- Star/delta transition failed
- Low delta pressure between suction and discharge
- Low pressure ratio
- High oil pressure drop
- Low oil pressure

Compressor overload (optional)

- Phase monitor
- Freeze protection
- An evaporator's flow controller input (stops the unit)
- Remote on/off input
- Emergency stop (shuts down all compressors)

Regulation type

2

Proportional + integral + derivative regulation on the input probe of the evaporator water leaving temperature.

MicroTech II C Plus terminal

The MicroTech II C Plus terminal has following features:

- 4-lines by 20-character liquid crystal display back lighted
- Key-pad consisting of 15 keys " clear language display "
- Memory to protect the data
- General faults alarm led
- 4-level password access to modify the setting
- Service report displaying all running hours and general conditions
- Memorized alarm history to facilitate the fault's analysis
- Remote full featured versions of the LCD terminal are available for a comfortable check and control of the unit over RS488 line.

SPECIFICATIONS - EWWQ-AJYNN & AJYNN/A

To supply and install, where specified in the project n° unit(s) water cooled chiller with cooling capacity of kW, to cool l/sec. of water from °C to °C, condenser entering water temperature °C, condenser leaving water temperature °C.

The unit should work with electricity atV, 3ph, 50Hz. The electrical power absorbed should not exceed kW. The units EER will be at least at the working conditions of the project. Part load EER will be at least at the working conditions of the project.

The units will have 1 or 2 independent refrigerant circuits, and the respective electronic microprocessor will allow the starting of the compressors. Each chiller will be factory assembled and protected by an epoxy paint.

The unit will be tested at full load in the factory at the nominal working conditions and water temperatures. Before shipment a full test will be held to avoid any losses. Chiller will be delivered to the job site completely assembled and charged with refrigerant and oil.

Comply with the manufacturer instructions for rigging and handling equipment.

General

All units should be designed and manufactured in accordance with applicable selections of the following which are equivalent to American Air-conditioning industry applicable codes:

Rating of chillers	EN 12055				
Construction of pressure vessel	Pressure Equipment 97/23/EC (PED)				
Machinery Directive	98/37/EC				
Low Voltage Directive	2006/95/ES				
Electromagnetic Compatibility Directive	2004/108/EC				
Electrical & Safety Codes	IEC 60204-1				
Manufacturing Quality Stds	ISO 9001:2000				

Refrigerant

Will be accepted only R-410A.

UNIT DESCRIPTION

Each chiller consist of single or multiple semi-hermetic rotary screw compressor, direct expansion evaporator, water-cooled condenser section, control system and all components necessary for safe and controlled unit operation.

NOISE LEVEL AND VIBRATIONS

Sound pressure level at 1 meter distance in free field, semispheric conditions, shall not exceed dBA. The sound pressure levels must be rated in accordance to ISO 9614-2. Other types of rating unacceptable. Vibration level should not exceed 2 mm/s.

Dimensions

Unit length shall not exceed mm, unit width shall not exceed mm, unit height shall not exceed mm.

CHILLER COMPONENTS

Compressors

- The compressors shall be field serviceable, semi-hermetic, single-screw type with one main helical rotor meshing with two opposed gaterotor. Twin-screw compressor will no be accepted because of the large bearing loads inherent with this design. For a Single-screw compressor the two exactly opposed gaterotors create two exactly opposed compression cycles which results in balanced forces acting on the rotor compressor. The gaterotors will be constructed of a carbon impregnated engineered composite material. The gaterotor supports will be constructed of cast iron.
- The oil injection shall be used for these compressors in order to get high EER also at high condensing pressure and low sound pressure levels in each load condition.
- Refrigerant system differential pressure shall provide oil flow through service replaceable, 0.5 micron, full flow, cartridge type oil filter internal to compressor. Filter bypass or oil pump not acceptable.
- The compressor's oil cooling must be realized by liquid injection. External dedicated heat exchanger and additional piping to carry the oil from the compressor to heat exchanger and viceversa will be not accepted.
- The compressor shall be direct electrical drive, without gear transmission between the screw and the electrical motor. The motor's compressor shall be designed for star/delta. Soft start should be available as option.
- Shall be present two thermal protection realized by a thermistor for high temperature protection to motor and a thermistor for discharge gas high temperature protection.
 The compressor shall be provided with an automatic spring return of capacity control valve to the minimum load position to ensure compressor starting always at
- minimum motor load so with the minimum mechanical stress.
 The compressor discharge connection shall be fitted with a check valve and with a stop valve.
- The compressor discharge shall be fitted with a head pressure control valve.

Evaporator

- The units shall be supplied with shell and tubes counter-flow evaporator single refrigerant pass. It will be direct expansion with refrigerant inside the tubes and water outside (shell side) with carbon steel tube sheets, with straight copper tubes that are spirally wound internally for higher efficiencies, expanded on the tube plates.
- The external shell, shall be linked with an electrical heater (option on request) to prevent freezing up to -28 C ambient temperature, commanded by a thermostat and shall be insulated with flexible, closed cell polyurethane insulation material.
- The evaporator will have 1 or 2 circuits, one for each compressor and shall be single refrigerant pass to ensure a simpler oil circulation so to ensure always a perfect oil return to the compressor.
- Evaporator is manufactured in accordance to PED approval.

Condensers

- Condensers will be shell and cleanable, through-tube type.
- The unit will have one condensers per circuit.
- Each condenser shall have a carbon steel and seamless, integrally finned high efficiency copper tubes, roll expanded into heavy carbon steel tube sheets.
- Water heads shall be removable and include vent and drain plugs.
- · Condensers will come complete with liquid shut-off valve, spring loaded relief valve.

Refrigerant circuit

- The unit must have refrigerant circuits completely independent of each other with one compressor per circuit.
- Each circuit shall include: an electronic expansion valve, external high efficiency oil separator, a liquid line shut-off valve with charging connection, replaceable core filter-drier, sight glass with moisture indicator and insulated suction line. Suction line and discharge line shut-off valves are available as option.

Regulation of cooling capacity

- Each unit will have a microprocessor for the control of compressor slide valve's position (2 slide valves, one for each compressor's cycles).
- The slides shall have a stepless motion that allows a unit's operation with infinitely variable capacity control down to 25% (1 compressor) or down to 12,5% (2 compressors) of the cooling capacity. The chiller shall be capable of stable operation to a minimum of 25% (1 compressor) or to a minimum of 12,5% (2 compressors) of full load without hot gas bypass.
- Step unloading unacceptable because of evaporator leaving water temperature fluctuation and low compressor's efficiency at partial load.
- The system shall stage the unit based on the leaving water temperature.

Electronic expansion valve

- Electronic expansion valve allows a simple and perfect control system that quickly interacts at load variations. This valve combines two functions: liquid solenoid and electronic expansion valve.
- It is managed directly by a microprocessor to match exactly the plant thermal load.
- Thermostatic valve unacceptable because of:
 - 。 Its limited load range
 - Higher refrigerant pressure drop
 - 。 Because of leaving evaporator water temperature control less good than an electronic device
 - Thermal expansion device needs a higher differential pressure between high pressure side and low pressure side to work correctly. This doesn't allow to work
 with low condensing pressure and therefore doesn't allow to reach the money saving that is possible to have with these chiller working conditions.

Control panel

- Field power connections, control interlock terminals, and unit control system should be centrally located in an electric panel (IP 54).
- The Power components and control equipment shall be separately mounted in different compartments of the control panel.
- The Compressor starting method will be star/delta, with an option for Softstart.
- Power and starting controls should include fuses and contactors for the compressor.
- Operating and safety controls should include energy saving; emergency stop switch; thermal overload protection for each compressor motor; high and low pressure cut-out switch (for each refrigerant circuit); anti-freeze thermostat; cut-out switch for each
- All of the information regarding the unit shall be shown on a display with a built-in calendar and clock that will provide unit scheduling throughout the year.
- The following features and functions shall be included:
 - Resetting chilled water temperature by controlling the return water temperature or by a remote 4-20 mA DC signal:
 - Soft load function to prevent the system from operating at full load during the chilled fluid pulldown period
 - Password protection of critical parameters of control
 - Start-to-start and stop-to-start timers to provide minimum compressor off-time with maximum motor protection
 - Communication capability with a PC or remote monitoring
 - Lead-lag selection by manual or automatically by circuit run hours
 - Double set point for brine unit version
 - Scheduling via internal time clock to allow programming of a yearly start-stop schedule accommodating weekends and holidays

Display Capabilities

The controller as a minimum shall be capable of monitoring and displaying the following data:

Operating Conditions
Ent./ Lvg. Evaporator fluid Temp.
Entering Condenser fluid Temp.
Operating Chilled Fluid Setpoint
Oil / Discharge gas Press. (per comp.)
Condensing Press. (per comp.)
Evaporator Press. (per comp.)
Unit Enabled
Compressor Enabled
Water Setpoint Reset
Demand Limit or Current Limit
(Site Selectable)

Alarms Phase monitor Freeze protection Evaporator Flow Low Gas Pressure (per comp.) Transition Fault, (per comp.) Oil Diff. press. (per comp.) Low Oil Pressure (per comp.) High Gas Pressure Trip (per comp.) Motor Overload, (per comp.) Transducer faults Units Off-Line External fault Processor Faults Maintenance requirements

Standard Customer Interfaces

The controller as a minimur	n shall be capable of providing the following interlocks:
Chiller Enable Signal:	Digital Input, customer contact must be capable of handling 24Volts, 50HZ, 1 Amp.
Chiller Common Fault:	Volt free, normally open, digital contact, must be capable of switching 250 V, 50 HZ, 10 Amp.
Pump Enable Signal:	Volt free, normally open, digital contact, must be capable of switching 250 V, 50 HZ, 10 Amp.
Setpoint Override: 4 - 20 m	A DC analoque input signal.
Demand Limit:	4 - 20 mA DC analoque input signal.
or	

Current Limit: 4 - 20 mA DC analoque input signal.

Optional Customer Interfaces

Compressor Running Signals:

Volt free, normally open, digital contact, capable of switching 250 V, 50 HZ, 10 Amp.

Optional High Level Communications Interface

Using ModBus, Lonworks or Bacnet protocols.

3-1 TECHNICAL	SPECIFICATIONS	5		EWWQ400 AJYNN	EWWQ480 AJYNN	EWWQ600 AJYNN	EWWQ650 AJYNN	EWWQ750 AJYNN	EWWQ800 AJYNN	EWWQ850 AJYNN	EWWQ900 AJYNN			
Capacity (Eurovent)	Cooling	Nominal	kW	387.96	474.13	574.36	651.45	742.14	812.53	880.09	891.19			
Capacity Steps	5		%	25-100	25-100	25-100	25-100	25-100	12.5-100	25-100	12.5-100			
				(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)			
Nominal input (Eurovent)	Cooling		kW	87.37	106.27	130.44	147.86	169.73	175.22	206.4	194.02			
EER	1		Į	4.44	4.46	4.40	4.41	4.37	4.64	4.26	4.59			
ESEER				4.95	4.98	4.97	4.97	4.72	5.37	4.60	5.36			
Casing	Colour						RAL	7032	1	1	1			
-	Material					Galva	anized and p	ainted steel	sheet					
Dimensions	Unit	Height	mm	1,846	1,846	2,000	2,000	1,846	2,170	1,846	2,170			
		Width	mm	1,065	1,065	1,226	1,226	1,266	1,350	1,266	1,350			
		Depth	mm	3,431	3,431	3,440	3,440	3,561	4,902	3,561	4,902			
Weight	Unit	1 .	kg	1,933	1,967	2,283	2,332	2,407	3,921	2,427	3,949			
Ū	Operating Weight		kg	2,135	2,169	2,543	2,628	2,777	4,422	2,795	4,463			
Water Heat Exchanger					_,	_,	,	nd tube	.,	_,	.,			
	Minimum water volu	simplified f expressed entering / le	formula: Q= 3 in litres; P = r eaving water	ntent per uni 35.83/N x P(I minimum coo temperature nation of quar	(W)/Delta T(ling capacity difference e	°C); where: of the unit ex xpressed in °	Q = minimur (pressed in k °C; N = numl	n water conte W; Delta T = ber of compre	ent per unit evaporator essors; For					
Water Heat Exchanger	Туре	-					Shell a	nd tube						
Evaporator	Water volume		I	124	118	176	170	274	344	266	344			
	Water flow rate	Nominal	l/min	1111.8	1359	1646.4	1867.2	2124.6	2328.6	2519.4	2554.2			
	Nominal water pressure drop	Cooling	kPa	49.43	64.65	45.04	47.92	54.74	53.80	50.22	63.54			
	Insulation material					(Closed cell fo	am elastome	er	1	1			
Water Heat Exchanger	Туре							nd tube	-					
Condenser	Water volume			79	92	84	126	97	79 / 79	102	79/92			
	Water flow rate	Nominal	l/min	1372.2	1675.2	2034.6	2307.6	2632.2	2851.2	3136.2	3132.6			
	Nominal water pressure drop	Cooling	kPa	60.15	64.35	67.91	66.02	16.46	64.44	20.43	66.55			
	Insulation material				<u> </u>	<u> </u>	Expanded	elastomer	<u> </u>	l	<u> </u>			
	Model Quantity			1	1	1	1	1	2	1	2			
Compressor	Туре				1		, ř	e screw com		1				
	Refrigerant oil charg		Ι	16	16	16	16	16	32	16	32			
	Model	Quantity		1	1	1	1	1	2	1	2			
Sound level	Sound Power	Cooling	dBA	100.2	101.2	102.3	102.3	101.5	104.7	102.3	104.7			
	Sound Pressure	Cooling	dBA	82.2	83.0	83.9	83.9	83.2	84.0	84.9	85.2			
Operation Range	Evaporator	Min	°CDB	-4	-4	-4	-4	-4	-4	-4	-4			
		Max	°CDB	10	10	10	10	10	10	10	10			
	Condensor	Min	°CDB	25	25	25	25	25	25	25	25			
		Max	°CDB	45	45	45	45	45	45	45	45			
Refrigerant circuit	Refrigerant type						R-4	10A						
	Refrigerant charge		kg kg	80	80	90	90	100	85 85	100	85 85			
	No of circuits			1	1	1	1	1	2	1	2			
	Refrigerant control					IE	Electronic ex	pansion valv	e	1	1			
Piping connections	Evaporator water in	let/outlet		168.3mm	168.3mm	219.1mm	219.1mm	219.1mm	219.1mm	219.1mm	219.1mm			
1 3 1 1 1 1	Condensor water in			5"	5"	5"	5"	6"	5"	6"	5"			
Safety Devices								sure switch	-		-			
							Low press	sure switch						
							Emerge	ncy stop						
						High discha	arge tempera	ature on the o	compressor					
						-	Phase	monitor						
							Low pressure ratio High oil pressure drop							
							High oil nre	essure drop						
							v 1							
Notes				Nominal co	nolina canaci	ty and power	Low oil	pressure	ons: Evanor	ator 12/7°C·	Condense			

3-1 TECHN	NICAL SI	PECIFICATIONS			EWWQC10 AJYNN	EWWQC11 AJYNN	EWWQC12 AJYNN	EWWQC13 AJYNN	EWWQC14 AJYNN	EWWQC15 AJYNN	EWWQC16 AJYNN	EWWQC17 AJYNN	
Capacity (Eurove	ent)	Cooling	Nominal	kW	980.45	1,028.15	1,077.43	1,210.09	1,281.09	1,352.09	1,488.14	1,620.34	
Capacity Steps				%	12.5-100	25-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	12.5-100	
					(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	(stepless)	
Nominal input (E	urovent)	Cooling		kW	212.97	245.47	236.90	261.72	279.05	296.39	339.95	375.37	
EER					4.60	4.19	4.55	4.62	4.59	4.56	4.38	4.32	
ESEER					5.34	4.53	5.33	5.36	5.35	5.29	4.93	4.93	
Casing		Colour					•	RAL	7032				
		Material					Galva	anized and p	ainted steel	sheet			
Dimensions		Unit	Height	mm	2,170	1,846	2,379	2,455	2,455	2,455	2,547	2,547	
			Width	mm	1,350	1,266	1,350	1,350	1,350	1,350	1,350	1,350	
			Depth	mm	4,902	3,561	4,912	4,835	4,835	4,835	4,844	4,844	
Weight		Unit		kg	3,988	2,457	4,344	4,529	4,536	4,607	4,988	4,999	
, i o g. i		Operating Weight		kg	4,496	2,812	4,780	5,186	5,200	5,280	5,602	5,615	
Water Heat Exch	anger	Type	4,400	2,012	4,700	Shell a	,	0,200	0,002	0,010			
Water Fleat Exci	langer	Minimum water volu	(Formula)	The minim	um water co	ntent per uni			h a cortain a	norovimatio	a usina this		
		winimum water void		(i officia)	simplified f expressed entering / le	ormula: Q= 3 in litres; P = r eaving water	35.83/N x P(I minimum coo temperature nation of quar	<pre>kW)/Delta T(ling capacity difference e</pre>	°C); where: of the unit ex xpressed in °	Q = minimur (pressed in k °C; N = num	n water conto W; Delta T = ber of compr	ent per unit evaporator essors; For	
Water Heat Exch	nanger	Туре							nd tube				
Evaporator	2	Water volume		1	325	251	325	538	538	538	505	505	
		Water flow rate	Nominal	l/min	2809.8	2943	3088.2	3468	3671.4	3875.4	4260	4636.8	
		Nominal water	Cooling	kPa	59.07	57.23	70.01	45.37	50.28	55.40	59.86	69.74	
		pressure drop	Cooling	N U	00.07	07.20	70.01	40.01	00.20	00.40	00.00	00.14	
		Insulation material					(L Closed cell fo	am elastome	er			
Water Heat Exch	nander	Туре					nd tube						
Condenser	langer	Water volume		1	92 / 92	104	52 / 60	60 / 60	60 / 68	68 / 68	54 / 54	54 / 57	
		Water flow rate	Nominal	l/min	3445.2	3676.8	3794.4	4249.2	4504.2	4759.2	5277.6	5760.6	
								-					
		Nominal water pressure drop	Cooling	kPa	67.64	25.92	70.09	73.40	73.40	69.77	16.52	19.31	
		Insulation material	<u> </u>					Expanded	elastomer				
		Model	Quantity		2	1	2	2	2	2	2	2	
Comprosoor			Quantity		Semi-hermetic single screw compressor								
Compressor		Type Refrigerant oil charg			32	16	32	32	32	32	32	32	
		Model		1	2	10	2	2	2	2	2	2	
0			Quantity										
Sound level		Sound Power	Cooling	dBA	105.1	103.2	104.7	105.2	106.5	106.5	105.8	106.2	
		Sound Pressure	Cooling	dBA	85.2	85.6	86	86.5	86.9	86.9	86.2	86.6	
Operation Range	9	Evaporator	Min	°CDB	-4	-4	-4	-4	-4	-4	-4	-4	
			Max	°CDB	10	10	10	10	10	10	10	10	
		Condensor	Min	°CDB	25	25	25	25	25	25	25	25	
			Max	°CDB	45	45	45	45	45	45	45	45	
Refrigerant circu	iit	Refrigerant type						R-4	10A	-	-	-	
		Refrigerant charge		kg	85	100	95	100	100	100	130	130	
				kg	85		95	100	100	100	130	130	
		No of circuits			2	1	2	2	2	2	2	2	
		Refrigerant control									Electronic expansion valve	Electronic expansion valve	
Piping connectio	ins	Evaporator water in	et/outlet		219.1mm	219.1mm	219.1mm	273.0mm	273.0mm	273.0mm	273.0mm	273.0mm	
		Condensor water in	et/outlet		5"	6"	5"	5"	5"	5"	6"	6"	
Safety Devices								High press	sure switch	1	1	1	
								01	ure switch				
									ncy stop				
					<u> </u>		High disch		ature on the o	compressor			
									monitor	001111123201			
					<u> </u>				sure ratio				
									essure drop				
									pressure	_			
Notes					Nominal co	oling capacity	and power in	out at Eurover	nt conditions: E	vaporator 12	/°C; Conden	ser 30/35°C	

3-1 TECHNICAL	SPECIFICATIONS	6		EWWQC18AJYNN	EWWQC19AJYNN	EWWQC20AJYNN			
Capacity (Eurovent)	Cooling	Nominal	kW	1,783.43	1,928.13	2,092.73			
Capacity Steps	•		%		12.5-100 (stepless)				
Nominal input (Eurovent)	Cooling		kW	408.72	441.58	475.47			
EER	•		I	4.36	4.37	4.40			
ESEER				4.82	4.89	4.87			
Casing	Colour				RAL7032				
0	Material				Galvanized and painted steel shee				
Dimensions	Unit	Height	mm		2,547	·			
		Width	mm		1,350				
		Depth	mm	4.844	4,809	4,809			
Weight	Unit	2 optil	kg	5,053	5,204	5,289			
Wolght	Operating Weight		kg	5,670	5,881	5,970			
Water Heat Exchanger	Type		ĸġ	5,070	Shell and tube	5,570			
	Initial Excitating of a tripped The minimum water content per unit should be calculated with a certain approximation using simplified formula: Q= 35.83/N x P(kW)/Delta T(°C); where: Q = minimum water content per expressed in litres; P = minimum cooling capacity of the unit expressed in kW; Delta T = evapor entering / leaving water temperature difference expressed in °C; N = number of compressors; more accurate determination of quantity of water, it is advisable to contact the designer of the period.								
Water Heat Exchanger	Туре				Shell and tube				
Evaporator	Water volume		I	495	539	527			
	Water flow rate	Nominal	l/min	5105.4	5519.4	5990.4			
	Nominal water	Cooling	kPa	89.42	98.78	122.57			
	pressure drop	-							
	Insulation material			Closed cell foam elastomer					
Water Heat Exchanger	Туре				Shell and tube				
Condenser	Water volume			61 / 61	61 / 77	77 / 77			
	Water flow rate	Nominal	l/min	6328.8	6841.2	7413.6			
	Nominal water	Cooling	kPa	16.93	17.08	15.02			
	pressure drop	g							
	Insulation material	1			Expanded elastomer				
	Model	Quantity		2	2	2			
Compressor	Туре			Semi-hermetic single screw compressor					
	Refrigerant oil char	ae	1	32 32 32					
	Model	Quantity		2	2	2			
Sound level	Sound Power	Cooling	dBA	106.6	107.1	107.5			
	Sound Pressure	Cooling	dBA	87	87.5	87.9			
Operation Range	Evaporator	Min	°CDB	-4	-4	-4			
oporation range	Lindbolator	Max	°CDB	10	10	10			
	Condensor	Min	°CDB	25	25	25			
	Condensor	Max	°CDB	45	45	45			
Refrigerant circuit	Refrigerant type	IVIAA	000	40	R-410A	45			
Reingerant circuit	Refrigerant charge		ka	130	130	130			
	Reingerant charge		kg						
	No. of circuite		kg	130	130	130			
	No of circuits			2	2	2			
	Refrigerant control				Electronic expansion valve				
Piping connections	Evaporator water in			273.0mm	273.0mm	273.0mm			
	Condensor water in	ilet/outlet			6"				
Safety Devices					High pressure switch				
					Low pressure switch				
					Emergency stop				
				High c	discharge temperature on the comp	ressor			
					Phase monitor				
					Low pressure ratio				
				High oil pressure drop					
					Low oil pressure				

3-2 ELECTRIC	CAL SPECIFICATIONS	;		EWWQ400 AJYNN	EWWQ480 AJYNN	EWWQ600 AJYNN	EWWQ650 AJYNN	EWWQ750 AJYNN	EWWQ800 AJYNN	EWWQ850 AJYNN	EWWQ900 AJYNN		
Power Supply	Name			YN									
	Phase						3	~					
	Frequency		Hz	50	50	50	50	50	50	50	50		
	Voltage		V	400	400	400	400	400	400	400	400		
	Voltage Tolerance	Minimum	%				-1	0%	•	•	•		
		Maximum	%				+1	0%					
Unit	Starting Current	•	А	455	455	455	455	656	455	656	455		
	Maximum starting cu	rrent	A	455	455	455	455	656	610	656	638		
	Nominal Running Cu	A	149	176	211	238	275	299	330	325			
	Power factor at nomi	nal conditions	A	0.85	0.87	0.89	0.90	0.89	0.85	0.90	0.86		
	Maximum Running C	urrent	A	179	214	260	294	325	358	381	393		
	Max unit current for wires sizing A			197	235	286	324	357	394	419	432		
	Recommended fuses according to IEC standard 269-2			400 A gG	400 A gG	500 A gG	630 A gG	630 A gG	400 A gG	800 A gG	400 A gG		
Compressor	Phase			3~									
	Voltage	Voltage		400	400	400	400	400	400	400	400		
	Voltage Tolerance	Minimum	%	-10%									
		Maximum	%				+1	0%					
	Starting current	•	A	455	455	455	455	656	455	656	455		
	Nominal running current (RLA)		A	149	176	211	238	275	149 / 149	330	149 / 176		
	Maximum Running C	Maximum Running Current A			225	274	310	325	189 / 189	388	189 / 225		
	Starting Method		I	Open Star-Delta									
	Recommended fuses	i		250 A gG	250 A gG	315 A gG	355 A gG	355 A gG	250 A gG / 250 A gG	500 A gG	250 A gG / 250 A gG		
Control Circuit	Phase				1	1	1	~	Ű	I	Ű		
	Voltage		V	115	115	115	115	115	115	115	115		
	Recommended fuses		I				4 A	gG	1	1	1		
	Crankcase heater (E	1/2HC)	W	250	250	250	250	400+140	250 / 250	400+140	250 / 250		
Notes	I			Allowed	voltage toler	ance ± 10%	. Voltage uni	balance betw	een phases	must be with	nin ± 3%.		
					Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Nominal current in cooling mode is referred to installation with 25kA short circuit current and is based on the following conditions: evaporator 12/7°C, condenser 30/35°C								
						Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load							
				Maximum current for wires sizing: (compressors full load ampere + fans current) x 1						x 1.1			
					Recommen	ded fuses (II	EC 269-2: 1.0	6 times large	st compress	or fuse size)			

3-2 ELECTRICA		6		EWWQC10 AJYNN	EWWQC11 AJYNN	EWWQC12 AJYNN	EWWQC13 AJYNN	EWWQC14 AJYNN	EWWQC15 AJYNN	EWWQC16 AJYNN	EWWQC17 AJYNN
Power Supply	Name						Y	N			
	Phase	Phase					3	~			
	Frequency	Frequency Hz		50	50	50	50	50	50	50	50
	Voltage	Voltage V		400	400	400	400	400	400	400	400
	Voltage Tolerance	Minimum	%	-10%							
		Maximum	%	+10%							
Unit	Starting Current A			455	656	455	455	455	455	656	656
	Maximum starting cu	imum starting current A		638	656	676	676	705	705	933	984
	Nominal Running Cu	rrent Cooling	А	352	386	387	424	450	477	551	604
	Power factor at nomi	inal conditions	А	0.87	0.92	0.88	0.89	0.90	0.90	0.89	0.90
	Maximum Running C	Current	А	428	445	474	522	556	589	650	706
	Max unit current for wires sizing		A	470	489	522	574	611	648	715	778
	Recommended fuses a	according to IEC star	ndard 269-2	400 A gG	800 A gG	500 A gG	500 A gG	630 A gG	630 A gG	800 A gG	800 A gG

1

3-2 ELECTRICA		5		EWWQC10 AJYNN	EWWQC11 AJYNN	EWWQC12 AJYNN	EWWQC13 AJYNN	EWWQC14 AJYNN	EWWQC15 AJYNN	EWWQC16 AJYNN	EWWQC17 AJYNN		
Compressor	Phase			3~									
	Voltage		V	400	400	400	400	400	400	400	400		
	Voltage Tolerance	Minimum	%	-10%									
		Maximum	%	+10%									
	Starting current		А	455	656	455	455	455	455	656	656		
	Nominal running curr	ent (RLA)	А	176 / 176	386	176 / 211	211/211	211 / 238	238 / 238	275 / 275	275 / 330		
	Maximum Running C	Maximum Running Current		225 / 225	458	225 / 274	274 / 274	274 / 310	310 / 310	325 / 325	325 / 388		
	Starting Method	Open Star-Delta											
	Recommended fuses			250 A gG / 250 A gG	630 A gG	250 A gG / 315 A gG	315 A gG / 315 A gG	315 A gG / 355 A gG	355 A gG / 355 A gG	355 A gG / 355 A gG	355 A gG / 500 A gG		
Control Circuit	Phase				•	•	. 1	~	•	•			
	Voltage V			115	115	115	115	115	115	115	115		
	Recommended fuses			4 A gG									
	Crankcase heater (E1/2HC)		W	250 / 250	400+140	250 / 250	250 / 250	250 / 250	250 / 250	400+140/ 400+140	400+140/ 400+140		
Notes	I			Allowed voltage tolerance \pm 10%. Voltage unbalance between phases must be within \pm 3%.									
				Nominal current in cooling mode is referred to installation with 25kA short circuit current and is based on the following conditions: evaporator 12/7°C, condenser 30/35°C									
					Recommen	ded fuses (II	EC 269-2: 1.0	6 times large	st compress	ompressor fuse size)			
				Maximum starting current: starting current of biggest compressor + current of the other current of the						compressor			
				Maxir	num current	for wires siz	ing: (compre	ssors full loa	id ampere +	fans current)) x 1.1		

3-2 ELECTRIC	AL SPECIFICATIONS	6		EWWQC18AJYNN	EWWQC19AJYNN	EWWQC20AJYNN					
Power Supply	Name				YN						
	Phase			3~							
	Frequency		Hz	50	50	50					
	Voltage		V	400	400	400					
	Voltage Tolerance	Minimum	%	-10%							
		Maximum	%								
Unit	Starting Current	•	А	656	656	656					
	Maximum starting cu	rrent	А	984	1,035	1,035					
	Nominal Running Cu	rrent Cooling	А	654	701	749					
	Power factor at nomi	nal conditions	А	0.90	0.91	0.92					
	Maximum Running C	urrent	А	764	824	886					
	Max unit current for	vires sizing	А	840	906	975					
	Recommended fuses according to IEC standard 269			1,000 A gG							
Compressor	Phase	Phase			3~						
	Voltage		V	400	400	400					
	Voltage Tolerance	Voltage Tolerance Minimum		-10%							
		Maximum	%		+10%						
	Starting current		А	656	656	656					
	Nominal running cur	ent (RLA)	А	330 / 330	330 / 386	386 / 386					
	Maximum Running C	urrent	A	388 / 388	388 / 458	458 / 458					
	Starting Method				Open Star-Delta						
	Recommended fuses	3		500 A gG / 500 A gG	500 A gG / 630 A gG	630 A gG / 630 A gG					
Control Circuit	Phase				1~						
	Voltage		V	115	115	115					
	Recommended fuses	6		4 A gG							
	Crankcase heater (E	1/2HC)	W	400+140 / 400+140							
Notes				Allowed voltage tolerance ±	10%. Voltage unbalance between	phases must be within ± 3%.					
				Nominal current in cooling mode is referred to installation with 25kA short circuit current and is based on the following conditions: evaporator 12/7°C, condenser 30/35°C							
				Recommended fuses (IEC 269-2: 1.6 times largest compressor fuse size)							
				Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load							
				Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1							

4 Options

Standard Configuration (furnished on basic unit)

Star Delta Compressors starter - For low inrush current and reduced starting torque.

Phase monitor - The phase monitor controls phase sequence and phase loss.

Evaporator connection water side Victaulic - Hydraulic joint with gasket for an easy and quick water connection.

Double Set Point version (CB) - Dual leaving glycol mixture temperature setpoints. The lower setpoint can go down to 0°C.

This option needs 20mm thicked evaporator insulation (option on request).

1 pass condensers for EWWQ750-850-C11AJYNN units and EWWQC16-C20AJYNN.

2 passes condensers for EWWQ400-650AJYNN UNITS and EWWQ800-C15AJYNN, and for EWWQ-AJYNN/A units.

Hour run meter - Digital compressors hour run meter.

 $\label{eq:General fault relay - Contactor for the alarm warning.$

Alarm from external device - Microprocessor is able to receive an alarm signal from an external device (pump, etc...). User can decide if this alarm signal will stop the unit or not.

Discharge line check valves

Options (on request)

Partial heat recovery - Enabled through a shell & tubes heat exchanger sited between the compressor and the condenser, completely dedicated to the heat recovery. This allows hot water to be produced up to a maximum temperature of 58°C, and to provide a very economic solution.

Evaporator electric heater - Electric heater controlled by a thermostat to protect the evaporator from freezing down to -28°C ambient temperature.

Compressor thermal overload relays - Safety devices against compressor motor overloading in addition to the normal protection envisaged by the electrical windings. Amp and Volt Meter - Digital meters of unit drawn amperes and voltage values, installed on the electrical control panel.

Power factor correction - Installed on the electrical control panel to ensure it complies with the plant rules. (Daikin advises maximum 0,9).

Flow switch - Supplied separately to be wired and installed on the evaporator water piping (by the customer).

Suction line shut-off valves - Suction shut-off valve installed on the suction part of the compressor to facilitate maintenance operations. The valve implies an increase of length equal to 150mm

Discharge line shut-off valves - Discharge shut-off valve installed on the discharge part of the compressor to facilitate maintenance operations.

Cu-Ni 90-10 condenser - To work with sea water the heat exchangers are fitted with Cu-Ni tubes and special protection inside the end covers.

Rubber type antivibration mounts - Supplied separately, these are positioned under the base of the unit for "floor" installation.

Sound proof cabinet - Made of sheet metal and internally insulated, the cabinet is "integral kind" (around the whole chiller, not only around the compressors) to reach the best performance in noise reduction.

4 Options

Current Limit / Display - This option allows to monitor the chiller absorbed current with possibility to set a limit value. This option excludes the Demand Limit. 20mm thicked evaporator insulation - Useful in really heavy operating conditions.

2 passes condensers working with 9-12 °C water ∆T for EWWQ750-850-C11AJYNN and EWWQC16-C19AJYNN units.

4 passes condensers working with 9-12 °C water △T for EWWQ400-650AJYNN and EWWQ800-C15, and for EWWQ-AJYNN/A units.

Witness tests - The units are normally tested at the test bench prior to the shipment. On request, a second test can be carried out, at customer's presence, in accordance with the procedures indicated on the test form. (Not available for units with Glycol mixtures).

Soft start - Electronic starting device to prevent mechanical stress of the motor. An overload protection is included (no need of compressors thermal relays); soft start causes an increase of length equal to 100mm only on the following versions: C19AJYNN, C20AJYNN, C19AJYNN/A, C20AJYNN/A, C22AJYNN/A

Over / Under Voltage - Phase monitor to control the minimum and maximum voltage value that the user can set.

Supervising systems (on request)

PlantVisor[™]:

Solution for tele-maintenance and supervisory

MicroTech II C Plus can be monitored locally or via modem or GSM by PlantVisorTM supervision program. PlantVisorTM is compatible with all Windows based systems.

- It allows the followings functions:
- Unit status monitoring
- Circuits status monitoring
- Set-points modification
- Alarms display

MicroTech II C Plus remote control

MicroTech II C Plus is able to communicate to BMS (Building Management System) based on the most common protocols as:

- CARELNative
- ModbusRTU
- LonWorks, now also based on the international 8040 Standard Chiller Profile and LonMark Technology
- BacNet BTP certifief over IP and MS/TP (class 4)
- Ethernet TCP/IP and SNM.

Chiller Sequencing

MicroTech II control family allows an easy plug-in sequencing technology based on digital or serial field panel.

CSC II (Chiller System Controller II)

Serial sequences for up to 5 MTII chillers. Full featured field serial device to sequence, optimize and monitor a small group of Daikin chillers (check your catalogue for compatibility and features). Monitorable by Plant Visor.

5 - 1 Cooling capacity tables

EWWQ400-800AJYNN

	np. ° C			E	intering cond	denser wate	er temperatu	re (∆T=5°C	.)		
Unitcizo	water ten	1	20	2	5	3	0	3	5		10
Unit size		Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)						
	4	398.3	68.4	377.5	77.4	353.9	86.9	328.0	96.9	300.5	107.6
	5	410.0	68.5	389.1	77.6	365.1	87.1	338.8	97.1	310.8	107.8
	6	422.0	68.6	400.8	77.7	376.4	87.2	349.8	97.2	321.3	107.9
400	7	434.1	68.7	412.6	77.9	388.0	87.4	360.9	97.4	332.1	108.1
	8	446.5	68.8	424.5	78.0	399.7	87.5	372.2	97.6	343.0	108.2
	9	459.0	68.9	436.7	78.1	411.5	87.7	383.7	97.7	354.1	108.4
	10	471.8	69.0	449.0	78.2	423.4	87.8	395.4	97.9	365.3	108.5
	4	486.6	83.2	461.4	94.2	432.7	105.7	401.3	117.9	367.9	131.0
	5	500.7	83.4	475.4	94.4	446.4	105.9	414.4	118.1	380.5	131.1
	6	515.0	83.5	489.7	94.5	460.1	106.1	427.8	118.3	393.4	131.3
480	7	529.5	83.6	503.8	94.7	474.1	106.3	441.3	118.5	406.4	131.5
	8	544.3	83.7	518.0	94.9	488.4	106.5	455.1	118.7	419.7	131.7
	9	559.3	83.8	532.6	95.0	502.4	106.6	469.0	118.9	433.1	131.9
	10	574.5	83.9	547.3	95.2	516.7	106.8	483.2	119.1	446.8	132.1
	4	589.3	102.2	559.2	115.6	524.9	129.7	487.3	144.8	447.2	160.9
	5	606.5	102.3	575.9	115.8	541.2	130.0	503.0	145.0	462.4	161.1
	6	624.1	102.5	592.9	116.0	557.7	130.2	519.0	145.2	477.8	161.3
600	7	642.0	102.7	610.2	116.2	574.4	130.4	535.2	145.5	493.5	161.5
	8	660.1	102.8	627.8	116.4	591.3	130.7	551.7	145.7	509.4	161.8
	9	678.6	103.0	645.6	116.6	608.6	130.9	568.3	146.0	525.5	162.0
	10	697.4	103.1	663.8	116.8	626.1	131.1	585.2	146.2	541.9	162.2
	4	668.2	115.8	634.2	131.0	595.2	147.1	552.3	164.1	506.8	182.5
	5	687.7	116.0	653.1	131.3	613.9	147.3	570.3	164.4	524.0	182.7
	6	707.6	116.2	672.4	131.5	632.6	147.6	588.5	164.7	541.6	182.9
650	7	727.8	116.4	691.9	131.7	651.5	147.9	607.1	164.9	559.5	183.2
	8	748.3	116.5	711.8	132.0	670.7	148.1	625.9	165.2	577.6	183.4
	9	769.2	116.7	732.0	132.2	690.2	148.4	644.7	165.5	596.0	183.7
	10	790.4	116.8	752.5	132.4	710.0	148.6	663.8	165.7	614.8	183.9
	4	754.4	135.4	715.0	150.9	673.3	166.6	629.7	183.1	584.2	200.9
	5	778.5	136.3	738.4	151.9	695.8	167.7	651.2	184.2	604.6	202.1
	6	803.0	137.1	762.1	152.9	718.8	168.8	673.1	185.3	609.3	199.9
750	7	828.0	137.9	786.3	153.8	742.1	169.7	695.5	186.4	613.3	197.4
0.770	8	853.4	138.6	810.9	154.6	765.8	170.6	718.3	187.3	616.6	194.6
	9	879.1	139.1	836.0	155.2	789.9	171.3	741.4	188.1	619.0	191.4
	10	905.2	139.5	861.2	155.7	814.4	171.9	764.9	188.7	620.6	187.9
	4	834.9	137.2	790.0	155.3	739.3	174.2	684.1	194.2	625.7	215.6
	5	860.7	137.4	814.9	155.6	763.3	174.6	707.2	194.6	647.6	215.9
	6	887.1	137.6	840.3	155.9	787.7	174.9	730.5	194.9	670.1	216.2
800	7	100000000		866.2				754.3			
000		913.9	137.8		156.1	812.5	175.2		195.2	693.0	216.5
	8	941.2	137.9	892.5	156.4	837.9	175.5	778.6	195.6	716.2	216.8
	9	968.9	138.1	919.4	156.6	863.7	175.8	803.4	195.9	739.8	217.2
	10	997.1	138.2	946.7	156.9	890.0	176.1	828.6	196.3	763.9	217.5

5 - 1 Cooling capacity tables

EWWQ850-C13AJYNN

	ater	12 12				the second s	er temperatu				
	d wa	2	20	2!	5	3	0	3	5	40	
Unit size	Leaving chilled water temp. ° C	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)
1	4	895.9	165.4	849.1	183.3	799.8	202.0	747.7	220.9	632.7	226.2
	5	924.0	166.5	876.4	184.6	826.1	203.5	772.9	222.5	636.1	223.4
	6	952.6	167.7	904.3	185.9	852.8	205.0	798.4	224.1	638.6	220.3
850	7	981.8	168.7	932.4	187.2	880.1	206.4	824.5	225.6	640.1	216.9
	8	1011.4	169.8	960.9	188.5	907.7	207.8	851.0	227.1	640.6	213.2
	9	1041.3	170.8	990.0	189.6	935.6	209.1	877.9	228.5	647.3	210.8
	10	1071.5	171.7	1019.5	190.7	964.0	210.3	905.2	229.8	645.8	206.5
	4	915.2	151.9	866.8	172.0	811.9	192.9	752.1	215.1	688.9	238.9
	5	943.1	152.2	893.7	172.3	837.9	193.3	777.0	215.5	712.7	239.2
	6	971.4	152.4	921.1	172.6	864.3	193.7	802.4	215.9	737.0	239.5
900	7	1000.2	152.6	949.1	172.9	891.2	194.0	828.3	216.2	761.8	239.9
	8	1029.4	152.8	977.3	173.2	918.5	194.4	854.6	216.6	787.0	240.2
	9	1058.8	153.0	1006.0	173.5	946.4	194.7	881.4	217.0	812.6	240.6
	10	1088.5	153.1	1035.2	173.7	974.6	195.0	908.6	217.4	838.7	241.0
	4	1007.1	166.8	953.4	188.7	892.8	211.7	826.7	236.1	757.0	262.2
	5	1037.8	167.0	983.2	189.1	921.5	212.2	854.3	236.5	783.3	262.6
	6	1068.9	167.3	1013.6	189.5	950.7	212.6	882.4	237.0	810.1	263.0
C10	7	1100.6	167.5	1044.2	189.8	980.4	213.0	911.0	237.4	837.5	263.3
	8	1132.8	167.8	1075.3	190.1	1010.8	213.4	940.0	237.8	865.4	263.7
	9	1165.4	168.0	1107.0	190.4	1041.3	213.7	969.6	238.2	893.8	264.1
	10	1198.6	168.1	1139.2	190.7	1072.4	214.1	999.8	238.6	922.6	264.5
	4	1049.2	196.8	993.7	217.7	934.8	239.7	873.1	261.9	638.5	242.9
	5	1082.2	198.3	1025.4	219.4	965.6	241.7	902.6	263.9	638.2	238.5
	6	1115.8	199.8	1057.8	221.2	996.6	243.6	932.7	266.0	644.7	235.8
C11	7	1149.8	201.3	1090.7	222.9	1028.1	245.5	963.2	268.1	642.1	230.9
· · ·	8	1184.4	202.8	1124.1	224.7	1060.2	247.4	993.9	270.1	646.9	227.8
	9	1219.6	204.4	1157.9	226.4	1092.9	249.3	1025.1	272.1	650.9	224.6
	10	1255.4	205.9	1192.3	228.1	1125.9	251.2	1056.7	274.1	654.1	221.1
	4	1105.9	185.5	1048.3	209.9	982.9	235.6	911.5	262.8	835.8	291.9
	5	1139.0	185.8	1080.3	210.3	1013.9	236.0	941.4	263.2	864.4	292.3
	6	1172.0	186.1	1113.0	210.3	1045.4	236.5	971.8	263.7	893.6	292.7
C12	7	1205.5	186.4	1145.9	211.1	1077.4	236.9	1002.6	264.1	923.4	293.1
012	8	1239.6	186.6	1178.9	211.4	1110.0	237.3	1034.0	264.6	953.6	293.6
	9	1274.1	186.8	1212.4	211.8	1143.0	237.7	1065.9	265.0	984.2	294.0
	10	1309.2	187.0	1246.5	212.1	1175.8	238.1	1098.3	265.5	1015.4	294.4
	4	1243.7	205.0	1176.3	231.9	1100.6	260.2	1038.3	200.2	931,4	322.3
	1 22			10000000000	100000000000000000000000000000000000000		70.000.070			202023202	2.150.2012
	5	1282.4	205.3	1213.6	232.4	1136.4	260.7	1052.5	290.7	964.2	322.8
	6	1320.3	205.6	1251.6	232.8	1172.9	261.2	1087.7	291.2	997.6	323.2
C13	7	1359.0	205.9	1290.0	233.3	1210.1	261.7	1123.4	291.7	1031.8	323.7
	8	1398.3	206.2	1328.0	233,7	1248.0	262.2	1159.7	292.2	1066.6	324,2
	9	1438.4	206.5	1366.7	234.0	1286.5	262.7	1196.7	292.8	1102.1	324.7
	10	1479.2	206.7	1406.0	234.4	1324.4	263.1	1234.4	293.3	1138.1	325.2

5 - 1 Cooling capacity tables

EWWQC14-C19AJYNN

	er	41. 				denser wate	er temperatu	re (∆T=5°C	.)		10.
	d wat	2	20	25	5	3	0	3	5	4	40
Unit size	Leaving chilled water temp.°C	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)						
	4	1315.5	218.6	1246.1	247.3	1167.1	277.5	1080.3	309.5	989.0	343.8
	5	1355.4	218.9	1284.6	247.8	1204.8	278.0	1116.6	310.0	1023.6	344.3
	6	1395.3	219.2	1323.8	248.2	1242.7	278.5	1153.6	310.6	1058.9	344.8
C14	7	1435.9	219.5	1363.6	248.7	1281.1	279.0	1191.2	311.1	1094.8	345.3
	8	1477.3	219.8	1403.5	249.1	1320.2	279.6	1229.1	311.6	1131.5	345.8
	9	1519.6	220.1	1444.0	249.5	1359.9	280.1	1267.3	312.2	1168.8	346.3
	10	1562.7	220.3	1485.5	249.9	1399.7	280.5	1306.2	312.7	1206.8	346.8
	4	1387.3	232.1	1316.0	262.7	1233.6	294.8	1142.6	328.8	1046.5	365.3
	5	1428.4	232.5	1355.6	263.2	1273.3	295.3	1180.7	329.4	1083.0	365.8
	6	1470.2	232.8	1396.0	263.6	1312.5	295.9	1219.5	329.9	1120.2	366.3
C15	7	1512.7	233.2	1437.1	264.1	1352.1	296.4	1259.0	330.5	1157.9	366.8
00609	8	1556.2	233.5	1478.9	264.5	1392.4	296.9	1298.6	331.1	1196.3	367.4
	9	1600.8	233.7	1521.4	264.9	1433.4	297.4	1338.0	331.6	1235.5	367.9
	10	1646.2	234.0	1565.0	265.4	1475.1	297.9	1378.1	332.1	1275.5	368.4
	4	1512.7	271.2	1433.9	302.3	1350.6	333.8	1263.2	366.8	1172.2	402.7
	5	1560.7	273.0	1480.7	304.4	1395.5	336.0	1306.3	369.1	1192.1	400.6
	6	1609.7	274.6	1528.1	306.3	1441.4	338.1	1350.1	371.3	1200.7	396.0
C16	7	1659.5	276.1	1576.3	308.0	1488.1	340.0	1394.8	373.3	1196.5	388.4
010	8	1710.1	277.4	1625.4	309.5	1535.4	341.6	1440.3	375.1	1201.6	382.4
	9	1761.2	278.5	1675.3	310.8	1583.4	343.1	1486.6	376.6	1217.3	378.3
	10	1813.1	279.3	1725.7	311.8	1632.3	344.2	1533.5	377.7	1219.5	370.8
	4	1647.5	300.1	1563.0	333.5	1473.3	368.0	1378.8	403.5	1226.0	428.3
	5	1698.9	302.1	1612.8	335.8	1521.5	370.6	1425.0	406.2	1239.5	424.5
	6	1750.9	304.0	1663.5	338.1	1570.6	373.0	1472.0	408.8	1246.5	419.2
C17	7	1803.8	305.8	1715.0	340.2	1620.3	375.4	1519.8	411.3	1251.8	413.3
017	8	1857.4	307.5	1767.0	342.1	1670.8	377.6	1568.5	413.6	1262.3	408.3
	9	1911.1	309.0	1819.7	343.9	1721.9	379.6	1617.7	415.8	1264.2	401.0
	10	1965.5	310.2	1873.0	345.5	1773.5	381.4	1667.6		1204.2	394.8
	4								417.7	- Internet and the	ACAULT 101
	5	1812.6	327.2	1719.9	362.9	1622.1	400.6	1517.9	438.6	1407.3	475.6
		1869.3	329.3	1774.8	365.4	1675.1	403.4	1568.9	441.6	1443.7	476.2
040	6	1926.9	331.3	1830.6	367.8	1728.8	406.1	1620.8	444.6	1454.6	471.6
C18	7	1985.5	333.3	1887.3	370.2	1783.4	408.7	1673.4	447.5	1463.7	466.4
	8	2044.3	335.1	1944.9	372.4	1839.0	411.3	1726.6	450.2	1470.9	460.6
	9	2103.8	336.8	2003.3	374.5	1895.3	413.7	1780.7	452.8	1476.1	454.1
	10	2164.2	338.3	2061.7	376.4	1952.5	415.9	1835.6	455.2	1479.2	446.8
	4	1958.7	353.5	1860.6	392.0	1755.9	432.9	1645.1	474.5	1528.7	515.2
	5	2018.9	355.7	1918.9	394.6	1812.7	435.8	1699.6	477.7	1574.8	517,3
	6	2079.8	357.8	1978.2	397.1	1870.0	438.8	1755.1	480.9	1602.1	515.5
C19	7	2141.2	359.9	2038.4	399.6	1928.1	441.6	1811.6	484.1	1635.1	514.6
	8	2203.2	361.9	2099.1	402.1	1987.2	444.4	1868.5	487.1	1652.3	510,4
	9	2265.7	363.8	2160.3	404.4	2047.0	447.1	1926.1	490.0	1652.0	502.5
	10	2329.0	365.6	2222.0	406.7	2107.3	449.7	1984.5	492.9	1657.2	495.5

5 - 1 Cooling capacity tables

EWWQC20AJYNN

	7			E	ntering con	denser wate	er temperatu	re (∆T=5°C)		
	d water C	2	20		25		30		35		10
Unit size	Leaving chilled v temp.°C	Cool. cap. (kW)	Pow. Input (KW)								
1 1	4	2125.8	380.6	2019.3	421.8	1905.9	466.0	1785.8	511.2	1661.7	555.5
	5	2190.7	382.9	2082.8	424.6	1967.1	469.2	1845.2	514.7	1718.5	559.2
	6	2256.1	385.2	2147.5	427.3	2029.4	472.3	1905.7	518.2	1776.4	562.8
C20	7	2322.6	387.4	2211.8	430.1	2092.7	475.5	1966.5	521.6	1835.2	566.5
	8	2390.2	389.7	2277.2	432.8	2157.0	478.6	2028.3	525.0	1831.6	557.9
	9	2459.1	391.9	2343.6	435.5	2221.0	481.7	2091.2	528.4	1841.1	551.8
	10	2529.0	394.2	2411.1	438.2	2286.0	484.7	2154.9	531.8	1848.5	545.0

5 - 2 Capacity correction factor

Operating limits

EWWQ-AJYNN & AJYNN/A	/WQ-AJYNN & AJYNN/A	
Max evaporator water △T	°C	6
Min evaporator water △T	°C	4
Max condenser water △T	°C	8
Min condenser water △T	°C	4

Evaporator fouling factors

Fouling factors $m^2 °C/ kW$	Cooling capacity correction factor	Power input correction factor	EER Correction factor
0,0176	1,000	1,000	1,000
0,0440	0,978	0,986	0,992
0.0880	0,957	0.974	0,983
0,1320	0,938	0,962	0,975

Condenser fouling factors

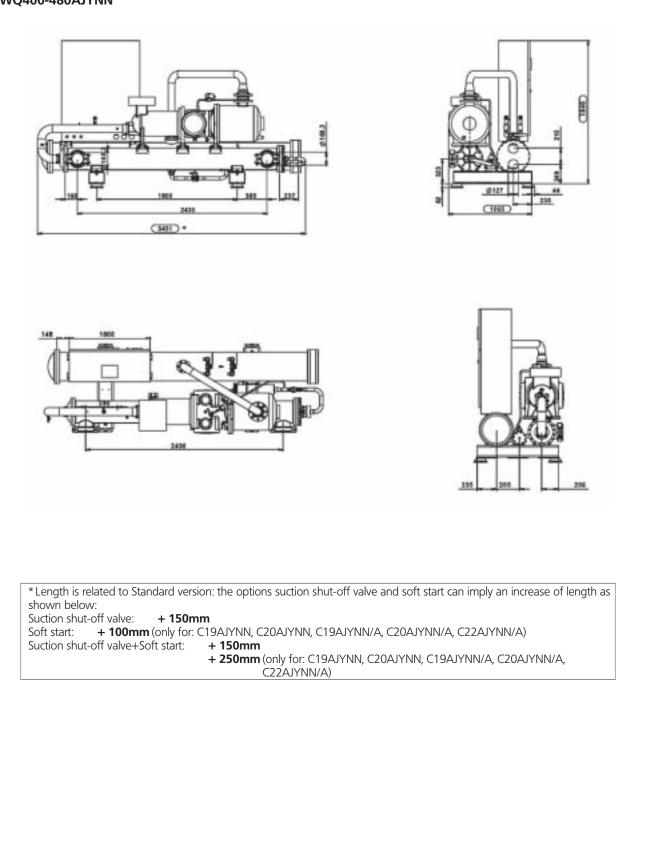
Fouling factors m ² °C/kW	Cooling capacity correction factor	Power input correction factor	EER Correction factor	
0,044	1,000	1,000	1,000	
0,088	0,990	1,018	0,973	
0,132	0,981	1,036	0,945	

Ethylene glycol and low ambient temperature correction factors

Air ambient temperature (°C)	-3	-8	-15	-23	-35
% of ethylene glycol by weight	10	20	30	40	50
Cooling capacity correction factor	0,991	0,982	0,972	0,961	0,946
Power input correction factor	0,996	0,992	0,986	0,976	0,966
Flow rate correction factor	1,013	1,040	1,074	1,121	1,178
Water pressure drops correction factor	1,070	1,129	1,181	1,263	1,308

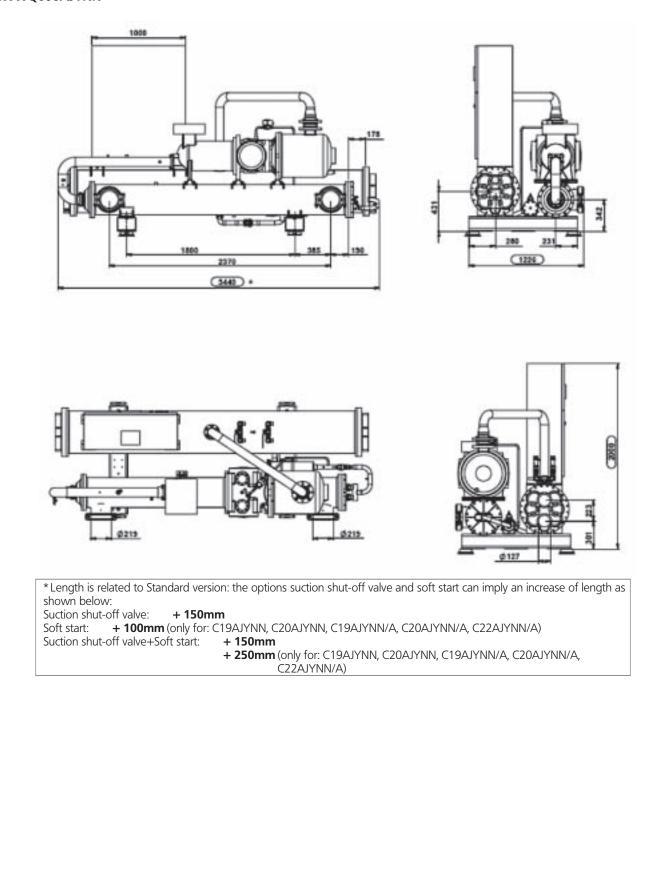
Low temperature operation performance factors

Ethylene glycol/water leaving temperature °C	3	2	0	-2	-4	-6	-8
Min. % of ethylene glycol	10	10	20	20	30	30	30
Cooling capacity correction factor	0,882	0,853	0,799	0,747	0,697	0,650	0,604
Power input compressors correction factor	0,977	0,971	0,960	0,947	0,934	0,919	0,903


5 - 3 Partial heat recovery ratings

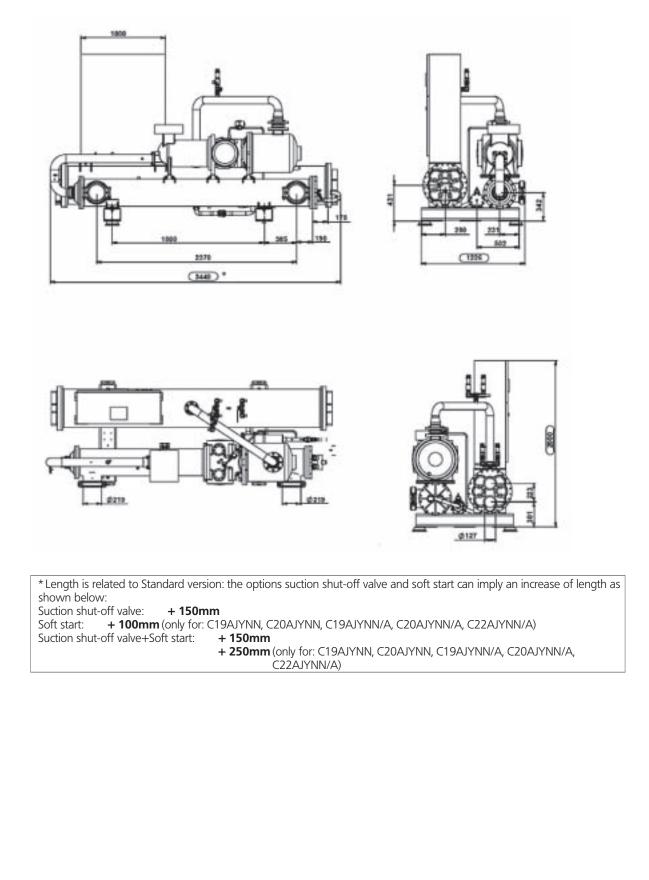
EWWQ-AJYNN

Unit size	Heat reco	overy leaving water temperature	(∆T=5°C)	
	45	50	55	
	Heating capacity	Heating capacity	Heating capacity	
400	54.2	38.5	23.6	
480	66.2	48.0	30.6	
600	83.0	60.3	38.5	
650	88.9	64.6	41.1	
750 0.5	119.3	89.7	61.4	
- ∆T 35°C	114.3	81.4	49.9	
e 7°C ture	145.5	112.5	79.9	
ature 006	129.3	93.9	60.2	
C10 Januar	137.2	99.3	63.0	
er ter vate	174.5	136.9	100.7	
Ving v	157.4	114.8	74.1	
C13 ving	172.3	122.0	74.1	
C14 esua	185.3	134.7	86.6	
Line Condenser leaving water temperature 7°C - ∆T 5°C Condenser leaving water temperature 35°C	194.0	137.5	83.7	
C16 deva	254.4	191.1	131.3	
C17	282.0	214.1	149.7	
C18	301.0	226.6	155.9	
C19	318.7	240.6	166.4	
C20	344.4	257.9	175.7	

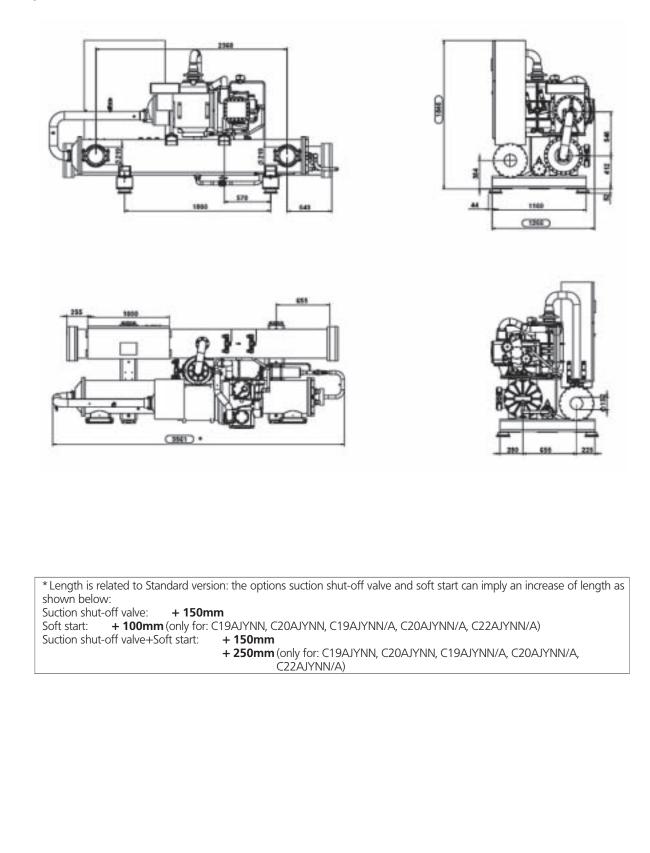

6 - 1 Dimensional drawing

EWWQ400-480AJYNN

6 - 1 Dimensional drawing


EWWQ600AJYNN

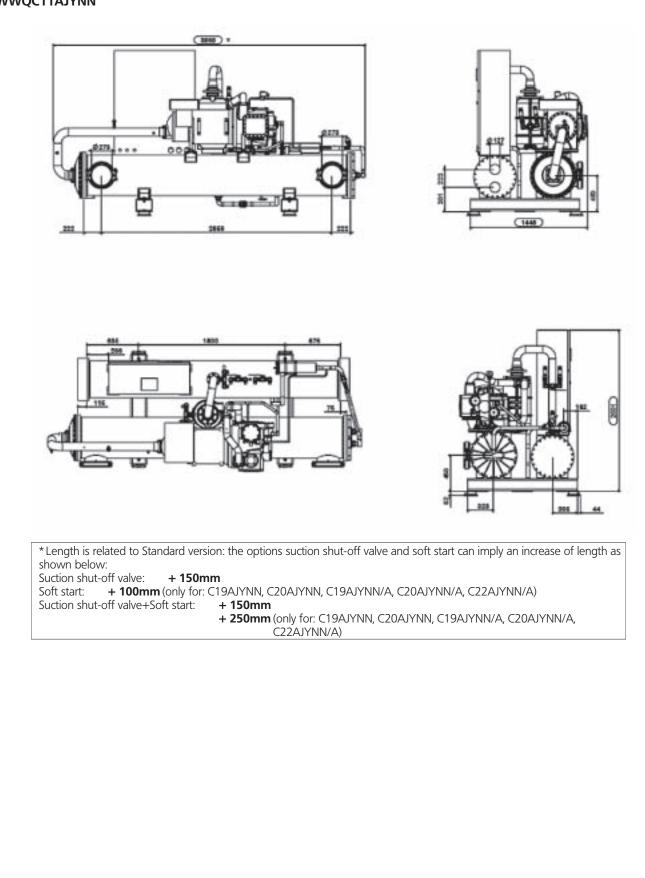
6 - 1 Dimensional drawing


EWWQ650AJYNN

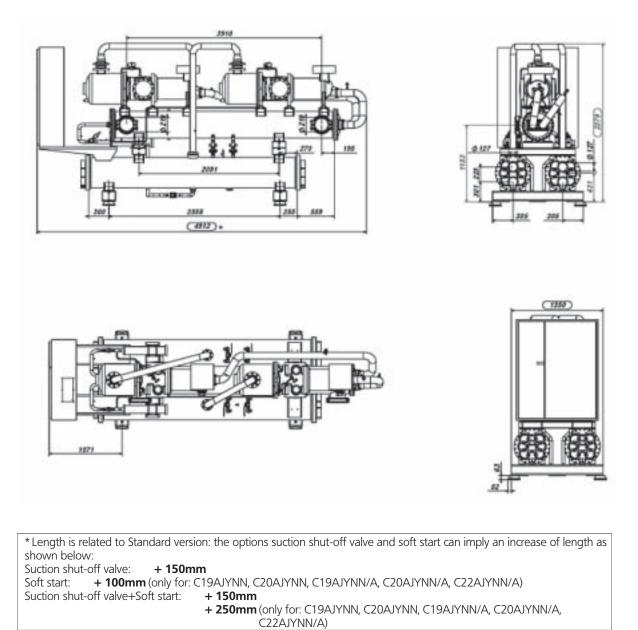
1


6 - 1 Dimensional drawing

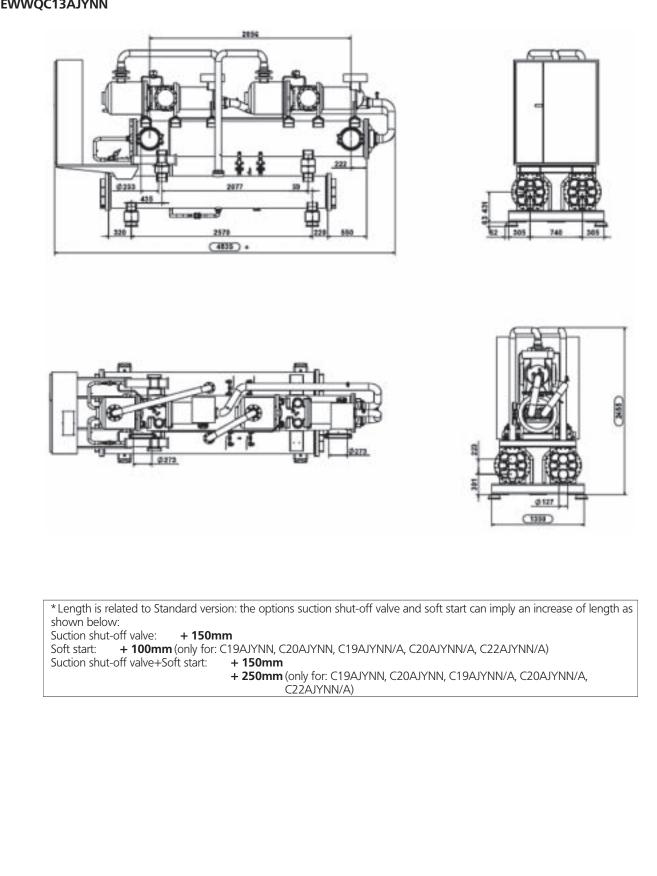
EWWQ750-850AJYNN


6 - 1 Dimensional drawing

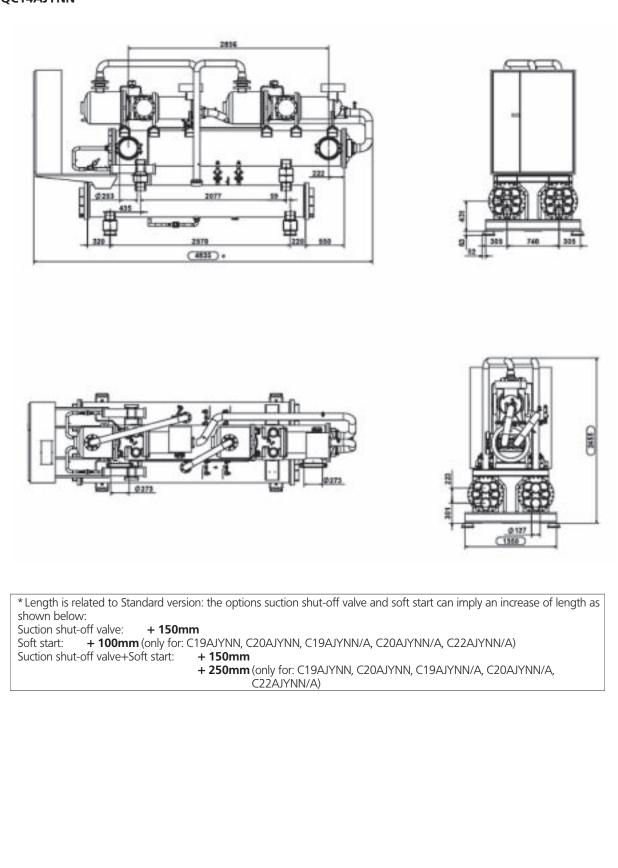
EWWQ800-900-C10AJYNN


6 - 1 Dimensional drawing

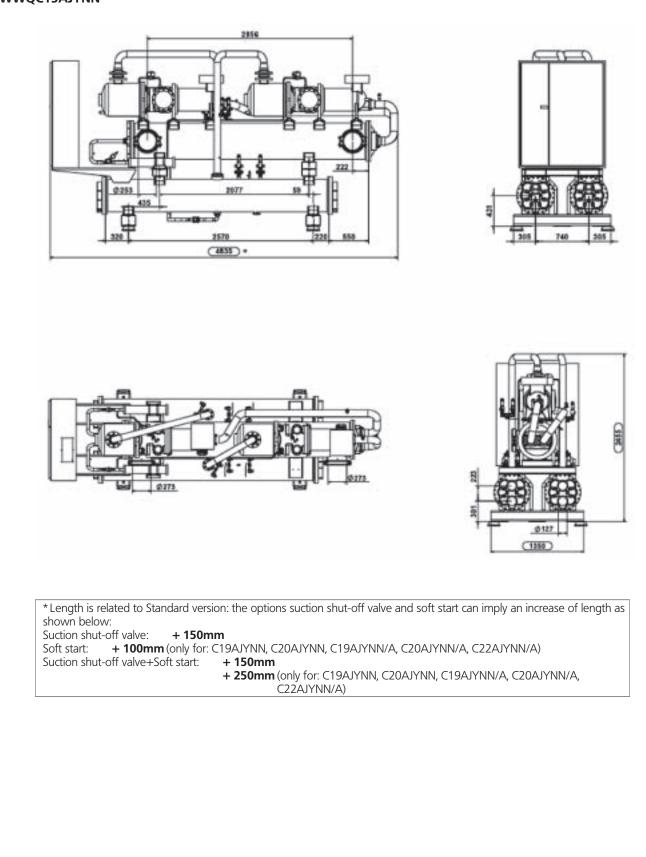
EWWQC11AJYNN


6 - 1 **Dimensional drawing**

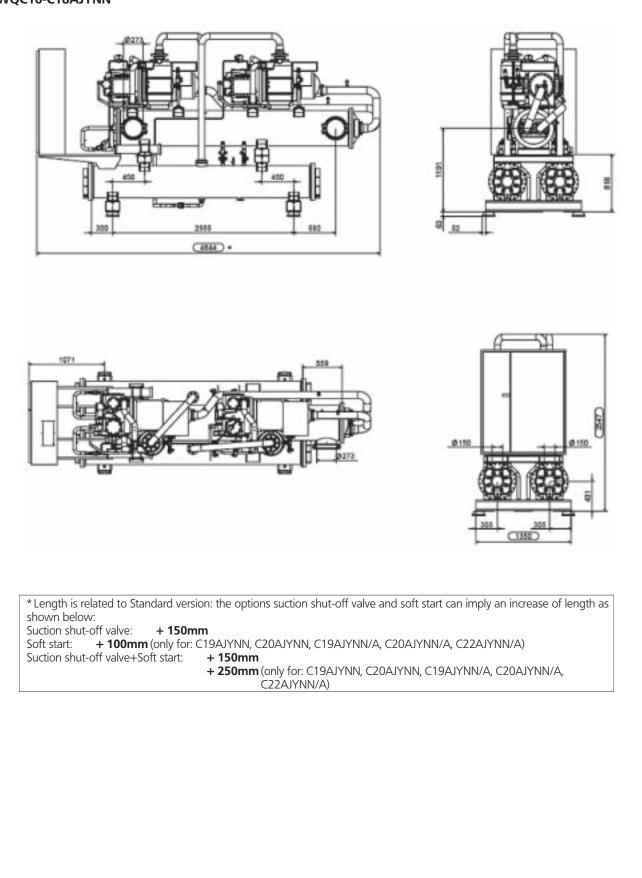
EWWQC12AJYNN


6 - 1 **Dimensional drawing**

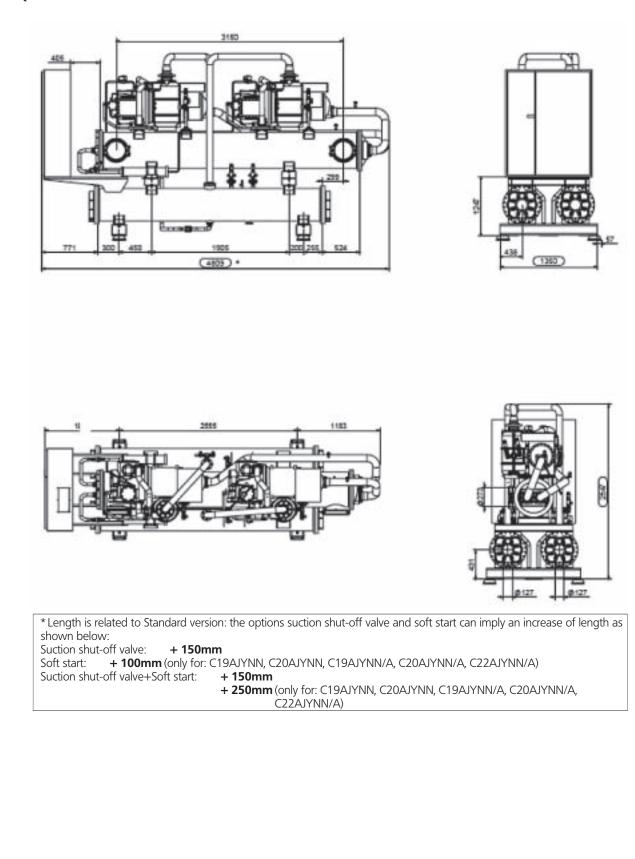
EWWQC13AJYNN


6 - 1 Dimensional drawing

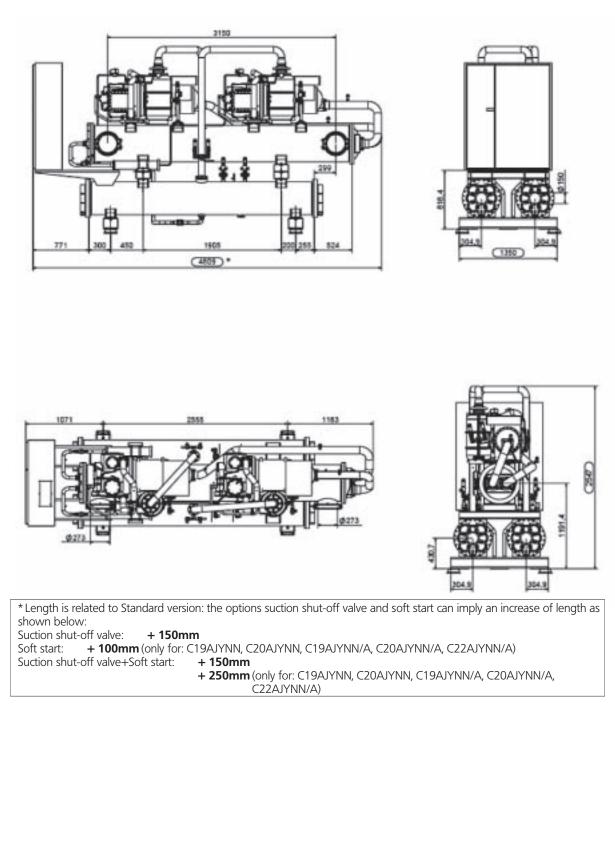
EWWQC14AJYNN


6 - 1 Dimensional drawing

EWWQC15AJYNN


6 - 1 Dimensional drawing

EWWQC16-C18AJYNN


6 - 1 Dimensional drawing

EWWQC19AJYNN

6 - 1 Dimensional drawing

EWWQC20AJYNN

7 Sound data

7 - 1 Sound pressure spectrum

SOUND PRESSURE LEVEL EWWQ-AJYNN

	Sound pressure level at 1 m from the unit in semispheric free field (rif. 2 x 10 ⁻⁵ Pa)									
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
400	55.1	59.4	71.6	84.1	71.9	72.5	58.5	53.2	82.2	100.2
480	55.9	60.2	72.4	84.9	72.7	73.3	59.3	54	83.0	101.2
600	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.3
650	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.3
750	56,1	60,4	72,6	85,1	72,9	73,5	59,5	54,2	83,2	101.5
800	56,9	61,2	73,4	85,9	73,7	74,3	60,3	55,0	84,0	104.7
850	57,8	62,1	74,3	86,8	74,6	75,2	61,2	55,9	84,9	102.3
900	58.1	62.4	74.6	87.1	74.9	75.5	61.5	56.2	85.2	104.7
C10	58.1	62.4	74.6	87.1	74.9	75.5	61.5	56.2	85.2	105.1
C11	58.5	62.8	75	87.5	75.3	75.9	61.9	56.6	85.6	103.2
C12	58.9	63.2	75.4	87.9	75.7	76.3	62.3	57	86.0	104.7
C13	59.4	63.7	75.9	88.4	76.2	76.8	62.8	57.5	86.5	105.2
C14	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C15	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C16	59,1	63,4	75.6	88,1	75,9	76,5	62.5	57.2	86,2	105.8
C17	59,5	63,8	76,0	88,5	76,3	76,9	62,9	57,6	86,6	106.2
C18	59,9	64,2	76,4	88,9	76,7	77,3	63,3	58,0	87,0	106.6
C19	60,4	64,7	76,9	89,4	77,2	77,8	63,8	58,5	87,5	107.1
C20	60,8	65,1	77,3	89,8	77,6	78,2	64,2	58,9	87,9	107.5

Note: The values are according to ISO3744 and are referred to: evaporator 12/7° C, condensor 30/35° C, full load operation.

SOUND PRESSURE LEVEL EWWQ-AJYNN/A

	Sound p	ressure level a	at 1 m from t	he unit in sen	nispheric free	field (rif. 2 x 1	I0 ⁻⁵ Pa)			power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
440	55.1	59.4	71.6	84.1	71.9	72.5	58.5	53.2	82.2	100.9
550	55.9	60.2	72.4	84.9	72.7	73.3	59.3	54	83.0	101.7
650	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.6
750	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.7
800	56,1	60,4	72,6	85,1	72,9	73,5	59,5	54,2	83,2	102.0
950	56,9	61,2	73,4	85,9	73,7	74,3	60,3	55,0	84,0	102.9
C10	58.5	62.8	75	87.5	75.3	75.9	61.9	56.6	85.6	105.2
C11	57,8	62,1	74,3	86,8	74,6	75,2	61,2	55,9	84,9	103.8
C12	58.9	63.2	75.4	87.9	75.7	76.3	62.3	57.0	86.0	105.6
C13	59.4	63.7	75.9	88.4	76.2	76.8	62.8	57.5	86.5	106.1
C14	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C15	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C16	59,1	63,4	75,6	88,1	75,9	76,5	62,5	57,2	86,2	105.8
C18	59,5	63,8	76,0	88,5	76,3	76,9	62,9	57,6	86,6	106.2
C19	59,9	64,2	76,4	88,9	76,7	77,3	63,3	58,0	87,0	106.6
C20	60,4	64,7	76,9	89,4	77,2	77,8	63,8	58,5	87,5	107.1
C22	60,8	65,1	77,3	89,8	77,6	78,2	64,2	58,9	87,9	107.5

Note: The values are according to ISO3744 and are referred to: evaporator 12/7° C, condensor 30/35° C, full load operation.

7 Sound data

7 - 2 Sound pressure correction factors for different distances

EWWQ-AJYNN

			Distan	ice (m)		
Unit size	1	5	10	15	20	25
400	0	-7.9	-12.7	-15.8	-18.1	-19.8
480	0	-7.9	-12.7	-15.8	-18.1	-19.8
600	0	-7.9	-12.7	-15.8	-18.1	-19.8
650	0	-7.9	-12.7	-15.8	-18.1	-19.8
750	0	-7.9	-12.7	-15.8	-18.1	-19.8
800	0	-7.5	-12.2	-15.3	-17.5	-19.3
850	0	-7.9	-12.7	-15.8	-18.1	-19.8
900	0	-7.5	-12.2	-15.3	-17.5	-19.3
C10	0	-7.5	-12.2	-15.3	-17.5	-19.3
C11	0	-7.9	-12.7	-15.8	-18.1	-19.8
C12	0	-7.5	-12.2	-15.3	-17.5	-19.3
C13	0	-7.5	-12.2	-15.3	-17.5	-19.3
C14	0	-7.5	-12.2	-15.3	-17.5	-19.3
C15	0	-7.5	-12.2	-15.3	-17.5	-19.3
C16	0	-7.5	-12.2	-15.3	-17.5	-19.3
C17	0	-7.5	-12.2	-15.3	-17.5	-19.3
C18	0	-7.5	-12.2	-15.3	-17.5	-19.3
C19	0	-7.5	-12.2	-15.3	-17.5	-19.3
C20	0	-7.5	-12.2	-15.3	-17.5	-19.3

Note: The values are dB(A) (pressure level).

EWWQ-AJYNN/A

			Distan	ice (m)		
Unit size	1	5	10	15	20	25
440	0	-7.9	-12.7	-15.8	-18.1	-19.8
550	0	-7.9	-12.7	-15.8	-18.1	-19.8
650	0	-7.9	-12.7	-15.8	-18.1	-19.8
750	0	-7.9	-12.7	-15.8	-18.1	-19.8
800	0	-7.9	-12.7	-15.8	-18.1	-19.8
950	0	-7.9	-12.7	-15.8	-18.1	-19.8
C10	0	-7.5	-12.2	-15.3	-17.5	-19.3
C11	0	-7.9	-12.7	-15.8	-18.1	-19.8
C12	0	-7.5	-12.2	-15.3	-17.5	-19.3
C13	0	-7.5	-12.2	-15.3	-17.5	-19.3
C14	0	-7.5	-12.2	-15.3	-17.5	-19.3
C15	0	-7.5	-12.2	-15.3	-17.5	-19.3
C16	0	-7.5	-12.2	-15.3	-17.5	-19.3
C18	0	-7.5	-12.2	-15.3	-17.5	-19.3
C19	0	-7.5	-12.2	-15.3	-17.5	-19.3
C20	0	-7.5	-12.2	-15.3	-17.5	-19.3
C22	0	-7.5	-12.2	-15.3	-17.5	-19.3

Note: The values are dB(A) (pressure level).

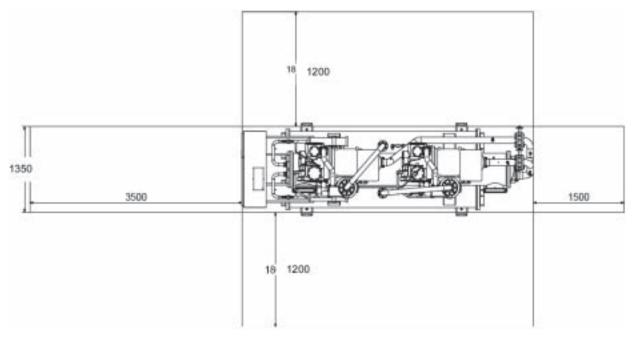
8 Installation

8 - 1 Installation method

Warning

Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations, and who are experienced with this type of equipment. Must be avoided the unit installation in places that could be considered dangerous for all the maintenance operations.

Handling


The chiller is mounted on heavy wooden skids to protect the unit from accidental damage and to permit easy handling and moving. It is recommended that all moving and handling be performed with the skids under the unit when possible and that the skids not be removed until the unit is in the final location. Spreader bars must be used to protect the control cabinet and the other areas of the chiller.

Location

A levelled and sufficiently strong floor is required. A levelled and sufficiently strong floor is required. If necessary, additional structural members should be provided to transfer the weight of the unit to the nearest beams.

Rubber-in-shear isolators can be furnished and field placed under each corner of the package. A rubber anti-skid pad should be used under isolators if hold-down bolts are not used. Vibration isolator in all water piping connected to the chiller are recommended to avoid straining the piping and transmitting vibration and noise.

Minimum space requirements

8 Installation

8 - 2 Water charge, flow and quality

Water content in cooling circuits

The cooled water distribution circuits should have a minimum water content to avoid excessive compressor's starts and stops.

In fact, each time the compressor starts up, an excessive quantity of oil goes from the compressor sump and simultaneously there is a rise in the temperature of the compressor motor's stator, due to the inrush current during the start-up. To prevent damage to the compressors, Daikin has envisaged the application of a device to limit frequent stops and restarts.

During the span of one hour there will be no more than 6 starts of the compressor. The plant side should therefore ensure that the overall water content allows a more constant functioning of the unit and consequently greater environmental comfort. The minimum installation water content envisaged should be calculated with a certain approximation using this simplified formula:

(1)
$$Q = 35,83 \times \frac{P(kW)}{T(C)} \times \frac{1}{N}$$

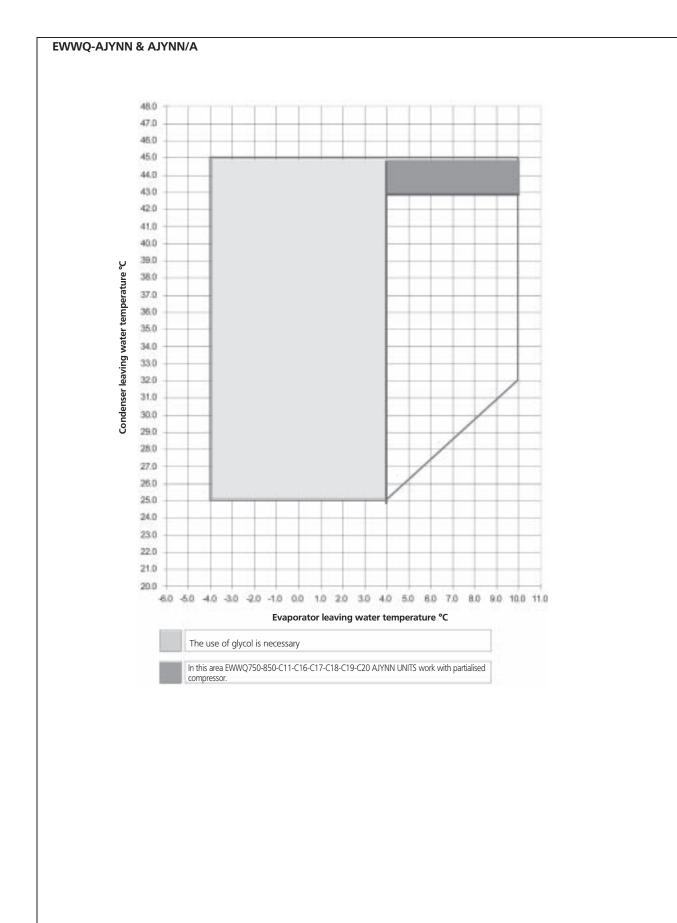
'

8

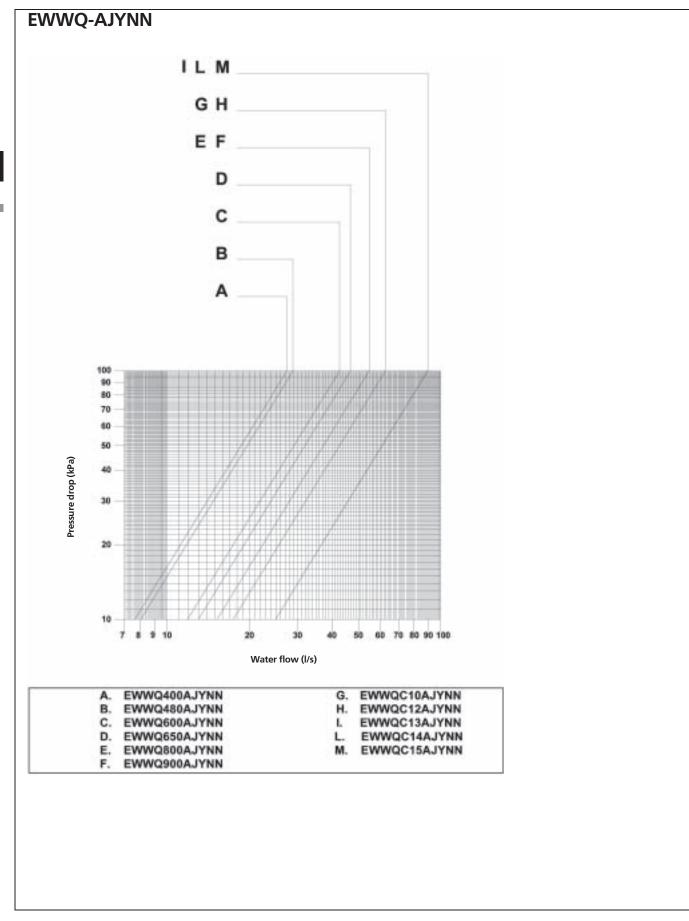
where:

 $\mathbf{Q}=\mathbf{M}\text{inimum}$ content of the plant expressed in litres

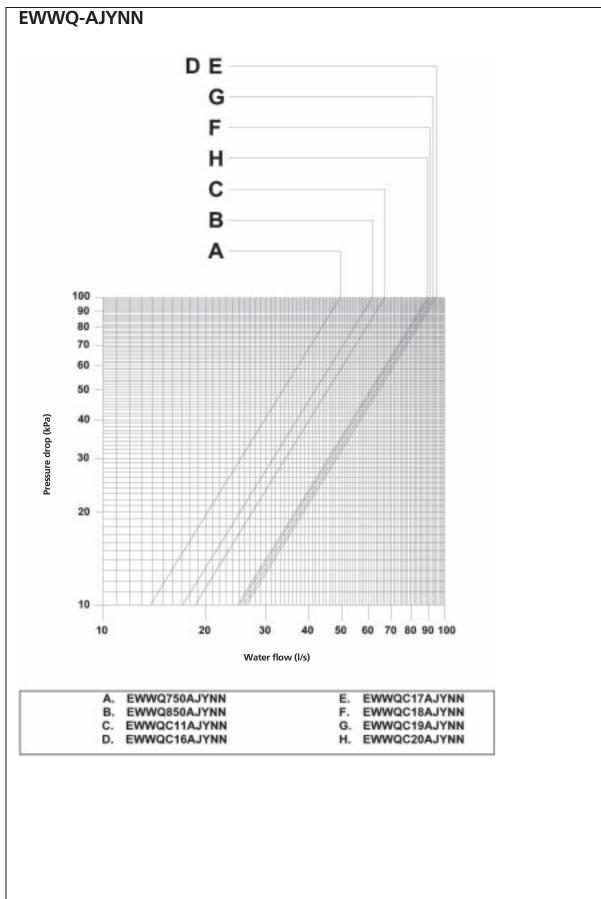
 $\mathsf{P}=\mathsf{Cooling}$ capacity of the plant expressed in kW

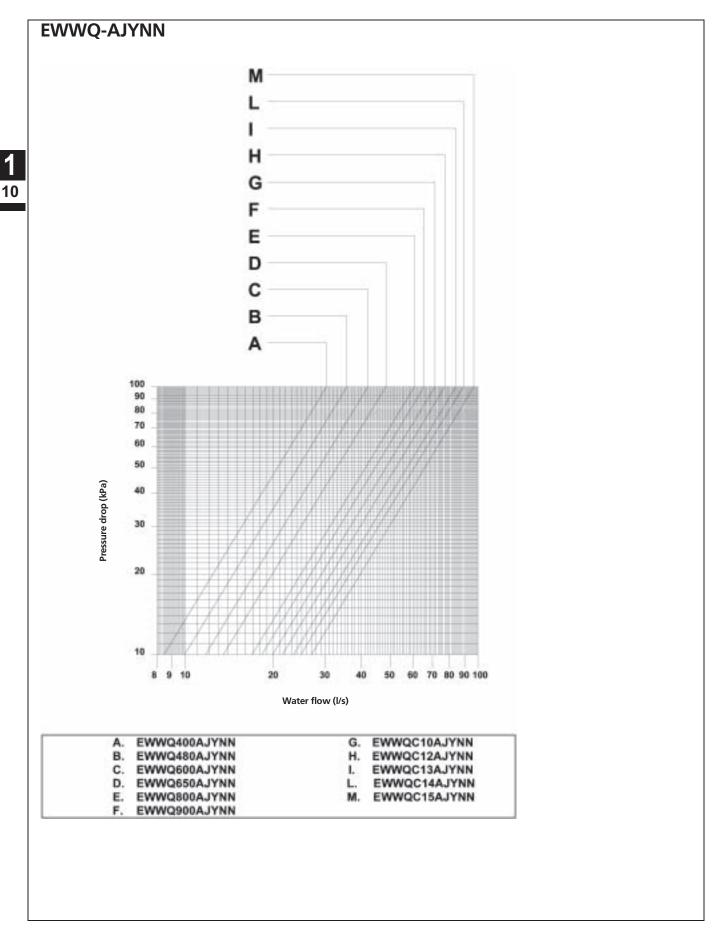

 $\bigtriangleup T =$ Entering/leaving water temperature difference of the evaporator expressed in °C

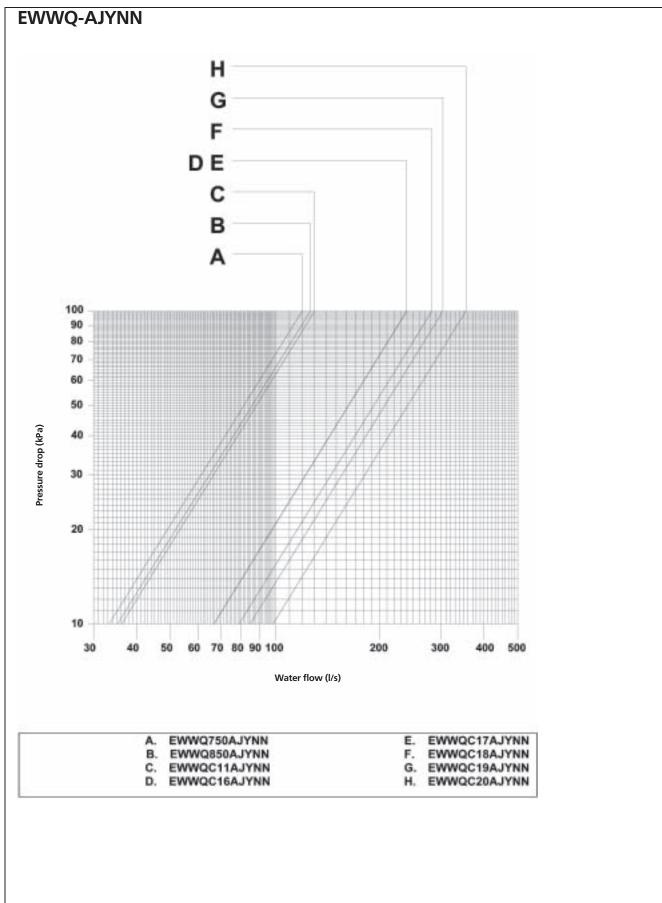
N = Number of compressors.


This should be the minimum quantity of water through the chiller in each operating condition, also when therminal hydronic units are switched off.

Therefore for a more accurate determination of the water quantity, it is advisable to contact the designer of the plant.

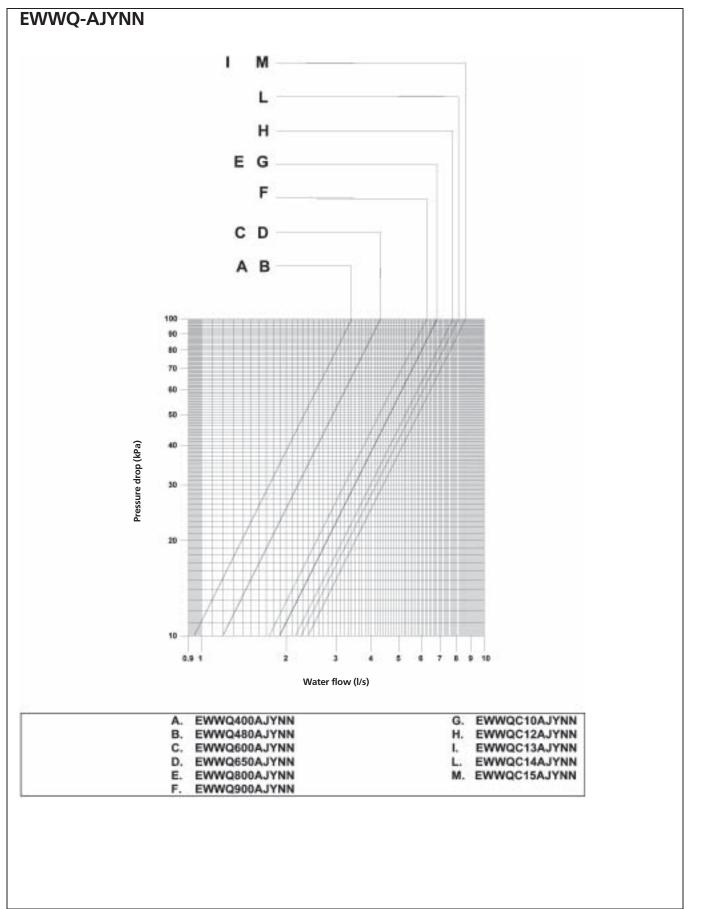

9 Operation range


10 - 1 Water pressure drop curve evaporator

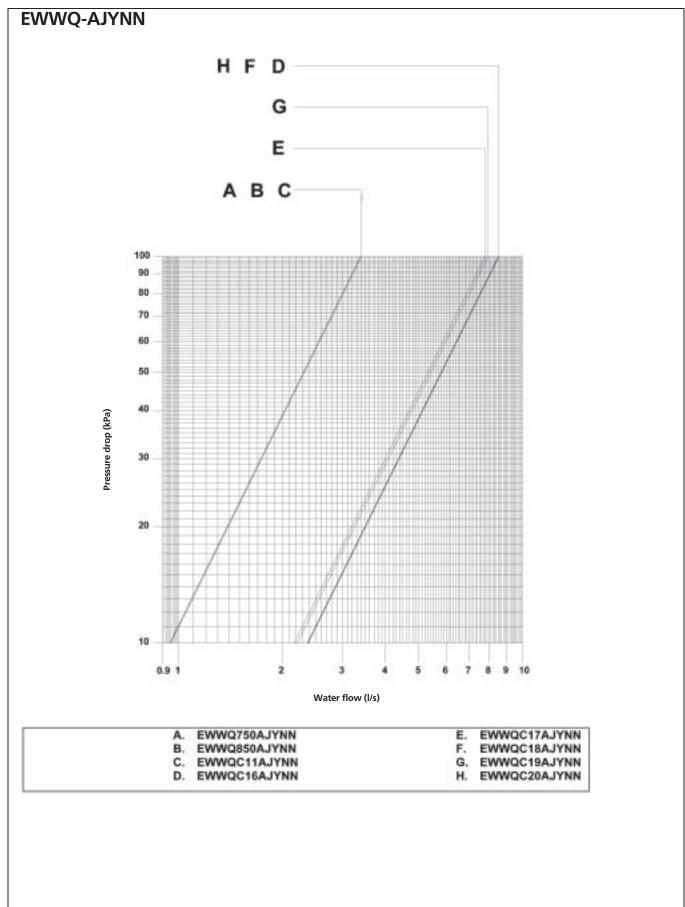

10 - 1 Water pressure drop curve evaporator

10 - 2 Water pressure drop curve condenser

10 - 2 Water pressure drop curve condenser



10 - 3 Partial heat recovery ratings


EWWQ-AJYNN

Unit size		Heat reco	overy leaving water temperature	(∆T=5°C)		
		45	50	55		
		Heating capacity	Heating capacity	Heating capacity		
400		54.2	38.5	23.6		
480		66.2	48.0	30.6		
600		83.0	60.3	38.5		
650		88.9	64.6	41.1		
750	5°C	119.3	89.7	61.4		
800	- ∆T 35°C	114.3	81.4	49.9		
850	Evaporator leaving water temperature 7°C - △T Condenser leaving water temperature 35°C	145.5	112.5	79.9		
900	ature	129.3	93.9	60.2		
C10	r ten	137.2	99.3	63.0		
C11	er tel vate	174.5	136.9	100.7		
C12	vat ving v	157.4	114.8	74.1		
C13	iving r leav	172.3	122.0	74.1		
C14	or lea	185.3	134.7	86.6		
C15	orate	194.0	137.5	83.7		
C16	Evap	254.4	191.1	131.3		
C17		282.0	214.1	149.7		
C18		301.0	226.6	155.9		
C19		318.7	240.6	166.4		
C20		344.4	257.9	175.7		

10 - 4 Heat recovery pressure drop

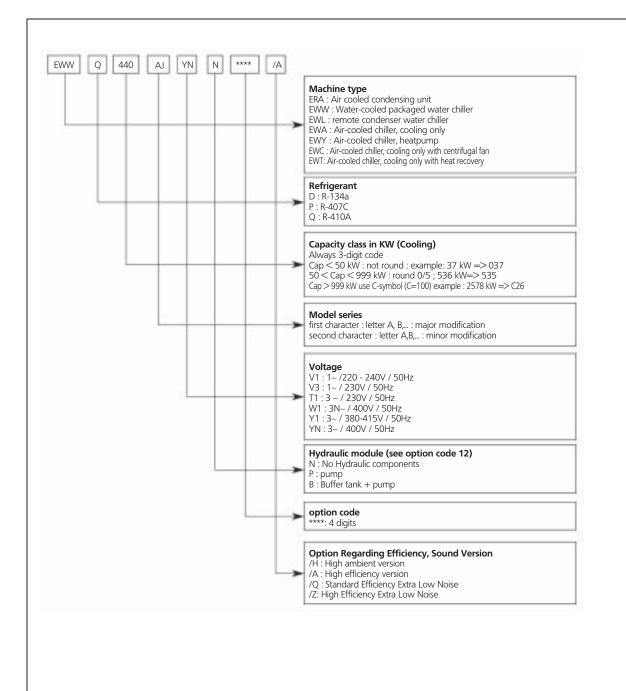

10 - 4 Heat recovery pressure drop

TABLE OF CONTENTS EWWQ-AJYNN/A

1	Nomenclature 53
2	Specifications text 54
3	Specifications 61 Technical Specifications 61 Electrical Specifications 64
4	Options
5	Capacity tables68Cooling capacity tables68Capacity correction factor71Partial heat recovery ratings72
6	Dimensional drawing
7	Sound data 85 Sound pressure spectrum 85 Sound pressure correction factors for different distances 86
8	Installation
9	Operation range 89
10	Hydraulic performance90Water pressure drop curve evaporator90Water pressure drop curve condenser92Partial heat recovery ratings94Heat recovery pressure drop95

1 Nomenclature

GENERAL CHARACTERISTICS

Structure

The chiller is equipped with brackets directly installed on heat exchangers. The evaporator and the suction piping are appropriately insulated to prevent condensation. Unit is provided with lifting holes.

Screw compressors

Standard start is star-delta type.

The StargateTM single-screw compressor has a well balanced compression mechanism which gives main bearing design life of 3-4 times greater than twin-screws and eliminates expensive and complicated thrust balancing schemes.

Oil injection is used for these compressors in order to get high EER at high condensing pressure. The oil supplied to the compressor performs three basic functions: oil for capacity control actuation, oil for bearing lubrication, oil for sealing. The oil is injected via fixed ports in the casing around the rotor.

Compressors have an infinitely variable capacity control down to 25% of its total capacity. This control is made by means of capacity slides controlled by microprocessors. The unit is furnished with an external (for Frame 4) or integrated (for Frame 3200) high efficiency oil separator to maximise oil extraction.

The compressor is provided with a liquid injection circuit to reach oil cooling.

Evaporator

The units are supplied with optimised shell and tubes evaporator pass that allows a perfect oil circulation and so a perfect oil return to the compressor. It is direct expansion with refrigerant inside the tubes and water outside (shell side) with carbon steel tube sheets, with straight copper tubes that are spirally wound internally for higher efficiencies, expanded on the tube plates. The external shell is covered with a closed cell insulation material.

Each evaporator has 1 or 2 circuits, one for each compressor and is manufactured in accordance to PED approval. The evaporator water outlet connections are provided with Victaulic Kit.

Condensers

Condensers are shell and tubes cleanable, through-tube type. The unit has indenpendent condensers, one per circuit. Each condenser has a carbon steel and seamless, integrally finned high efficiency copper tubes, roll expanded into heavy carbon steel tube sheets. Water heads are removable and include vent and drain plugs. Condensers come complete with liquid shut-off valve, spring loaded relief valve.

Electronic expansion valve (EEV)

EWWQAJYNN-AJYNN/A water cooled chiller is equipped with the most advanced electronic expansion valve to achieve precise control of refrigerant mass flow. As today's system requires improved energy efficiency, tighter temperature control, wider range of operating conditions and incorporate features like remote monitoring and diagnostics, the application of electronic expansion valves becomes mandatory.

EEV strength point is the capacity to work with lower DP between high and low pressure side, than a thermostatic expansion valve. The electronic expansion valve allows the system to work with low condenser pressure (winter time) without any refrigerant flow problems and with a perfect chilled water leaving temperature control. This feature becomes more important in EWWQAJYNN-AJYNN/A that works with R-410A: the research indicates a favourable energy consumption when this refrigerant is used with low condensing temperatures.

Refrigerant circuit

Each unit has 1 or 2 independent refrigerant circuits with one compressor per circuit, including:

- High and low pressure switches
- Moisture liquid indicator
- High efficiency oil separator
- Replaceable core filter-drier
- Electronic expansion valve

Electrical control panel

Power and control are located into two sections of the main panel that is manufactured to insure protection for all weather conditions. The power panel is fitted with an interlocked door main isolator to prevent access while power supply is on. Electrical panel is IP54.

Power section includes

The power section includes contactors, all compressors fuses and control circuit transformer. Additional space is provided for an easy installation of the various optional accessories provided to enhance the EWWQ-AJYNN & AJYNN/A units capabilities.

MicroTech II C Plus controller

MicroTech II C Plus controller is installed as standard on all the units; it can be used to modify unit set points and check control parameters. A display illustrates the machine's operating status, programmable values and setpoints e.g. temperatures, and pressures of fluids (water, refrigerant). Device controls maximise the Daikin chillers energy efficiency and reliability characteristics. It uses sophisticated software with predictive logic to select the most energy efficient combination of compressor, expansion device and condenser fan to keep stable operating conditions and maximise energy efficiency. The compressors are automatically rotated to ensure equal operating hours. MicroTech II C Plus protects critical components in response to external signals from its system sensors measuring: motor temperatures, refrigerant gas and oil pressures, correct phases sequence and phase loss.

Control section - main features:

- Chillers enabled to work in partial failure condition thanks to the distributed multiprocessor logic system
- Management of the compressor capacity slide and the EEV valve according to the distributed multiprocessor logic system
- Full routine operation at condition of:
 - High pressure value
 - High thermal load
 - High evaporator entering water temperature (start-up)
- Display of evaporator entering/leaving water temperature
- Display of condensing-evaporating temperature and pressure, suction and discharge superheating temperature for each circuit
- Leaving water cooled temperature regulation. Temperature tolerance \pm 0,1°C
- Compressors and evaporator/condenser pumps hours counter
- Display of Status Safety Devices
- Start up numbers and compressors working hours equalization
- Excellent management of compressors load
- Cooling tower's fans management according to condensing pressure
- Automatic re-start in case of power supply interruption (adjustable)
- Soft Load
- Return Reset
- AOT Reset (optional)
- Setpoint Reset (optional)
- Demand limit or Current limit (optional)

Safety for each refrigerant circuit

- High pressure (pressure switch)
- Compressor overload (optional)
- High discharge temperature on the compressor
- Phase monitor
- Star/delta transition failed
- Low delta pressure between suction and discharge
- Low pressure ratio
- High oil pressure drop
- Low oil pressure

Compressor overload (optional)

- Phase monitor
- Freeze protection
- An evaporator's flow controller input (stops the unit)
- Remote on/off input
- Emergency stop (shuts down all compressors)

Regulation type

Proportional + integral + derivative regulation on the input probe of the evaporator water leaving temperature.

MicroTech II C Plus terminal

The MicroTech II C Plus terminal has following features:

- 4-lines by 20-character liquid crystal display back lighted
- Key-pad consisting of 15 keys " clear language display "
- Memory to protect the data
- General faults alarm led

- 4-level password access to modify the setting
- Service report displaying all running hours and general conditions
- Memorized alarm history to facilitate the fault's analysis
- Remote full featured versions of the LCD terminal are available for a comfortable check and control of the unit over RS488 line.

SPECIFICATIONS - EWWQ-AJYNN & AJYNN/A

To supply and install, where specified in the project n° unit(s) water cooled chiller with cooling capacity of kW, to cool l/sec. of water from °C to °C, condenser entering water temperature °C, condenser leaving water temperature °C.

The unit should work with electricity atV, 3ph, 50Hz. The electrical power absorbed should not exceed kW. The units EER will be at least at the working conditions of the project. Part load EER will be at least at the working conditions of the project.

The units will have 1 or 2 independent refrigerant circuits, and the respective electronic microprocessor will allow the starting of the compressors. Each chiller will be factory assembled and protected by an epoxy paint.

The unit will be tested at full load in the factory at the nominal working conditions and water temperatures. Before shipment a full test will be held to avoid any losses. Chiller will be delivered to the job site completely assembled and charged with refrigerant and oil.

Comply with the manufacturer instructions for rigging and handling equipment.

General

All units should be designed and manufactured in accordance with applicable selections of the following which are equivalent to American Air-conditioning industry applicable codes:

Rating of chillers	EN 12055				
Construction of pressure vessel	Pressure Equipment 97/23/EC (PED)				
Machinery Directive	98/37/EC				
Low Voltage Directive	2006/95/ES				
Electromagnetic Compatibility Directive	2004/108/EC				
Electrical & Safety Codes	IEC 60204-1				
Manufacturing Quality Stds	ISO 9001:2000				

Refrigerant

Will be accepted only R-410A.

UNIT DESCRIPTION

Each chiller consist of single or multiple semi-hermetic rotary screw compressor, direct expansion evaporator, water-cooled condenser section, control system and all components necessary for safe and controlled unit operation.

NOISE LEVEL AND VIBRATIONS

Sound pressure level at 1 meter distance in free field, semispheric conditions, shall not exceed dBA. The sound pressure levels must be rated in accordance to ISO 9614-2. Other types of rating unacceptable. Vibration level should not exceed 2 mm/s.

Dimensions

Unit length shall not exceed mm, unit width shall not exceed mm, unit height shall not exceed mm.

CHILLER COMPONENTS

Compressors

- The compressors shall be field serviceable, semi-hermetic, single-screw type with one main helical rotor meshing with two opposed gaterotor. Twin-screw compressor will no be accepted because of the large bearing loads inherent with this design. For a Single-screw compressor the two exactly opposed gaterotors create two exactly opposed compression cycles which results in balanced forces acting on the rotor compressor. The gaterotors will be constructed of a carbon impregnated engineered composite material. The gaterotor supports will be constructed of cast iron.
- The oil injection shall be used for these compressors in order to get high EER also at high condensing pressure and low sound pressure levels in each load condition.
- Refrigerant system differential pressure shall provide oil flow through service replaceable, 0.5 micron, full flow, cartridge type oil filter internal to compressor. Filter bypass or oil pump not acceptable.
- The compressor's oil cooling must be realized by liquid injection. External dedicated heat exchanger and additional piping to carry the oil from the compressor to heat exchanger and viceversa will be not accepted.
- The compressor shall be direct electrical drive, without gear transmission between the screw and the electrical motor. The motor's compressor shall be designed for star/delta. Soft start should be available as option.
- Shall be present two thermal protection realized by a thermistor for high temperature protection to motor and a thermistor for discharge gas high temperature protection.
 The compressor shall be provided with an automatic spring return of capacity control valve to the minimum load position to ensure compressor starting always at
- minimum motor load so with the minimum mechanical stress.
 The compressor discharge connection shall be fitted with a check value and with a stop value.
- The compressor discharge connection shar be need with a creek value and what a
- The compressor discharge shall be fitted with a head pressure control valve.

Evaporator

- The units shall be supplied with shell and tubes counter-flow evaporator single refrigerant pass. It will be direct expansion with refrigerant inside the tubes and water outside (shell side) with carbon steel tube sheets, with straight copper tubes that are spirally wound internally for higher efficiencies, expanded on the tube plates.
- The external shell, shall be linked with an electrical heater (option on request) to prevent freezing up to -28 C ambient temperature, commanded by a thermostat and shall be insulated with flexible, closed cell polyurethane insulation material.
- The evaporator will have 1 or 2 circuits, one for each compressor and shall be single refrigerant pass to ensure a simpler oil circulation so to ensure always a perfect oil return to the compressor.
- Evaporator is manufactured in accordance to PED approval.

Condensers

- Condensers will be shell and cleanable, through-tube type.
- The unit will have one condensers per circuit.
- Each condenser shall have a carbon steel and seamless, integrally finned high efficiency copper tubes, roll expanded into heavy carbon steel tube sheets.
- Water heads shall be removable and include vent and drain plugs.
- · Condensers will come complete with liquid shut-off valve, spring loaded relief valve.

Refrigerant circuit

- The unit must have refrigerant circuits completely independent of each other with one compressor per circuit.
- Each circuit shall include: an electronic expansion valve, external high efficiency oil separator, a liquid line shut-off valve with charging connection, replaceable core filter-drier, sight glass with moisture indicator and insulated suction line. Suction line and discharge line shut-off valves are available as option.

Regulation of cooling capacity

- Each unit will have a microprocessor for the control of compressor slide valve's position (2 slide valves, one for each compressor's cycles).
- The slides shall have a stepless motion that allows a unit's operation with infinitely variable capacity control down to 25% (1 compressor) or down to 12,5% (2 compressors) of the cooling capacity. The chiller shall be capable of stable operation to a minimum of 25% (1 compressor) or to a minimum of 12,5% (2 compressors) of full load without hot gas bypass.
- Step unloading unacceptable because of evaporator leaving water temperature fluctuation and low compressor's efficiency at partial load.
- The system shall stage the unit based on the leaving water temperature.

Electronic expansion valve

- Electronic expansion valve allows a simple and perfect control system that quickly interacts at load variations. This valve combines two functions: liquid solenoid and electronic expansion valve.
- It is managed directly by a microprocessor to match exactly the plant thermal load.
- Thermostatic valve unacceptable because of:
 - 。 Its limited load range
 - Higher refrigerant pressure drop
 - 。 Because of leaving evaporator water temperature control less good than an electronic device
 - Thermal expansion device needs a higher differential pressure between high pressure side and low pressure side to work correctly. This doesn't allow to work with low condensing pressure and therefore doesn't allow to reach the money saving that is possible to have with these chiller working conditions.

Control panel

- Field power connections, control interlock terminals, and unit control system should be centrally located in an electric panel (IP 54).
- The Power components and control equipment shall be separately mounted in different compartments of the control panel.
- The Compressor starting method will be star/delta, with an option for Softstart.
- Power and starting controls should include fuses and contactors for the compressor.
- Operating and safety controls should include energy saving; emergency stop switch; thermal overload protection for each compressor motor; high and low pressure cut-out switch (for each refrigerant circuit); anti-freeze thermostat; cut-out switch for each
- All of the information regarding the unit shall be shown on a display with a built-in calendar and clock that will provide unit scheduling throughout the year.
- The following features and functions shall be included:
 - Resetting chilled water temperature by controlling the return water temperature or by a remote 4-20 mA DC signal:
 - Soft load function to prevent the system from operating at full load during the chilled fluid pulldown period
 - Password protection of critical parameters of control
 - Start-to-start and stop-to-start timers to provide minimum compressor off-time with maximum motor protection
 - Communication capability with a PC or remote monitoring
 - Lead-lag selection by manual or automatically by circuit run hours
 - Double set point for brine unit version
 - Scheduling via internal time clock to allow programming of a yearly start-stop schedule accommodating weekends and holidays

Display Capabilities

The controller as a minimum shall be capable of monitoring and displaying the following data:

Operating Conditions						
Ent./ Lvg. Evaporator fluid Temp.						
Entering Condenser fluid Temp.						
Operating Chilled Fluid Setpoint						
Oil / Discharge gas Press. (per comp.)						
Condensing Press. (per comp.)						
Evaporator Press. (per comp.)						
Unit Enabled						
Compressor Enabled						
Water Setpoint Reset						
Demand Limit or Current Limit						
(Site Selectable)						

Alarms Phase monitor Freeze protection Evaporator Flow Low Gas Pressure (per comp.) Transition Fault, (per comp.) Oil Diff. press. (per comp.) Low Oil Pressure (per comp.) High Gas Pressure Trip (per comp.) Motor Overload, (per comp.) Transducer faults Units Off-Line External fault Processor Faults Maintenance requirements

Standard Customer Interfaces

The controller as a minimum	shall be capable of providing the following interlocks:
Chiller Enable Signal:	Digital Input, customer contact must be capable of handling 24Volts, 50HZ, 1 Amp.
Chiller Common Fault:	Volt free, normally open, digital contact, must be capable of switching 250 V, 50 HZ, 10 Amp.
Pump Enable Signal:	Volt free, normally open, digital contact, must be capable of switching 250 V, 50 HZ, 10 Amp.
Setpoint Override: 4 - 20 mA	A DC analoque input signal.
Demand Limit:	4 - 20 mA DC analoque input signal.
or	

Current Limit: 4 - 20 mA DC analoque input signal.

Optional Customer Interfaces

Compressor Running Signals:

Volt free, normally open, digital contact, capable of switching 250 V, 50 HZ, 10 Amp.

Optional High Level Communications Interface

Using ModBus, Lonworks or Bacnet protocols.

Cooling Cooling Cooling Colour Material Unit Unit Unit Unit Upreating Weight Type Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume Water flow rate Water flow ra	Nominal Height Width Depth me in the system Nominal Cooling	kW % kW mm mm kg kg kg n (Formula)	simplified f expressed entering / le more accur 220 1197	formula: Q= 3 in litres; P = r eaving water	2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature tation of quar	anized and p 2,001 1,218 3,855 2,738 3,158 Shell an t should be c tW)/Delta T(' ling capacity difference e	2,000 1,266 3,854 2,407 2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	1,059 12.5-100 (stepless) 209.49 5.06 5.89 2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre- the designer of	ent per unit evaporator essors; For			
Colour Material Unit Unit Derating Weight Type Minimum water volu Mater volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm mm kg kg n (Formula)	(stepless) 86.67 4.97 5.58 2,000 1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	(stepless) 104.72 5.03 5.61 2,000 1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	(stepless) 128.28 5.09 5.69 Galva 2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k minimum coo temperature vation of quar	(stepless) 145.95 5.07 5.67 RAL anized and p 2,001 1,218 3,855 2,738 3,158 Shell an t should be c kW)/Delta T(' ling capacity difference e tity of water,	(stepless) 162.04 5.05 5.64 7032 ainted steel 2,000 1,266 3,854 2,407 2,815 nd tube alculated witt °C); where: of the unit expressed in ° tit is advisabl	(stepless) 196.57 5.05 5.39 sheet 2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	(stepless) 209.49 5.06 5.89 2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre-	(stepless) 232.06 4.91 5.28 2,001 1,448 3,891 2,457 3,086 u using this ent per unit evaporator essors; For			
Colour Material Unit Unit Derating Weight Type Minimum water volu Mater volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	86.67 4.97 5.58 2,000 1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	104.72 5.03 5.61 2,000 1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	128.28 5.09 5.69 Qalva 2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(kminimum cool temperature iation of quarter	145.95 5.07 5.67 RAL anized and p 2,001 1,218 3,855 2,738 3,158 Shell ai t should be c W)/Delta T(' ling capacity difference e stity of water,	162.04 5.05 5.64 7032 ainted steel 2,000 1,266 3,854 2,407 2,815 nd tube alculated witt °C); where: of the unit expressed in ° it is advisabl	196.57 5.05 5.39 sheet 2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	209.49 5.06 5.89 2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre	232.06 4.91 5.28 2,001 1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Colour Material Unit Unit Derating Weight Type Minimum water volu Mater volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	4.97 5.58 2,000 1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	5.03 5.61 2,000 1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	5.09 5.69 Galva 2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(I minimum coo temperature lation of quar	5.07 5.67 RAL anized and p 2,001 1,218 3,855 2,738 3,158 Shell an t should be c W)/Delta T(' ling capacity difference e stity of water,	5.05 5.64 7032 ainted steel 3 2,000 1,266 3,854 2,407 2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	5.05 5.39 sheet 2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	5.06 5.89 2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre	4.91 5.28 2,001 1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Colour Material Unit Unit Derating Weight Type Minimum water volu Mater volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	5.58 2,000 1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	5.61 2,000 1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	5.69 Galva 2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(I minimum coo temperature lation of quar	5.67 RAL anized and p 2,001 1,218 3,855 2,738 3,158 Shell at t should be c W)/Delta T(' ling capacity difference e stity of water,	5.64 7032 ainted steel 2,000 1,266 3,854 2,407 2,815 alculated wit °C); where: of the unit expressed in ° tit is advisabl	5.39 sheet 2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	5.89 2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre	5.28 2,001 1,448 3,891 2,457 3,086 a using this ent per unit evaporator essors; For			
Material Unit Unit Unit Operating Weight Type Minimum water volu Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	2,000 1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	2,000 1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	Galva 2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k minimum coo temperature lation of quar	RAL anized and p 2,001 1,218 3,855 2,738 3,158 Shell at t should be c tW)/Delta T(' ling capacity difference e stity of water,	ainted steel 2,000 1,266 3,854 2,407 2,815 alculated wit °C); where: of the unit expressed in ° tit is advisabl	sheet 2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	2,453 1,350 4,985 4,775 5,431 pproximation n water conte W; Delta T = ber of compre	2,001 1,448 3,891 2,457 3,086 a using this ent per unit evaporator essors; For			
Material Unit Unit Unit Operating Weight Type Minimum water volu Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature tation of quar	anized and p 2,001 1,218 3,855 2,738 3,158 Shell ai t should be c kW)/Delta T(' ling capacity difference e tity of water,	ainted steel = 2,000 1,266 3,854 2,407 2,815 alculated wit of the unit expressed in ° xpressed in ° it is advisabl	2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	1,350 4,985 4,775 5,431 pproximatior n water conte W; Delta T = ber of compre	1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Material Unit Unit Unit Operating Weight Type Minimum water volu Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature tation of quar	anized and p 2,001 1,218 3,855 2,738 3,158 Shell ai t should be c kW)/Delta T(' ling capacity difference e tity of water,	ainted steel = 2,000 1,266 3,854 2,407 2,815 alculated wit of the unit expressed in ° xpressed in ° it is advisabl	2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	1,350 4,985 4,775 5,431 pproximatior n water conte W; Delta T = ber of compre	1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Unit Unit Operating Weight Type Minimum water volu Mater volume Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	2,000 1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature tation of quar	2,001 1,218 3,855 2,738 3,158 Shell at t should be c (W)/Delta T(' ling capacity difference e tity of water,	2,000 1,266 3,854 2,407 2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	2,001 1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	1,350 4,985 4,775 5,431 pproximatior n water conte W; Delta T = ber of compre	1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Unit Operating Weight Type Minimum water volu Type Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Width Depth me in the system	mm mm kg kg n (Formula)	1,211 3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	1,211 3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	1,211 3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature iation of quar	1,218 3,855 2,738 3,158 Shell at t should be c (W)/Delta T(' ling capacity difference e tity of water,	1,266 3,854 2,407 2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	1,448 3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	1,350 4,985 4,775 5,431 pproximatior n water conte W; Delta T = ber of compre	1,448 3,891 2,457 3,086 n using this ent per unit evaporator essors; For			
Operating Weight Type Minimum water volu Type Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	Depth me in the system	mm kg kg n (Formula)	3,987 2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	3,987 2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	3,987 2,403 2,745 ntent per uni 35.83/N x P(k ninimum coo temperature lation of quar	3,855 2,738 3,158 Shell ai t should be c (W)/Delta T(' ling capacity difference e tity of water,	3,854 2,407 2,815 nd tube alculated witt °C); where: of the unit ex xpressed in ° it is advisabl	3,891 2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	4,985 4,775 5,431 approximation n water conte W; Delta T = ber of compre	3,891 2,457 3,086 using this ent per unit evaporator essors; For			
Operating Weight Type Minimum water volu Type Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	me in the system	kg kg n (Formula)	2,322 2,594 The minim simplified f expressed entering / le more accur 220 1197	2,403 2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	2,403 2,745 ntent per uni 35.83/N x P(I ninimum coo temperature iation of quar	2,738 3,158 Shell ai t should be c W)/Delta T(⁴ difference e tity of water,	2,407 2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	2,427 3,056 th a certain a Q = minimur cpressed in k °C; N = numl	4,775 5,431 pproximation n water conte W; Delta T = ber of compre	2,457 3,086 using this ent per unit evaporator essors; For			
Operating Weight Type Minimum water volu Type Water volume Water flow rate Nominal water oressure drop Insulation material Type Water volume	Nominal	kg n (Formula) I I/min	2,594 The minim simplified f expressed entering / le more accur 220 1197	2,685 um water co formula: Q= 3 in litres; P = r eaving water rate determin	2,745 ntent per uni 35.83/N x P(k ninimum coo temperature lation of quar	3,158 Shell an t should be c kW)/Delta T(' ling capacity difference e ntity of water,	2,815 nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	3,056 th a certain a Q = minimur cpressed in k °C; N = numl	5,431 pproximation n water conte W; Delta T = ber of compre	3,086 n using this ent per unit evaporator essors; For			
Type Minimum water volu Type Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Nominal	n (Formula)	The minim simplified f expressed entering / le more accur 220 1197	um water co formula: Q= 3 in litres; P = r eaving water rate determin	ntent per uni 35.83/N x P(ł ninimum coo temperature ation of quar	Shell a t should be c (W)/Delta T(ling capacity difference e tity of water,	nd tube alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	h a certain a Q = minimun (pressed in k °C; N = numl	pproximation n water conte W; Delta T = ber of compre	n using this ent per unit evaporator essors; For			
Type Water volume Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Nominal	l I/min	simplified f expressed entering / le more accur 220 1197	formula: Q= 3 in litres; P = r eaving water rate determin	35.83/N x P(k ninimum coo temperature nation of quar	t should be c (W)/Delta T(ling capacity difference e: htty of water,	alculated wit °C); where: of the unit ex xpressed in ° it is advisabl	Q = minimun (pressed in k °C; N = numl	n water conte W; Delta T = ber of compre	ent per unit evaporator essors; For			
Type Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume	Nominal	l I/min	simplified f expressed entering / le more accur 220 1197	formula: Q= 3 in litres; P = r eaving water rate determin	35.83/N x P(k ninimum coo temperature nation of quar	W)/Delta T(ling capacity difference en ntity of water,	°C); where: of the unit ex xpressed in ° it is advisabl	Q = minimun (pressed in k °C; N = numl	n water conte W; Delta T = ber of compre	ent per unit evaporator essors; For			
Water volume Water flow rate Nominal water pressure drop Insulation material Type Water volume			1197	213		Shell a	nd tube		-				
Water flow rate Nominal water pressure drop Insulation material Type Water volume			1197	213									
Water flow rate Nominal water pressure drop Insulation material Type Water volume			1197	ı	200	334	325	538	587	538			
Nominal water pressure drop Insulation material Type Water volume				1463.4	1813.2	2058	2272.8	2760	2944.2	3164.4			
pressure drop Insulation material Type Water volume	Cooling	Ki u	55.77	68.81	71.54	64.27	57.46	53.85	53.69	68.89			
Insulation material Type Water volume			55.11	00.01	11.04	04.27	57.40	00.00	00.00	00.00			
Type Water volume						L Closed cell fo	am elastome	r Pr					
Water volume							nd tube	21					
	**			69	81	86	83	91	60 /70	91			
	Newtool	1	52					-	69 /70	-			
	Nominal	l/min	1457.4	1778.4	2199	2496.6	2760	3350.4	3573.6	3861			
Nominal water	Cooling	kPa	50.16	39.75	42.38	46.94	59.79	64.73	40.10	83.56			
pressure drop													
Insulation material					elastomer								
Model	Quantity		1	1	1	1	1	1	2	1			
Туре				1		ermetic singl							
Refrigerant oil charg	,		16	16	16	16	16	16	32	16			
Model	Quantity		1	1	1	1	1	1	2	1			
Sound Power	Cooling	dBA	100.9	101.7	102.6	102.7	102.0	102.9	105.2	103.8			
Sound Pressure	Cooling	dBA	82.2	83.0	83.9	83.9	83.2	84.0	85.6	84.9			
Evaporator	Min	°CDB	-4	-4	-4	-4	-4	-4	-4	-4			
	Max	°CDB	10	10	10	10	10	10	10	10			
Condensor	Min	°CDB	25	25	25	25	25	25	25	25			
	Max	°CDB	45	45	45	45	45	45	45	45			
Refrigerant type				1		R-4	10A	1	1				
• •		ka	95	95	95	95	110	130	120	130			
5													
No of circuits		9	1	1	1	1	1	1		1			
			1	I			' nansion valv		2				
0	at/autlat		210.1mm	010 1mm	r				070 0mm	070 0mm			
										273.0mm			
Condensor water ini	et/outlet		5	5	5	-		5	5"	5"			
						01							
						ð	, ,						
					High discha	arge tempera	ature on the o	compressor					
						Phase	monitor						
						Low pres	sure ratio						
						High oil pre	essure drop						
			<u> </u>										
							JIESSUIE						
	ound Pressure vaporator ondensor efrigerant type efrigerant charge o of circuits efrigerant control vaporator water inl	ound Pressure Cooling vaporator Min Max ondensor Min Max efrigerant type efrigerant charge o of circuits	ound Pressure Cooling dBA vaporator Min °CDB Max °CDB ondensor Min °CDB max °CDB Max °CDB efrigerant type efrigerant charge kg o of circuits efrigerant control	ound Pressure Cooling dBA 82.2 vaporator Min °CDB -4 Max °CDB 10 ondensor Min °CDB 25 Max °CDB 45 efrigerant type 6 efrigerant charge kg 95 kg 95 1 o of circuits 1 1 efrigerant control 219.1mm	bund Pressure Cooling dBA 82.2 83.0 vaporator Min °CDB -4 -4 Max °CDB 10 10 ondensor Min °CDB 25 25 Max °CDB 45 45 efrigerant type	ound Pressure Cooling dBA 82.2 83.0 83.9 vaporator Min °CDB -4 -4 -4 Max °CDB 10 10 10 ondensor Min °CDB 25 25 25 Max °CDB 45 45 45 efrigerant type	ound Pressure Cooling dBA 82.2 83.0 83.9 83.9 vaporator Min °CDB -4 -4 -4 -4 Max °CDB 10 10 10 10 10 ondensor Min °CDB 25 25 25 25 Max °CDB 45 45 45 45 efrigerant type Kg 95 95 95 kg 95 95 95 95 kg 1 1 1 1 efrigerant charge kg 95 95 95 kg 1 1 1 1 1 efrigerant control Electronic ext 219.1mm 219.1mm 219.1mm 219.1mm oo of circuits 1 1 1 1 1 1 efrigerant control 219.1mm 219.1mm 219.1mm 219.1mm 219.1mm ondensor water inlet/outlet	bund Pressure Cooling dBA 82.2 83.0 83.9 83.9 83.2 vaporator Min °CDB -4 -5	ound Pressure Cooling dBA 82.2 83.0 83.9 83.9 83.2 84.0 vaporator Min °CDB -4 <td>Ound Pressure Cooling dBA 82.2 83.0 83.9 83.9 83.2 84.0 85.6 vaporator Min °CDB -4<</td>	Ound Pressure Cooling dBA 82.2 83.0 83.9 83.9 83.2 84.0 85.6 vaporator Min °CDB -4<			

3-1 TECHNICAL	SPECIFICATIONS	6		EWWQC12 AJYNN/A	EWWQC13 AJYNN/A	EWWQC14 AJYNN/A	EWWQC15 AJYNN/A	EWWQC16 AJYNN/A	EWWQC18 AJYNN/A	EWWQC19 AJYNN/A	EWWQC2 AJYNN/
Capacity (Eurovent)	Cooling	Nominal	kW	1,182	1,297	1,397	1,479	1,605	1,769	1,901	2,061
Capacity Steps	·		%				12.5-100	(stepless)			
Nominal input (Eurovent)	Cooling		kW	233.11	257.54	274.77	291.86	321.48	356.36	390.31	425.94
EER	•			5.07	5.04	5.08	5.07	4.99	4.96	4.87	4.84
ESEER				5.87	5.88	5.98	5.93	5.67	5.71	5.48	5.50
Casing	Colour	RAL7032									
	Material	Material Galvanized and painted steel sheet									
Dimensions	Unit	Height	mm	2,453	2,453	2,453	2,453	2,547	2,547	2,547	2,547
		Width	mm				1,3	50			
		Depth	mm	4,985	4,985	4,985	4,985	4,844	4,844	4,809	4,809
Weight	Unit		kg	4,831	4,873	4,919	4,969	5,117	5,117	5,388	5,408
-	Operating Weight		kg	5,479 5,512 5,546 5,606 5,794 5,843 6,110 6,118							
Water Heat Exchanger	Туре				<u> </u>		Shell a	nd tube			
	Minimum water volu	The minim	um water co	ntent per uni	t should be c	alculated wit	h a certain a	pproximation	n usina th		
				35.83/N x P(ł							
				ninimum coo							
						temperature					
				more accurate determination of quantity of water, it is advisable to contact the designer of the pl							
Water Heat Exchanger	Туре		1.		1	i		nd tube			
Evaporator	Water volume			575	563	551	551	495	484	535	527
	Water flow rate	Nominal	l/min	3286.2	3606	3882.6	4108.8	4459.8	4915.8	5283	5727
	Nominal water	Cooling	kPa	64.23	55.13	67.85	75.14	70.1	89.12	91.3	113.04
	pressure drop										
	Insulation material					(Closed cell fo		er		
Water Heat Exchanger	Туре		<u> </u>					nd tube			
Condenser	Water volume			73 / 76	76 / 76	75 / 86	86 / 86	91/91	91 / 91	91 / 91	91/9
	Water flow rate	Nominal	l/min	3986.4	4380	4708.8	4986	5425.2	5985.6	6454.8	7005.
	Nominal water pressure drop	Cooling	kPa	47.93	48.17	49.20	46.82	44.26	61.21	60.50	79.00
	Insulation material			Expanded elastomer							
	Model Quantity			2	2	2	2	2	2	2	2
Compressor	Туре				•	Semi-h	ermetic singl	e screw com	pressor		
	Refrigerant oil charge			32	32	32	32	32	32	32	32
	Model	Quantity		2	2	2	2	2	2	2	2
Sound level	Sound Power	Cooling	dBA	105.6	106.1	106.5	106.5	105.8	106.2	106.6	107.1
	Sound Pressure	Cooling	dBA	86.0	86.5	86.9	86.9	86.2	86.6	87.0	87.5
Operation Range	Evaporator	Min	°CDB	-4	-4	-4	-4	-4	-4	-4	-4
		Max	°CDB	10	10	10	10	10	10	10	10
	Condensor	Min	°CDB	25	25	25	25	25	25	25	25
		Max	°CDB	45	45	45	45	45	45	45	45
Refrigerant circuit	Refrigerant type		I				R-4		1	I	
J	Refrigerant charge		kg	120	120	120	120	130	130	130	130
			kg	120	120	120	120	130	130	130	130
	No of circuits		1.9	2	2	2	2	2	2	2	2
	Refrigerant control			-	2		Electronic ex	_		2	2
Piping connections	Evaporator water in	let/outlet		273.0mm	273.0mm	273.0mm	273.0mm	273.0mm	273.0mm	273.0mm	273.0m
r iping connections	Condensor water in			275.000	275.01111	275.01111		"	275.000	275.011111	275.011
Safaty Daviana	Condensor water in	liel/Outlet									
Safety Devices							High press				
								ure switch			
								ncy stop			
						High discha	arge tempera		compressor		
							Phase				
							Low pres	sure ratio			
							High oil pre	essure drop			

3-1 TECHNICAL S	PECIFICATIONS	6		EWWQC22AJYNN/A					
Capacity (Eurovent)	Cooling	Nominal	kW	2,196					
Capacity Steps			%	12.5-100 (stepless)					
Nominal input (Eurovent)	Cooling		kW	460.72					
EER			1	4.77					
ESEER				5.38					
Casing	Colour			RAL7032					
Ũ	Material			Galvanized and painted steel sheet					
Dimensions	Unit	Height	mm	2,547					
		Width	mm	1,350					
		Depth	mm	4,809					
Weight	Unit	2 optil	kg	5.414					
roight	Operating Weight		kg	6,124					
Water Heat Exchanger	Type		Ng	Shell and tube					
	Minimum water volu	ume in the system	n (Formula)	The minimum water content per unit should be calculated with a certain approximation using this simplified formula: Q= $35.83/N \times P(kW)/Delta T(^{\circ}C)$; where: Q = minimum water content per unit expressed in litres; P = minimum cooling capacity of the unit expressed in kW; Delta T = evaporator entering / leaving water temperature difference expressed in °C; N = number of compressors; For more accurate determination of quantity of water, it is advisable to contact the designer of the plant.					
Water Heat Exchanger	Туре			Shell and tube					
Evaporator	Water volume		I	527					
	Water flow rate	Nominal	l/min	6103.8					
	Nominal water pressure drop	Cooling	kPa	126.77					
	Insulation material			Closed cell foam elastomer					
Water Heat Exchanger	Туре			Shell and tube					
Condenser Water volume				91 / 91					
	Water flow rate	Nominal	l/min	7485.6					
	Nominal water	Cooling	kPa	79.00					
	pressure drop								
	Insulation material			Expanded elastomer					
	Model	Quantity		2					
Compressor	Туре			Semi-hermetic single screw compressor					
	Refrigerant oil char	ae	1	32					
	Model	Quantity		2					
Sound level	Sound Power	Cooling	dBA	107.5					
	Sound Pressure	Cooling	dBA	87.9					
Operation Range	Evaporator	Min	°CDB	-4					
operation range	Evaporator	Max	°CDB	10					
	Condensor	Min	°CDB	25					
	Condensor	Max	°CDB	45					
Refrigerant circuit	Refrigerant type	IVIAX	CDD	R-410A					
Reingerant circuit	Refrigerant charge		ka	130					
	Reingerant charge		kg						
	No. of singuity		kg	130					
	No of circuits			2					
B	Refrigerant control			Electronic expansion valve					
Piping connections	Evaporator water in			273.0mm					
	Condensor water in	let/outlet		5"					
Safety Devices				High pressure switch					
				Low pressure switch					
				Emergency stop					
				High discharge temperature on the compressor					
				Phase monitor					
				Low pressure ratio					
				High oil pressure drop					
				Low oil pressure					
Notes				Nominal cooling capacity and power input at Eurovent conditions: Evaporator 12/7°C; Condenser 30/35°C					

3-2 ELECTRIC		6		EWWQ440 AJYNN/A	EWWQ550 AJYNN/A	EWWQ650 AJYNN/A	EWWQ750 AJYNN/A	EWWQ800 AJYNN/A	EWWQ950 AJYNN/A	EWWQC10 AJYNN/A	EWWQC1 [/] AJYNN/A			
Power Supply	Name						Y	N						
	Phase	Phase				3~								
	Frequency	Frequency Hz			50	50	50	50	50	50	50			
	Voltage	Voltage			400	400	400	400	400	400	400			
	Voltage Tolerance	Minimum	%		•	•	-1)%	•	•	•			
		Maximum %					+1	0%						
Unit	Starting Current	•	А	455	455	455	455	656	656	455	656			
	Maximum starting cu	rrent	A	455	455	455	455	656	656	636	656			
	Nominal Running Cu	rrent Cooling	A	148	173	208	235	263	315	347	367			
	Power factor at nomi	nal conditions	A	0.85	0.87	0.89	0.90	0.89	0.90	0.87	0.91			
	Maximum Running C	urrent	A	178	211	256	291	316	376	422	442			
	Max unit current for w	Max unit current for wires sizing A			232	282	320	348	414	464	486			
	Recommended fuses a	Recommended fuses according to IEC standard 269-2			400 A gG	500 A gG	630 A gG	630 A gG	800 A gG	400 A gG	800 A gC			
Compressor	Phase				•	•	3	~	•	•	•			
	Voltage	V	400	400	400	400	400	400	400	400				
	Voltage Tolerance	Minimum	%	-10%						•				
		Maximum	%	+10%										
	Starting current	Starting current A			455	455	455	656	656	455	656			
	Nominal running curr	ent (RLA)	А	148	173	208	235	263	315	173 / 173	367			
	Maximum Running C	Maximum Running Current A			225	274	310	325	388	225 / 225	458			
	Starting Method	Starting Method			Open Star-Delta									
	Recommended fuses	Recommended fuses			250 A gG	315 A gG	355 A gG	355 A gG	500 A gG	250 A gG / 250 A gG	630 A gG			
Control Circuit	Phase				1	1	1	~		-	1			
	Voltage		V	115	115	115	115	115	115	115	115			
	Recommended fuses	3			1	1	4 A	gG	1	1	1			
	Crankcase heater (E	1/2HC)	W	250	250	250	250	400+140	400+140	250	400+140			
Notes				Allowed	voltage toler	ance ± 10%	. Voltage unt	alance betw	een phases	must be with	nin ± 3%.			
				Nominal current in cooling mode is referred to installation with 25kA short circuit current and is										
				based on the following conditions: evaporator 12/7°C, condenser 30/35°C Recommended fuses (IEC 269-2: 1.6 times largest compressor fuse size)										
				Moximum o		starting curre		-			or at 75 % at			
				iviaximum s	tarting current	starting cuffe	••	im load		ner compresso	Jiat / J % 0			
				Maxir	num current	for wires siz	ing: (compre	ssors full loa	d ampere +	fans current) x 1.1			

3-2 ELECTRICAL	SPECIFICATION	S		EWWQC12 AJYNN/A	EWWQC13 AJYNN/A	EWWQC14 AJYNN/A	EWWQC15 AJYNN/A	EWWQC16 AJYNN/A	EWWQC18 AJYNN/A	EWWQC19 AJYNN/A	EWWQC20 AJYNN/A		
Power Supply	Name			YN YN									
	Phase			3~									
	Frequency		Hz	50	50	50	50	50	50	50	50		
	Voltage		V	400	400	400	400	400	400	400	400		
	Voltage Tolerance	Minimum	%	-10%									
		Maximum	%	+10%									
Unit	Starting Current	Starting Current A			455	455	455	656	656	656	656		
	Maximum starting cu	m starting current		674	674	702	702	925	979	979	1,032		
	Nominal Running Cu	Nominal Running Current Cooling		381	417	444	470	522	575	627	678		
	Power factor at nom	Power factor at nominal conditions		0.88	0.89	0.89	0.90	0.89	0.89	0.90	0.91		
	Maximum Running Current		А	467	514	548	581	629	689	749	814		
	Max unit current for wires sizing			514	566	603	639	692	758	824	895		
	Recommended fuses a	according to IEC stand	ard 269-2	400 A gG	400 A gG	500 A gG	500 A gG	800 A gG	800 A gG	1,000 A gG	1,000 A gG		

3-2 ELECTRIC		6		EWWQC12 AJYNN/A	EWWQC13 AJYNN/A	EWWQC14 AJYNN/A	EWWQC15 AJYNN/A	EWWQC16 AJYNN/A	EWWQC18 AJYNN/A	EWWQC19 AJYNN/A	EWWQC20 AJYNN/A		
Compressor	Phase			3~									
	Voltage		V	400	400	400	400	400	400	400	400		
	Voltage Tolerance	Minimum	%		•		-1	0%	•	•			
		Maximum	%				+1	0%					
	Starting current		А	455	455	455	455	656	656	656	656		
	Nominal running curr	rent (RLA)	А	173 / 208	208 / 208	208 / 235	235 / 235	263 / 263	263 / 315	315/315	315 / 367		
	Maximum Running C	Maximum Running Current		225 / 274	274 / 274	274 / 310	310 / 310	325 / 325	325 / 388	388 / 388	388 / 458		
	Starting Method	Starting Method			Open Star-Delta								
	Recommended fuses	Recommended fuses			315 A gG /	315 A gG /	355 A gG /	355 A gG /	355 A gG /	500 A gG /	500 A gG /		
				315 A gG	315 A gG	355 A gG	355 A gG	355 A gG	500 A gG	500 A gG	630 A gG		
Control Circuit	Phase			1~									
	Voltage		V	115	115	115	115	115	115	115	115		
	Recommended fuses	8		4 A gG									
	Crankcase heater (E	Crankcase heater (E1/2HC)		250	250	250	250	400+140	400+140	400+140	400+140		
Notes				Allowed	Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.								
				Nominal		•	s referred to i conditions: ev						
	Recommended fuses (IEC 269-2: 1.6 times largest compressor fuse size)												
				Maximum star	ting current: sta	rting current of b	iggest compress	sor + current of t	he other compre	essor at 75 % of	maximum load		
				Maxi	mum current	for wires siz	ing: (compre	ssors full loa	id ampere +	fans current) x 1.1		

3-2 ELECTRIC	AL SPECIFICATIONS	6		EWWQC22AJYNN/A					
Power Supply	Name			YN					
ener eapp.y	Phase			3~					
	Frequency		Hz	50					
	Voltage	V		400					
	Voltage Tolerance	Minimum	%	-10%					
		Maximum	%	+10%					
Unit	Starting Current	•	A	656					
	Maximum starting cu	rrent	A	1,032					
	Nominal Running Cu	rrent Cooling	A	729					
	Power factor at nomi	nal conditions	A	0.91					
	Maximum Running C	urrent	A	877					
	Max unit current for w	vires sizing	A	965					
	Recommended fuses a	ccording to IEC sta	ndard 269-2	1,000 A gG					
Compressor	Phase			3~					
	Voltage		V	400					
	Voltage Tolerance	Minimum %		-10%					
		Maximum	%	+10%					
	Starting current	•	A	656					
	Nominal running curr	ent (RLA)	A	367 / 367					
	Maximum Running C	urrent	A	458 / 458					
	Starting Method			Open Star-Delta					
	Recommended fuses	3		630 A gG / 630 A gG					
Control Circuit	Phase			1~					
	Voltage		V	115					
	Recommended fuses	3		4 A gG					
	Crankcase heater (E	1/2HC)	W	400+140					
Notes				Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.					
				Nominal current in cooling mode is referred to installation with 25kA short circuit current and is based on the following conditions: evaporator 12/7°C, condenser 30/35°C					
				Recommended fuses (IEC 269-2: 1.6 times largest compressor fuse size)					
				Maximum starting current: starting current of biggest compressor + current of the other compressor at 75 % of maximum load					
				Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1					

4 Options

Star Delta Compressors starter - For low inrush current and reduced starting torque.

Phase monitor - The phase monitor controls phase sequence and phase loss.

Evaporator connection water side Victaulic - Hydraulic joint with gasket for an easy and quick water connection.

Double Set Point version (CB) - Dual leaving glycol mixture temperature setpoints. The lower setpoint can go down to 0°C.

This option needs 20mm thicked evaporator insulation (option on request).

1 pass condensers for EWWQ750-850-C11AJYNN units and EWWQC16-C20AJYNN.

2 passes condensers for EWWQ400-650AJYNN UNITS and EWWQ800-C15AJYNN, and for EWWQ-AJYNN/A units.

Hour run meter - Digital compressors hour run meter.

General fault relay - Contactor for the alarm warning.

Alarm from external device - Microprocessor is able to receive an alarm signal from an external device (pump, etc...). User can decide if this alarm signal will stop the unit or not.

Discharge line check valves

Options (on request)

Partial heat recovery - Enabled through a shell & tubes heat exchanger sited between the compressor and the condenser, completely dedicated to the heat recovery. This allows hot water to be produced up to a maximum temperature of 58°C, and to provide a very economic solution.

Evaporator electric heater - Electric heater controlled by a thermostat to protect the evaporator from freezing down to -28°C ambient temperature.

Compressor thermal overload relays - Safety devices against compressor motor overloading in addition to the normal protection envisaged by the electrical windings. Amp and Volt Meter - Digital meters of unit drawn amperes and voltage values, installed on the electrical control panel.

Power factor correction - Installed on the electrical control panel to ensure it complies with the plant rules. (Daikin advises maximum 0,9).

Flow switch - Supplied separately to be wired and installed on the evaporator water piping (by the customer).

Suction line shut-off valves - Suction shut-off valve installed on the suction part of the compressor to facilitate maintenance operations. The valve implies an increase of length equal to 150mm

Discharge line shut-off valves - Discharge shut-off valve installed on the discharge part of the compressor to facilitate maintenance operations.

Cu-Ni 90-10 condenser - To work with sea water the heat exchangers are fitted with Cu-Ni tubes and special protection inside the end covers.

Rubber type antivibration mounts - Supplied separately, these are positioned under the base of the unit for "floor" installation.

Sound proof cabinet - Made of sheet metal and internally insulated, the cabinet is "integral kind" (around the whole chiller, not only around the compressors) to reach the best performance in noise reduction.

4 Options

Current Limit / Display - This option allows to monitor the chiller absorbed current with possibility to set a limit value. This option excludes the Demand Limit. 20mm thicked evaporator insulation - Useful in really heavy operating conditions.

2 passes condensers working with 9-12 °C water ∆T for EWWQ750-850-C11AJYNN and EWWQC16-C19AJYNN units.

4 passes condensers working with 9-12 °C water △T for EWWQ400-650AJYNN and EWWQ800-C15, and for EWWQ-AJYNN/A units.

Witness tests - The units are normally tested at the test bench prior to the shipment. On request, a second test can be carried out, at customer's presence, in accordance with the procedures indicated on the test form. (Not available for units with Glycol mixtures).

Soft start - Electronic starting device to prevent mechanical stress of the motor. An overload protection is included (no need of compressors thermal relays); soft start causes an increase of length equal to 100mm only on the following versions: C19AJYNN, C20AJYNN, C19AJYNN/A, C20AJYNN/A, C22AJYNN/A

Over / Under Voltage - Phase monitor to control the minimum and maximum voltage value that the user can set.

Supervising systems (on request)

PlantVisor[™]:

Solution for tele-maintenance and supervisory

MicroTech II C Plus can be monitored locally or via modem or GSM by PlantVisorTM supervision program. PlantVisorTM is compatible with all Windows based systems.

- It allows the followings functions:
- Unit status monitoring
- Circuits status monitoring
- Set-points modification
- Alarms display

MicroTech II C Plus remote control

MicroTech II C Plus is able to communicate to BMS (Building Management System) based on the most common protocols as:

- CARELNative
- ModbusRTU
- LonWorks, now also based on the international 8040 Standard Chiller Profile and LonMark Technology
- BacNet BTP certifief over IP and MS/TP (class 4)
- Ethernet TCP/IP and SNM.

Chiller Sequencing

MicroTech II control family allows an easy plug-in sequencing technology based on digital or serial field panel.

CSC II (Chiller System Controller II)

Serial sequences for up to 5 MTII chillers. Full featured field serial device to sequence, optimize and monitor a small group of Daikin chillers (check your catalogue for compatibility and features). Monitorable by Plant Visor.

5 Capacity tables

5 - 1 Cooling capacity tables

EWWQ440-950AJYNN/A

-	er	8	Entering condenser water temperature (△T=5°C)											
Unit size	wat	2	20	2	5	3	0	3	5	40				
Unit size	Leaving chilled water temp. ° C	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)			
	4	442.0	67.7	418.1	76.8	391.1	86.3	361.8	96.3	330.9	106.9			
	5	456.0	67.8	431.6	76.9	404.1	86.4	374.2	96.4	342.7	107.0			
	6	470.2	67.9	445.4	77.0	417.3	86.5	386.8	96.5	354.6	107.2			
440	7	484.7	67.9	459.4	77.1	430.7	86.7	399.6	96.7	366.9	107.3			
	8	499.6	67.9	473.7	77.2	444.5	86.8	412.8	96.8	379.5	107.4			
	9	514.7	68.0	488.2	77.3	458.6	86.9	426.3	97.0	392.2	107.6			
	10	530.0	68.0	503.1	77.4	472.8	87.0	440.0	97.1	405.3	107.7			
	4	539.3	81.8	510.7	92.8	478.0	104.3	442.5	116.5	405.1	129.5			
	5	556.3	81.8	527.3	92.9	493.9	104.5	457.6	116.6	419.4	129.6			
	6	573.6	81.9	543.8	93.0	510.1	104.6	473.2	116.8	434.1	129.8			
550	7	591.2	81.9	560.9	93.1	526.6	104.7	488.9	116.9	449.2	129.9			
	8	609.2	81.9	578.2	93.2	543.3	104.8	505.1	117.1	464.5	130.0			
	9	627.6	81.9	596.0	93.2	560.3	104.9	521.5	117.2	480.2	130.1			
	10	646.1	81.9	614.0	93.3	577.6	105.0	538.2	117.3	496.3	130.3			
	4	668.3	100.1	632.7	113.7	592.6	127.8	548.9	142.7	502.8	158.7			
	5	689.6	100.2	653.1	113.8	612.1	127.9	567.6	142.9	520.7	158.9			
	6	711.3	100.3	674.0	113.9	632.1	128.1	586.7	143.1	538.8	159.0			
650	7	733.6	100.3	695.4	114.0	652.5	128.3	606.3	143.3	557.3	159.2			
erstare.	8	756.2	100.3	717.2	114.1	673.4	128.4	626.1	143.4	576.3	159.3			
	9	779.3	100.3	739.4	114.2	694.7	128.6	646.4	143.6	595.6	159.5			
	10	802.7	100.3	762.1	114.3	716.6	128.7	667.2	143.8	615.4	159.7			
	4	758.7	114.0	718.0	129.3	672.1	145.3	622.2	162.3	569.8	180,4			
	5	782.8	114.1	741.3	129.5	694.4	145.5	643.5	162.5	590.0	180.6			
	6	807.3	114.1	765.0	129.6	717.2	145.7	665.3	162.7	610.7	180.8			
750	7	832.3	114.2	789.2	129.8	740.4	145.9	687.5	162.9	631.8	181.0			
0.77.0	8	857.9	114.2	813.7	129.9	764.1	146.1	710.2	163.1	653.3	181.2			
	9	883.9	114.3	838.7	130.0	788.3	146.3	733.3	163.4	675.4	181.4			
	10	910.4	114.3	864.4	130.1	812.8	146.5	756.8	163.6	697.8	181.6			
	4	826.2	128.0	786.2	144.0	743.6	159.9	698.5	176.2	651.3	193.6			
	5	852.1	128.5	811.3	144.7	767.9	160.7	721.9	177.1	673.6	194.5			
	6	878.5	129.0	837.0	145.3	792.6	161.4	745.7	177.9	696.4	195.3			
800	7	905.3	129.4	863.0	145.9	817.8	162.0	769.9	178.5	719.6	196.0			
	8	932.6	129.7	889.5	146.3	843.5	162.5	794.6	179.1	743.1	196.6			
	9	960.3	129.8	916.4	146.5	869.5	162.9	819.7	179.5	767.1	197.0			
	10	988.4	129.8	943.8	146.6	896.0	163.0	845.1	179.7	791.6	197.2			
	4	1005.1	156.9	953.4	174.5	899.2	193.2	842.1	212.5	782.0	231.5			
	5	1038.1	157.7	985.3	175.4	929.9	194.4	871.5	213.8	809.8	232.9			
	6	1071.9	158.4	1017.8	176.4	961.1	195.5	901.4	215.1	838.2	234.3			
950	7	122200000	1.00000000		1.110.000.000		2012/2012/101							
990	1.	1106.2	159.0	1051.1	177.2	993.0	196.6	931.8	216.3	867.3	235.6			
	8	1139.9	159.5	1084.9	178.0	1025.5	197.5	962.9	217.4	896.7	236.8			
	9	1174.1	159.9	1118.7	178.6	1058.6	198.4	994.6	218.4	926,8	237.9			
	10	1208.8	160.3	1152.3	179.2	1092.2	199.1	1026.7	219.2	957.4	238.9			

Note: C.C. (cooling capacity) and P.I. (unit power input) are referred to 0,0176m² °C/kW evaporator fouling factor and 0,0440m² °C/kW condenser fouling factor. Rated conditions are for compressors running at nominal frequency. Shaded values are referred to part load operation.

5 Capacity tables

5 - 1 Cooling capacity tables

EWWQC10-C15AJYNN/A

	ter	1.00					er temperatu				-
Unit size C10 C11 C12 C13 C14	C val		20	2	5	3	0	3	15		40
	Leaving chilled water temp. ° C	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)						
	4	1085.5	163.6	1027.3	185.7	961.5	208.7	889.8	233.1	814.3	259.1
	5	1120.1	163.7	1060.7	185.9	993.4	209.0	920.4	233.3	843.4	259.3
	6	1155.4	163.7	1094.7	186.1	1026.1	209.2	951.5	233.6	873.0	259.6
C10	7	1191.3	163.8	1129.5	186.2	1059.5	209.5	983.4	233.9	903.3	259.8
	8	1227.9	163.8	1164.7	186.4	1093.6	209.7	1016.0	234.2	934.2	260.1
	9	1265.1	163.8	1200.7	186.5	1128.3	209.9	1049.2	234.4	965.8	260.3
	10	1303.2	163.8	1237.3	186.6	1163.5	210.1	1083.1	234.7	998.2	260.6
	4	1152.9	185.4	1096.5	205.7	1034.1	227.6	968.8	250.3	901.3	272.7
	5	1188.6	186.5	1131.4	206.9	1068.8	229.1	1002.0	252.0	932.9	274.5
	6	1225.1	187.5	1166.6	208.2	1104.2	230.6	1035.8	253.6	965.1	276.3
C11	7	1263.4	188.5	1202.4	209.4	1138.7	232.1	1070.3	255.3	998.0	278.1
	8	1303.0	189.5	1239.0	210.6	1173.7	233.5	1105.3	256.9	1031.4	279.9
	9	1343.2	190.4	1277.7	211.9	1209.4	234.9	1139.5	258.5	1065.4	281.6
	10	1384.2	191.4	1317.3	213.1	1246.2	236.3	1174.3	260.0	1100.1	283.3
	4	1211.2	182.0	1146.7	206.6	1073.6	232.2	994.0	259.3	910.0	288.3
	5	1249.6	182.1	1183.7	206.8	1109.2	232.5	1027.9	259.6	942.3	288.6
	6	1288.8	182.2	1221.5	207.0	1145.5	232.8	1062.7	260.0	975.4	288.9
C12	7	1328.8	182.3	1260.0	207.2	1182.4	233.1	1098.2	260.3	1009.1	289.2
	8	1369.4	182.3	1299.2	207.4	1220.1	233.4	1134.3	260.6	1043.6	289.5
	9	1410.6	182.3	1339.3	207.6	1258.7	233.6	1171.2	260.9	1078.8	289.8
	10	1452.6	182.3	1379.9	207.7	1298.0	233.9	1208.8	261.2	1114.8	290.1
	4	1329.7	201.2	1258.6	228.2	1178.2	256.4	1091.0	286.3	999.1	318.3
	5	1371.8	201.3	1299.1	228.5	1217.2	256.8	1128.2	286.7	1034.4	318.6
	6	1414.6	201.5	1340.5	228.8	1256.9	257.2	1166.2	287.1	1070.6	319.0
C13	7	1458.3	201.6	1382.7	229.0	1297.5	257.5	1204.9	287.5	1107.5	319.3
	8	1502.9	201.7	1425.6	229.3	1338.8	257.9	1244.5	287.9	1145.2	319.7
	9	1548.1	201.7	1469.4	229.5	1380.9	258.2	1284.9	288.2	1183.6	320.1
	10	1594.1	201.8	1514.0	229.7	1423.8	258.5	1326.1	288.6	1222.9	320.4
	4	1431.7	214.6	1355.0	243.4	1268.4	273.6	1174.5	305.5	1075.5	339.7
	5	1477.1	214.8	1398.7	243.8	1310.5	274.0	1214.6	305.9	1113.6	340.0
	6	1523.3	214.9	1443.4	244.1	1353.3	274.4	1255.6	306.3	1152.6	340.4
C14	7	1570.3	215.0	1489.0	244.3	1397.1	274.8	1297.4	306.7	1192.4	340.7
	8	1618.4	215.1	1535.2	244.6	1441.7	275.1	1340.0	307.1	1233.0	341.1
	9	1667.3	215.1	1582.4	244.8	1487.1	275.5	1383.6	307.5	1274.5	341.5
	10	1716.9	215.2	1630.5	245.0	1533.4	275.8	1428.1	307.9	1316.9	341.9
	4	1514.7	227.9	1434.1	258.6	1342.9	290.6	1243.7	324.6	1139.4	360.9
	5	1562.5	228.1	1480.2	258.9	1387.1	291.1	1286.1	325.0	1179.6	361.2
	6	1610.8	228.3	1527.3	259.2	1432.3	291.5	1329.3	325.4	1220.8	361.6
C15	7	1660.2	228.4	1575.0	259.5	1478.5	291.9	1373.4	325.8	1262.8	362.0
010				-D7280.25034	24224626444		100.00 C C C			COLUMN TO COLUMN	
	8	1710.4	228.5	1623.4	259.8	1525.5	292.2	1418.4	326.3	1305.6	362.4
	9	1761.6	228.5	1672.8	260.0	1573.2	292.6	1464.4	326.7	1349.3	362.8
	10	1813.7	228.5	1723.1	260.2	1621.5	292.9	1511.2	327.1	1394.0	363.2

Note: C.C. (cooling capacity) and P.I. (unit power input) are referred to 0,0176m² °C/kW evaporator fouling factor and 0,0440m² °C/kW condenser fouling factor. Rated conditions are for compressors running at nominal frequency. Shaded values are referred to part load operation.

5 Capacity tables

5 - 1 Cooling capacity tables

EWWQC16-C22AJYNN/A

	10	12		E	ntering con	denser wate	r temperatu	ire (∆T=5°C)		
	ed water C	2	0	2	5	3	0	3	5	4	0
Unit size	Leaving chilled w temp.°C	Cool. cap. (kW)	Pow. Input (KW)	Cool. cap. (kW)	Pow. Inpu (KW)						
	4	1620.4	253.4	1539.9	285.3	1453.9	316.8	1362.6	349.2	1265.6	383.7
	5	1672.9	254.6	1590.7	286.8	1503.4	318.5	1410.7	351.1	1311.7	385.7
	6	1726.3	255.6	1642.7	288.1	1553.4	320.1	1459.0	352.8	1359.0	387.5
C16	7	1780.4	256.5	1695.7	289.3	1604.5	321.5	1508.3	354.3	1406.8	389.1
	8	1835.4	257.1	1749.1	290.2	1656.7	322.6	1558.3	355.6	1454.7	390.4
	9	1891.4	257.5	1803.5	290.9	1709.5	323.5	1609.2	356.6	1503.5	391.4
	10	1948.2	257.5	1858.8	291.2	1762.9	324.0	1661.0	357.2	1553.0	392.1
	4	1787.7	282.9	1698.4	316.2	1603.8	350.7	1503.9	386.1	1398.7	422.5
	5	1845.0	284.3	1754.3	318.0	1657.8	352.7	1555.7	388.4	1448.2	424.8
	6	1903.6	285.5	1811.0	319.6	1712.7	354.6	1608.7	390.5	1498.5	427.0
C18	7	1963.2	286.6	1868.8	321.0	1768.7	356.3	1662.3	392.4	1549.9	429.1
	8	2023.5	287.4	1927.5	322.3	1825.4	357.9	1717.1	394.2	1602.3	431.0
	9	2084.7	288.1	1987.3	323.3	1883.1	359.2	1772.7	395.7	1655.4	432.6
	10	2146.7	288.5	2047.6	324.0	1941.8	360.2	1829.1	396.9	1709.5	434.0
	4	1922.3	311.6	1827.4	346.3	1727.4	383.6	1621.5	422.1	1508.8	460.1
	5	1983.0	313.2	1886.2	348.2	1784.3	385.9	1676.1	424.6	1561.4	462.9
	6	2044.0	314.6	1946.1	350.1	1842.2	388.2	1731.8	427.2	1614.6	465.6
C19	7	2105.6	316.0	2007.1	352.0	1900.9	390.3	1788.6	429.6	1668.8	468.3
2020	8	2168.4	317.2	2067.8	353.6	1960.7	392.3	1846.1	431.9	1723.9	470.7
	9	2232.0	318.3	2129.5	355.1	2021.3	394.2	1904.4	434.0	1779.9	473.1
	10	2295.8	319.3	2192.3	356.5	2081.8	395.9	1963.7	436.0	1836.7	475.2
	4	2085.0	340.4	1982.5	377.7	1873.9	418.3	1758.6	460.2	1637.6	501.7
	5	2149.5	342.1	2046.0	380.0	1935.0	420.9	1817.8	463.1	1694.1	504.9
	6	2215.1	343.8	2110.2	382.1	1997.3	423.4	1877.7	466.0	1751.7	507.9
C20	7	2281.9	345.5	2174.8	384.2	2060.7	425.9	1938.7	468.8	1810.4	511.0
~~~	8	2349.8	347.0	2240.6	386.2	2124.5	428.3	2000.6	471.5	1869.8	513.9
	9	2418.4	348.5	2307.4	388.1	2189.0	430.6	2063.6	474.1	1930.0	516.7
	10	2487.6	349.8	2375.3	389.9	2254.5	432.8	2126.8	476.5	1991.2	519.4
	4	2222.5	368.5	2115.1	408.4	1999.8	452.0	1877.6	497.5	1750.2	542.4
	5	2289.9	370.4	2115.1	410.9	2064.1	455.0	1940.1	500.7	1810.0	545.9
	6	2358.4	372.4	2248.8	413.4	2129.5	457.9	2003.2	503.9	1871.0	549.3
C22	7	2428.1	374.3	2316.3	415.8	2129.5	460.7	2003.2	503.9	1933.0	552.8
022	8	2428.1	376.2	2316.3	415.8	2196.2	460.7	2132.3	510.2	1933.0	556.2
	9	2571.4	378.1	2364.9	410.1	2330.1	466.3	2132.3	513.3	2059.0	559.5
	10			2404.7	420.5				SAL 15 AG 15 AG 1	1000000000	562.8
	10	2643.9	379.9	2020.1	422.8	2398.5	469.0	2264.7	516.3	2123.3	302.8

Note: C.C. (cooling capacity) and P.I. (unit power input) are referred to 0,0176m² °C/kW evaporator fouling factor and 0,0440m² °C/kW condenser fouling factor. Rated conditions are for compressors running at nominal frequency. Shaded values are referred to part load operation.

# 5 Capacity tables

# 5 - 2 Capacity correction factor

#### Operating limits

EWWQ-AJYNN & AJYNN/A	R-410A	
Max evaporator water △T	°C	6
Min evaporator water △T	°C	4
Max condenser water $\triangle T$	°C	8
Min condenser water △T	°C	4

#### **Evaporator fouling factors**

Fouling factors m ² °C/ kW	Cooling capacity correction factor	Power input correction factor	EER Correction factor
0,0176	1,000	1,000	1,000
0,0440	0,978	0,986	0,992
0.0880	0,957	0.974	0,983
0,1320	0,938	0,962	0,975

#### Condenser fouling factors

Fouling factors m ² °C/kW	Cooling capacity correction factor	Power input correction factor	EER Correction factor	
0,044	1,000	1,000	1,000	
0,088	0,990	1,018	0,973	
0,132	0,981	1,036	0,945	

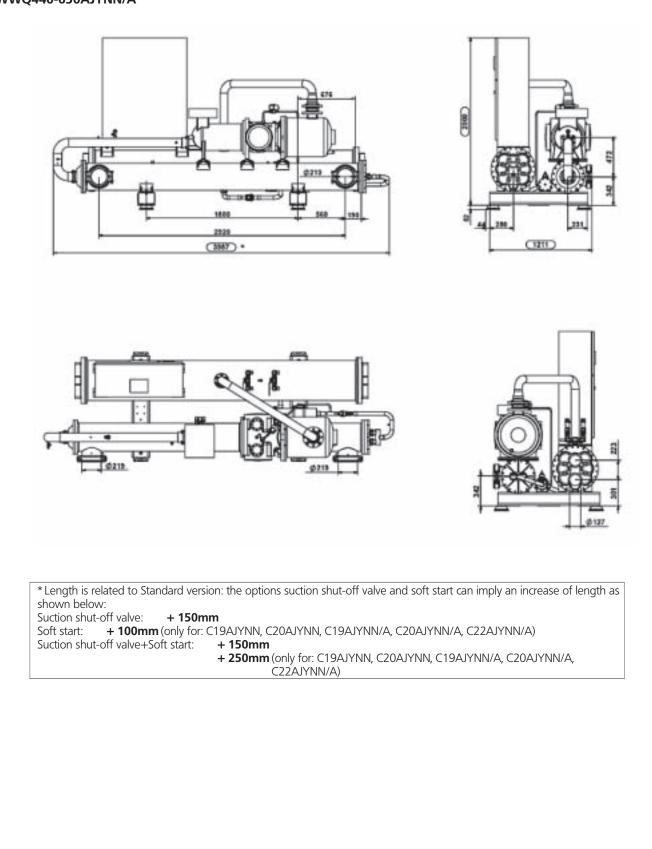
#### Ethylene glycol and low ambient temperature correction factors

Air ambient temperature (°C)	-3	-8	-15	-23	-35
% of ethylene glycol by weight	10	20	30	40	50
Cooling capacity correction factor	0,991	0,982	0,972	0,961	0,946
Power input correction factor	0,996	0,992	0,986	0,976	0,966
Flow rate correction factor	1,013	1,040	1,074	1,121	1,178
Water pressure drops correction factor	1,070	1,129	1,181	1,263	1,308

#### Low temperature operation performance factors

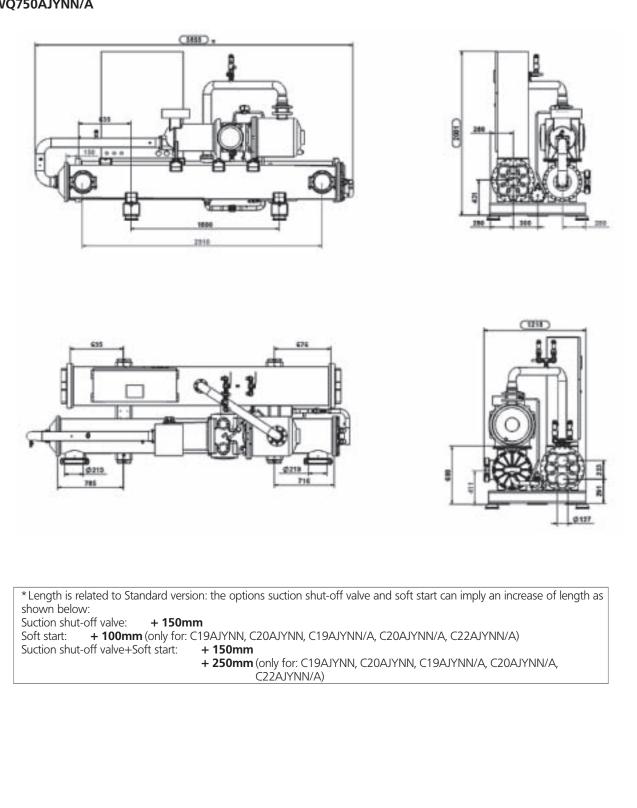
Ethylene glycol/water leaving temperature °C	3	2	0	-2	-4	-6	-8
Min. % of ethylene glycol	10	10	20	20	30	30	30
Cooling capacity correction factor	0,882	0,853	0,799	0,747	0,697	0,650	0,604
Power input compressors correction factor	0,977	0,971	0,960	0,947	0,934	0,919	0,903

# 5 Capacity tables


# 5 - 3 Partial heat recovery ratings

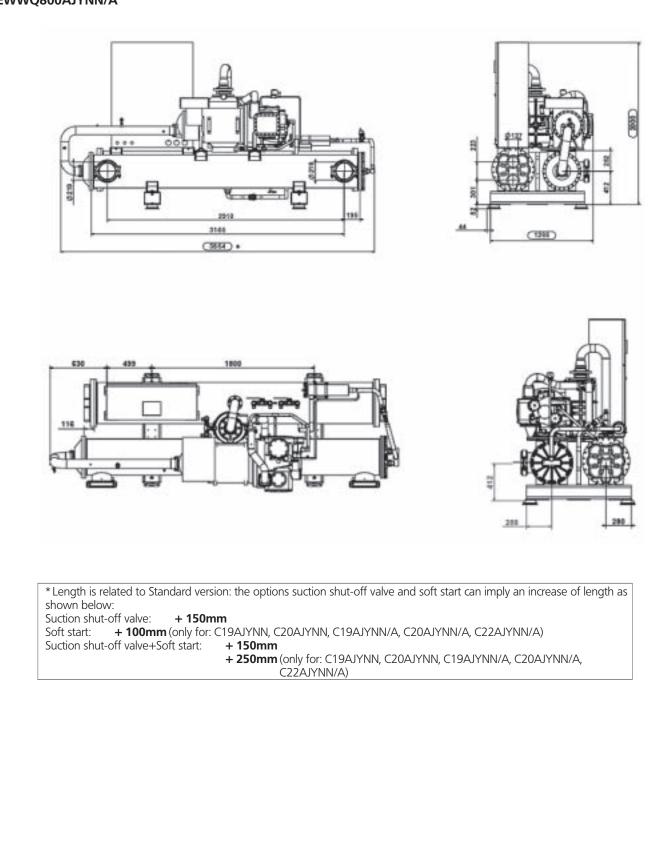
# EWWQ-AJYNN/A

		Heat re	covery leaving water temperature ( $ riangle$	T=5°C)
Unit size		45	50	55
		Heating capacity (kW)	Heating capacity (kW)	Heating capacity (kW)
440		54.4	37.5	21.3
550		65.5	45.9	27.1
650		77.4	52.4	28.5
750		93.6	65.3	38.3
800	∆T 5°0 °C	106.3	76.0	47.1
950	°C - 7	125.3	86.0	48.5
C10	ture 7 beratu	131.5	89.7	50.0
C11	Evaporator leaving water temperature 7°C - ∆T 5°C Condenser leaving water temperature 35°C	152.4	109.8	69.1
C12	er ten vater	148.8	103.5	60.4
C13	j wato ving v	163.3	111.9	63.0
C14	er lea	175.4	122.2	71.5
C15A	ator le idens	182.5	123.6	67.5
C16	Cor	203.2	139.9	79.6
C18	Δ.	228.4	161.7	98.1
C19		253.3	177.7	105.7
C20		276.1	199.1	125.6
C22		301.7	216.9	135.9


## 6 - 1 Dimensional drawing

#### EWWQ440-650AJYNN/A



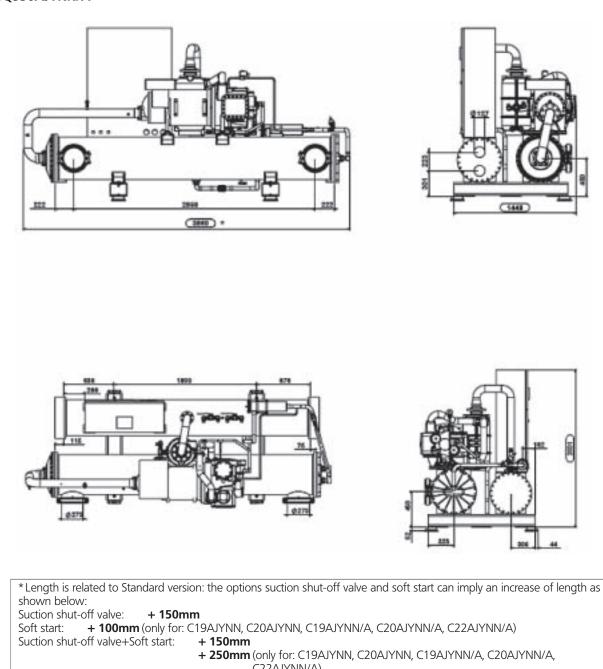

#### 6 - 1 **Dimensional drawing**

### EWWQ750AJYNN/A



## 6 - 1 Dimensional drawing

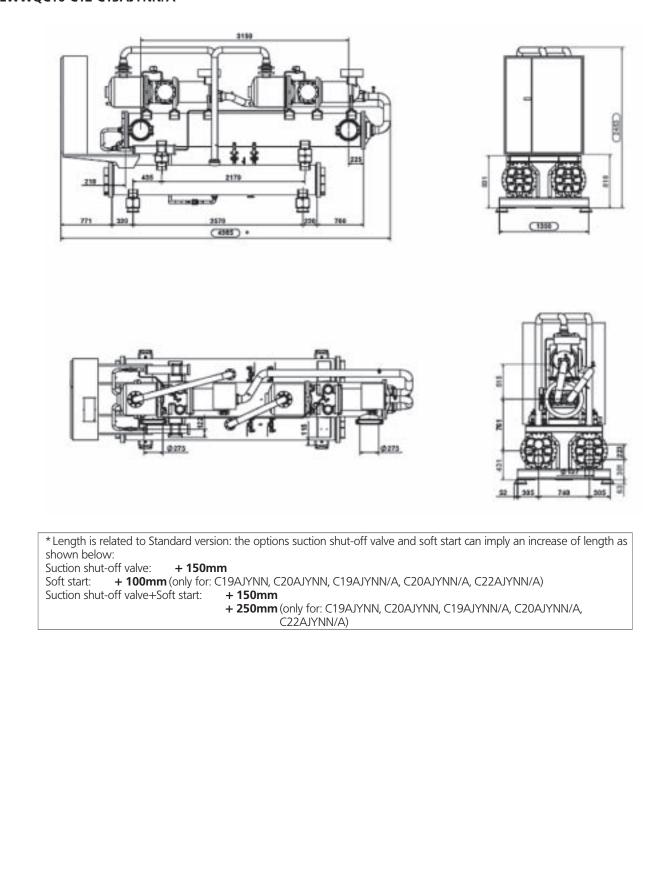
#### EWWQ800AJYNN/A




#### 6 - 1 **Dimensional drawing**

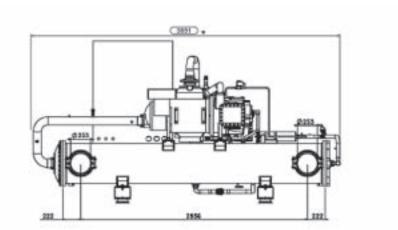
### EWWQ950AJYNN/A

2

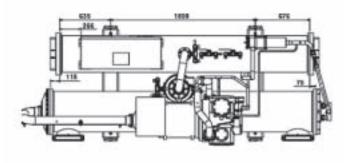

6 

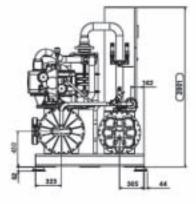


C22AJYNN/A)


## 6 - 1 Dimensional drawing

#### EWWQC10-C12-C13AJYNN/A





#### 6 - 1 **Dimensional drawing**

#### EWWQC11AJYNN/A



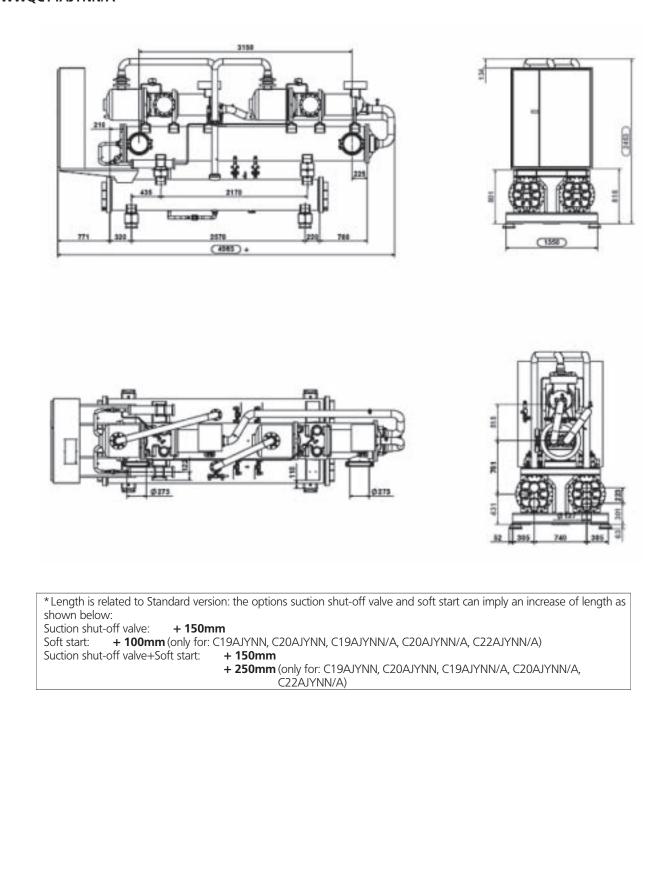






* Length is related to Standard version: the options suction shut-off valve and soft start can imply an increase of length as shown below:

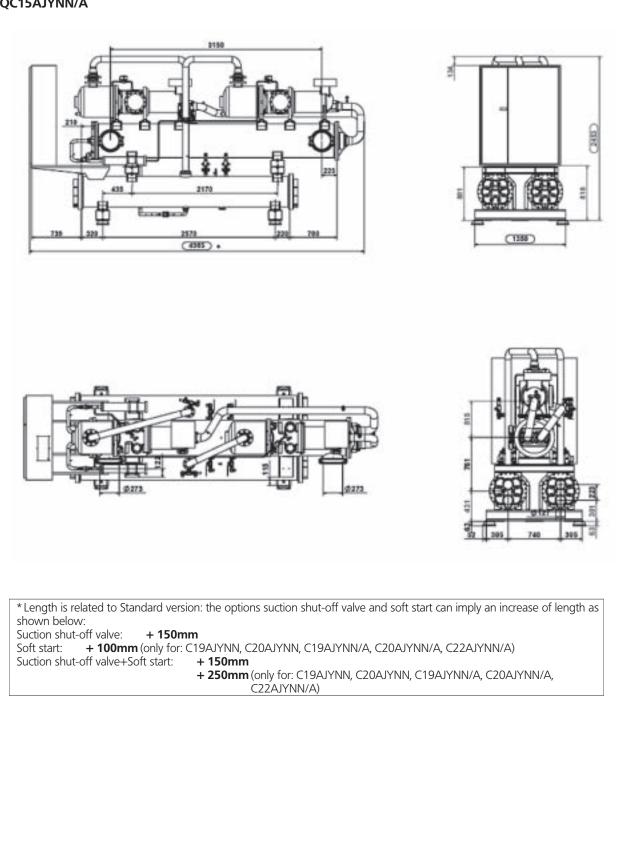
+ 150mm Suction shut-off valve:


+ 100mm (only for: C19AJYNN, C20AJYNN, C19AJYNN/A, C20AJYNN/A, C22AJYNN/A) Soft start:

Suction shut-off valve+Soft start: + 150mm

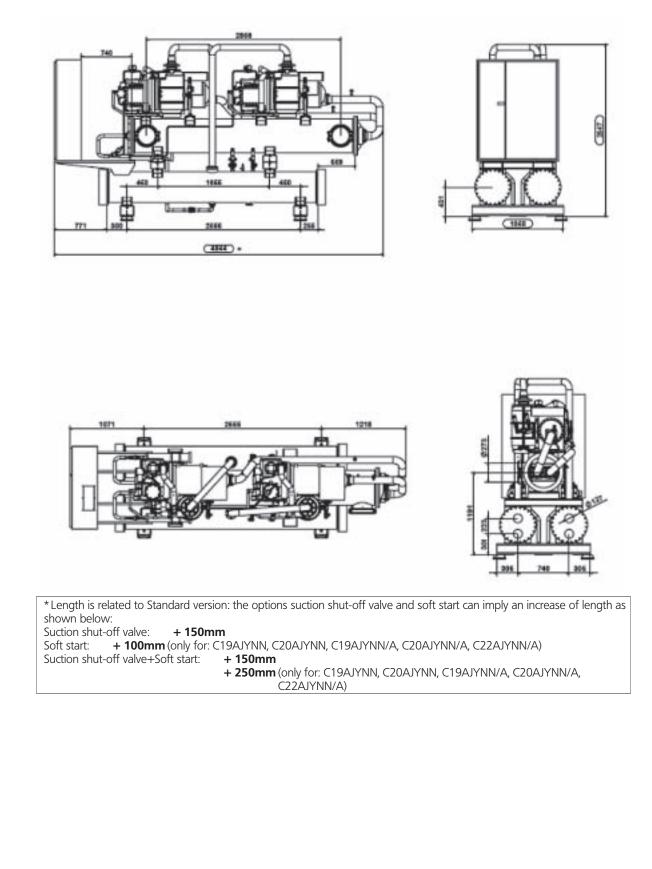
- + **250mm** (only for: C19AJYNN, C20AJYNN, C19AJYNN/A, C20AJYNN/A, C22AJYNN/A)

## 6 - 1 Dimensional drawing


#### EWWQC14AJYNN/A

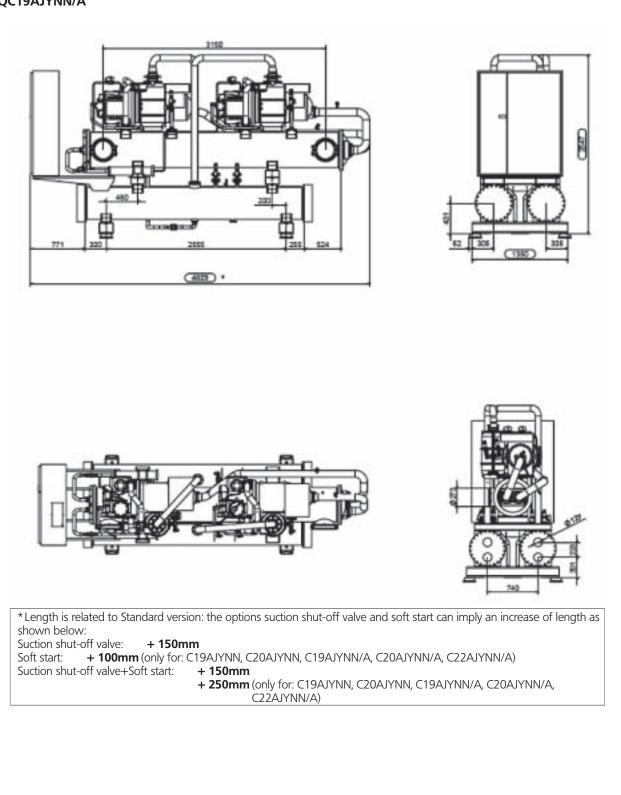


### 6 - 1 Dimensional drawing


### EWWQC15AJYNN/A

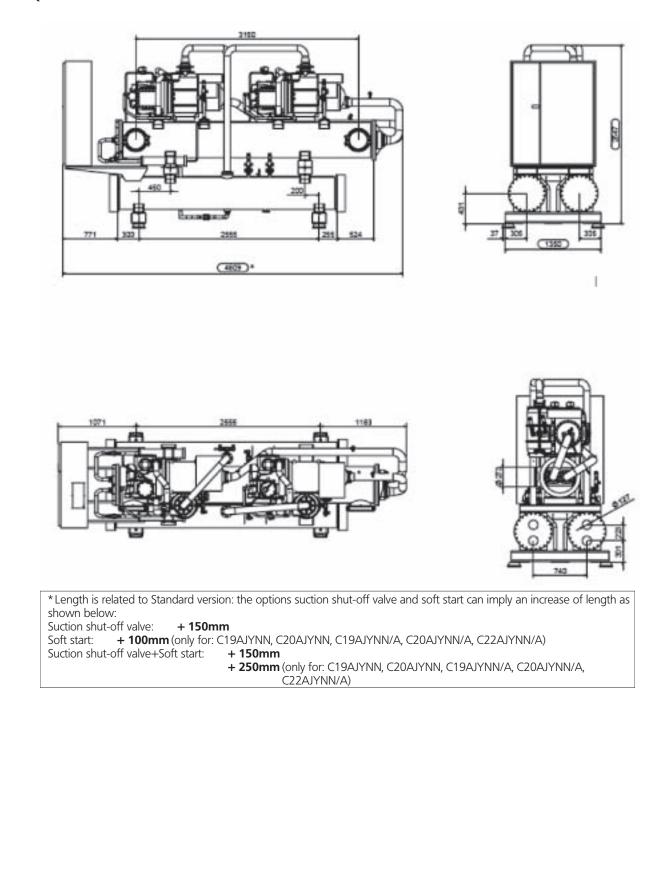
2




## 6 - 1 Dimensional drawing

#### EWWQC16-C18AJYNN/A



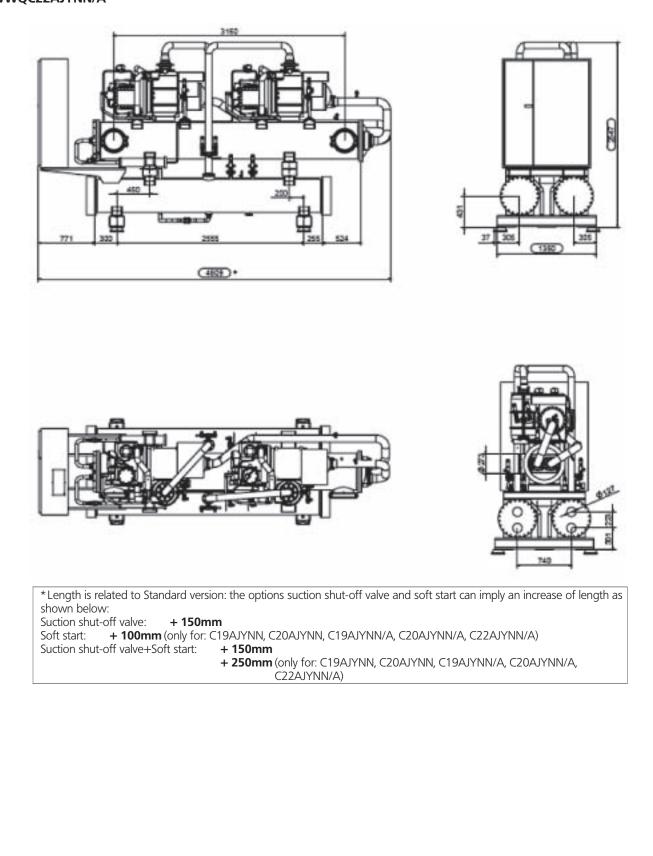

### 6 - 1 Dimensional drawing

#### EWWQC19AJYNN/A



## 6 - 1 Dimensional drawing

#### EWWQC20AJYNN/A




2

## 6 - 1 Dimensional drawing

### EWWQC22AJYNN/A

2



# 7 Sound data

### 7 - 1 Sound pressure spectrum

# SOUND PRESSURE LEVEL EWWQ-AJYNN

	Sound p	ressure level a	at 1 m from t	he unit in sen	nispheric free	field (rif. 2 x 1	10 ⁻⁵ Pa)		Second .	power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
400	55.1	59.4	71.6	84.1	71.9	72.5	58.5	53.2	82.2	100.2
480	55.9	60.2	72.4	84.9	72.7	73.3	59.3	54	83.0	101.2
600	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.3
650	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.3
750	56,1	60,4	72,6	85,1	72,9	73,5	59,5	54,2	83,2	101.5
800	56,9	61,2	73,4	85,9	73,7	74,3	60,3	55,0	84,0	104.7
850	57,8	62,1	74,3	86,8	74,6	75,2	61,2	55,9	84,9	102.3
900	58.1	62.4	74.6	87.1	74.9	75.5	61.5	56.2	85.2	104.7
C10	58.1	62.4	74.6	87.1	74.9	75.5	61.5	56.2	85.2	105.1
C11	58.5	62.8	75	87.5	75.3	75.9	61.9	56.6	85.6	103.2
C12	58.9	63.2	75.4	87.9	75.7	76.3	62.3	57	86.0	104.7
C13	59.4	63.7	75.9	88.4	76.2	76.8	62.8	57.5	86.5	105.2
C14	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C15	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C16	59,1	63,4	75,6	88,1	75,9	76,5	62,5	57,2	86,2	105.8
C17	59,5	63,8	76,0	88,5	76,3	76,9	62,9	57,6	86,6	106.2
C18	59,9	64,2	76,4	88,9	76,7	77,3	63,3	58,0	87,0	106.6
C19	60,4	64,7	76,9	89,4	77,2	77,8	63,8	58,5	87,5	107.1
C20	60,8	65,1	77,3	89,8	77,6	78,2	64,2	58,9	87,9	107.5

Note: The values are according to ISO 3744 and are referred to: evaporator 12/7° C, condensor 30/35° C, full load operation.

## SOUND PRESSURE LEVEL EWWQ-AJYNN/A

	Sound p	oressure level a	at 1 m from t	he unit in sen	nispheric free	field (rif. 2 x 1	0 ⁻⁵ Pa)			power
Unit size	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	dB(A)	dB(A)
440	55.1	59.4	71.6	84.1	71.9	72.5	58.5	53.2	82.2	100.9
550	55.9	60.2	72.4	84.9	72.7	73.3	59.3	54	83.0	101.7
650	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.6
750	56.8	61.1	73.3	85.8	73.6	74.2	60.2	54.9	83.9	102.7
800	56,1	60,4	72,6	85,1	72,9	73,5	59,5	54,2	83,2	102.0
950	56,9	61,2	73,4	85,9	73,7	74,3	60,3	55,0	84,0	102.9
C10	58.5	62.8	75	87.5	75.3	75.9	61.9	56.6	85.6	105.2
C11	57,8	62,1	74,3	86,8	74,6	75,2	61,2	55,9	84,9	103.8
C12	58.9	63.2	75.4	87.9	75.7	76.3	62.3	57.0	86.0	105.6
C13	59,4	63.7	75.9	88,4	76.2	76.8	62.8	57.5	86.5	106.1
C14	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C15	59.8	64.1	76.3	88.8	76.6	77.2	63.2	57.9	86.9	106.5
C16	59,1	63,4	75,6	88,1	75,9	76,5	62,5	57,2	86,2	105.8
C18	59,5	63,8	76,0	88,5	76,3	76,9	62,9	57,6	86,6	106.2
C19	59,9	64,2	76,4	88,9	76,7	77,3	63,3	58,0	87,0	106.6
C20	60,4	64,7	76,9	89,4	77,2	77,8	63,8	58,5	87,5	107.1
C22	60,8	65,1	77,3	89,8	77.6	78,2	64,2	58,9	87,9	107.5

Note: The values are according to ISO 3744 and are referred to: evaporator 12/7° C, condensor 30/35° C, full load operation.

## 7 Sound data

## 7 - 2 Sound pressure correction factors for different distances

# **EWWQ-AJYNN**

			Distar	ice (m)		
Unit size	1	5	10	15	20	25
400	0	-7.9	-12.7	-15.8	-18.1	-19.8
480	0	-7.9	-12.7	-15.8	-18.1	-19.8
600	0	-7.9	-12.7	-15.8	-18.1	-19.8
650	0	-7.9	-12.7	-15.8	-18.1	-19.8
750	0	-7.9	-12.7	-15.8	-18.1	-19.8
800	0	-7.5	-12.2	-15.3	-17.5	-19.3
850	0	-7.9	-12.7	-15.8	-18.1	-19.8
900	0	-7.5	-12.2	-15.3	-17.5	-19.3
C10	0	-7.5	-12.2	-15.3	-17.5	-19.3
C11	0	-7.9	-12.7	-15.8	-18.1	-19.8
C12	0	-7.5	-12.2	-15.3	-17.5	-19.3
C13	0	-7.5	-12.2	-15.3	-17.5	-19.3
C14	0	-7.5	-12.2	-15.3	-17.5	-19.3
C15	0	-7.5	-12.2	-15.3	-17.5	-19.3
C16	0	-7.5	-12.2	-15.3	-17.5	-19.3
C17	0	-7.5	-12.2	-15.3	-17.5	-19.3
C18	0	-7.5	-12.2	-15.3	-17.5	-19.3
C19	0	-7.5	-12.2	-15.3	-17.5	-19.3
C20	0	-7.5	-12.2	-15.3	-17.5	-19.3

Note: The values are dB(A) (pressure level).

### EWWQ-AJYNN/A

Unit size	Distance (m)						
	1	5	10	15	20	25	
440	0	-7.9	-12.7	-15.8	-18.1	-19.8	
550	0	-7.9	-12.7	-15.8	-18.1	-19.8	
650	0	-7.9	-12.7	-15.8	-18.1	-19.8	
750	0	-7.9	-12.7	-15.8	-18.1	-19.8	
800	0	-7.9	-12.7	-15.8	-18.1	-19.8	
950	0	-7.9	-12.7	-15.8	-18.1	-19.8	
C10	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C11	0	-7.9	-12.7	-15.8	-18.1	-19.8	
C12	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C13	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C14	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C15	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C16	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C18	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C19	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C20	0	-7.5	-12.2	-15.3	-17.5	-19.3	
C22	0	-7.5	-12.2	-15.3	-17.5	-19.3	

Note: The values are dB(A) (pressure level).

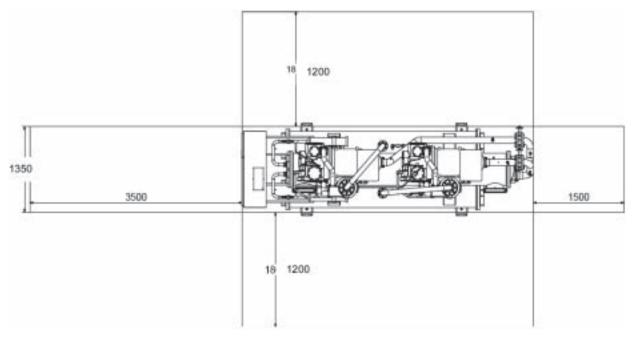
# 8 Installation

## 8 - 1 Installation method

#### Warning

Installation and maintenance are to be performed only by qualified personnel who are familiar with local codes and regulations, and who are experienced with this type of equipment. Must be avoided the unit installation in places that could be considered dangerous for all the maintenance operations.

#### Handling


The chiller is mounted on heavy wooden skids to protect the unit from accidental damage and to permit easy handling and moving. It is recommended that all moving and handling be performed with the skids under the unit when possible and that the skids not be removed until the unit is in the final location. Spreader bars must be used to protect the control cabinet and the other areas of the chiller.

#### Location

A levelled and sufficiently strong floor is required. A levelled and sufficiently strong floor is required. If necessary, additional structural members should be provided to transfer the weight of the unit to the nearest beams.

Rubber-in-shear isolators can be furnished and field placed under each corner of the package. A rubber anti-skid pad should be used under isolators if hold-down bolts are not used. Vibration isolator in all water piping connected to the chiller are recommended to avoid straining the piping and transmitting vibration and noise.

#### Minimum space requirements



## 8 Installation

### 8 - 2 Water charge, flow and quality

#### Water content in cooling circuits

The cooled water distribution circuits should have a minimum water content to avoid excessive compressor's starts and stops.

In fact, each time the compressor starts up, an excessive quantity of oil goes from the compressor sump and simultaneously there is a rise in the temperature of the compressor motor's stator, due to the inrush current during the start-up. To prevent damage to the compressors, Daikin has envisaged the application of a device to limit frequent stops and restarts.

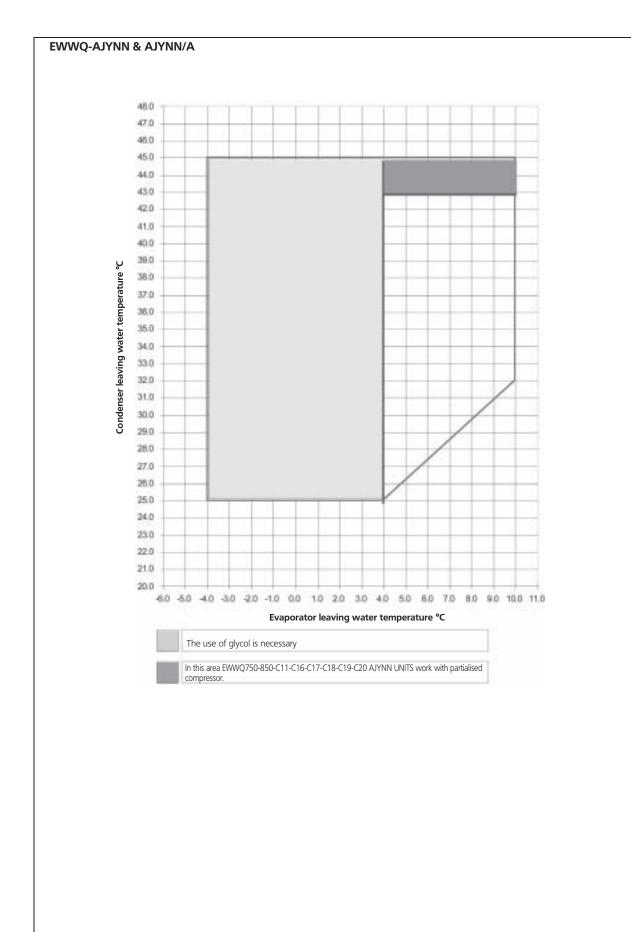
During the span of one hour there will be no more than 6 starts of the compressor. The plant side should therefore ensure that the overall water content allows a more constant functioning of the unit and consequently greater environmental comfort. The minimum installation water content envisaged should be calculated with a certain approximation using this simplified formula:

(1) 
$$Q = 35,83 \times \frac{P(kW)}{T(^{\circ}C)} \times \frac{1}{N}$$

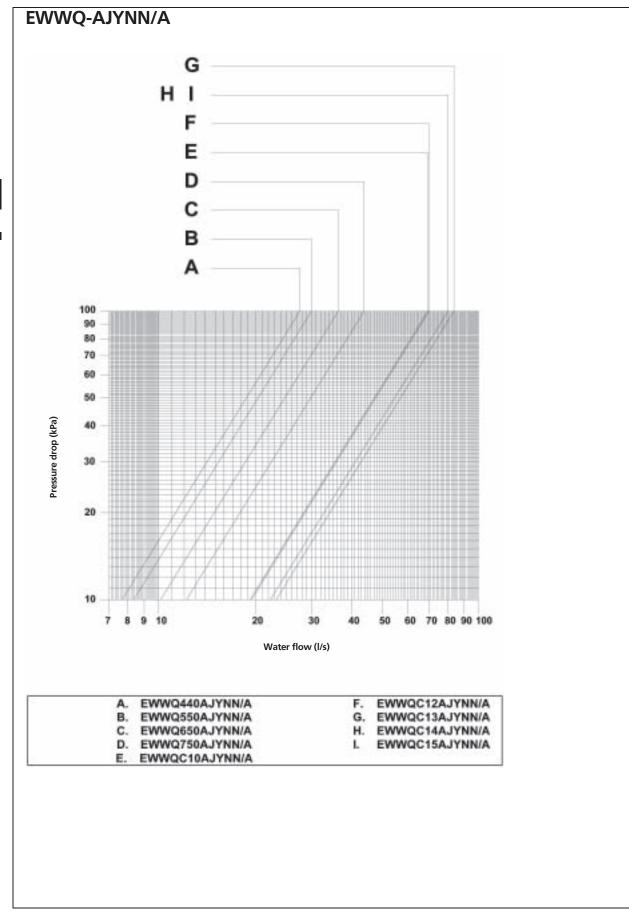
where:

 $\mathbf{Q}=\mathbf{M}\text{inimum}$  content of the plant expressed in litres

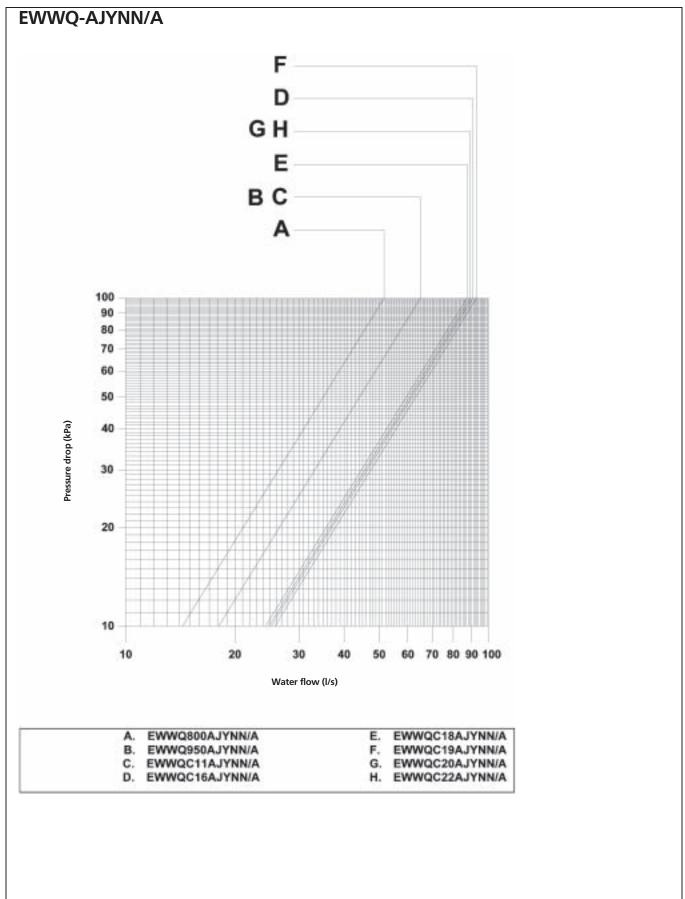
 $\mathsf{P}=\mathsf{Cooling}$  capacity of the plant expressed in kW


 $\bigtriangleup T$  = Entering/leaving water temperature difference of the evaporator expressed in °C

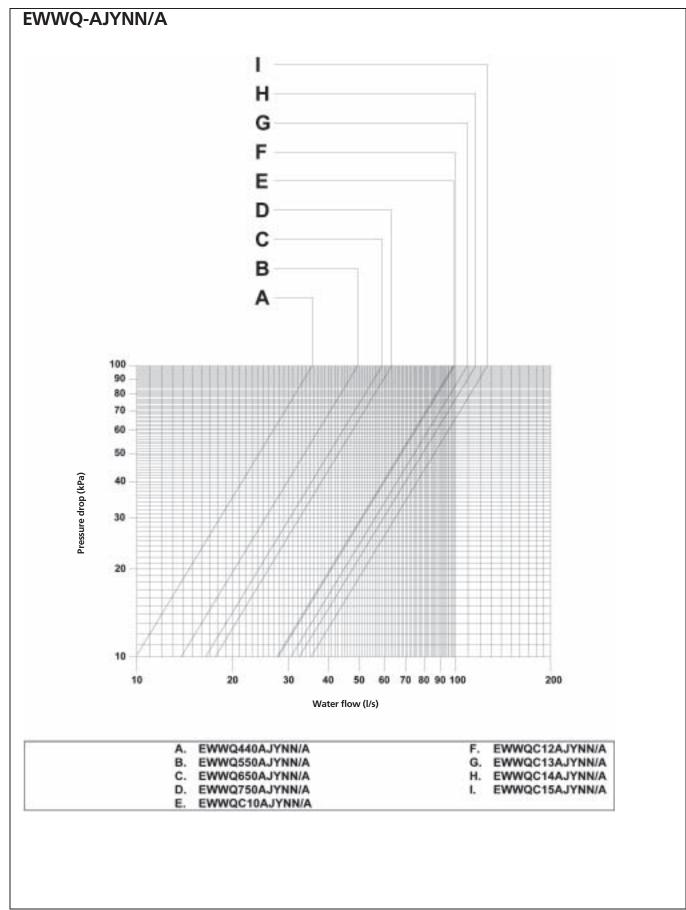
N = Number of compressors.


#### This should be the minimum quantity of water through the chiller in each operating condition, also when therminal hydronic units are switched off.

Therefore for a more accurate determination of the water quantity, it is advisable to contact the designer of the plant.


# 9 Operation range




### 10 - 1 Water pressure drop curve evaporator



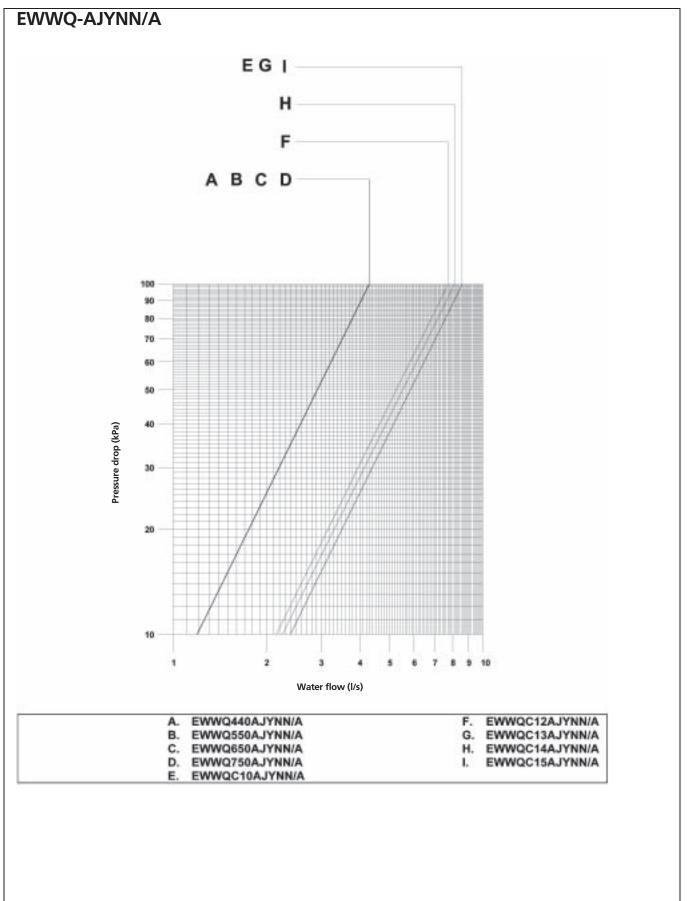

# 10 - 1 Water pressure drop curve evaporator



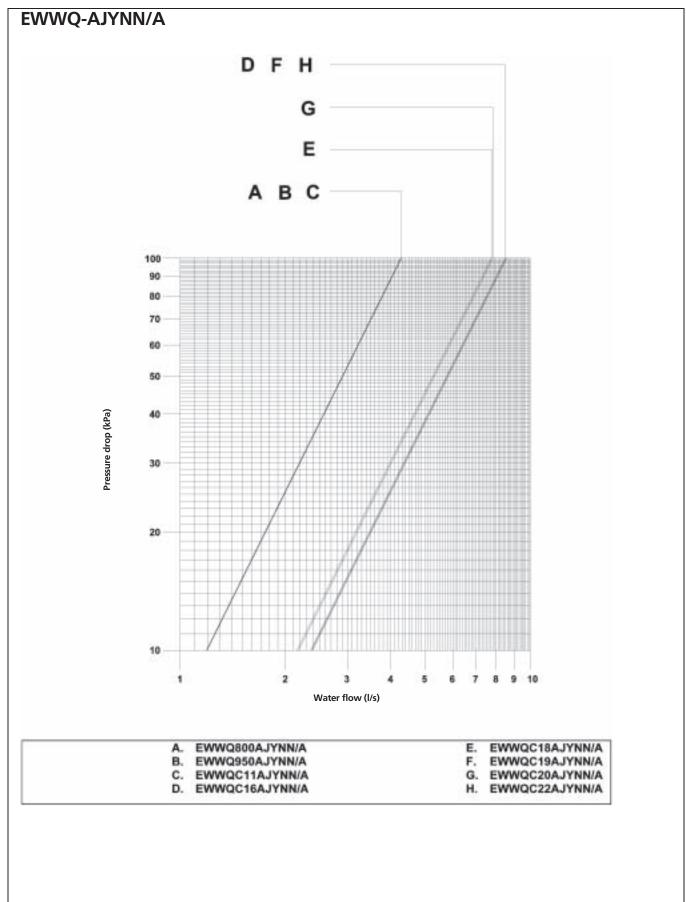
## 10 - 2 Water pressure drop curve condenser



# 10 - 2 Water pressure drop curve condenser




# 10 - 3 Partial heat recovery ratings


# EWWQ-AJYNN/A

		Heat re	covery leaving water temperature ( $ riangle$	T=5°C)
Unit size		45	50	55
		Heating capacity (kW)	Heating capacity (kW)	Heating capacity (kW)
440		54.4	37.5	21.3
550		65.5	45.9	27.1
650		77.4	52.4	28.5
750		93.6	65.3	38.3
800	∆T 5°( °C	106.3	76.0	47.1
950	°C - 7	125.3	86.0	48.5
C10	ture 7 beratu	131.5	89.7	50.0
C11	Evaporator leaving water temperature 7°C - ∆T 5°C Condenser leaving water temperature 35°C	152.4	109.8	69.1
C12	er ten water	148.8	103.5	60.4
C13	g wat	163.3	111.9	63.0
C14	eavinç er lea	175.4	122.2	71.5
C15A	ator le ndens	182.5	123.6	67.5
C16	Cor	203.2	139.9	79.6
C18	ш	228.4	161.7	98.1
C19		253.3	177.7	105.7
C20		276.1	199.1	125.6
C22		301.7	216.9	135.9

## 10 - 4 Heat recovery pressure drop



## 10 - 4 Heat recovery pressure drop





Daikin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Daikin has had the intention to become a leader in the provision of products that have limited impact on the environment. This challenge demands the eco design and development of a wide range of products and an energy management system, resulting in energy conservation and a reduction of waste.





The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. As compiled the content of this publication to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadst sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe N.V.

Daikin products are distributed by:





Daikin Europe N.Y. is participating in the EUROVENT Certification Programme. Products are as listed in the EUROVENT Directory of Certified Products.